WO2004105129A1 - Printed circuit board unit and method of manufacturing the unit - Google Patents

Printed circuit board unit and method of manufacturing the unit Download PDF

Info

Publication number
WO2004105129A1
WO2004105129A1 PCT/JP2003/006450 JP0306450W WO2004105129A1 WO 2004105129 A1 WO2004105129 A1 WO 2004105129A1 JP 0306450 W JP0306450 W JP 0306450W WO 2004105129 A1 WO2004105129 A1 WO 2004105129A1
Authority
WO
WIPO (PCT)
Prior art keywords
solidified body
printed circuit
heat
circuit board
component
Prior art date
Application number
PCT/JP2003/006450
Other languages
French (fr)
Japanese (ja)
Inventor
Tsuyoshi So
Akihiko Fujisaki
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2003/006450 priority Critical patent/WO2004105129A1/en
Publication of WO2004105129A1 publication Critical patent/WO2004105129A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Definitions

  • the present invention relates to a printed circuit board unit including an electronic component mounted on a substrate and a heat radiating component for promoting heat radiation from the electronic component, and a method for manufacturing the same.
  • Heat sinks and other heat dissipating components are widely used to cool the LSI chip mounted on a printed circuit board. These heat-dissipating components are received on the flat surface of the LSI chip. At this time, a thermally conductive fluid such as thermal grease is sandwiched between the surface of the LSI chip and the opposite surface of the heat radiating component. According to such a thermally conductive fluid, formation of a gap between the LSI chip and the heat radiating component can be prevented as much as possible. The heat of the LSI chip can be efficiently transferred to the heat dissipating component.
  • Printed circuit boards are often equipped with multiple LSI chips. On a printed circuit board, the height varies for each LSI chip. If a single heat sink is used in common for these LSI chips, the thickness of the thermal grease will vary between the facing surface of the heat sink and the surface of each LSI chip. As the thickness of the thermal grease increases, the heat transfer from the LSI chip to the heat dissipating component becomes extremely bad.
  • Patent Document 1
  • the present invention has been made in view of the above situation, and has a printed circuit board unit capable of suppressing a variation in the film thickness of a fluid disposed between an electronic component and a heat dissipation component. It is an object of the present invention to provide a method for producing the same. An object of the present invention is to provide a printed circuit board unit which is very useful for realizing such a method for manufacturing a printed circuit board unit.
  • a step of preparing an electronic component mounted on a substrate, a step of preparing a heat-radiating component that holds a solidified body on a flat surface, and a step of melting the solidified body A method of manufacturing a printed circuit board unit including a step of sandwiching a solidified body between a flat surface of a heat radiating component and a surface of an electronic component and a step of solidifying a molten solidified body.
  • the solidified body during melting can change its shape following the surface of the electronic component. After that, when the solidified body solidifies, a contact surface reflecting the height and inclination of the surface of the electronic component can be formed on the opposing surface of the heat dissipating component. When the heat dissipating component is received on the electronic component at such a contact surface, the surface of the electronic component can completely contact the solidified body.
  • Such a method of manufacturing a printed circuit board unit may further include a step of sandwiching a thermally conductive fluid between the solidified body after solidification and the surface of the electronic component. At this time, the heat conductive fluid can be uniformly sandwiched between the surface of the solidified body and the surface of the electronic component with a minimum thickness.
  • a heat-dissipating component unit that includes a heat-dissipating component that defines a flat surface and a solidified body attached to the flat surface may be provided.
  • the solidified body may be raised from a flat surface.
  • the solidified body should contain at least either the solder or the silver paste.
  • the electronic component mounted on the substrate, the heat radiating component received on the surface of the electronic component at the opposing surface facing the electronic component, and the solidified body fixed to the opposing surface of the heat radiating component And a fluid interposed between the solidified body and the electronic component.
  • a printed circuit board unit can greatly contribute to the realization of the manufacturing method described above.
  • the solidified body may face the surface of the electronic component at a contact surface inclined at a predetermined angle with respect to the facing surface of the heat radiating component. Coagulation The melting point of the solid only needs to be lower than the melting point of the conductive material connecting the electronic component and the substrate. Such a solidified body may contain at least either the solder or the silver paste. .
  • a step of preparing an electronic component mounted on the substrate a step of pressing the flat surface of the pressing member against the solidified body while melting the solidified body held on the surface of the electronic component, And a step of solidifying the formed solidified body.
  • the surface of the solidified body during melting can change its shape following the flat surface of the pressing member. Thereafter, when the solidified body solidifies, a flattened surface that spreads in one plane is established on the surface of the solidified body. When a heat-dissipating component is received on such a solid, the flat surface of the heat-dissipating component can contact the solid.
  • a heat dissipating component may be used for the pressing member.
  • Such a manufacturing method includes a step of arranging a thermally conductive fluid on a solidified body after solidification, a step of superposing a heat radiating component on the solidified body, and sandwiching the thermally conductive fluid between the solidified body and the heat radiating component.
  • the method may further include a step. At this time, the heat conductive fluid can be uniformly sandwiched between the surface of the solidified body and the facing surface of the heat radiating component with a minimum thickness.
  • an electronic component mounted on the board, a heat radiation component received on the surface of the electronic component on the facing surface facing the electronic component, a solidified body fixed to the surface of the electronic component, A solid body having a lower melting point than a conductive material connecting the electronic component and the board, the printed circuit board unit being provided.
  • a printed circuit board unit can greatly contribute to the realization of the manufacturing method described above.
  • the solidified body may be fixed to the surface of the electronic component at a contact surface inclined at a predetermined angle with respect to the facing surface of the heat radiating component.
  • the solidified body may contain at least one of the solder and the silver paste.
  • an electronic component mounted on the board, a heat dissipating component received on the surface of the electronic component on the opposing surface facing the electronic component, and a heat dissipating component disposed on the opposing surface of the heat dissipating component
  • a printed circuit board comprising: a contact surface inclined at a predetermined angle with respect to a facing surface of the electronic component; Unit is provided.
  • a heat dissipating component unit that defines a flat surface and a contact unit that is disposed on the flat surface and has a contact surface inclined at a predetermined angle with respect to the flat surface are used. It should be provided.
  • Such a printed circuit board unit can include a structure such as a single chip module (SCM) or a multichip module (MCM).
  • SCM single chip module
  • MCM multichip module
  • FIG. 1 is a perspective view schematically showing the appearance of the mother pod.
  • FIG. 2 is an enlarged partial vertical sectional view taken along line 2-2 of FIG.
  • FIG. 3 is an enlarged partial vertical sectional view of a printed circuit board unit showing a situation where a printed circuit board and a heat sink are prepared.
  • FIG. 4 is an enlarged partial vertical sectional view of a printed circuit board unit showing a situation in which a heat sink is mounted on an electronic component.
  • FIG. 5 is an enlarged partial vertical cross-sectional view of a printed circuit board unit showing a scene in which a heat sink is detached from an electronic component.
  • FIG. 6 is an enlarged partial vertical sectional view corresponding to FIG. 2 and showing the structure of the multi-chip module (MCM).
  • MCM multi-chip module
  • FIG. 7 is an enlarged partial vertical sectional view of a printed circuit board unit according to the second embodiment of the present invention, corresponding to FIG.
  • FIG. 8 is an enlarged partial vertical sectional view of a printed circuit board unit showing a scene of preparing an electronic component holding a solidified body.
  • FIG. 9 is an enlarged partial vertical cross-sectional view of the printed circuit board unit showing a situation where a pressing member is pressed on the solidified body.
  • FIG. 10 is an enlarged partial vertical sectional view of a printed circuit board unit showing a situation where a fluid is placed on a solidified body.
  • FIG. 11 is an enlarged partial vertical sectional view corresponding to FIG. 2 and showing the structure of the multi-chip module (MCM).
  • MCM multi-chip module
  • FIG. 12 is an enlarged partial vertical sectional view of a printed circuit board unit according to the third embodiment of the present invention, corresponding to FIG.
  • FIG. 13 is an enlarged partial vertical cross-sectional view of a printed circuit board unit showing a scene where an electronic component holding a heat spreader is prepared.
  • FIG. 14 is an enlarged partial vertical sectional view of the printed circuit board unit showing a situation where the surface of the heat spreader is flattened.
  • FIG. 15 is an enlarged partial vertical sectional view of a printed circuit board unit showing a situation where a fluid is placed on a heat spreader.
  • FIG. 1 schematically shows the appearance of the mother port 11.
  • the mother port 11 includes a large resin substrate 12.
  • SCM single chip module
  • Such a mother board 11 is incorporated in a computer system such as a global server.
  • the SCM 13 includes a heat dissipating component or heat sink 14.
  • the heat sink 14 is formed with a flat plate-shaped main body, that is, a heat receiving portion 14a, and a plurality of fins 14b rising vertically from the heat receiving portion 14a.
  • An air passage 15 extending in the same direction is defined between adjacent fins 14 b.
  • the airflow passing through the ventilation path 15 may be generated by the function of the ventilation unit.
  • the heat sink 14 may be molded from a metal material such as aluminum or copper.
  • the SCM 13 includes a ceramic printed wiring board 16 as shown in FIG. 2, for example.
  • a ceramic printed wiring board 16 On the surface of the printed wiring board 16 One electronic component, that is, an LSI chip 17 is mounted.
  • the LSI chip 17 is fixed to the printed wiring board 16 with a plurality of terminal bumps 18.
  • the terminal bumps 18 may be made of a conductive material such as solder, for example.
  • the heat sink 14 is fixed to the printed wiring board 16 with the support part 19.
  • the heat sink 14 may be adhered to the surface of the support component 19.
  • a screw (not shown) may be used for fixing the heat sink 14.
  • the heat sink 14 is received on the surface 17 a of the LSI chip 17 with a flat surface facing the LSI chip 17, that is, the facing surface 21.
  • the solidified body 22 is fixed to the facing surface 21 of the heat sink 14.
  • the solidified body 22 rises with the opposite face 21 force.
  • a material having a lower melting point than the terminal bumps 18 is used for the solidified body 22.
  • a low melting point solder or a silver base may be used for the solidified body 22.
  • the solidified body 22 has a contact surface 22 a that is inclined at a predetermined angle with respect to the facing surface 21.
  • the solidified body 22 is opposed to the surface 17a of the LSI chip 17 at the contact surface 22a.
  • the thermal grease 23 is composed of, for example, silicone grease and a heat conductive filler dispersed in the silicone grease.
  • a heat conductive filler for example, ceramic particles or metal particles may be used for the heat conductive filler.
  • the surface 17a of the LSI chip 17 may be covered with a heat conductive plate, that is, a heat spreader (not shown).
  • the thermal grease 23 is sandwiched between the solidified body 22 and the LSI chip 17 with a uniform film thickness. Heat can be reliably transferred from the LSI chip 17 to the heat sink 14.
  • a relative lateral displacement occurs between the surface 17 a of the LSI chip 17 and the facing surface 21 of the heat sink 14 based on a so-called difference in coefficient of thermal expansion.
  • Thermal grease 23 can easily absorb such lateral slippage based on the flowability of silicone grease. Therefore, the generation of stress in the LSI chip 17 and the heat sink 14 can be reduced as much as possible.
  • FIG. 3 first, an LSI chip 17 mounted on a printed wiring board 16 is prepared. A support component 19 is fixed on the printed wiring board 16 in advance. Subsequently, a heat sink 14 for holding the solidified body 22 on the flat surface, that is, the opposing surface 21 is prepared. Here, a low melting point solder is used for the solidified body 22. The low melting point solder has a lower melting point than the terminal bump 18. When mounting the solidified body 22, a plating film (not shown) may be formed on the facing surface 21 of the heat sink 14.
  • the heat sink 14 is overlaid on the printed wiring board 16. That is, the solidified body 22 is sandwiched between the facing surface 21 and the surface 17 a of the LSI chip 17.
  • the printed wiring board 16 is put in, for example, a heating furnace. At this time, a weight may be placed on the heat sink 14.
  • the solidified body 22 held on the facing surface 21 is melted by heating.
  • the heat sink 14 is pressed against the printed circuit board 16 by the weight of the weight. Thereafter, the molten solidified body 22 is cooled to room temperature.
  • the solidified body 22 solidifies.
  • an inclined surface that is, a contact surface 22 a is formed on the solidified body 22 following the LSI chip 1 ⁇ inclined at a predetermined angle with respect to the facing surface 21 of the heat sink 14.
  • the thermal seal lease 23 is sandwiched between the solidified body 22 after solidification and the surface 17 a of the LSI chip 17.
  • the heat sink 14 is pulled up when the thermal grease 23 is inserted.
  • thermal grease 23 is applied to the surface 17 a of the LSI chip 17.
  • the adhesive 24 is applied to the surface of the support part 19.
  • the solidified body 22 after solidification is again superimposed on the surface 17 a of the LSI chip 17.
  • the thermal dust 23 spreads between the surface 17 a of the LSI chip 17 and the contact surface 22 a of the solidified body 22.
  • the facing surface 21 is adhered to the surface of the support component 19 based on the adhesive 24.
  • the heat sink 14 is fixed to the printed wiring board 16.
  • the solidified body 22 has a contact surface according to the inclination of the surface 17 a of the LSI chip 17. 22a can be formed.
  • Thermal grease 23 is uniform with minimum film thickness It can be sandwiched between the contact surface 22 a of the solidified body 22 and the surface 17 a of the LSI chip 17. According to the verification of the present inventor, it was confirmed that when the film thickness of the thermal grease 23 was increased, heat transfer from the LSI chip 17 to the heat sink 14 was significantly inhibited.
  • silver paste may be used for the solidified body 22 instead of the low melting point solder.
  • the silver paste may be composed of a resin material and silver particles dispersed in the resin material.
  • the silver paste is applied to the facing surface 21 of the heat sink 14.
  • the heat sink 14 is superimposed on the printed wiring board 16 as described above.
  • the silver paste solidifies as the resin material cures in the silver paste based on the heating.
  • an inclined surface that is, a contact surface 22 a is formed on the solidified body 22 following the LSI chip 17 inclined at a predetermined angle with respect to the facing surface 21 of the heat sink 14.
  • the thermal grease 23 may be inserted between the contact surface 22 a of the solidified body 22 and the surface 17 a of the LSI chip 17 in the same manner as described above.
  • the above manufacturing method may be applied, for example, to the manufacture of a multi-chip module (MCM).
  • MCM multi-chip module
  • the solidified body 22 may be fixed for each individual LSI chip 17.
  • the heat sink 14 may be attached to the printed wiring board 16 with screws, for example.
  • each solidified body 22 has a corresponding surface 17 a of the LSI chip 17.
  • the contact surface 22a can be formed following the pattern. Therefore, as described above, the thermal grease 23 can be uniformly sandwiched between the contact surface 22 a of the solidified body 22 and the surface 17 a of the LSI chip 17 with the minimum film thickness.
  • the MCM 13 is mounted on the resin substrate 12 of the mother port 11 as described above.
  • FIG. 7 schematically shows a printed circuit board unit, that is, a SCM 13a according to a second embodiment of the present invention.
  • the SCM 13a is mounted on the large resin substrate 12 as described above.
  • the heat sink 14 is fixed to the printed wiring board 16 by a supporting part 19.
  • the heat sink 14 is received on the surface 17 a of the LSI chip at the facing surface 21 facing the LSI chip 17.
  • the solidified body 25 is fixed to the surface 17 a of the LSI chip 17.
  • a material having a lower melting point than the terminal bumps 18 is used for the solidified body 25.
  • a low-melting-point solder or a silver paste may be used for the solidified body 25 as described above.
  • the solidified body 25 has a contact surface 25a that is inclined at a predetermined angle with respect to the facing surface 21.
  • the solid 25 is fixed to the surface 17a of the LSI chip 17 at the contact surface 25a.
  • a fluid, that is, thermal grease 23 having a uniform film thickness is sandwiched between the surface of the solidified body 5 and the facing surface 21 of the heat sink 14.
  • the thermal grease 23 is uniformly sandwiched between the solidified solid 25 and the heat sink 14 with the minimum thickness. Heat can be reliably transferred from the LSI chip 17 to the heat sink 14. Thermal grease 23 can easily absorb lateral slippage based on the fluidity of silicone grease. Therefore, the generation of stress in the LSI chip 17 and the heat sink 14 can be reduced as much as possible.
  • an LSI chip 17 mounted on a printed wiring board 16 is prepared.
  • a support component 19 is fixed on the printed wiring board 16 in advance.
  • the solidified body 25 is fixed to the surface 17 a of the LSI chip 17.
  • a low melting point solder is used for the solidified body 25 .
  • the solidified body 25 has a lower melting point than the terminal bump 18.
  • a plating film (not shown) may be formed on the surface 17a of the LSI chip 17.
  • the printed wiring board 16 is put into, for example, a heating furnace.
  • a pressing member 26 is mounted on the printed wiring board 16.
  • the solidified body 25 held on the surface 17a of the LSI chip 17 melts.
  • the flat surface 26 a of the pressing member 26 is pressed toward the printed wiring board 16.
  • the molten solidified body 25 is cooled to room temperature.
  • the coagulated body 25 solidifies.
  • a heat sink 14 may be used instead of the pressing member 26.
  • thermal grease 23 is applied to the surface of the solidified body 25 after solidification.
  • an adhesive 24 is applied to the surface of the support component 19.
  • the opposing surface 21 of the heat sink 14 is superimposed on the surface of the solidified body 25. You.
  • the thermal grease 23 ' is interposed between the solidified body 25 and the heat sink 14.
  • the facing surface 21 of the heat sink 14 is adhered to the surface of the supporting component 19 based on the adhesive 24.
  • the heat sink 14 is fixed to the printed wiring board 16.
  • a silver paste may be used for the solidified body 25 instead of the low melting point solder.
  • the silver paste is applied to the surface 17 a of the LSI chip 17. Thereafter, the flat surface 26a of the pressing member 26 is pressed against the silver paste. At this time, the resin material evaporates and the silver particles solidify in the silver paste based on the heating.
  • the solidified body 25 has an inclined surface or contact surface following the LSI chip 17 inclined at a predetermined angle with respect to the facing surface 21 of the heat sink 14.
  • the thermal grease 23 may be sandwiched between the surface of the solidified body 25 and the facing surface 21 of the heat sink 14 as described above.
  • the solidified body 25 has a surface parallel to the facing surface 21 of the heat sink 14.
  • Can be The thermal grease 23 can be uniformly sandwiched between the surface of the solidified body 25 and the facing surface 21 of the heat sink 14 with a minimum thickness.
  • the manufacturing method as described above may be applied to, for example, the manufacture of a multi-chip module (MCM) as described above.
  • MCM multi-chip module
  • the solidified body 25 may be fixed for each LSI chip 17.
  • the heat sink 14 may be attached to the printed wiring board 16 with screws, for example.
  • the solidified body 25 has a parallel shape with the facing surface 21 of the heat sink 14.
  • the surface can be specified.
  • the thermal grease 23 is uniformly sandwiched between the surface of the solidified body 25 and the facing surface 21 of the heat sink 14 with the minimum thickness. be able to.
  • the MCM 13a is mounted on the resin board 12 of the mother port 11 as described above. '
  • FIG. 12 shows a printed circuit board unit according to a third embodiment of the present invention, that is, MCM 1.
  • MCM 13b is mounted on a large resin substrate 12 as described above.
  • the surface 17 a of each LSI chip 17 is covered with a heat spreader 27.
  • the heat spreader 27 has a contact surface 27a that is inclined at a predetermined angle with respect to the facing surface 21 of the heat sink 14.
  • the heat spreader 27 is received on the LS chip 17 at the contact surface 27a.
  • the heat sink 14 is received on the surface of the heat spreader 27 at the opposing surface 21 facing the LSI chip 17.
  • a fluid, that is, a thermal drier 23 is sandwiched uniformly with a minimum film thickness.
  • the thermal grease 23 is uniformly sandwiched between the heat spreaders 27, 27, 27 and the heat sink 14 with the minimum film thickness.
  • the heat from the LSI chips 17, 17, 17 can be reliably transferred to the heat sink 14.
  • Thermal grease 23 can easily absorb the side slip based on the fluidity of silicone grease. Therefore, the generation of stress in the LSI chip 17 and the heat sink 14 can be reduced as much as possible.
  • FIG. 13 A brief description will be given of a method of manufacturing MCM13b as described above. As shown in FIG. 13, first, an LSI chip 17 mounted on a printed wiring board 16 is prepared. A heat spreader 27 having a uniform film thickness is fixed on the surface 17a of the LSI chip 17.
  • Heat spreaders 27, 21 and 27 are polished plates for flattening
  • each heat spreader 27 is formed with a surface extending in a horizontal plane.
  • thermal grease 23 is applied to the surface of the heat spreader 27. Thereafter, the facing surface 21 of the heat sink 14 is superimposed on the surface of the heat spreader 27. Thus, the thermal grease 23 is sandwiched between the heat spreader 27 and the heat sink 14.
  • the heat sink 14 is fixed to the printed distribution board 16 with screws, for example.
  • the heat spreader 27 has the opposite surface 2 of the heat sink 14.
  • a surface parallel to 1 can be defined.
  • the thermal grease 23 has a uniform thickness between the surface of the heat spreader 27 and the opposing surface 21 of the heat sink 14 with a minimum film thickness. Can be pinched.
  • the present invention it is possible to provide a method of manufacturing a printed circuit board unit capable of suppressing a variation in thickness of a fluid disposed between an electronic component and a heat radiating component.
  • the present invention can provide a printed circuit board unit that is very useful for realizing such a method for manufacturing a printed circuit board unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A method of manufacturing a printed circuit board unit, comprising the steps of preparing an electronic part (17) mounted on a substrate (16) and a radiating part (14) holding a solidified body (22) by the flat surface (21) thereof, holding the solidified body (22) between the flat surface (21) of the radiating part (14) and the surface (17a) of the electronic part (17) while fusing the solidified body (22), solidifying the fused solidified body (22), and holding a heat conductive fluid body (23) between the solidified body (22) after solidification and the surface (17a) of the electronic part (17), whereby even if an inclination is formed on the surface (17a) of the electronic part (17), a contact face can be formed on the solidified body (22) according to the inclination of the surface (17a) of the electronic part (17), and the heat conductive fluid body (23) can be held between the contact surface of the solidified body (22) and the surface (17a) of the electronic part (17) uniformly with the minimum film thickness.

Description

プリント基板ュニットおよびその製造方法 技術分野  Printed circuit board unit and manufacturing method thereof
本発明は、 基板に実装される電子部品と、 電子部品からの放熱を促進する放熱 部品とを備えるプリント基板ュニットおよびその製造方法に関する。 背景技術  The present invention relates to a printed circuit board unit including an electronic component mounted on a substrate and a heat radiating component for promoting heat radiation from the electronic component, and a method for manufacturing the same. Background art
プリント基板に実装された L S Iチップの冷却にあたってヒートシンクといつ た放熱部品は広く用いられる。 こういった放熱部品は平坦な対向面で L S Iチッ プの表面に受け止められる。 このとき、 L S Iチップの表面および放熱部品の対 向面の間にはサ一マルグリースといった熱伝導性流動体が挟み込まれる。 こうし た熱伝導性流動体によれば、 L S Iチップおよび放熱部品の間で隙間の形成は極 力阻止されることができる。 L S Iチップの熱は効率的に放熱部品に受け渡され ることができる。  Heat sinks and other heat dissipating components are widely used to cool the LSI chip mounted on a printed circuit board. These heat-dissipating components are received on the flat surface of the LSI chip. At this time, a thermally conductive fluid such as thermal grease is sandwiched between the surface of the LSI chip and the opposite surface of the heat radiating component. According to such a thermally conductive fluid, formation of a gap between the LSI chip and the heat radiating component can be prevented as much as possible. The heat of the LSI chip can be efficiently transferred to the heat dissipating component.
プリント基板にはしばしば複数個の L S Iチップが実装される。 プリント基板 上では L S Iチップごとに高さはばらつく。 こういった L S Iチップに共通に 1 体の放熱部品が用いられると、 放熱部品の対向面と個々の L S Iチップの表面と の間でサーマルグリースの膜厚にばらつきが生じる。 サ一マルグリースの膜厚が 増大すると、 L S Iチップから放熱部品に向かって熱の伝達は極度に悪ィヒしてし ま 。  Printed circuit boards are often equipped with multiple LSI chips. On a printed circuit board, the height varies for each LSI chip. If a single heat sink is used in common for these LSI chips, the thickness of the thermal grease will vary between the facing surface of the heat sink and the surface of each LSI chip. As the thickness of the thermal grease increases, the heat transfer from the LSI chip to the heat dissipating component becomes extremely bad.
特許文献 1 Patent Document 1
日本国特開平 2— 0 0 1 9 5 9号公報  Japanese Unexamined Patent Publication No. Hei 2-0 0 1959
発明の開示 Disclosure of the invention
本発明は、 上記実状に鑑みてなされたもので、 電子部品と放熱部品との間に配 置される流動体の膜厚のばらつきを抑制することができるプリント基板ュニット の製造方法を提供することを目的とする。 本発明は、 こういったプリント基板ュ ニッ卜の製造方法の実現に大いに役立つプリント基板ュニットを提供することを 目勺とする。 The present invention has been made in view of the above situation, and has a printed circuit board unit capable of suppressing a variation in the film thickness of a fluid disposed between an electronic component and a heat dissipation component. It is an object of the present invention to provide a method for producing the same. An object of the present invention is to provide a printed circuit board unit which is very useful for realizing such a method for manufacturing a printed circuit board unit.
上記目的を達成するために、 第 1発明によれば、 基板上に実装された電子部品 を用意する工程と、 平坦面で凝固体を保持する放熱部品を用意する工程と、 凝固 体を溶融させつつ放熱部品の平坦面および電子部品の表面の間に凝固体を挟み込 む工程と、 溶融した凝固体を凝固させる工程とを備えるプリント基板ュニットの 製造方法が提供される。  To achieve the above object, according to the first invention, a step of preparing an electronic component mounted on a substrate, a step of preparing a heat-radiating component that holds a solidified body on a flat surface, and a step of melting the solidified body A method of manufacturing a printed circuit board unit including a step of sandwiching a solidified body between a flat surface of a heat radiating component and a surface of an electronic component and a step of solidifying a molten solidified body.
溶融中の凝固体は電子部品の表面に倣って形状を変化させることができる。 そ の後、 凝固体は凝固すると、 放熱部品の対向面上には、 電子部品の表面の高さや 傾斜を反映する接触面が形成されることがでぎる。 こういった接触面で放熱部品 が電子部品上に受け止められると、 電子部品の表面は完全に凝固体に接触するこ とができる。  The solidified body during melting can change its shape following the surface of the electronic component. After that, when the solidified body solidifies, a contact surface reflecting the height and inclination of the surface of the electronic component can be formed on the opposing surface of the heat dissipating component. When the heat dissipating component is received on the electronic component at such a contact surface, the surface of the electronic component can completely contact the solidified body.
こういったプリント基板ュニットの製造方法は、 凝固後の凝固体と電子部品の 表面との間に熱伝導性流動体を挟み込む工程をさらに備えてもよい。 このとき、 熱伝導性流動体は最小膜厚で均一に凝固体の表面および電子部品の表面の間に挟 み込まれることができる。  Such a method of manufacturing a printed circuit board unit may further include a step of sandwiching a thermally conductive fluid between the solidified body after solidification and the surface of the electronic component. At this time, the heat conductive fluid can be uniformly sandwiched between the surface of the solidified body and the surface of the electronic component with a minimum thickness.
以上のような製造方法の実現にあたって、 平坦面を規定する放熱部品と、 平坦 面に取り付けられる凝固体とを備えることを特徴とする放熱部品ュニットが提供 されればよい。 こうした放熱部品ュニットでは凝固体は平坦面から盛り上がれば よい。 凝固体には少なくともはんだおよび銀ペーストのいずれかが含まれればよ い。  In realizing the manufacturing method as described above, a heat-dissipating component unit that includes a heat-dissipating component that defines a flat surface and a solidified body attached to the flat surface may be provided. In such a heat-dissipating component unit, the solidified body may be raised from a flat surface. The solidified body should contain at least either the solder or the silver paste.
第 2発明によれば、 基板に実装される電子部品と、 電子部品に向き合わせられ る対向面で電子部品の表面に受け止められる放熱部品と、 放熱部品の対向面に固 定される凝固体と、 凝固体および電子部品の間に挟まれる流動体とを備えること を特徴とするプリント基板ュニットが提供される。 こうしたプリント基板ュニッ トは、 前述される製造方法の実現に大いに貢献することができる。  According to the second invention, the electronic component mounted on the substrate, the heat radiating component received on the surface of the electronic component at the opposing surface facing the electronic component, and the solidified body fixed to the opposing surface of the heat radiating component And a fluid interposed between the solidified body and the electronic component. Such a printed circuit board unit can greatly contribute to the realization of the manufacturing method described above.
以上のようなプリント基板ユニットでは、 凝固体は、 放熱部品の対向面に対し て所定の角度で傾斜する接触面で電子部品の表面に向き合わせられてもよい。 凝 固体の融点は、 電子部品および基板を接続する導電材料の融点よりも低ければよ い。 こうした凝固体には少なくともはんだおよび銀ペーストのいずれかが含まれ ればよい。 . In the printed circuit board unit described above, the solidified body may face the surface of the electronic component at a contact surface inclined at a predetermined angle with respect to the facing surface of the heat radiating component. Coagulation The melting point of the solid only needs to be lower than the melting point of the conductive material connecting the electronic component and the substrate. Such a solidified body may contain at least either the solder or the silver paste. .
第 3発明によれば、 基板上に実装された電子部品を用意する工程と、 電子部品 の表面に保持される凝固体を溶融させつつ凝固体に押し付け部材の平坦面を押し 付ける工程と、 溶融した凝固体を凝固させる工程とを備えるプリント基板ュニッ トの製造方法が提供される。  According to the third aspect, a step of preparing an electronic component mounted on the substrate, a step of pressing the flat surface of the pressing member against the solidified body while melting the solidified body held on the surface of the electronic component, And a step of solidifying the formed solidified body.
溶融中の凝固体の表面は押し付け部材の平坦面に倣って形状を変化させること ができる。 その後、 凝固体が凝固すると、 凝固体の表面には 1平面内に広がる平 坦化面が確立される。 こういった凝固体上に放熱部品が受け止められると、 放熱 部品の平坦面は凝固体に接触することができる。 押し付け部材には放熱部品が利 用されてもよい。  The surface of the solidified body during melting can change its shape following the flat surface of the pressing member. Thereafter, when the solidified body solidifies, a flattened surface that spreads in one plane is established on the surface of the solidified body. When a heat-dissipating component is received on such a solid, the flat surface of the heat-dissipating component can contact the solid. A heat dissipating component may be used for the pressing member.
こういった製造方法は、 凝固後の凝固体上に熱伝導性流動体を配置する工程と、 凝固体上に放熱部品を重ね合わせ、 凝固体および放熱部品の間に熱伝導性流動体 を挟み込む工程をさらに備えてもよい。 このとき、 熱伝導性流動体は最小膜厚で 均一に凝固体の表面および放熱部品の対向面の間に挟み込まれることができる。 第 4発明によれば、 基板に実装される電子部品と、 電子部品に向き合わせられ る対向面で電子部品の表面に受け止められる放熱部品と、 電子部品の表面に固定 される凝固体と、 凝固体および放熱部品の間に挟まれる流動体とを備え、 凝固体 は、 電子部品および基板を接続する導電材料よりも低い融点を有することを特徴 とするプリント基板ュニットが提供される。 こうしたプリント基板ュニットは、 前述される製造方法の実現に大いに貢献することができる。  Such a manufacturing method includes a step of arranging a thermally conductive fluid on a solidified body after solidification, a step of superposing a heat radiating component on the solidified body, and sandwiching the thermally conductive fluid between the solidified body and the heat radiating component. The method may further include a step. At this time, the heat conductive fluid can be uniformly sandwiched between the surface of the solidified body and the facing surface of the heat radiating component with a minimum thickness. According to the fourth invention, an electronic component mounted on the board, a heat radiation component received on the surface of the electronic component on the facing surface facing the electronic component, a solidified body fixed to the surface of the electronic component, A solid body having a lower melting point than a conductive material connecting the electronic component and the board, the printed circuit board unit being provided. Such a printed circuit board unit can greatly contribute to the realization of the manufacturing method described above.
こういったプリント基板ユニットでは、 凝固体は、 放熱部品の対向面に対して 所定の角度で傾斜する接触面で電子部品の表面に固定されればよい。 凝固体には 少なくともはんだおよび銀ペーストのいずれかが含まれればよい。  In such a printed circuit board unit, the solidified body may be fixed to the surface of the electronic component at a contact surface inclined at a predetermined angle with respect to the facing surface of the heat radiating component. The solidified body may contain at least one of the solder and the silver paste.
第 5発明によれば、 基板に実装される電子部品と、 電子部品に向き合わせられ る対向面で電子部品の表面に受け止められる放熱部品と、 放熱部品の対向面上に 配置されて、 放熱部品の対向面に対して所定の角度で傾斜する接触面と、 接触面 および電子部品の間に挟まれる流動体とを備えることを特徴とするプリント基板 ュニッ卜が提供される。 According to the fifth invention, an electronic component mounted on the board, a heat dissipating component received on the surface of the electronic component on the opposing surface facing the electronic component, and a heat dissipating component disposed on the opposing surface of the heat dissipating component A printed circuit board comprising: a contact surface inclined at a predetermined angle with respect to a facing surface of the electronic component; Unit is provided.
こういったプリント基板ュニットでは、 たとえ放熱部品の対向面に対して電子 部品の表面が傾斜しても、 そういった傾斜に基づき接触面の傾斜は設定されるこ とができる。 したがって、 放熱部品上の接触面と電子部品の表面との間には最小 膜厚で均一に流動体は挟み込まれることができる。 こういったプリント基板ュニ ットの実現にあたって、 平坦面を規定する放熱部品と、 平坦面上に配置されて、 平坦面に対して所定の角度で傾斜する接触面とを備える放熱部品ュニットが提供 されればよい。  In such a printed circuit board unit, even if the surface of the electronic component is inclined with respect to the facing surface of the heat dissipation component, the inclination of the contact surface can be set based on such inclination. Therefore, the fluid can be uniformly sandwiched between the contact surface on the heat dissipating component and the surface of the electronic component with a minimum thickness. In realizing such a printed circuit board unit, a heat dissipating component unit that defines a flat surface and a contact unit that is disposed on the flat surface and has a contact surface inclined at a predetermined angle with respect to the flat surface are used. It should be provided.
以上のようなプリント基板ユニットには、 例えばシングルチップモジュール ( S C M) やマルチチップモジュール (MCM) といった構造体が含まれること ができる。 図面の簡単な説明  Such a printed circuit board unit can include a structure such as a single chip module (SCM) or a multichip module (MCM). BRIEF DESCRIPTION OF THE FIGURES
図 1は、 マザーポ一ドの外観を概略的に示す斜視図である。  FIG. 1 is a perspective view schematically showing the appearance of the mother pod.
図 2は、 図 1の 2— 2線に沿った拡大部分垂直断面図である。  FIG. 2 is an enlarged partial vertical sectional view taken along line 2-2 of FIG.
図 3は、 プリント配線基板およびヒートシンクを用意する場面を示すプリン卜 基板ュニットの拡大部分垂直断面図である。  FIG. 3 is an enlarged partial vertical sectional view of a printed circuit board unit showing a situation where a printed circuit board and a heat sink are prepared.
図 4は、 電子部品上にヒートシンクを搭載する場面を示すプリント基板ュニッ トの拡大部分垂直斬面図である。  FIG. 4 is an enlarged partial vertical sectional view of a printed circuit board unit showing a situation in which a heat sink is mounted on an electronic component.
図 5は、 電子部品からヒートシンクを離脱させる場面を示すプリント基板ュニ ットの拡大部分垂直断面図である。  FIG. 5 is an enlarged partial vertical cross-sectional view of a printed circuit board unit showing a scene in which a heat sink is detached from an electronic component.
図 6は、 図 2に対応し、 マルチチップモジュール (M CM) の構造を示す拡大 部分垂直断面図である。  FIG. 6 is an enlarged partial vertical sectional view corresponding to FIG. 2 and showing the structure of the multi-chip module (MCM).
図 7は、 図 2に対応し、 本発明の第 2実施形態に係るプリント基板ユニットの 拡大部分垂直断面図である。  FIG. 7 is an enlarged partial vertical sectional view of a printed circuit board unit according to the second embodiment of the present invention, corresponding to FIG.
図 8は、 凝固体を保持する電子部品を用意する場面を示すプリント基板ュニッ 卜の拡大部分垂直断面図である。  FIG. 8 is an enlarged partial vertical sectional view of a printed circuit board unit showing a scene of preparing an electronic component holding a solidified body.
図 9は、 凝固体上に押し付け部材を押し付ける場面を示すプリント基板ュニッ トの拡大部分垂直断面図である。 図 1 0は、 凝固体上に流動体を配置する場面を示すプリント基板ュニットの拡 大部分垂直断面図である。 FIG. 9 is an enlarged partial vertical cross-sectional view of the printed circuit board unit showing a situation where a pressing member is pressed on the solidified body. FIG. 10 is an enlarged partial vertical sectional view of a printed circuit board unit showing a situation where a fluid is placed on a solidified body.
図 1 1は、 図 2に対応し、 マルチチップモジュール (MC M) の構造を示す拡 大部分垂直断面図である。  FIG. 11 is an enlarged partial vertical sectional view corresponding to FIG. 2 and showing the structure of the multi-chip module (MCM).
図 1 2は、 図 2に対応し、 本発明の第 3実施形態に係るプリント基板ユニット の拡大部分垂直断面図である。  FIG. 12 is an enlarged partial vertical sectional view of a printed circuit board unit according to the third embodiment of the present invention, corresponding to FIG.
図 1 3は、 ヒートスプレッダを保持する電子部品を用意する場面を示すプリン ト基板ュニットの拡大部分垂直断面図である。  FIG. 13 is an enlarged partial vertical cross-sectional view of a printed circuit board unit showing a scene where an electronic component holding a heat spreader is prepared.
図 1 4は、 ヒートスプレッダの表面を平坦化する場面を示すプリント基板ュニ ットの拡大部分垂直断面図である。  FIG. 14 is an enlarged partial vertical sectional view of the printed circuit board unit showing a situation where the surface of the heat spreader is flattened.
図 1 5は、 ヒートスプレッダ上に流動体を配置する場面を示すプリント基板ュ ニッ卜の拡大部分垂直断面図である。 発明を実施するための最良の形態  FIG. 15 is an enlarged partial vertical sectional view of a printed circuit board unit showing a situation where a fluid is placed on a heat spreader. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 添付図面を参照しつつ本発明の実施形態を説明する。  Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
図 1はマザ一ポード 1 1の外観を概略的に示す。 このマザ一ポード 1 1は大型 の樹脂製基板 1 2を備える。 樹脂製基板 1 2の表面には 1または複数のプリン卜 基板ユニットすなわちシングルチップモジュール (S CM) 1 3が実装される。 こういったマザ一ボード 1 1は、 例えばグロ一バルサーバといったコンピュータ システムに組み込まれる。  FIG. 1 schematically shows the appearance of the mother port 11. The mother port 11 includes a large resin substrate 12. On the surface of the resin substrate 12, one or a plurality of print substrate units, that is, a single chip module (SCM) 13 are mounted. Such a mother board 11 is incorporated in a computer system such as a global server.
S CM 1 3は放熱部品すなわちヒートシンク 1 4を備える。 ヒートシンク 1 4 には、 平板状の本体すなわち受熱部 1 4 aと、 この受熱部 1 4 aから垂直方向に 立ち上がる複数枚のフィン 1 4 bとが形成される。 隣接するフィン 1 4 b同士の 間には同一方向に延びる通気路 1 5が区画される。 こういった S CM 1 3が例え ばサーバに組み込まれる場合には、 送風ュニッ卜の働きで通気路 1 5を通過する 気流は生み出されればよい。 ヒートシンク 1 4は例えばアルミニウムや銅といつ た金属材料から成型されればよい。  The SCM 13 includes a heat dissipating component or heat sink 14. The heat sink 14 is formed with a flat plate-shaped main body, that is, a heat receiving portion 14a, and a plurality of fins 14b rising vertically from the heat receiving portion 14a. An air passage 15 extending in the same direction is defined between adjacent fins 14 b. In the case where such an SCM 13 is incorporated in a server, for example, the airflow passing through the ventilation path 15 may be generated by the function of the ventilation unit. The heat sink 14 may be molded from a metal material such as aluminum or copper.
本発明の第 1実施形態に係る S CM 1 3は、 例えば図 2に示されるように、 セ ラミック製のプリント配線基板 1 6を備える。 プリント配線基板 1 6の表面には 1個の電子部品すなわち L S Iチップ 1 7が実装される。 L S Iチップ 1 7は複 数個の端子バンプ 1 8でプリント配線基板 1 6に固定される。 端子バンプ 1 8は 例えばはんだといつた導電材料から構成されればよい。 The SCM 13 according to the first embodiment of the present invention includes a ceramic printed wiring board 16 as shown in FIG. 2, for example. On the surface of the printed wiring board 16 One electronic component, that is, an LSI chip 17 is mounted. The LSI chip 17 is fixed to the printed wiring board 16 with a plurality of terminal bumps 18. The terminal bumps 18 may be made of a conductive material such as solder, for example.
ヒートシンク 1 4は、 支部部品 1 9でプリント配線基板 1 6に固定される。 ヒ —トシンク 1 4は支持部品 1 9の表面に接着されればよい。 ただし、 ヒートシン ク 1 4の固定にあたって例えばねじ (図示されず) が用いられてもよい。 ヒート シンク 1 4は、 L S Iチップ 1 7に向き合わせられる平坦面すなわち対向面 2 1 で L S Iチップ 1 7の表面 1 7 aに受け止められる。  The heat sink 14 is fixed to the printed wiring board 16 with the support part 19. The heat sink 14 may be adhered to the surface of the support component 19. However, for fixing the heat sink 14, for example, a screw (not shown) may be used. The heat sink 14 is received on the surface 17 a of the LSI chip 17 with a flat surface facing the LSI chip 17, that is, the facing surface 21.
ヒートシンク 1 4の対向面 2 1には凝固体 2 2が固定される。 凝固体 2 2は対 向面 2 1力、ら盛り上がる。 凝固体 2 2には、 端子バンプ 1 8よりも低い融点を有 する材料が用いられる。 ここでは、 凝固体 2 2には例えば低融点はんだや銀べ一 ストが用いられればよい。 凝固体 2 2には、 対向面 2 1に対して所定の角度で傾 斜する接触面 2 2 aが形成される。 凝固体 2 2は接触面 2 2 aで L S Iチップ 1 7の表面 1 7 aに向き合わせられる。  The solidified body 22 is fixed to the facing surface 21 of the heat sink 14. The solidified body 22 rises with the opposite face 21 force. A material having a lower melting point than the terminal bumps 18 is used for the solidified body 22. Here, for example, a low melting point solder or a silver base may be used for the solidified body 22. The solidified body 22 has a contact surface 22 a that is inclined at a predetermined angle with respect to the facing surface 21. The solidified body 22 is opposed to the surface 17a of the LSI chip 17 at the contact surface 22a.
凝固体 2 2の接触面 2 2 aと L S Iチップ 1 7の表面 1 Ί aの間には最小膜厚 で均一に流動体すなわちサーマルグリース 2 3が挟まれる。 サーマルグリース 2 3は、 例えばシリコーングリースと、 このシリコーングリース中に分散する熱伝 導性フイラ一とから構成される。 熱伝導性フィラ一には例えばセラミック粒子や 金属粒子が用いられればよい。 このとき、 L S Iチップ 1 7の表面 1 7 aは熱伝 導板すなわちヒートスプレッダ (図示されず) で覆われてもよい。  Between the contact surface 22 a of the solidified body 22 and the surface 1 a of the LSI chip 17, the fluid, that is, the thermal grease 23 is uniformly sandwiched with a minimum film thickness. The thermal grease 23 is composed of, for example, silicone grease and a heat conductive filler dispersed in the silicone grease. For example, ceramic particles or metal particles may be used for the heat conductive filler. At this time, the surface 17a of the LSI chip 17 may be covered with a heat conductive plate, that is, a heat spreader (not shown).
以上のような S CM 1 3では、 サーマルグリース 2 3は均一な膜厚で凝固体 2 2および L S Iチップ 1 7の間に挟み込まれる。 L S Iチップ 1 7から熱は確実 にヒートシンク 1 4に受け渡されることができる。 一般に、 L S Iチップ 1 7が 発熱すると、 いわゆる熱膨張率の違いに基づき L S Iチップ 1 7の表面 1 7 aと ヒートシンク 1 4の対向面 2 1との間に相対的な横ずれが生じる。 サ一マルグリ —ス 2 3はシリコーングリースの流動性に基づきこういった横ずれを容易に吸収 することができる。 したがって、 L S Iチップ 1 7やヒートシンク 1 4で応力の 発生は極力低減されることができる。  In the SCM 13 described above, the thermal grease 23 is sandwiched between the solidified body 22 and the LSI chip 17 with a uniform film thickness. Heat can be reliably transferred from the LSI chip 17 to the heat sink 14. In general, when the LSI chip 17 generates heat, a relative lateral displacement occurs between the surface 17 a of the LSI chip 17 and the facing surface 21 of the heat sink 14 based on a so-called difference in coefficient of thermal expansion. Thermal grease 23 can easily absorb such lateral slippage based on the flowability of silicone grease. Therefore, the generation of stress in the LSI chip 17 and the heat sink 14 can be reduced as much as possible.
次に本発明の第 1実施形態に係る S C M 1 3の製造方法を簡単に説明する。 図 3に示されるように、 まず、 プリント配線基板 1 6上に実装された L S Iチップ 1 7が用意される。 プリント配線基板 1 6上には予め支持部品 1 9が固定される。 続いて、 平坦面すなわち対向面 2 1で凝固体 2 2を保持するヒートシンク 1 4が 用意される。 ここでは、 凝固体 2 2には低融点はんだが用いられる。 低融点はん だは端子バンプ 1 8よりも低い融点を有する。 凝固体 2 2の取り付けにあたって ヒー卜シンク 1 4の対向面 2 1には金めつき膜 (図示されず) が成膜されればよ い。 Next, a method of manufacturing the SCM 13 according to the first embodiment of the present invention will be briefly described. Figure As shown in FIG. 3, first, an LSI chip 17 mounted on a printed wiring board 16 is prepared. A support component 19 is fixed on the printed wiring board 16 in advance. Subsequently, a heat sink 14 for holding the solidified body 22 on the flat surface, that is, the opposing surface 21 is prepared. Here, a low melting point solder is used for the solidified body 22. The low melting point solder has a lower melting point than the terminal bump 18. When mounting the solidified body 22, a plating film (not shown) may be formed on the facing surface 21 of the heat sink 14.
続いて、 図 4に示されるように、 ヒートシンク 1 4はプリント配線基板 1 6に 重ね合わせられる。 すなわち、 凝固体 2 2は対向面 2 1および L S Iチップ 1 7 の表面 1 7 aの間に挟み込まれる。 プリント配線基板 1 6は例えば加熱炉に入れ られる。 このとき、 ヒートシンク 1 4上には重りが載せられてもよい。 対向面 2 1に保持される凝固体 2 2は加熱に基づき溶融する。 重りの重量でヒートシンク 1 4はプリント配線基板 1 6に向かって押し付けられる。 その後、 溶融した凝固 体 2 2は室温まで冷却される。 凝固体 2 2は凝固する。 こうして凝固体 2 2には、 ヒートシンク 1 4の対向面 2 1に対して所定の角度で傾斜する L S Iチップ 1 Ί に倣って傾斜面すなわち接触面 2 2 aは形成される。  Subsequently, as shown in FIG. 4, the heat sink 14 is overlaid on the printed wiring board 16. That is, the solidified body 22 is sandwiched between the facing surface 21 and the surface 17 a of the LSI chip 17. The printed wiring board 16 is put in, for example, a heating furnace. At this time, a weight may be placed on the heat sink 14. The solidified body 22 held on the facing surface 21 is melted by heating. The heat sink 14 is pressed against the printed circuit board 16 by the weight of the weight. Thereafter, the molten solidified body 22 is cooled to room temperature. The solidified body 22 solidifies. Thus, an inclined surface, that is, a contact surface 22 a is formed on the solidified body 22 following the LSI chip 1 傾斜 inclined at a predetermined angle with respect to the facing surface 21 of the heat sink 14.
続いて、 図 5に示されるように、 凝固後の凝固体 2 2と L S Iチップ 1 7の表 面 1 7 aの間にサ一マルダリース 2 3が挟み込まれる。 サーマルグリース 2 3の 挟み込みにあたってヒートシンク 1 4は引き上げられる。 その後、 L S Iチップ 1 7の表面 1 7 aにはサーマルグリース 2 3が盛られる。 同時に、 支持部品 1 9 の表面には接着剤 2 4が塗布される。  Subsequently, as shown in FIG. 5, the thermal seal lease 23 is sandwiched between the solidified body 22 after solidification and the surface 17 a of the LSI chip 17. The heat sink 14 is pulled up when the thermal grease 23 is inserted. Thereafter, thermal grease 23 is applied to the surface 17 a of the LSI chip 17. At the same time, the adhesive 24 is applied to the surface of the support part 19.
続いて、 L S Iチップ 1 7の表面 1 7 aに凝固後の凝固体 2 2は再び重ね合わ せられる。 こうして L S Iチップ 1 7の表面 1 7 aおよび凝固体 2 2の接触面 2 2 aの間でサーマルダリース 2 3は広がる。 同時に、 対向面 2 1は接着剤 2 4に 基づき支持部品 1 9の表面に接着される。 こうしてヒートシンク 1 4はプリント 配線基板 1 6に固定される。  Subsequently, the solidified body 22 after solidification is again superimposed on the surface 17 a of the LSI chip 17. In this way, the thermal dust 23 spreads between the surface 17 a of the LSI chip 17 and the contact surface 22 a of the solidified body 22. At the same time, the facing surface 21 is adhered to the surface of the support component 19 based on the adhesive 24. Thus, the heat sink 14 is fixed to the printed wiring board 16.
以上のような製造方法によれば、 仮に L S Iチップ 1 7の表面 1 7 aに傾斜が 形成されても、 凝固体 2 2では L S Iチップ 1 7の表面 1 7 aの傾斜に応じて接 触面 2 2 aが形成されることができる。 サ一マルグリース 2 3は最小膜厚で均一 に凝固体 2 2の接蝕面 2 2 aおよび L S Iチップ 1 7の表面 1 7 aの間に挟み込 まれることができる。 本発明者の検証によれば、 サーマルグリース 2 3の膜厚が 増加すると L S Iチップ 1 7からヒートシンク 1 4の向かって熱の; [云達は著しく 阻害されることが確認された。 According to the manufacturing method as described above, even if the surface 17 a of the LSI chip 17 is inclined, the solidified body 22 has a contact surface according to the inclination of the surface 17 a of the LSI chip 17. 22a can be formed. Thermal grease 23 is uniform with minimum film thickness It can be sandwiched between the contact surface 22 a of the solidified body 22 and the surface 17 a of the LSI chip 17. According to the verification of the present inventor, it was confirmed that when the film thickness of the thermal grease 23 was increased, heat transfer from the LSI chip 17 to the heat sink 14 was significantly inhibited.
ただし、 凝固体 2 2には低融点はんだに代えて銀ペース卜が用いられてもよい。 銀ペーストは、 樹脂材料と、 この樹脂材料中に分散する銀粒子とから構成されれ ばよい。 S C M 1 3の製造にあたって銀ペーストはヒ一トシンク 1 4の対向面 2 1に塗布される。 その後、 前述と同様に、 ヒートシンク 1 4はプリント配線基板 1 6に重ね合わせられる。 加熱に基づき銀ペーストでは樹脂材料が硬化するとと もに銀粒子は凝固する。 こうして凝固体 2 2には、 ヒートシンク 1 4の対向面 2 1に対して所定の角度で傾斜する L S Iチップ 1 7に倣って傾斜面すなわち接触 面 2 2 aは形成される。 その後、 前述と同様に、 凝固体 2 2の接触面 2 2 aと L S Iチップ 1 7の表面 1 7 aとの間にサ一マルグリース 2 3が挟み込まれればよ い。  However, silver paste may be used for the solidified body 22 instead of the low melting point solder. The silver paste may be composed of a resin material and silver particles dispersed in the resin material. In manufacturing the SCM 13, the silver paste is applied to the facing surface 21 of the heat sink 14. Thereafter, the heat sink 14 is superimposed on the printed wiring board 16 as described above. The silver paste solidifies as the resin material cures in the silver paste based on the heating. Thus, an inclined surface, that is, a contact surface 22 a is formed on the solidified body 22 following the LSI chip 17 inclined at a predetermined angle with respect to the facing surface 21 of the heat sink 14. Thereafter, the thermal grease 23 may be inserted between the contact surface 22 a of the solidified body 22 and the surface 17 a of the LSI chip 17 in the same manner as described above.
以上のような製造方法は例えばマルチチップモジュール (MC M) の製造に適 用されてもよい。 例えば図 6に示されるように、 ヒートシンク 1 4では個々の: L S Iチップ 1 7ごとに凝固体 2 2が固定されればよい。 ヒートシンク 1 4は例え ばねじでプリント配線基板 1 6に取り付けられればよい。  The above manufacturing method may be applied, for example, to the manufacture of a multi-chip module (MCM). For example, as shown in FIG. 6, in the heat sink 14, the solidified body 22 may be fixed for each individual LSI chip 17. The heat sink 14 may be attached to the printed wiring board 16 with screws, for example.
こういった MC M 1 3では、 仮に L S Iチップ 1 7、 1 7、 1 7で高さのばら つきが生じても、 個々の凝固体 2 2では対応する L S Iチップ 1 7の表面 1 7 a に倣って接触面 2 2 aが形成されることができる。 したがって、 前述と同様に、 サーマルグリース 2 3は最小膜厚で均一に凝固体 2 2の接触面 2 2 aおよび L S Iチップ 1 7の表面 1 7 aの間に挟み込まれることができる。 こういった M CM 1 3は、 前述と同様に、 マザ一ポ一ド 1 1の樹脂製基板 1 2に実装される。  In such an MCM 13, even if height variations occur in the LSI chips 17, 17, and 17, each solidified body 22 has a corresponding surface 17 a of the LSI chip 17. The contact surface 22a can be formed following the pattern. Therefore, as described above, the thermal grease 23 can be uniformly sandwiched between the contact surface 22 a of the solidified body 22 and the surface 17 a of the LSI chip 17 with the minimum film thickness. The MCM 13 is mounted on the resin substrate 12 of the mother port 11 as described above.
図 7は本発明の第 2実施形態に係るプリント基板ユニットすなわち S CM 1 3 aを概略的に示す。 S CM 1 3 aは、 前述と同様に、 大型の榭脂製基板 1 2に実 装される。 ヒ一トシンク 1 4は支持部品 1 9でプリント配線基板 1 6に固定され る。 ヒートシンク 1 4は、 L S Iチップ 1 7に向き合わせられる対向面 2 1で L S Iチップの表面 1 7 aに受け止められる。 L S Iチップ 1 7の表面 1 7 aには凝固体 2 5が固定される。 凝固体 2 5には 端子バンプ 1 8よりも低い融点を有する材料が用いられる。 凝固体 2 5には、 前 述と同様に、 例えば低融点はんだや銀ペーストが用いられればよい。 凝固体 2 5 には、 対向面 2 1に対して所定の角度で傾斜する接触面 2 5 aが形成される。 凝 固体 2 5は接触面 2 5 aで L S Iチップ 1 7の表面 1 7 aに固定される。 凝固体 5の表面とヒートシンク 1 4の対向面 2 1との間には均一な膜厚で流動体すな わちサ一マルグリース 2 3が挟まれる。 FIG. 7 schematically shows a printed circuit board unit, that is, a SCM 13a according to a second embodiment of the present invention. The SCM 13a is mounted on the large resin substrate 12 as described above. The heat sink 14 is fixed to the printed wiring board 16 by a supporting part 19. The heat sink 14 is received on the surface 17 a of the LSI chip at the facing surface 21 facing the LSI chip 17. The solidified body 25 is fixed to the surface 17 a of the LSI chip 17. A material having a lower melting point than the terminal bumps 18 is used for the solidified body 25. For example, a low-melting-point solder or a silver paste may be used for the solidified body 25 as described above. The solidified body 25 has a contact surface 25a that is inclined at a predetermined angle with respect to the facing surface 21. The solid 25 is fixed to the surface 17a of the LSI chip 17 at the contact surface 25a. Between the surface of the solidified body 5 and the facing surface 21 of the heat sink 14, a fluid, that is, thermal grease 23, having a uniform film thickness is sandwiched.
以上のような S CM 1 3 aでは、 サーマルグリース 2 3は最小膜厚で均一に凝 固体 2 5およびヒートシンク 1 4の間に挟み込まれる。 L S Iチップ 1 7から熱 は確実にヒートシンク 1 4に受け渡されることができる。 サ一マルグリース 2 3 はシリコーングリースの流動性に基づき横ずれを容易に吸収することができる。 したがって、 L S Iチップ 1 7やヒートシンク 1 4で応力の発生は極力低減され ることができる。  In the SCM 13a as described above, the thermal grease 23 is uniformly sandwiched between the solidified solid 25 and the heat sink 14 with the minimum thickness. Heat can be reliably transferred from the LSI chip 17 to the heat sink 14. Thermal grease 23 can easily absorb lateral slippage based on the fluidity of silicone grease. Therefore, the generation of stress in the LSI chip 17 and the heat sink 14 can be reduced as much as possible.
次に本発明の第 2実施形態に係る S C M 1 3 aの製造方法を簡単に説明する。 図^に示されるように、 まず、 プリント配線基板 1 6上に実装された L S Iチッ プ 1 7が用意される。 プリント配線基板 1 6上には予め支持部品 1 9が固定され る。 L S Iチップ 1 7の表面 1 7 aには凝固体 2 5が固定される。 凝固体 2 5に は低融点はんだが用いられる。 凝固体 2 5は端子バンプ 1 8よりも低い融点を有 する。 凝固体 2 5の取り付けにあたって L S Iチップ 1 7の表面 1 7 aには金め つき膜 (図示されず) が成膜されればよい。  Next, a method of manufacturing the SCM 13a according to the second embodiment of the present invention will be briefly described. As shown in FIG. 1, first, an LSI chip 17 mounted on a printed wiring board 16 is prepared. A support component 19 is fixed on the printed wiring board 16 in advance. The solidified body 25 is fixed to the surface 17 a of the LSI chip 17. For the solidified body 25, a low melting point solder is used. The solidified body 25 has a lower melting point than the terminal bump 18. In mounting the solidified body 25, a plating film (not shown) may be formed on the surface 17a of the LSI chip 17.
続いて、 プリント配線基板 1 6は例えば加熱炉に入れられる。 例えば図 9に示 されるように、 プリント配線基板 1 6上には押し付け部材 2 6が搭載される。 L S Iチップ 1 7の表面 1 7 aに保持される凝固体 2 5は溶融する。 このとき、 押 し付け部材 2 6の平坦面 2 6 aはプリント配線基板 1 6に向かって押し付けられ る。 その後、 溶融した凝固体 2 5は室温まで冷却される。 凝固体 2 5は凝固する。 ただし、 押し付け部材 2 6に代えてヒートシンク 1 4が用いられてもよい。  Subsequently, the printed wiring board 16 is put into, for example, a heating furnace. For example, as shown in FIG. 9, a pressing member 26 is mounted on the printed wiring board 16. The solidified body 25 held on the surface 17a of the LSI chip 17 melts. At this time, the flat surface 26 a of the pressing member 26 is pressed toward the printed wiring board 16. Thereafter, the molten solidified body 25 is cooled to room temperature. The coagulated body 25 solidifies. However, a heat sink 14 may be used instead of the pressing member 26.
続いて、 図 1 0に示されるように、 凝固後の凝固体 2 5の表面にサーマルグリ ース 2 3が盛られる。 同時に、 支持部品 1 9の表面には接着剤 2 4が塗布される。 その後、 凝固体 2 5の表面にはヒートシンク 1 4の対向面 2 1が重ね合わせられ る。 こうして、 凝固体 2 5およびヒ一卜シンク 1 4の間にサーマルグリース 2 3 'は挟み込まれる。 ヒ一トシンク 1 4の対向面 2 1は接着剤 2 4に基づき支持部品 1 9の表面に接着される。 こうしてヒ一トシンク 1 4はプリント配線基板 1 6に 固定される。 Subsequently, as shown in FIG. 10, thermal grease 23 is applied to the surface of the solidified body 25 after solidification. At the same time, an adhesive 24 is applied to the surface of the support component 19. Then, the opposing surface 21 of the heat sink 14 is superimposed on the surface of the solidified body 25. You. Thus, the thermal grease 23 'is interposed between the solidified body 25 and the heat sink 14. The facing surface 21 of the heat sink 14 is adhered to the surface of the supporting component 19 based on the adhesive 24. Thus, the heat sink 14 is fixed to the printed wiring board 16.
前述と同様に、 凝固体 2 5には低融点はんだに代えて銀ペーストが用いられて もよい。 S CM 1 3の製造にあたって銀べ一ストは L S Iチップ 1 7の表面 1 7 aに塗布される。 その後、 銀べ一ストに押し付け部材 2 6の平坦面 2 6 aが押し 付けられる。 このとき、 加熱に基づき銀ペーストでは榭脂材料が蒸発するととも に銀粒子は凝固する。 こうして凝固体 2 5には、 ヒートシンク 1 4の対向面 2 1 に対して所定の角度で傾斜する L S Iチップ 1 7に倣つて傾斜面すなわち接触面 As described above, a silver paste may be used for the solidified body 25 instead of the low melting point solder. In manufacturing the SCM 13, the silver paste is applied to the surface 17 a of the LSI chip 17. Thereafter, the flat surface 26a of the pressing member 26 is pressed against the silver paste. At this time, the resin material evaporates and the silver particles solidify in the silver paste based on the heating. Thus, the solidified body 25 has an inclined surface or contact surface following the LSI chip 17 inclined at a predetermined angle with respect to the facing surface 21 of the heat sink 14.
2 5 a力 S形成される。 その後、 前述と同様に、 凝固体 2 5の表面とヒートシンク 1 4の対向面 2 1との間にサーマルグリース 2 3が挟み込まれればよい。 2 5 a force S formed. Thereafter, the thermal grease 23 may be sandwiched between the surface of the solidified body 25 and the facing surface 21 of the heat sink 14 as described above.
以上のような製造方法によれば、 仮に L S Iチップ 1 7の表面 1 7 aに傾斜が 形成されても、 凝固体 2 5には、 ヒートシンク 1 4の対向面 2 1に平行な表面が 規定されることができる。 サーマルグリース 2 3は最小膜厚で均一に凝固体 2 5 の表面およびヒートシンク 1 4の対向面 2 1の間に挟み込まれることができる。 以上のような製造方法は、 前述と同様に、 例えばマルチチップモジュール (M CM) の製造に適用されてもよい。 例えば図 1 1に示されるように、 個々の L S Iチップ 1 7ごとに凝固体 2 5が固定されればよい。 ヒートシンク 1 4は例えば ねじでプリント配線基板 1 6に取り付けられればよい。  According to the manufacturing method as described above, even if the surface 17 a of the LSI chip 17 is inclined, the solidified body 25 has a surface parallel to the facing surface 21 of the heat sink 14. Can be The thermal grease 23 can be uniformly sandwiched between the surface of the solidified body 25 and the facing surface 21 of the heat sink 14 with a minimum thickness. The manufacturing method as described above may be applied to, for example, the manufacture of a multi-chip module (MCM) as described above. For example, as shown in FIG. 11, the solidified body 25 may be fixed for each LSI chip 17. The heat sink 14 may be attached to the printed wiring board 16 with screws, for example.
こういった M C M 1 3 aでは、 仮に L S Iチップ 1 7、 1 7、 1 7で高さのば らつきが生じても、 凝固体 2 5には、 ヒートシンク 1 4の対向面 2 1に平行な表 面が規定されることができる。 しかも、 凝固体 2 5の表面では平坦面が形成され ることから、 サーマルグリース 2 3は最小膜厚で均一に凝固体 2 5の表面および ヒートシンク 1 4の対向面 2 1との間に挟み込まれることができる。 こういった M CM 1 3 aは、 前述と同様に、 マザ一ポ一ド 1 1の樹脂製基板 1 2に実装され る。 '  In such an MCM 13a, even if the height of the LSI chips 17, 17 and 17 varies, the solidified body 25 has a parallel shape with the facing surface 21 of the heat sink 14. The surface can be specified. In addition, since a flat surface is formed on the surface of the solidified body 25, the thermal grease 23 is uniformly sandwiched between the surface of the solidified body 25 and the facing surface 21 of the heat sink 14 with the minimum thickness. be able to. The MCM 13a is mounted on the resin board 12 of the mother port 11 as described above. '
図 1 2は本発明の第 3実施形態に係るプリント基板ュニットすなわち M CM 1 FIG. 12 shows a printed circuit board unit according to a third embodiment of the present invention, that is, MCM 1.
3 bを概略的に示す。 M CM 1 3 bは、 前述と同様に、 大型の樹脂製基板 1 2に 実装される。 例えば図 1 2に示されるように、 個々の L S Iチップ 1 7の表面 1 7 aはヒートスプレッダ 2 7に覆われる。 ヒートスプレッダ 2 7には、 ヒ一トシ ンク 1 4の対向面 2 1に対して所定の角度で傾斜する接触面 2 7 aが形成される。 ヒ一トスプレッダ 2 7は接触面 2 7 aで L S ίチップ 1 7に受け止められる。 ヒ —トシンク 1 4は、 L S Iチップ 1 7に向き合わせられる対向面 2 1でヒ一トス プレッダ 2 7の表面に受け止められる。 ヒ一トスプレッダ 2 7の表面とヒ一トシ ンク 1 4の対向面 2 1との間には最小膜厚で均一に流動体すなわちサーマルダリ —ス 2 3が挟まれる。 3b is shown schematically. MCM 13b is mounted on a large resin substrate 12 as described above. Implemented. For example, as shown in FIG. 12, the surface 17 a of each LSI chip 17 is covered with a heat spreader 27. The heat spreader 27 has a contact surface 27a that is inclined at a predetermined angle with respect to the facing surface 21 of the heat sink 14. The heat spreader 27 is received on the LS chip 17 at the contact surface 27a. The heat sink 14 is received on the surface of the heat spreader 27 at the opposing surface 21 facing the LSI chip 17. Between the surface of the heat spreader 27 and the opposing surface 21 of the heat sink 14, a fluid, that is, a thermal drier 23 is sandwiched uniformly with a minimum film thickness.
以上のような M C M l 3 bでは、 サーマルグリース 2 3は最小膜厚で均一にヒ —トスプレッダ 2 7、 2 7、 2 7およびヒートシンク 1 4の間に挾み込まれる。 L S Iチップ 1 7、 1 7、 1 7から熱は確実にヒ一トシンク 1 4に受け渡される ことができる。 サーマルグリース 2 3はシリコーングリースの流動性に基づき横 ずれを容易に吸収することができる。 したがって、 L S Iチップ 1 7やヒートシ ンク 1 4で応力の発生は極力低減されることができる。  In the above-mentioned MCM13b, the thermal grease 23 is uniformly sandwiched between the heat spreaders 27, 27, 27 and the heat sink 14 with the minimum film thickness. The heat from the LSI chips 17, 17, 17 can be reliably transferred to the heat sink 14. Thermal grease 23 can easily absorb the side slip based on the fluidity of silicone grease. Therefore, the generation of stress in the LSI chip 17 and the heat sink 14 can be reduced as much as possible.
以上のような M C M 1 3 bの製造方法を簡単に説明する。 図 1 3に示されるよ うに、 まず、 プリント配線基板 1 6上に実装された L S Iチップ 1 7が用意され る。 L S Iチップ 1 7の表面 1 7 aには均一な膜厚のヒ一トスプレッダ 2 7が固 定される。  A brief description will be given of a method of manufacturing MCM13b as described above. As shown in FIG. 13, first, an LSI chip 17 mounted on a printed wiring board 16 is prepared. A heat spreader 27 having a uniform film thickness is fixed on the surface 17a of the LSI chip 17.
続いて、 図 1 4に示されるように、 ヒートスプレッダ 2 7、 2 7、 2 7の表面 は平坦化される。 平坦化にあたってヒートスプレッダ 2 7、 2 1、 2 7は研磨板 Subsequently, as shown in FIG. 14, the surfaces of the heat spreaders 27, 27, 27 are flattened. Heat spreaders 27, 21 and 27 are polished plates for flattening
(図示されず) に押し付けられればよい。 こうして、 個々のヒートスプレッダ 2 7の表面には水平面内で広がる表面が形成される。 (Not shown). Thus, the surface of each heat spreader 27 is formed with a surface extending in a horizontal plane.
続いて、 図 1 5に示されるように、 ヒートスプレッダ 2 7の表面にサーマルグ リース 2 3が盛られる。 その後、 ヒートスプレッダ 2 7の表面にはヒ一トシンク 1 4の対向面 2 1が重ね合わせられる。 こうして、 ヒートスプレッダ 2 7および ヒートシンク 1 4の間にサ一マルグリース 2 3は挟み込まれる。 ヒートシンク 1 4は例えばねじでプリント配泉基板 1 6に固定される。  Subsequently, as shown in FIG. 15, thermal grease 23 is applied to the surface of the heat spreader 27. Thereafter, the facing surface 21 of the heat sink 14 is superimposed on the surface of the heat spreader 27. Thus, the thermal grease 23 is sandwiched between the heat spreader 27 and the heat sink 14. The heat sink 14 is fixed to the printed distribution board 16 with screws, for example.
以上のような製造方法によれば、 仮に L S ίチップ 1 7、 1 7、 1 7で高さの ばらつきが生じても、 ヒートスプレッダ 2 7には、 ヒートシンク 1 4の対向面 2 1に平行な表面が規定されることができる。 しかも、 ヒートシンク 2 7の表面で は水平面内で広がる表面が形成されることから、 サーマルグリース 2 3は最小膜 厚で均一にヒートスプレッダ 2 7の表面およびヒートシンク 1 4の対向面 2 1と の間に挟み込まれることができる。 According to the manufacturing method as described above, even if the LS ί chips 17, 17, and 17 vary in height, the heat spreader 27 has the opposite surface 2 of the heat sink 14. A surface parallel to 1 can be defined. In addition, since the surface of the heat sink 27 has a surface that spreads in a horizontal plane, the thermal grease 23 has a uniform thickness between the surface of the heat spreader 27 and the opposing surface 21 of the heat sink 14 with a minimum film thickness. Can be pinched.
以上のように本発明によれば、 電子部品と放熱部品との間に配置される流動体 の膜厚のばらつきを抑制することができるプリント基板ュニットの製造方法を提 供することができる。 本発明は、 こういったプリント基板ユニットの製造方法の 実現に大いに役立つプリント基板ュニットを提供することができる。  As described above, according to the present invention, it is possible to provide a method of manufacturing a printed circuit board unit capable of suppressing a variation in thickness of a fluid disposed between an electronic component and a heat radiating component. The present invention can provide a printed circuit board unit that is very useful for realizing such a method for manufacturing a printed circuit board unit.

Claims

請求の範囲 The scope of the claims
1 . 基板に実装される電子部品と、 電子部品に向き合わせられる対向面で電子部 品の表面に受け止められる放熱部品と、 放熱部品の対向面に固定される凝固体と、 凝固体および電子部品の間に挟まれる流動体とを備えることを特徴とするプリン 卜基板ュニッ卜。 1. Electronic components mounted on the board, heat dissipating components received on the surface of the electronic components on the opposing surface facing the electronic components, solidified bodies fixed on the opposing surfaces of the heat dissipating components, solidified bodies and electronic components A print substrate unit, comprising: a fluid interposed therebetween.
2 . 請求の範囲第 1項に記載のプリント基板ユニットにおいて、 前記凝固体は、 放熱部品の対向面に対して所定の角度で傾斜する接触面で電子部品の表面に向き 合わせられることを特徴とするプリント基板ュニット。 2. The printed circuit board unit according to claim 1, wherein the solidified body faces a surface of the electronic component at a contact surface inclined at a predetermined angle with respect to a facing surface of the heat radiating component. Printed circuit board unit.
3 . 請求の範囲第 1項または第 2項に記載のプリント基板ユニットにおいて、 前 記流動体は均一な膜厚で凝固体および電子部品の間に挟み込まれることを特徴と するプリント基板ュニット。 3. The printed circuit board unit according to claim 1, wherein the fluid is sandwiched between the solidified body and the electronic component with a uniform film thickness.
4. 請求の範囲第 1項〜第 3項のいずれかに記載のプリント基板ュニットにおい て、 前記凝固体は、 前記電子部品および基板を接続する導電材料よりも低い融点 を有することを特徴とするプリント基板ュニット。 4. The printed circuit board unit according to any one of claims 1 to 3, wherein the solidified body has a lower melting point than a conductive material connecting the electronic component and the board. Printed circuit board unit.
5 . 請求の範囲第 1項〜第 4項のいずれかに記載のプリン卜基板ユニットにおい て、 前記凝固体は少なくともはんだおよび銀ペーストのいずれかを含むことを特 徴とするプリント基板ュニット。 5. The printed circuit board unit according to any one of claims 1 to 4, wherein the solidified body contains at least one of a solder and a silver paste.
6 . 基板に実装される電子部品と、 電子部品に向き合わせられる対向面で電子部 品の表面に受け止められる放熱部品と、 放熱部品の対向面上に配置されて、 放熱 部品の対向面に対して所定の角度で傾斜する接触面と、 接触面および電子部品の 間に挟まれる流動体とを備えることを特徴とするプリント基板ュニット。 6. The electronic component mounted on the board, the heat-dissipating component received on the surface of the electronic component at the opposing surface facing the electronic component, and disposed on the opposing surface of the heat-dissipating component. A printed circuit board unit, comprising: a contact surface inclined at a predetermined angle, and a fluid interposed between the contact surface and the electronic component.
7 . 基板に実装される電子部品と、 電子部品に向き合わせられる対向面で電子部 品の表面に受け止められる放熱部品と、 電子部品の表面に固定される凝固体と、 凝固体および放熱部品の間に挟まれる流動体とを備え、 凝固体は、 電子部品およ び基板を接続する導電材料よりも低い融点を有することを特徴とするプリント基 板ュニット。 7. The electronic component mounted on the board and the electronic part on the opposing surface facing the electronic component A heat-dissipating component received on the surface of the product, a solidified body fixed to the surface of the electronic component, and a fluid interposed between the solidified body and the heat-dissipating component. The solidified body connects the electronic component and the board. A printed board unit having a lower melting point than a conductive material to be printed.
8 . 請求の範囲第 7項に記載のプリント基板ユニットにおいて、 前記凝固体は、 放熱部品の対向面に対して所定の角度で傾斜する接触面で電子部品の表面に固定 されることを特徴とするプリント基板ュニット。 8. The printed circuit board unit according to claim 7, wherein the solidified body is fixed to a surface of the electronic component at a contact surface inclined at a predetermined angle with respect to a facing surface of the heat radiating component. Printed circuit board unit.
9 . 請求の範囲第 7項または第 8項に記載のプリント基板ユニットにおいて、 前 記流動体は均一な膜厚で凝固体および放熱部品の間に挟み込まれることを特徴と するプリント基板ュニット。 9. The printed circuit board unit according to claim 7 or 8, wherein the fluid is sandwiched between the solidified body and the heat radiating component with a uniform film thickness.
1 0 . 請求の範囲第 7項〜第 9項のいずれかに記載のプリント基板ュニットにお いて、 前記凝固体は少なくともはんだおよび銀べ一ストのいずれかを含むことを 特徴とするプリント基板ュニット。 10. The printed circuit board unit according to any one of claims 7 to 9, wherein the solidified body contains at least one of a solder and a silver paste. .
1 1 . 平坦面を規定する放熱部品と、 平坦面に取り付けられる凝固体とを備える ことを特徴とする放熱部品ュニット。 1 1. A heat-dissipating component unit comprising a heat-dissipating component that defines a flat surface and a solidified body attached to the flat surface.
1 2 . 請求の範囲第 1 1項に記載の放熱部品ユニットにおいて、 前記凝固体は前 記平坦面から盛り上がることを特徴とする放熱部品ュニット。 12. The heat dissipation component unit according to claim 11, wherein the solidified body rises from the flat surface.
1 3 . 請求の範囲第 1 2項に記載の放熱部品ュニットにおいて、 前記凝固体は少 なくともはんだおよび銀ペーストのいずれかを含むことを特徴とする放熱部品ュ ニッ卜。 13. The heat-dissipating component unit according to claim 12, wherein the solidified body contains at least one of a solder and a silver paste.
1 4. 平坦面を規定する放熱部品と、 平坦面上に配置されて、 平坦面に対して所 定の角度で傾斜する接触面とを備えることを特徴とする放熱部品ュニット。 1 4. A heat-dissipating component unit, comprising: a heat-dissipating component that defines a flat surface; and a contact surface disposed on the flat surface and inclined at a predetermined angle with respect to the flat surface.
1 5 . 基板上に実装された電子部品を用意する工程と、 平坦面で凝固体を保持す る放熱部品を用意する工程と、 凝固体を溶融させつつ放熱部品の平坦面および電 子部品の表面の間に凝固体を挟み込む工程と、 溶融した凝固体を凝固させる工程 とを備えることを特徴とするプリント基板ュニットの製造方法。 15 5. The process of preparing the electronic components mounted on the board, the process of preparing the heat radiating component that holds the solidified body on the flat surface, and the process of preparing the flat surface of the heat radiating component and the electronic component while melting the solidified body. A method for manufacturing a printed circuit board unit, comprising: a step of sandwiching a solidified body between surfaces; and a step of solidifying a molten solidified body.
1 6 . 請求の範囲第 1 5項に記載のプリント基板ユニットの製造方法において、 凝固後の凝固体と電子部品の表面との間に熱伝導性流動体を挟み込む工程をさら に備えることを特徴とするプリント基板ュニットの製造方法。 16. The method for manufacturing a printed circuit board unit according to claim 15, further comprising a step of sandwiching a thermally conductive fluid between the solidified body after solidification and the surface of the electronic component. Manufacturing method of a printed circuit board unit.
1 7 . 基板上に実装された電子部品を用意する工程と、 電子部品の表面に保持さ れる凝固体を溶融させつつ凝固体に押し付け部材の平坦面を押し付ける工程と、 溶融した凝固体を凝固させる工程とを備えることを特徴とするプリント基板ュニ ッ卜の製造方法。 17. A step of preparing the electronic component mounted on the board, a step of pressing the flat surface of the member against the solidified body while melting the solidified body held on the surface of the electronic component, and a step of solidifying the molten solidified body And manufacturing the printed circuit board unit.
1 8 . 請求の範囲第 1 7項に記載のプリント基板ュニッ卜の製造方法において、 凝固後の凝固体上に熱伝導性流動体を配置する工程と、 凝固体上に放熱部品を重 ね合わせ、 凝固体および放熱部品の間に熱伝導性流動体を挟み込む工程をさらに 備えることを特徴とするプリント基板ュニットの製造方法。 18. The method of manufacturing a printed circuit board unit according to claim 17, wherein a step of arranging a heat conductive fluid on the solidified body and laminating a heat radiating component on the solidified body. A method of manufacturing a printed circuit board unit, further comprising a step of sandwiching a thermally conductive fluid between a solidified body and a heat radiating component.
PCT/JP2003/006450 2003-05-23 2003-05-23 Printed circuit board unit and method of manufacturing the unit WO2004105129A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/006450 WO2004105129A1 (en) 2003-05-23 2003-05-23 Printed circuit board unit and method of manufacturing the unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/006450 WO2004105129A1 (en) 2003-05-23 2003-05-23 Printed circuit board unit and method of manufacturing the unit

Publications (1)

Publication Number Publication Date
WO2004105129A1 true WO2004105129A1 (en) 2004-12-02

Family

ID=33463156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006450 WO2004105129A1 (en) 2003-05-23 2003-05-23 Printed circuit board unit and method of manufacturing the unit

Country Status (1)

Country Link
WO (1) WO2004105129A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1959493A1 (en) * 2005-12-08 2008-08-20 Fujitsu Limited Process for producing electronic part, process for producing heat conducting member, and method of mounting heat conducting member for electronic part
CN108428685A (en) * 2017-01-27 2018-08-21 丰田自动车株式会社 Semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0453764A1 (en) * 1990-04-27 1991-10-30 International Business Machines Corporation Thermal joint
JPH09219473A (en) * 1996-02-13 1997-08-19 Hitachi Ltd Package having electronic component cooling structure and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0453764A1 (en) * 1990-04-27 1991-10-30 International Business Machines Corporation Thermal joint
JPH09219473A (en) * 1996-02-13 1997-08-19 Hitachi Ltd Package having electronic component cooling structure and manufacture thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1959493A1 (en) * 2005-12-08 2008-08-20 Fujitsu Limited Process for producing electronic part, process for producing heat conducting member, and method of mounting heat conducting member for electronic part
EP1959493A4 (en) * 2005-12-08 2010-03-10 Fujitsu Ltd Process for producing electronic part, process for producing heat conducting member, and method of mounting heat conducting member for electronic part
US8709197B2 (en) 2005-12-08 2014-04-29 Fujitsu Limited Method of making electronic component and heat conductive member and method of mounting heat conductive member for electronic component
CN108428685A (en) * 2017-01-27 2018-08-21 丰田自动车株式会社 Semiconductor device
CN108428685B (en) * 2017-01-27 2019-09-03 丰田自动车株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
JP3241639B2 (en) Multi-chip module cooling structure and method of manufacturing the same
JP4159861B2 (en) Method for manufacturing heat dissipation structure of printed circuit board
JP3946975B2 (en) Cooling system
US6979899B2 (en) System and method for high performance heat sink for multiple chip devices
JP3454888B2 (en) Electronic component unit and method of manufacturing the same
JPH0758254A (en) Multichip module and manufacture thereof
JP2005522017A (en) Installation of heat sink of motherboard chipset by wave soldering method
WO2020103147A1 (en) Chip heat dissipation structure, chip structure, circuit board and supercomputing device
JP3813540B2 (en) Semiconductor device manufacturing method, semiconductor device, and semiconductor device unit
JP2014154688A (en) Semiconductor device and manufacturing method of the same
US7268427B2 (en) Semiconductor package, printed board mounted with the same, and electronic apparatus having the printed board
TWI357787B (en)
JP4757880B2 (en) Method for manufacturing electronic component, method for manufacturing heat conductive member, and method for mounting heat conductive member for electronic component
JP2003051573A5 (en)
WO2004105129A1 (en) Printed circuit board unit and method of manufacturing the unit
JP2004327711A (en) Semiconductor module
JP2001217359A (en) Radiator fin, manufacturing method thereof, and semiconductor device
WO1999016128A1 (en) Semiconductor module
US20040226688A1 (en) Application specific apparatus for dissipating heat from multiple electronic components
TWI721898B (en) Semiconductor package structure
JP2002093988A (en) Semiconductor integrated circuit package
JPH0922970A (en) Electronic component
JP2003258172A (en) Method for assembling multi-chip module
WO2023148848A1 (en) Semiconductor device, method for manufacturing semiconductor device, and thermally conductive sheet for semiconductor device
JP3733181B2 (en) Semiconductor mounting substrate and manufacturing method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP