WO2004105073A1 - Planar panel display spacer producing method and planar panel display spacer - Google Patents

Planar panel display spacer producing method and planar panel display spacer Download PDF

Info

Publication number
WO2004105073A1
WO2004105073A1 PCT/JP2004/007339 JP2004007339W WO2004105073A1 WO 2004105073 A1 WO2004105073 A1 WO 2004105073A1 JP 2004007339 W JP2004007339 W JP 2004007339W WO 2004105073 A1 WO2004105073 A1 WO 2004105073A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
spacer
panel display
metal film
substrate
Prior art date
Application number
PCT/JP2004/007339
Other languages
French (fr)
Japanese (ja)
Inventor
Yukio Kawaguchi
Atsushi Hitomi
Kazumitsu Tanaka
Takao Matsumoto
Masahiro Itoh
Kenichi Jinguji
Tsutomu Koyanagi
Katsuyuki Kurachi
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Publication of WO2004105073A1 publication Critical patent/WO2004105073A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/241Manufacture or joining of vessels, leading-in conductors or bases the vessel being for a flat panel display
    • H01J9/242Spacers between faceplate and backplate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/028Mounting or supporting arrangements for flat panel cathode ray tubes, e.g. spacers particularly relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/86Vessels; Containers; Vacuum locks
    • H01J29/864Spacers between faceplate and backplate of flat panel cathode ray tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/18Assembling together the component parts of electrode systems
    • H01J9/185Assembling together the component parts of electrode systems of flat panel display devices, e.g. by using spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/36Spacers, barriers, ribs, partitions or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/86Vessels
    • H01J2329/8625Spacing members
    • H01J2329/863Spacing members characterised by the form or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/86Vessels
    • H01J2329/8625Spacing members
    • H01J2329/864Spacing members characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/86Vessels
    • H01J2329/8625Spacing members
    • H01J2329/8645Spacing members with coatings on the lateral surfaces thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/86Vessels
    • H01J2329/8625Spacing members
    • H01J2329/8665Spacer holding means

Definitions

  • the present invention relates to a method for manufacturing a spacer for a flat panel display and a spacer for a flat panel display.
  • a field emission display is known as a self-luminous type flat panel display using a conventional cathode ray tube (CRT).
  • the FED has a cathode structure in which many cathodes (field emission devices) are two-dimensionally arranged.
  • cathodes field emission devices
  • the fluorescent pixel region includes a phosphor layer.
  • the flat panel display includes a back plate having a cathode structure.
  • a flat panel display is described in U.S. Pat. No. 5,541,473.
  • the back plate of this display is formed by depositing a cathode structure on a glass plate.
  • the flat panel display has a glass face plate on which a phosphor layer is deposited.
  • a conductive layer for applying an electric field is deposited on the glass or phosphor layer.
  • the face plate is 0. I mn! ⁇ 1 mm to 2 mm apart.
  • a strip spacer made of a wall is vertically interposed between the face plate and the back plate. It is desirable that this spacer be placed at an accurate position. However, when the inside of the display is depressurized, a large load is applied to the spacer due to the atmospheric pressure.
  • the spacer is required to have high voltage resistance and secondary radiation characteristics. It is known that a conventional spacer is formed by coating an insulating material made of alumina with a conductive material.
  • Japanese Patent Application Publication No. 2002-508110 and Japanese Patent Application Publication No. 2001-508926 disclose techniques relating to these.
  • the present invention has been made in view of such problems, and provides a method of manufacturing a spacer for a flat panel display and a spacer for a flat panel display, which can reduce image distortion and bleeding.
  • the purpose is to:
  • AlTiC i.e., formed of a sintered body of the composite ceramic composed mainly of the A 1 2 0 3 (alumina) and T i C (titanium carbide)
  • spacers are preferable for flat panel displays in terms of strength and specific resistance, and have come to the present invention.
  • the substrate of Aruti' click generally, after forming the raw material powder obtained by mixing and T i C A 1 2 ⁇ 3 in a plate shape, both major surfaces of the molded body in the form of carbon made such It is manufactured by sintering by heating while applying pressure from the side.
  • the present inventors have further studied and found that a large distribution of specific resistance values may occur in the thickness direction of the Altic substrate manufactured in this manner. Was. Therefore, the Altic substrate When the spacer is cut out from the spacer, a spacer having a large distribution of the specific resistance value may be formed. If the spacer has a large distribution of specific resistance values, when used as a spacer for a flat panel display, electron beam deflection or the like may occur, and an image may bleed.
  • the production method of the spacer for a flat panel display according to the present invention is a method for producing a spacer for a flat panel display, the sintered body containing A 1 2 0 3 and T i C Cutting the substrate formed by the first section along a pair of first sections that intersect and are parallel to the main surface of the substrate to form a first section; and the first section. Cutting along a pair of second cut surfaces parallel to a surface corresponding to the surface of the soil substrate in the first slice to obtain a second slice.
  • the spacer for a flat panel display according to the present invention intersects a substrate formed of a sintered body containing Al 2 O 3 and T i C with a main surface of the substrate. And cutting along a pair of first cutting planes parallel to each other to form a first slice, and the first slice is parallel to a surface corresponding to the surface of the substrate in the first slice. Na — formed by cutting along a pair of second cut surfaces.
  • the spacer is formed from a substrate containing a high-strength, high-hardness ceramic, Altic, it is possible to withstand deformation due to compressive force and suppress distortion of an image. Can be.
  • the substrate containing the Altic is divided into a plurality of pieces in the thickness direction of the substrate, and a second piece having a thickness smaller than the thickness of the substrate is formed. Therefore, even when the distribution of the specific resistance value occurs in the thickness direction of the substrate, the section is obtained by simply dividing the substrate in the width direction of the substrate without dividing the substrate into a plurality of pieces in the thickness direction of the substrate. Compared with the case of forming, the variation of the specific resistance value in the intercept is reduced. Therefore, by using such a second section as a spacer for a flat panel display, electron beam deflection in the flat panel display is suppressed. Thus, blurring of the image is suppressed.
  • a step of forming a metal film on a surface of the first section corresponding to the first cut surface is further included. Is preferred.
  • the second section on which the metal film is formed on both sides can be easily formed. Can be manufactured.
  • a step of forming a patterned metal film on a surface corresponding to the second cut surface in the second section is further performed. It is preferred to include.
  • the internal electric field distribution in the second section can be set to a desired distribution.
  • FIG. 1 is a plan view of a flat panel display.
  • FIG. 2 is a cross-sectional view taken along the line II-II of the flat panel display.
  • FIG. 3 is a perspective view of the spacer.
  • FIG. 4 is a side view of the flat panel display showing the internal structure of the flat panel display on the face plate side.
  • FIG. 5A and FIG. 5B are perspective views for explaining a method of manufacturing the spacer 103 according to the first embodiment.
  • FIG. 6 is an explanatory diagram for explaining the method for manufacturing the Altic-containing substrate.
  • FIGS. 7A and 7B are diagrams for explaining a method of manufacturing the spacer 103.
  • FIG. 8 is a perspective view subsequent to FIG. 7 for illustrating a method of manufacturing the spacer 103.
  • FIGS. 9A and 9B are diagrams for explaining a method of manufacturing the spacer 103.
  • FIG. 8 is a perspective view following FIG.
  • FIG. 10 is a perspective view subsequent to FIG. 9B for explaining the method of manufacturing the spacer 103.
  • FIG. 11A and FIG. 11B are perspective views subsequent to FIG. 10 for explaining the method of manufacturing the spacer 103.
  • FIG. 11A and FIG. 11B are perspective views subsequent to FIG. 10 for explaining the method of manufacturing the spacer 103.
  • FIGS. 12A and 12B are perspective views for explaining a method of manufacturing the spacer 103 according to the second embodiment.
  • FIGS. 13B and 13B are perspective views subsequent to FIGS. 12B for explaining a method of manufacturing the spacer 103 according to the second embodiment.
  • FIG. 14 is a perspective view following FIG. 13B for explaining the manufacturing method of the spacer 103 according to the second embodiment. JP2004 / 007339
  • FIG. 15 is a perspective view following FIG. 14 for explaining the manufacturing method of the spacer 103 according to the second embodiment.
  • FIG. 16 is a perspective view following FIG. 15 for explaining the method of manufacturing the spacer 103 according to the second embodiment.
  • FIG. 17 is a perspective view following FIG. 16 for explaining the method of manufacturing the spacer 103 according to the second embodiment.
  • FIG. 18 is a perspective view following FIG. 17 for explaining the manufacturing method of the spacer 103 according to the second embodiment.
  • FIG. 19 is a perspective view following FIG. 18 for explaining the method of manufacturing the spacer 103 according to the second embodiment.
  • FIG. 1 is a plan view of a flat panel display
  • FIG. 2 is a cross-sectional view of the flat panel display taken along a line II-II.
  • a black matrix structure 102 is formed on the face plate 101 made of glass.
  • the black matrix structure 102 includes a plurality of fluorescent pixel regions composed of a phosphor layer.
  • the phosphor layer emits light when struck by high-energy electrons to form a visible display.
  • Light emitted from a specific fluorescent pixel area is output to the outside via a black matrix structure.
  • the black matrix is a lattice-like black structure for suppressing the mixing of light from the fluorescent pixel regions adjacent to each other.
  • a spacer (a spacer for a flat panel display) 1 0 3— 1 1 9 which is a wall standing upright to the surface is attached.
  • the spacers 103 to: L 19 (103, 104, 105, 106, 107, 108, 109, 1 10, 1 1 1, 1 12, 1 1 3, 1 14,
  • a back plate 201 is provided via the bases 115, 116, 117, 118, 119) (see FIG. 2).
  • the spacers 103 to 119 maintain a uniform distance between the face plate 101 and the back plate 201.
  • the active area surface of the back plate 201 includes the cathode structure 202.
  • the cathode structure 202 has a plurality of cathodes (electric field (electron) emission elements) formed of projections for emitting electrons.
  • the formation region of the cathode structure 2-02 is smaller than the area of the back plate 201.
  • a glass seal 203 is interposed between the outer peripheral region of the face plate 101 and the outer peripheral region of the back plate 201, and provides a closed chamber at the center. The pressure inside this sealed room is reduced to such a degree that electrons can fly. Further, the cathode structure 202, the black matrix structure 102, and the spacers 103-119 are to be arranged in the closed chamber. Seal 203 is formed by a fused glass frit.
  • Fig. 3 is a perspective view showing the spacer 103 according to the present invention.
  • the spacer 03 is a substantially plate-shaped rectangular parallelepiped, and has main surfaces 50A and 50B and a longitudinal direction.
  • a rectangular flat base 50 having extended side surfaces 50C and 50D, and end surfaces 50E and 50F at both ends in the longitudinal direction and formed from an artic-containing substrate, and a metal film formed on the side surface 50C of the base 50 42a and a metal film 40a formed on the side surface 50D of the base 50.
  • a patterned metal film 65 is formed on the main surface 5 OA of the base 50. The metal film 65 extends in the longitudinal direction of the spacer 103.
  • the metal film 65 is separated from the metal film 42a and the metal film 40a and is insulated.
  • the metal film 65 is divided into a plurality of pieces in the longitudinal direction.
  • the spacer 103 is formed by adhesives 301 and 302 provided at both ends in the longitudinal direction of the spacer 103, the face plate 101 and the back plate 20. Fixed to 1.
  • the material of the adhesives 301 and 302 in this example is a UV-curable polyimide adhesive, but a thermosetting adhesive or an inorganic adhesive can be used.
  • the adhesives 301 and 302 are arranged outside the black matrix structure 102 and the cathode structure 202. At this time, the metal films 40a and 42a of the spacer 103 come into contact with the cathode structure 202 of the back plate 201 and the black matrix structure 102 of the face plate 101, respectively. Placed in
  • FIG. 5 is an explanatory diagram for explaining a method of manufacturing the spacer 103 according to the first embodiment.
  • the method of manufacturing the spacer 103 involves interposing a back plate 201 having the above-described cathode structure 202 and a face plate 101 having a fluorescent pixel region (black matrix structure 102). This is a method of manufacturing a spacer for a flat panel display.
  • an Altic (A1TiC) -containing substrate (substrate) 10 having a predetermined size is prepared (FIG. 5A).
  • a rectangular flat substrate having a length of 1334 mm, a width of 67 mm, and a thickness of 2.5 mm can be used.
  • the Altic-containing substrate 10 has main surfaces 10A and 10B, side surfaces 1OC and 10D parallel to the longitudinal direction, and end surfaces 10E and 1OF orthogonal to the longitudinal direction.
  • Such an Altic-containing substrate 10 is prepared, for example, by mixing alumina powder and titanium carbide powder at a predetermined ratio, and placing the mixed powder 260 in a vacuum device 250 as shown in FIG.
  • a carbon disk-shaped partition plate 25 is sandwiched between plates in a plate shape. It is obtained by sintering at about 100 ° C.
  • the pressure is preferably about 20 MPa (200 kg2 / cm 2 ).
  • the sintered body thus obtained is cut and polished into a rectangular flat plate having a predetermined size, thereby obtaining the substrate 10 containing the artic. It is.
  • an oxide such as a titanium oxide powder or an oxidized magnesium powder, or a mixture of these oxides may be further mixed and sintered.
  • AlTiC-containing substrate 10 is intended to include A 1 2 0 3 and T i C in order to configure the AlTiC, the content of T i C is preferably 50 wt% or less, further However, it is preferably 30 wt% or less, specifically 7 wt%, which is the phase change point.
  • T i C of ⁇ Ka ⁇ is 5 to 40 wt% of Al tick, density 4. 0 9 ⁇ 4. 31 (g / cm 2), Vickers strength 2100 ⁇ 2200 (Hv 20>, bending Strength 700-760 (MPa), Young's modulus 380-410 (GPa), Specific resistance 4
  • a chamfered portion 15 is formed on a ridge formed by one main surface 1OA and one end surface 10E of the Altic-containing substrate 10. .
  • the Altic-containing substrate 10 At predetermined intervals (Fig. 7A).
  • the first section 30 has a main surface 3 OA, 30B corresponding to the main surface 10 A, 10 B of the art-containing substrate 10, and side surfaces 30 C, 30 D, corresponding to the first and second cross sections 91, 91, respectively.
  • the first section 30 has a chamfer corresponding to the chamfered portion 15 of the Altic-containing substrate 10 having end surfaces 30E and 3OF corresponding to the end surfaces 10E and 10F of the artic-containing substrate 10.
  • the part 15a is formed.
  • the distance between the first cut surfaces 91 may be set so that the width 30W between the side surfaces 30C and 30D of the first section 30 is about 2.15 mm each. it can.
  • the members 32, 32 at both ends cut out from the Altic-containing substrate 10 are preferably discarded.
  • the first section 30 is placed, and the side surfaces 30C and 30D of the first section 30 are placed on the lower side.
  • the polishing pad 7 and the upper polishing pad 71 are arranged so as to be in contact with each other, and both side surfaces 30 C and 30 D of these first sections 30 are mirror-polished.
  • polishing is performed so that the width 30W between the side surfaces 30C and 30D is approximately 2.15 mm.
  • the first section 30 is washed with an alkaline solution.
  • a metal film 40 is formed on one side surface 30D of the first section 30.
  • a metal film 40 having a thickness of several nm to lim and made of a metal such as Ti, Au, Cr, or Pt can be formed by a sputtering method.
  • the first section 30 is turned over, and a metal film 42 similar to the metal film 40 is formed on the other side surface 30C of the first section 30.
  • the first section 30 is cut in a direction perpendicular to the longitudinal direction of the first section 30. Then, the portion having the chamfered portion 15a is removed (FIG. 10).
  • the second section 60 includes main surfaces 50A and 50B corresponding to the second cut surface 92, side surfaces 50C and 50D extending in the longitudinal direction, and end surfaces at both ends in the longitudinal direction.
  • the first section 30 is set so that the interval 50 W between the main surface 5 OA and the main surface 50 B of the second section 60 is smaller than the width 30 W of the first section 30. Disconnect.
  • a patterned metal film 65 is formed on the main surface 5OA of the second section 60, thereby completing the spacer 103 shown in FIG.
  • the main surface 50A is cleaned, and then a metal film of Ti, Au, Cr, Pt, etc. is formed on the main surface 5OA by sputtering to a thickness of 100 nm.
  • the metal film is etched by ion milling while using the resist pattern as a mask, whereby a patterned metal film 65 can be formed. .
  • the flat panel display spacer 103 is completed.
  • the spacer 103 is formed such that the metal film 42 a and the metal film 40 a are in contact with the back plate 201 and the face plate 101 of the flat panel display, respectively. 0 1 and the face plate 101.
  • the spacer 103 contains a high-strength, high-hardness ceramic, Artik, so that it can withstand deformation due to compressive force.
  • Artik high-strength, high-hardness ceramic
  • a more suitable flat panel display can be manufactured in terms of strength, temperature, conductivity, and the like, as compared with spacers consisting of alumina alone. In such a flat panel display, in-plane luminance change and distortion in an image can be significantly reduced.
  • the Altic-containing substrate 10 is divided into two first cut surfaces 91 that are orthogonal to the main surface of the Altic-containing substrate 10 and that are parallel to each other. Cut along the first section 30 to form the first section 30, and further connect the first section 30 to the main surface 3 corresponding to the main surface 1 OA of the Altic-containing substrate 10 in the first section 30.
  • a second section 60 is obtained by cutting along two second cut surfaces 92 each parallel to the OA.
  • the Altic-containing substrate 10 is divided into a plurality in the thickness direction of the substrate 10, and the second substrate having a thickness smaller than the thickness of the Altic-containing substrate 10.
  • a section 60 will be formed. Therefore, even if the distribution of the specific resistance value occurs in the thickness direction of the Altic-containing substrate 10, the substrate 10 is simply divided without dividing the substrate 10 into a plurality in the thickness direction of the substrate 10.
  • the variation in the specific resistance value of the second section 60 is reduced as compared with the case where the section as a spacer is formed by dividing the second section 60 in the width direction. For this reason, by using the spacer 103 based on the second section 60 as a spacer of a flat panel display, the deflection of the electron beam in the flat panel display is suppressed, and the image bleeding is suppressed. Has been reduced.
  • the first section 30 of the first section 30 is further cut off.
  • Metal films 40 and 42 are formed on side surfaces 30 C and 30 D corresponding to 1, respectively.
  • the metal films 40a and 42a in the second section 60 can be easily formed. Can be formed. For this reason, the manufacturing cost is lower than the case where the metal films 42 a and 40 a are formed on both side surfaces 50 C and 50 D of the second section 30 after the second section 30 is formed. Is reduced.
  • the metal films 40a and 42a are a part of the metal films 40 and 42 formed before the cutting step along the second cut surface 92.
  • the metal films 40a and 42a reduce in-plane non-uniformity of contact resistance with the back plate 201 and the face plate 101, and contribute to setting of resistivity and conductivity of the entire spacer.
  • the spacer 103 is a rectangular parallelepiped, and has a main surface 5OA parallel to a plane including the thickness direction and the longitudinal direction, and is patterned on the main surface 5OA. It has a metal film 65. This pattern defines the internal electric field distribution in a desired distribution.
  • the Altic-containing substrate 10 used in the first manufacturing method is first perpendicular to the Altic-containing substrate 10 as shown in FIG.
  • the Altic-containing substrate 10 is cut at predetermined intervals along a plurality of first cut surfaces 91 parallel to the side surfaces 10C and 10D of the substrate. This forms a first section 530, as shown in FIG. 12B.
  • This first section 5 is first perpendicular to the Altic-containing substrate 10 as shown in FIG.
  • the Altic-containing substrate 10 is cut at predetermined intervals along a plurality of first cut surfaces 91 parallel to the side surfaces 10C and 10D of the substrate. This forms a first section 530, as shown in FIG. 12B.
  • the width 530W between the side surfaces 530C and 530D of the first section 530 is about three times the width 30W of the first section 30 in the first embodiment.
  • the side surfaces 530C and 530D of the first section 530 are polished.
  • the first section 530 is cut at predetermined intervals along a plurality of second cut surfaces 92 parallel to the main surface 530A of the first section 530. Obtain a second section 560 as shown in FIG. 13B.
  • the second section 560 includes main surfaces 560A and 560B corresponding to the second cut surface 92, side surfaces 560C and 560D extending in the longitudinal direction, and longitudinal sections 560C and 560D. It has end faces 560 E and 560 F at both ends and is made of an Altic-containing material.
  • the distance 56OW between the main surface 56OA and the main surface 560B of the second section 560 is set to be smaller than the width 53OW of the second section 530. Cut section 5 3 0
  • the side surface 560 extends from the end surface 560E to the end surface 560F.
  • a plurality of grooves 570 extending in parallel with the extending directions of C and 560D are formed at predetermined intervals.
  • each groove 570 connects the side surfaces 560D, the flat side walls 570A and 570B, and the lower ends of the side walls 570A and 570B.
  • the groove 570 has a predetermined width WS and a predetermined depth D.
  • the width WS can be about 100 to 200 / im
  • the depth D can be about 100 to 200.
  • metal atoms, metal microparticles, and the like were formed by sputtering, vapor deposition, or the like on the second section 560 where the groove 570 was formed.
  • Face 5 6 metal atoms, metal microparticles, and the like were formed by sputtering, vapor deposition, or the like on the second section 560 where the groove 570 was formed.
  • the metal film 580 is formed over the surfaces of the side surfaces 560C and 560D, the main surface 560A, and the grooves 570 of the second section 560.
  • the material of the metal film 580 is the same as the metal film 40 or the metal film 42 of the first manufacturing method.
  • a film resist 590 is formed on the surface of the metal film 580 corresponding to the main surface 56 OA of the second section 560. Is heat-pressed. Then, by exposing and developing the film resist 590 with a predetermined mask, the film resist 590 is patterned as shown in FIG. 17 to form a resist pattern 591, and the metal film 58 Expose part of 0.
  • the predetermined thickness is set so that a portion of the metal film 580 formed on the main surface 56 OA can be completely removed. Thereby, at the same time, the portion of the metal film 580 provided on the bottom surface 570C of the groove 570 is also removed. Then, the metal film 58 OC is formed on the side surface 560 C of the second section 560, and the metal film 58 is formed on the side surface 56 OD.
  • the metal film 42a is formed on each of the side walls 570B of the 570.
  • a patterned metal film 65 is formed on the main surface 56 OA of the second section 560.
  • the second section 560 is polished from the back surface of the second section 560, that is, the main surface 560B side, until it reaches the groove 570, and as shown in FIG.
  • the section 560 is divided into a plurality to obtain a spacer 660 for a flat panel display.
  • the metal film 580C becomes the metal film 42a
  • the metal film 580D becomes the metal film 40a
  • the second section 560 is divided into the base 50.
  • the groove 570 is formed in the main surface 56OA of the second section 560.
  • a metal film 580 is formed on the side surfaces 560C and 560D, inside the groove 570, and on the main surface 560A, and is patterned to form a metal film serving as a base for the metal films 40a, 42a and the metal film 65.
  • the film 580 can be formed with a small number of steps.
  • the second section 560 in which the grooves 570 are formed and the metal films 40a, 42a, and 65 are formed is polished from the rear side and divided to obtain a desired flat panel display. Since the spacer 660 is obtained, a metal film 580 can be formed or patterned on the second section 560 larger than the desired flat panel display spacer 103. . Therefore, workability is improved, and the reliability and yield of spacer 103 are improved.
  • the present invention is not limited to the above embodiment.
  • the number of divisions in each cutting step is arbitrary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

The invention relates to a planar panel display spacer producing method, including a first cutting step for cutting a base plate (10) formed by a sintered body containing Al2O3 and TiC along a pair of first cutting planes (91) parallel to each other which cross the main surface (10A) of the base plate (10) to thereby form a first cut piece (30), and a second cutting step for cutting the first cut piece along a pair of second cutting planes parallel to a surface (30A) corresponding to the surface of the base plate in the first cut piece to thereby obtain a second cut piece. Thereby, the base plate containing AlTiC is divided into parts in the direction of the thickness, thus forming a second cut piece thinner than the base plate; therefore, using this second cut piece as a spacer for a planar panel display suppresses the deviation of electron beams in the planar panel display, thereby suppressing the blurring of images.

Description

明糸田書  Akitoda
平面パネルディスプレイ用スぺーサの製造方法、 及び、 平面パネルディスプレイ 用スぺーサ Method of manufacturing spacer for flat panel display, and spacer for flat panel display
技術分野 Technical field
【0 0 0 1】 本発明は、 平面パネルディスプレイ用スぺーサの製造方法及び平 面パネルディスプレイ用スぺーサに関する。  The present invention relates to a method for manufacturing a spacer for a flat panel display and a spacer for a flat panel display.
背景技術 Background art
【0 0 0 2】 電界放出型ディスプレイ (F E D) は、 従来の陰極線管 (C R T ) を応用した自発光型の平面パネルディスプレイとして知られている。 F E Dは多 くの陰極 (電界放出素子) を二次元状に配列してなる陰極構造体を備えており、 減圧環境下において陰極から放出される電子を、 各蛍光画素領域に衝突させて発 光画像を形成している。 蛍光画素領域は燐層を含んでなる。  [0102] A field emission display (FED) is known as a self-luminous type flat panel display using a conventional cathode ray tube (CRT). The FED has a cathode structure in which many cathodes (field emission devices) are two-dimensionally arranged. In a reduced-pressure environment, electrons emitted from the cathode collide with each fluorescent pixel area to emit light. An image is formed. The fluorescent pixel region includes a phosphor layer.
【0 0 0 3】 この平面パネルディスプレイは、 陰極構造体を有する背板を備え ている。 このような平面パネルディスプレイの一例は米国特許第 5, 5 4 1 , 4 7 3号明細書に記載されている。 このディスプレイの背板はガラス板上に陰極構 造体を堆積することによって形成される。  [0103] The flat panel display includes a back plate having a cathode structure. One example of such a flat panel display is described in U.S. Pat. No. 5,541,473. The back plate of this display is formed by depositing a cathode structure on a glass plate.
【0 0 0 4】 この平面パネルディスプレイは燐層が堆積されたガラス面板を備 えている。 ガラスまたは燐層の上には電界印加用の導電性層が堆積される。  The flat panel display has a glass face plate on which a phosphor layer is deposited. A conductive layer for applying an electric field is deposited on the glass or phosphor layer.
【0 0 0 5】 面板は背板から 0 . I mn!〜 l mm乃至 2 mm離間されている。 面板と背板との間には壁体からなる短冊状スぺーサが垂直に介在している。 この スぺーサは正確な位置に配置されることが望ましいが、 ディスプレイ内を減圧す ると、 大気圧によってスぺーサには大きな荷重が加えられる。  [0 0 0 5] The face plate is 0. I mn! ~ 1 mm to 2 mm apart. A strip spacer made of a wall is vertically interposed between the face plate and the back plate. It is desirable that this spacer be placed at an accurate position. However, when the inside of the display is depressurized, a large load is applied to the spacer due to the atmospheric pressure.
【0 0 0 6】 この荷重は 1 0インチのディスプレイでは 1 トンにも達するとい われている。 この荷重によって、 スぺーサが不整列状態になったり傾斜すると、 放出された電子が偏向し、 ディスプレイ上に目視可能な欠陥が生じる。 スぺーサ は面板及び背板間の非常に大きな圧縮力に耐える必要があり、 スぺーサ毎の高さ は等しく、 且つ、 平坦である必要もある。 また、 スぺーサの熱膨張率は面板とし てのガラス板に近く、且つ、温度依存性も小さくなければならないとされている。[0000] This load is said to reach as much as one ton on a 10-inch display. If the spacer is misaligned or tilted by this load, the emitted electrons will deflect and create visible defects on the display. Spacers must withstand very high compressive forces between the face and back plates, and the height of each spacer Must be equal and flat. Further, it is said that the thermal expansion coefficient of the spacer must be close to that of the glass plate as the face plate, and that the temperature dependency must be small.
【0007】 また、 面板と背板との間には例えば 1 k V以上の高電圧が印加さ れるので、 スぺーサには高電圧に対する耐性と 2次放射特性が要求される。 従来 のスぺーサは、 アルミナからなる絶縁材料を導電材料でコーティングしてなるこ とが知られている。 [0007] Further, since a high voltage of, for example, 1 kV or more is applied between the face plate and the back plate, the spacer is required to have high voltage resistance and secondary radiation characteristics. It is known that a conventional spacer is formed by coating an insulating material made of alumina with a conductive material.
【0008】 特表 2002— 508 1 10号公報、 特表 2001— 50892 6号公報は、 これらに関する技術を開示している。  [0008] Japanese Patent Application Publication No. 2002-508110 and Japanese Patent Application Publication No. 2001-508926 disclose techniques relating to these.
発明の開示 · Disclosure of Invention ·
【0009】 しかしながら、 従来のスぺーサでは画像の歪みやにじみを生ずる ことがあった。  [0009] However, in the conventional spacer, image distortion and blurring may occur.
【0010】 本発明は、 このような課題に鑑みてなされたものであり、 画像の 歪みやにじみを低減できる平面パネルディスプレイ用スぺーサの製造方法及び平 面パネルデイスプレイ用スぺーサを提供することを目的とする。  [0010] The present invention has been made in view of such problems, and provides a method of manufacturing a spacer for a flat panel display and a spacer for a flat panel display, which can reduce image distortion and bleeding. The purpose is to:
【001 1】 発明者らが鋭意検討したところ、 アルティック、 すなわち、 A 12 03 (アルミナ) と T i C (炭化チタン) とを主成分とする複合セラミクスの焼結 体から形成されたスぺーサが、 強度や比抵抗値の点から平面パネルディスプレイ. 用として好ましいことを見出して本発明に想到するに至った。 [001 1] The inventors have studied intensively, AlTiC, i.e., formed of a sintered body of the composite ceramic composed mainly of the A 1 2 0 3 (alumina) and T i C (titanium carbide) The present inventors have found that spacers are preferable for flat panel displays in terms of strength and specific resistance, and have come to the present invention.
【001 2】 一般に、 このようなスぺーサを形成するには、 アルティックの基 板から所定の形状のスぺーサを切り出す方法が考えられる。 ここで、 アルティッ クの基板は、 一般的に、 A 123と T i Cとを混合した原料粉末を板状に成形し た後、 この成形体をカーボン製等の型で両主面側から加圧しつつ加熱することに より焼結させて製造される。 Generally, in order to form such a spacer, a method of cutting out a spacer having a predetermined shape from an Altic substrate can be considered. Here, the substrate of Aruti' click generally, after forming the raw material powder obtained by mixing and T i C A 1 23 in a plate shape, both major surfaces of the molded body in the form of carbon made such It is manufactured by sintering by heating while applying pressure from the side.
【001 3】 ところが、 本発明者らが更に検討したところ、 このようにして製 造されるアルティックの基板においては、 その厚み方向において比抵抗値に大き な分布が生じる場合があることを見出した。 したがって、 アルティックの基板か らスぺーサを切り出す場合、 比抵抗値の大きな分布を有するスぺーサが形成され る場合がある。 そして、 スぺーサ内に大きな比抵抗値の分布があると、 平面パネ ルディスプレイのスぺーサとして使用した場合に電子線の偏向等が発生し、 画像 のにじみ等が発生する場合がある。 However, the present inventors have further studied and found that a large distribution of specific resistance values may occur in the thickness direction of the Altic substrate manufactured in this manner. Was. Therefore, the Altic substrate When the spacer is cut out from the spacer, a spacer having a large distribution of the specific resistance value may be formed. If the spacer has a large distribution of specific resistance values, when used as a spacer for a flat panel display, electron beam deflection or the like may occur, and an image may bleed.
【0 0 1 4】 そこで、 本発明に係る平面パネルディスプレイ用スぺーサの製造 方法は、 平面パネルディスプレイ用スぺーサの製造方法において、 A 1 203及び T i Cを含む焼結体によって形成された基板を、 上記基板の主面と交差しかつ互 いに平行な一対の第一切断面に沿って切断し第一の切片を形成する第一切断工程 と、 上記第一の切片を、 上記第一の切片において土記基板の表面に対応する面に 平行な一対の第二切断面に沿って切断して第二の切片を得る第二切断工程と、 を 含む。 [0 0 1 4] Therefore, the production method of the spacer for a flat panel display according to the present invention is a method for producing a spacer for a flat panel display, the sintered body containing A 1 2 0 3 and T i C Cutting the substrate formed by the first section along a pair of first sections that intersect and are parallel to the main surface of the substrate to form a first section; and the first section. Cutting along a pair of second cut surfaces parallel to a surface corresponding to the surface of the soil substrate in the first slice to obtain a second slice.
【0 0 1 5】 また、 本発明に係る平面パネルディスプレイ用スぺーサは、 A l 2 03及び T i Cを含む焼結体によって形成された基板を、前記基板の主面と交差し、 かつ、 互いに平行な一対の第一切断面に沿って切断して第一の切片を形成し、 前 記第一の切片を、 前記第一の切片において前記基板の表面に対応する面に平行な —対の第二切断面に沿って切断することにより形成される。 Further, the spacer for a flat panel display according to the present invention intersects a substrate formed of a sintered body containing Al 2 O 3 and T i C with a main surface of the substrate. And cutting along a pair of first cutting planes parallel to each other to form a first slice, and the first slice is parallel to a surface corresponding to the surface of the substrate in the first slice. Na — formed by cutting along a pair of second cut surfaces.
【0 0 1 6】 これによれば、 スぺーサが高強度、 高硬度のセラミックであるァ ルティックを含有する基板から形成されるので、 圧縮力による変形に耐えて画像 の歪みを抑制することができる。  According to this, since the spacer is formed from a substrate containing a high-strength, high-hardness ceramic, Altic, it is possible to withstand deformation due to compressive force and suppress distortion of an image. Can be.
【0 0 1 7】 また、 アルティックを含有する基板が基板の厚み方向に複数に分 割され、基板の厚みよりも薄い厚みを有する第二の切片が形成されることとなる。 したがって、 基板の厚み方向に比抵抗値の分布が生じている場合であっても、 基 板を基板の厚み方向に複数に分割することなく単に基板の幅方向に分割すること によつて切片を形成する場合に比して、 切片における比抵抗値のバラツキが低減 される。 このため、 このような第二の切片を平面パネルディスプレイのスぺーサ として用いることにより、 平面パネルディスプレイにおける電子線の偏向が抑制 されて画像のにじみが抑制される。 [0177] Further, the substrate containing the Altic is divided into a plurality of pieces in the thickness direction of the substrate, and a second piece having a thickness smaller than the thickness of the substrate is formed. Therefore, even when the distribution of the specific resistance value occurs in the thickness direction of the substrate, the section is obtained by simply dividing the substrate in the width direction of the substrate without dividing the substrate into a plurality of pieces in the thickness direction of the substrate. Compared with the case of forming, the variation of the specific resistance value in the intercept is reduced. Therefore, by using such a second section as a spacer for a flat panel display, electron beam deflection in the flat panel display is suppressed. Thus, blurring of the image is suppressed.
【0 0 1 8】 ところで、 このような第二の切片をスぺーサとして平面パネルデ イスプレイの面板と背板との間に配置する際に、 第二の切片における面板や背板 との接触部分における接触抵抗の面内不均一性を低減させるベく、 第二の切片に おける面板や背板との接触面に金属膜を形成することが好ましい。  By the way, when such a second section is disposed as a spacer between the face plate and the back plate of the flat panel display, a contact portion between the second section and the face plate or the back plate is provided. In order to reduce the in-plane non-uniformity of contact resistance in the above, it is preferable to form a metal film on the contact surface of the second section with the face plate or the back plate.
【0 0 1 9】 そこで、 上記第二切断工程を実施する前に、 さらに、 上記第一の 切片において上記第一切断面に対応する面上に、 金属膜を各々形成する工程を含 むことが好ましい。  Therefore, before performing the second cutting step, a step of forming a metal film on a surface of the first section corresponding to the first cut surface is further included. Is preferred.
【0 0' 2 0】 これによれば、 金属膜が各々形成された第一の切片に対して第二 切断工程を行うことにより、 両側に金属膜が形成された第二の切片を容易に製造 できる。  According to this, by performing the second cutting step on the first section on which the metal film is formed, the second section on which the metal film is formed on both sides can be easily formed. Can be manufactured.
【0 0 2 1】 また、 上記第二切断工程を実行した後に、 第二の切片において上 記第二切断面に対応する面上に、 パター-ングされた金属膜を形成する工程を更 に含むことが好ましい。  [0205] Further, after the second cutting step is performed, a step of forming a patterned metal film on a surface corresponding to the second cut surface in the second section is further performed. It is preferred to include.
【0 0 2 2】 これによれば、 所望の形態の金属膜パターンが第二の切片の主面 上に形成されるので、 この第二の切片における内部電界分布を所望の分布に設定 できる。  According to this, since the metal film pattern of a desired form is formed on the main surface of the second section, the internal electric field distribution in the second section can be set to a desired distribution.
【0 0 2 3】 一方、 上述の製造方法において、 さらに、 上記第二の切片の一方 の主面に上記第一切断面に対応する面と平行に延びる溝を形成する工程と、 上記 主面上、 上記溝の内面上、 及び、 上記第一切断面に対応する面上に金属膜を形成 する工程と、 上記主面上に形成された金属膜をパターニングする工程と、 上記金 属膜を形成した後に、 上記第二の切片のうち、 他方の主面から上記溝までの部分 を除去し、上記第二の切片を複数に分割する工程と、を含むことがより好ましい。 【0 0 2 4】 これによれば、 スぺーサにおいて、 面板や背板との接触部分とさ れる主面の両側の金属膜と、 主面上に形成される金属パターンとを、 一回の金属 膜積層と、 一回のパターニングとで形成することができ、 工数を削減できる。 図面の簡単な説明 On the other hand, in the above-described manufacturing method, further, a step of forming a groove extending parallel to a surface corresponding to the first cut surface on one main surface of the second section; Forming a metal film on the inner surface of the groove, and on a surface corresponding to the first cut surface; patterning the metal film formed on the main surface; After the formation, it is more preferable to include a step of removing a portion from the other main surface to the groove of the second piece and dividing the second piece into a plurality of pieces. According to this, in the spacer, the metal film on both sides of the main surface, which is the contact portion with the face plate or the back plate, and the metal pattern formed on the main surface are formed once. It can be formed by laminating a metal film and a single patterning, thus reducing man-hours. BRIEF DESCRIPTION OF THE FIGURES
【0025】 図 1は、 平面パネルディスプレイの平面図である。  FIG. 1 is a plan view of a flat panel display.
【0026】 図 2は、平面パネルディスプレイの I I一 I I矢印断面図である。 【0027】 図 3は、 スぺーサの斜視図である。  FIG. 2 is a cross-sectional view taken along the line II-II of the flat panel display. FIG. 3 is a perspective view of the spacer.
【0028】 図 4は、 平面パネルディスプレイ面板側内部構造を示す平面パネ ルディスプレイ側面図である。  FIG. 4 is a side view of the flat panel display showing the internal structure of the flat panel display on the face plate side.
【0029】 図 5A、 図 5 Bはスぺーサ 103の第一実施形態に係る製造方法 を説明するための斜視図である。  FIG. 5A and FIG. 5B are perspective views for explaining a method of manufacturing the spacer 103 according to the first embodiment.
【0030】 図 6は、 アルティック含有基板の製造方法を説明するための説明 図である。  FIG. 6 is an explanatory diagram for explaining the method for manufacturing the Altic-containing substrate.
【0031】 図 7A、 図 7 Bはスぺーサ 103の製造方法を説明するための図 FIGS. 7A and 7B are diagrams for explaining a method of manufacturing the spacer 103.
5 Bに続く斜視図である。 It is a perspective view following 5B.
【0032】 図 8は、 スぺーサ 103の製造方法を説明するための図 7に続く 斜視図である。  FIG. 8 is a perspective view subsequent to FIG. 7 for illustrating a method of manufacturing the spacer 103.
【0033】 図 9 A、 図 9 Bはスぺーサ 103の製造方法を説明するための図 FIGS. 9A and 9B are diagrams for explaining a method of manufacturing the spacer 103.
8に続く斜視図である。 FIG. 8 is a perspective view following FIG.
【0034】 図 10は、 スぺーサ 103の製造方法を説明するための図 9 Bに 続く斜視図である。  FIG. 10 is a perspective view subsequent to FIG. 9B for explaining the method of manufacturing the spacer 103.
【0035】 図 11 A、 図 1 1 Bはスぺーサ 103の製造方法を説明するため の図 10に続く斜視図である。  FIG. 11A and FIG. 11B are perspective views subsequent to FIG. 10 for explaining the method of manufacturing the spacer 103. FIG.
【0036】 図 12A、 図 1 2Bはスぺーサ 103の第二実施形態に係る製造 方法を説明するための斜視図である。  FIGS. 12A and 12B are perspective views for explaining a method of manufacturing the spacer 103 according to the second embodiment.
【0037】 図 13 B、 図 1 3 Bはスぺーサ 103の第二実施形態に係る製造 方法を説明するための図 1 2 Bに続く斜視図である。  FIGS. 13B and 13B are perspective views subsequent to FIGS. 12B for explaining a method of manufacturing the spacer 103 according to the second embodiment.
【0038】 図 14は、 スぺーサ 103の第二実施形態に係る製造方法を説明 するための図 13 Bに続く斜視図である。 JP2004/007339 FIG. 14 is a perspective view following FIG. 13B for explaining the manufacturing method of the spacer 103 according to the second embodiment. JP2004 / 007339
【0 0 3 9】 図 1 5は、 スぺーサ 1 0 3の第二実施形態に係る製造方法を説明 するための図 1 4に続く斜視図である。 [0390] FIG. 15 is a perspective view following FIG. 14 for explaining the manufacturing method of the spacer 103 according to the second embodiment.
【0 0 4 0】 図 1 6は、 スぺーサ 1 0 3の第二実施形態に係る製造方法を説明 するための図 1 5に続く斜視図である。  [0400] FIG. 16 is a perspective view following FIG. 15 for explaining the method of manufacturing the spacer 103 according to the second embodiment.
【0 0 4 1】 図 1 7は、 スぺーサ 1 0 3の第二実施形態に係る製造方法を説明 するための図 1 6に続く斜視図である。  FIG. 17 is a perspective view following FIG. 16 for explaining the method of manufacturing the spacer 103 according to the second embodiment.
【0 0 4 2】 図 1 8は、 スぺーサ 1 0 3の第二実施形態に係る製造方法を説明 するための図 1 7に続く斜視図である。  FIG. 18 is a perspective view following FIG. 17 for explaining the manufacturing method of the spacer 103 according to the second embodiment.
【0 0 4 3】 図 1 9は、 スぺーサ 1 0 3の第二実施形態に係る製造方法を説明 するための図 1 8に続く斜視図である。  [0430] FIG. 19 is a perspective view following FIG. 18 for explaining the method of manufacturing the spacer 103 according to the second embodiment.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
【0 0 4 4】 以下、 実施の形態に係る平面パネルディスプレイ及び平面パネル ディスプレイ用スぺーサについて説明する。なお、同一要素には同一符号を用い、 重複する説明は省略する。  Hereinafter, the flat panel display and the spacer for the flat panel display according to the embodiment will be described. In addition, the same reference numerals are used for the same elements, and duplicate descriptions are omitted.
【0 0 4 5】 まず、 スぺーサが適用される平面パネルディスプレイである F E [0 0 4 5] First, F E which is a flat panel display to which a spacer is applied
Dの概要について説明する。 An outline of D will be described.
【0 0 4 6】 図 1は平面パネルディスプレイの平面図、 図 2は平面パネルディ スプレイの I I一 I I矢印断面図である。  [0446] FIG. 1 is a plan view of a flat panel display, and FIG. 2 is a cross-sectional view of the flat panel display taken along a line II-II.
【0 0 4 7】 ガラス製の面板 1 0 1上には、 ブラックマトリックス構造体 1 0 2が形成されている。 ブラックマトリ ックス構造体 1 0 2は燐層からなる複数の 蛍光画素領域を含んでいる。 燐層は高エネルギー電子が衝突すると、 光を放出し て可視ディスプレイを形成する。 特定の蛍光画素領域から発した光は、 ブラック マトリックス構造を介して外部に出力される。 ブラックマトリ ックスは、 互いに 隣接する蛍光画素領域からの光の混合を抑制するための格子状黒色構造体である。 【0 0 4 8】 面板 1 0 1上には、 その表面に対して垂直に立設した壁体である スぺーサ (平面パネル用ディスプレイ用スぺーサ) 1 0 3— 1 1 9が取り付けら 2004/007339 [0447] On the face plate 101 made of glass, a black matrix structure 102 is formed. The black matrix structure 102 includes a plurality of fluorescent pixel regions composed of a phosphor layer. The phosphor layer emits light when struck by high-energy electrons to form a visible display. Light emitted from a specific fluorescent pixel area is output to the outside via a black matrix structure. The black matrix is a lattice-like black structure for suppressing the mixing of light from the fluorescent pixel regions adjacent to each other. [0 0 4 8] On the face plate 101, a spacer (a spacer for a flat panel display) 1 0 3— 1 1 9 which is a wall standing upright to the surface is attached. La 2004/007339
れている。 Have been.
【0049】 面板 101上にはスぺーサ 103〜: L 1 9 (103, 104, 1 05, 106, 107, 108, 109, 1 10, 1 1 1, 1 12, 1 1 3, 1 14, 1 15, 1 16, 1 1 7, 1 18, 1 19 ) を介して背板 201が設けら れる (図 2参照)。 スぺーサ 103 ~ 1 19は、面板 101と背板 201との間の 間隔を均等に保持している。 背板 201の能動領域面は陰極構造体 202を含ん でいる。 この陰極構造体 202は電子を放出するための突起からなる陰極 (電界 (電子) 放出素子) を複数有している。  [0049] On the face plate 101, the spacers 103 to: L 19 (103, 104, 105, 106, 107, 108, 109, 1 10, 1 1 1, 1 12, 1 1 3, 1 14, A back plate 201 is provided via the bases 115, 116, 117, 118, 119) (see FIG. 2). The spacers 103 to 119 maintain a uniform distance between the face plate 101 and the back plate 201. The active area surface of the back plate 201 includes the cathode structure 202. The cathode structure 202 has a plurality of cathodes (electric field (electron) emission elements) formed of projections for emitting electrons.
【0050】 陰極構造体 2-02の形成領域は背板 201の面積よりも小さ ヽ。 面板 101の外周領域と背板 201の外周領域との間にはガラスシール 203が 介在しており、 中央部に密閉室を提供している。 この密閉室内は電子が飛行可能 な程度に減圧されている。 また、 この密閉室内には、 陰極構造体 202、 ブラッ クマトリックス構造体 102及びスぺーサ 103— 1 1 9が配置されることとな る。 シール 203は融解ガラスフリットによって形成される。  [0050] The formation region of the cathode structure 2-02 is smaller than the area of the back plate 201. A glass seal 203 is interposed between the outer peripheral region of the face plate 101 and the outer peripheral region of the back plate 201, and provides a closed chamber at the center. The pressure inside this sealed room is reduced to such a degree that electrons can fly. Further, the cathode structure 202, the black matrix structure 102, and the spacers 103-119 are to be arranged in the closed chamber. Seal 203 is formed by a fused glass frit.
【0051】 なお、 全てのスぺーサ 103— 1 19の構造は同一であるので、 以下では、 一つのスぺーサ 103に着目して説明を行う。 ' [0051] Since the structure of all the spacers 103-119 is the same, the following description will focus on one spacer 103. '
【0052】 図 3は、 本 明に係るスぺーサ 103を示す斜視図である b この スぺーサ丄 03は、 概ね板状の直方体であり、 主面 50 A、 50 Bと、 長手方向 に延びる側面 50 C、 50Dと、 長手方向の両端の端面 50E, 50Fを有しァ ルティック含有基板から形成された矩形平板状のベース 50と、 ベース 50の側 面 50 C上に形成された金属膜 42 aと、 ベース 50の側面 50D上に形成され た金属膜 40 aとを有している。 また、 ベース 50の主面 5 OA上にはパター- ングされた金属膜 65が形成されている。 この金属膜 65はスぺーサ 103の長 手方向にそって延在し、 また、 金属膜 65は、 金属膜 42 aや金属膜 40 aとは 離間されて絶縁されている。 また、 金属膜 65は、 長手方向に複数に分割されて いる。 【0 0 5 3】 このスぺーサ 1 0 3は、 図 4に示すように、 その長手方向の両端 に設けられた接着剤 3 0 1 , 3 0 2によって面板 1 0 1、 背板 2 0 1に固定され ている。 本例の接着剤 3 0 1 , 3 0 2の材料は UV硬化性ポリイミド接着剤であ るが、 熱硬化性接着剤または無機接着剤を使用することができる。 なお、 接着剤 3 0 1, 3 0 2はブラックマトリックス構造体 1 0 2、 陰極構造体 2 0 2の外側 に配置される。 このとき、 スぺーサ 1 0 3の金属膜 4 0 a、 4 2 a力 背板 2 0 1の陰極構造体 2 0 2、 面板 1 0 1のブラックマトリックス構造体 1 0 2に各々 接触するように配置される。 [0052] Fig. 3 is a perspective view showing the spacer 103 according to the present invention. B The spacer 03 is a substantially plate-shaped rectangular parallelepiped, and has main surfaces 50A and 50B and a longitudinal direction. A rectangular flat base 50 having extended side surfaces 50C and 50D, and end surfaces 50E and 50F at both ends in the longitudinal direction and formed from an artic-containing substrate, and a metal film formed on the side surface 50C of the base 50 42a and a metal film 40a formed on the side surface 50D of the base 50. Further, a patterned metal film 65 is formed on the main surface 5 OA of the base 50. The metal film 65 extends in the longitudinal direction of the spacer 103. The metal film 65 is separated from the metal film 42a and the metal film 40a and is insulated. The metal film 65 is divided into a plurality of pieces in the longitudinal direction. [0530] As shown in FIG. 4, the spacer 103 is formed by adhesives 301 and 302 provided at both ends in the longitudinal direction of the spacer 103, the face plate 101 and the back plate 20. Fixed to 1. The material of the adhesives 301 and 302 in this example is a UV-curable polyimide adhesive, but a thermosetting adhesive or an inorganic adhesive can be used. The adhesives 301 and 302 are arranged outside the black matrix structure 102 and the cathode structure 202. At this time, the metal films 40a and 42a of the spacer 103 come into contact with the cathode structure 202 of the back plate 201 and the black matrix structure 102 of the face plate 101, respectively. Placed in
【 0ひ ·5 4】 次に、 スぺーサ 1 0 3の製造方法の第一実施形態について説明す る。 図 5は第一実施形態に係るスぺーサ 1 0 3の製造方法を説明するための説明 図である。 このスぺーサ 1 0 3の製造方法は、 上述の陰極構造体 2 0 2を有する 背板 20 1と蛍光画素領域 (ブラックマトリックス構造体 1 0 2) を有する面板 1 0 1との間に介在する平面パネルディスプレイ用スぺーサを製造する方法であ る。  Next, a first embodiment of a method of manufacturing the spacer 103 will be described. FIG. 5 is an explanatory diagram for explaining a method of manufacturing the spacer 103 according to the first embodiment. The method of manufacturing the spacer 103 involves interposing a back plate 201 having the above-described cathode structure 202 and a face plate 101 having a fluorescent pixel region (black matrix structure 102). This is a method of manufacturing a spacer for a flat panel display.
【0 0 5 5】 まず、 所定の大きさのアルティック (A 1 T i C) 含有基板 (基 板) 1 0を用意する (図 5A)。 ここでは、 例えば、 縦 1 3 4mm、 横 6 7mm、 厚み 2.. 5 mmの矩形平板状の基板を利用できる。 このアルティック含有基板 1 0は、 主面 1 0A, 1 0 B、 長手方向に平行な側面 1 O C, 1 0D、 及び、 長手 方向に直交する端面 1 0 E, 1 O Fを有している。 このようなアルティック含有 基板 1 0は、 例えば、 アルミナ粉末と炭化チタン粉末とを所定の比率で混合し、 この混合粉末 2 6 0を、 図 6に示すように、 真空装置 2 5 0内に設けられたカー ボン製の円筒 2 5 1内で、 カーボン製の円盤状の仕切板 2 5 2間に板状に挟んだ 状態で、 加圧装置 2 5 5によって加圧しつつ真空雰囲気で 1 5 0 0°C程度で焼結 させることにより得られる。 ここで、 加圧は 2 0MP a (2 0 0 k g ί /c m2) 程度とすることが好ましい。 そして、 このようにして得られた焼結体を所定の大 きさの矩形平板状に切断■研磨することによりアルテイツク含有基板 1 0が得ら れる。 なお、 アルミナ粉末と炭化チタン粉末に加えて、 酸化チタン粉末や、 酸ィ匕 マグネシゥム粉末等の酸化物や、 これら酸化物の混合物を更に混合して焼結させ ても良い。 [0555] First, an Altic (A1TiC) -containing substrate (substrate) 10 having a predetermined size is prepared (FIG. 5A). Here, for example, a rectangular flat substrate having a length of 1334 mm, a width of 67 mm, and a thickness of 2.5 mm can be used. The Altic-containing substrate 10 has main surfaces 10A and 10B, side surfaces 1OC and 10D parallel to the longitudinal direction, and end surfaces 10E and 1OF orthogonal to the longitudinal direction. Such an Altic-containing substrate 10 is prepared, for example, by mixing alumina powder and titanium carbide powder at a predetermined ratio, and placing the mixed powder 260 in a vacuum device 250 as shown in FIG. In a carbon cylinder 251, a carbon disk-shaped partition plate 25 is sandwiched between plates in a plate shape. It is obtained by sintering at about 100 ° C. Here, the pressure is preferably about 20 MPa (200 kg2 / cm 2 ). Then, the sintered body thus obtained is cut and polished into a rectangular flat plate having a predetermined size, thereby obtaining the substrate 10 containing the artic. It is. In addition, in addition to the alumina powder and the titanium carbide powder, an oxide such as a titanium oxide powder or an oxidized magnesium powder, or a mixture of these oxides may be further mixed and sintered.
【0056】 ここで、 アルティック含有基板 10は、 アルティックを構成する ために A 1203と T i Cを含むものであり、 T i Cの含有率は 50 w t %以下が 好ましく、 更に、 相変化点である 30 w t %以下、 具体的には 7 w t %であるこ とが好ましい。 [0056] Here, AlTiC-containing substrate 10 is intended to include A 1 2 0 3 and T i C in order to configure the AlTiC, the content of T i C is preferably 50 wt% or less, further However, it is preferably 30 wt% or less, specifically 7 wt%, which is the phase change point.
【0057】 T i Cの添カ卩量が 5〜40 w t%のアルティックは、 密度 4. 0 9〜4. 31 (g/cm2)、 ビッカーズ強度 2100〜2200 (Hv 20>、 抗 折強度 700〜760 (MP a)、 ヤング率 380〜410 (GP a)、 比抵抗 4[0057] T i C of添Ka卩量is 5 to 40 wt% of Al tick, density 4. 0 9~4. 31 (g / cm 2), Vickers strength 2100~2200 (Hv 20>, bending Strength 700-760 (MPa), Young's modulus 380-410 (GPa), Specific resistance 4
X 1014~ 1. 9 X 10— 3Ω · c m、 熱膨張係数 7. 2 X 10— 6〜 7. 3 X 10— 6 (°C-1 (40〜400°C))、熱伝導率 29. 3〜22. 6 W/ (m · K)、比熱 0. 81 2X 103〜0. 733 X 103 { / (k g ■ K)) であって、 いずれの観点 からも、 平面パネルディスプレイのスぺーサ材料として好ましい。 X 10 14 ~ 1. 9 X 10- 3 Ω · cm, the thermal expansion coefficient of 7. 2 X 10- 6 ~ 7. 3 X 10- 6 (° C -1 (40~400 ° C)), the thermal conductivity 29. 3~22. 6 W / (m · K), a specific heat 0. 81 2X 10 3 ~0. 733 X 10 3 {/ (kg ■ K)), from any point of view, flat panel display Is preferred as a spacer material.
【0058】 次に、 図 5 Bに示すように、 アルティック含有基板 10の一方の 主面 1 OAと一方の端面 10 Eとによって形成される稜部に、 面取部 1 5を形成 • する。 . 【0059】 次に、 アルティック含有基板 10に対して垂直、 かつ、 アルティ ック含有基板 10の側面 10 C, 10Dに平行な複数の第一切断面 91に沿って、 アルティック含有基板 10を所定間隔で切断する (図 7A)。 これによつて、 図 7 Bに示すように、 第一の切片 30が形成される。 この第一の切片 30は、 アルテ イツク含有基板 10の主面 10 A, 10 Bに各々対応する主面 3 OA, 30B、 第一切断面 9 1、 91に対応する側面 30 C, 30 D、 及び、 アルテイツク含有 基板 10の端面 10 E, 10 Fに対応する端面 30 E、 3 OFを有すると共に、 この第一の切片 30には、 アルティック含有基板 10の面取部 15に対応する面 取部 15 aが形成されている。 【0060】 ここでは、 例えば、 第一の切片 30の側面 30 C, 30 D間の幅 30Wが各々約 2. 1 5 mmとなるように第一切断面 91間の距離を設定するこ とができる。なお、アルティック含有基板 10から切り出される両端の部材 32, 32は、 廃棄することが好ましい。 Next, as shown in FIG. 5B, a chamfered portion 15 is formed on a ridge formed by one main surface 1OA and one end surface 10E of the Altic-containing substrate 10. . Next, along the plurality of first cut surfaces 91 perpendicular to the Altic-containing substrate 10 and parallel to the side surfaces 10C and 10D of the Altic-containing substrate 10, the Altic-containing substrate 10 At predetermined intervals (Fig. 7A). This forms a first section 30 as shown in FIG. 7B. The first section 30 has a main surface 3 OA, 30B corresponding to the main surface 10 A, 10 B of the art-containing substrate 10, and side surfaces 30 C, 30 D, corresponding to the first and second cross sections 91, 91, respectively. In addition, the first section 30 has a chamfer corresponding to the chamfered portion 15 of the Altic-containing substrate 10 having end surfaces 30E and 3OF corresponding to the end surfaces 10E and 10F of the artic-containing substrate 10. The part 15a is formed. [0060] Here, for example, the distance between the first cut surfaces 91 may be set so that the width 30W between the side surfaces 30C and 30D of the first section 30 is about 2.15 mm each. it can. The members 32, 32 at both ends cut out from the Altic-containing substrate 10 are preferably discarded.
【0061】 次に、 図 8に示すように、 下側研磨パッド 70と上側研磨パッド 71との間に、 第一の切片 30を、 第一の切片 30の側面 30 C、 30Dが、 下 側研磨パッド 7◦、 上側研磨パッド 71に各々接するように配置してこれらの第 一の切片 30の両側面 30 C, 30 Dを鏡面研磨する。 ここでは、 例えば、 両側 面 30C, 30D間の幅 30Wが 2. 1 5 mm程度にそろうように研磨する。 そ の後、 アルカリ溶液で第一の切片 30を洗浄する。  [0061] Next, as shown in Fig. 8, between the lower polishing pad 70 and the upper polishing pad 71, the first section 30 is placed, and the side surfaces 30C and 30D of the first section 30 are placed on the lower side. The polishing pad 7 and the upper polishing pad 71 are arranged so as to be in contact with each other, and both side surfaces 30 C and 30 D of these first sections 30 are mirror-polished. Here, for example, polishing is performed so that the width 30W between the side surfaces 30C and 30D is approximately 2.15 mm. Thereafter, the first section 30 is washed with an alkaline solution.
【0062】 続いて、 図 9 Aに示すように、 第一の切片 30の一方側の側面 3 0D上に、 金属膜 40を形成する。 ここでは、 例えば、 膜厚が数 nm〜l im、 材料が T i, Au, C r, P t等の金属からなる金属膜 40をスパッタリング法 によって形成できる。 引き続いて、 図 9 Bに示すように、 第一の切片 30を裏返 して、 第一の切片 30の他方の側面 30 C上にも、 金属膜 40と同様の金属膜 4 2を形成する。  Subsequently, as shown in FIG. 9A, a metal film 40 is formed on one side surface 30D of the first section 30. Here, for example, a metal film 40 having a thickness of several nm to lim and made of a metal such as Ti, Au, Cr, or Pt can be formed by a sputtering method. Subsequently, as shown in FIG. 9B, the first section 30 is turned over, and a metal film 42 similar to the metal film 40 is formed on the other side surface 30C of the first section 30.
【0063】 次に、 第一の切片 30における面取部 1 5 aが形成されている側 の端部において、 第一の切片 30を第一の切片 30の長手方向に直角な方向に切 断し、 面取部 1 5 aを有する部分を除去する (図 10)。  [0063] Next, at the end of the first section 30 on the side where the chamfered portion 15a is formed, the first section 30 is cut in a direction perpendicular to the longitudinal direction of the first section 30. Then, the portion having the chamfered portion 15a is removed (FIG. 10).
【0064】 続いて、 図 1 1 Aに示すように、 第一の切片 30を、 第一の切片 Subsequently, as shown in FIG. 11A, the first section 30 is
30の主面 3 OA (アルティック含有基板 10の主面 1 OAに対応する面) に平 行な複数の第二切断面 92に沿って切断して、 図 1 1 Bに示すように第二の切片30 are cut along a plurality of second cut surfaces 92 parallel to the main surface 3 OA (the surface corresponding to the main surface 1 OA of the Altic-containing substrate 10), and the second cut surface is formed as shown in FIG. 11B. Section of
60を得る。 Get 60.
【0065】 ここで、 第二の切片 60は、 第二切断面 92に対応する主面 50 A、 50 Bと、 長手方向に延びる側面 50 C、 50 Dと、 長手方向の両端の端面 [0065] Here, the second section 60 includes main surfaces 50A and 50B corresponding to the second cut surface 92, side surfaces 50C and 50D extending in the longitudinal direction, and end surfaces at both ends in the longitudinal direction.
50 E, 5 O Fを有しアルティック含有基板 10から形成された矩形平板状のベ ース 5 0と、 ベース 5 0の側面 5 0 C上に形成された金属膜 4 2 aと、 ベース 5 0の側面 5 0 D上に形成された金属膜 4 0 aとを有することとなる。 また、 第二 の切片 6 0の主面 5 O Aと主面 5 0 Bとの間隔 5 0 Wを、 第一の切片 3 0の幅 3 0 Wよりも狭くなるように第一の切片 3 0を切断する。 A rectangular flat plate formed from the Altic-containing substrate 10 having 50 E, 5 OF Base 50, a metal film 42a formed on side surface 50C of base 50, and a metal film 40a formed on side surface 50D of base 50. . Also, the first section 30 is set so that the interval 50 W between the main surface 5 OA and the main surface 50 B of the second section 60 is smaller than the width 30 W of the first section 30. Disconnect.
【0 0 6 6】 続いて、 第二の切片 6 0の主面 5 O A上にパターニングされた金 属膜 6 5を形成して、 図 3に示すスぺーサ 1 0 3を完成させる。 ここでは、 例え ば、 この主面 5 0 Aを洗浄し、 続いて、 この主面 5 O A上にスパッタリング法に よって T i, A u , C r, P t等の金属膜を 1 0 0 n m堆積し、 ドライエツチン グ用のレジストパターンを金属膜上に形成した後、 レジストパターンをマスクと一 してイオンミリングによって当該金属膜をエッチングし、 パターニングされた金 属膜 6 5を形成することができる。  Next, a patterned metal film 65 is formed on the main surface 5OA of the second section 60, thereby completing the spacer 103 shown in FIG. Here, for example, the main surface 50A is cleaned, and then a metal film of Ti, Au, Cr, Pt, etc. is formed on the main surface 5OA by sputtering to a thickness of 100 nm. After depositing and forming a resist pattern for dry etching on the metal film, the metal film is etched by ion milling while using the resist pattern as a mask, whereby a patterned metal film 65 can be formed. .
【0 0 6 7】 そして、 このような工程を経て、 本実施形態に係る平面パネルデ イスプレイ用スぺーサ 1 0 3が完成する。そして、このようなスぺーサ 1 0 3は、 金属膜 4 2 a、 金属膜 4 0 aが、 平面パネルディスプレイにおける背板 2 0 1、 面板 1 0 1に各々接するようにして、 背板 2 0 1と面板 1 0 1との間に設けられ ることとなる。  [0667] Then, through such steps, the flat panel display spacer 103 according to the present embodiment is completed. The spacer 103 is formed such that the metal film 42 a and the metal film 40 a are in contact with the back plate 201 and the face plate 101 of the flat panel display, respectively. 0 1 and the face plate 101.
【0 0 6 8】 このスぺーサ 1 0 3は高強度、' 高硬度のセラミックであるアルテ イツクを含有することで、 圧縮力による変形に耐えることができる。 また、 アル ティックを含んでいるので、 強度、 温度、 伝導率等の観点から、 アルミナのみか らなるスぺーサに比較して、 好適な平面パネルディスプレイを製造することがで きる。 このような平面パネルディスプレイでは、 画像内の面内輝度変化や歪みを 著しく低減させることができる。  The spacer 103 contains a high-strength, high-hardness ceramic, Artik, so that it can withstand deformation due to compressive force. In addition, because it contains AlTiC, a more suitable flat panel display can be manufactured in terms of strength, temperature, conductivity, and the like, as compared with spacers consisting of alumina alone. In such a flat panel display, in-plane luminance change and distortion in an image can be significantly reduced.
【0 0 6 9】 また、 上述のようにしてアルティック含有基板を製造すると、 板 厚方向の中心付近にカーボンが析出し易く、 板厚方向中心付近の比抵抗値が、 板 厚方向両端部の比抵抗値よりも高くなりやすい。 なお、 板厚方向中心付近におい てカーボンが析出しゃすくなることに関する詳細な理由は不明である力 例えば、 アルティックを焼結させる際に発生することがある C Oガス等が、 板厚方向の中 心部では基板から外部に抜け難くなること等が考えられる。 When the Altic-containing substrate is manufactured as described above, carbon is likely to be deposited near the center in the thickness direction, and the specific resistance value near the center in the thickness direction is increased at both ends in the thickness direction. Tends to be higher than the specific resistance value. The detailed reason why carbon precipitates and shrinks near the center in the thickness direction is unknown. It is conceivable that CO gas, etc., which may be generated when sintering the ALTICK, is difficult to escape from the substrate to the outside at the center in the thickness direction.
【0 0 7 0】 ところ力 本実施形態においては、アルティック含有基板 1 0を、 アルティック含有基板 1 0の主面と各々直交し、 かつ、 互いに平行な 2つの第一 切断面 9 1に沿って切断して第一の切片 3 0を形成し、 さらに、 この第一の切片 3 0を、 第一の切片 3 0におけるアルティック含有基板 1 0の主面 1 O Aに対応 する主面 3 O Aに各々平行な 2つの第二切断面 9 2に沿って切断して第二の切片 6 0を得ている。  However, in the present embodiment, the Altic-containing substrate 10 is divided into two first cut surfaces 91 that are orthogonal to the main surface of the Altic-containing substrate 10 and that are parallel to each other. Cut along the first section 30 to form the first section 30, and further connect the first section 30 to the main surface 3 corresponding to the main surface 1 OA of the Altic-containing substrate 10 in the first section 30. A second section 60 is obtained by cutting along two second cut surfaces 92 each parallel to the OA.
【0 0 7 1】 これによれば;アルティック含有基板 1 0がこの基板 1 0の厚み 方向に複数に分割されて、 アルティック含有基板 1 0の厚みよりも薄い厚みを有 する第二の切片 6 0が形成されることとなる。 したがって、 アルティック含有基 板 1 0の厚み方向に比抵抗値の分布が生じている場合であっても、 この基板 1 0 を基板 1 0の厚み方向に複数に分割することなく単に基板 1 0の幅方向に分割す ることによってスぺーサとしての切片を形成する場合に比して、 第二の切片 6 0 における比抵抗値のバラツキが低減されている。 このため、 このような第二の切 片 6 0に基づくスぺーサ 1 0 3を平面パネルディスプレイのスぺーサとして用い ることにより、 平面パネルデイスプレイにおける電子線の偏向が抑制されて画像 のにじみが低減されている。  According to this, the Altic-containing substrate 10 is divided into a plurality in the thickness direction of the substrate 10, and the second substrate having a thickness smaller than the thickness of the Altic-containing substrate 10. A section 60 will be formed. Therefore, even if the distribution of the specific resistance value occurs in the thickness direction of the Altic-containing substrate 10, the substrate 10 is simply divided without dividing the substrate 10 into a plurality in the thickness direction of the substrate 10. The variation in the specific resistance value of the second section 60 is reduced as compared with the case where the section as a spacer is formed by dividing the second section 60 in the width direction. For this reason, by using the spacer 103 based on the second section 60 as a spacer of a flat panel display, the deflection of the electron beam in the flat panel display is suppressed, and the image bleeding is suppressed. Has been reduced.
【0 0 7 2】 また、 本実施形態においては、 第二切断面 9 2に沿って第一の切 片 3 0を切断する前に、 さらに、 第一の切片 3 0における第一切断面 9 1に対応 する側面 3 0 C, 3 0 Dに金属膜 4 0 , 4 2を各々形成している。  In the present embodiment, before cutting the first section 30 along the second section 92, the first section 30 of the first section 30 is further cut off. Metal films 40 and 42 are formed on side surfaces 30 C and 30 D corresponding to 1, respectively.
【0 0 7 3】 このため、 第二切断面 9 2に沿って第一の切片 3 0を切断するこ とにより、 第二の切片 6 0における金属膜 4 0 a、 4 2 aを容易に形成すること ができる。 このため、 第二の切片 3 0を形成した後にこの第二の切片 3 0の両側 面 5 0 C , 5 0 Dに金属膜 4 2 a, 4 0 aを形成する場合に比べて、 製造コスト が削減される。 【0074】 ここで、 この金属膜 40 a , 42 aは、 第二切断面 92に沿う切 断工程の前に形成された金属膜 40, 42の一部分である。 この金属膜 40 a、 42 aは、背板 201及ぴ面板 101との接触抵抗の面内不均一性等を低減させ、 スぺーサ全体としての抵抗率、 導電率の設定に寄与する。 [073] Therefore, by cutting the first section 30 along the second cut surface 92, the metal films 40a and 42a in the second section 60 can be easily formed. Can be formed. For this reason, the manufacturing cost is lower than the case where the metal films 42 a and 40 a are formed on both side surfaces 50 C and 50 D of the second section 30 after the second section 30 is formed. Is reduced. Here, the metal films 40a and 42a are a part of the metal films 40 and 42 formed before the cutting step along the second cut surface 92. The metal films 40a and 42a reduce in-plane non-uniformity of contact resistance with the back plate 201 and the face plate 101, and contribute to setting of resistivity and conductivity of the entire spacer.
【0075】 また、 上述のスぺーサ 103は直方体であるが、 これは厚み方向 及ぴ長手方向を含む平面に平行な主面 5 OAを有し、 この主面 5 OA上にパター ユングされた金属膜 65を有している。 このパターンは内部電界分布を所望の分 布に規定するものである。  [0075] The spacer 103 is a rectangular parallelepiped, and has a main surface 5OA parallel to a plane including the thickness direction and the longitudinal direction, and is patterned on the main surface 5OA. It has a metal film 65. This pattern defines the internal electric field distribution in a desired distribution.
【0076】 次に、 第二実施形態に係る平面パネルディスプレイ用スぺーサ 1 03の製造方法について説明する。  Next, a method of manufacturing the spacer 103 for a flat panel display according to the second embodiment will be described.
【0077】 本実施形態では、 第一の製造方法で用いたアルティック含有基板 10を、まず、図 12 Aに示すように、アルティック含有基板 10に対して垂直、 かつ、 アルティック含有基板 10の側面 10 C, 10Dに平行な複数の第一切断 面 91に沿って、 アルティック含有基板 10を所定間隔で切断する。 これによつ て、 図 1 2Bに示すように、 第一の切片 530が形成される。 この第一の切片 5 [0077] In the present embodiment, the Altic-containing substrate 10 used in the first manufacturing method is first perpendicular to the Altic-containing substrate 10 as shown in FIG. The Altic-containing substrate 10 is cut at predetermined intervals along a plurality of first cut surfaces 91 parallel to the side surfaces 10C and 10D of the substrate. This forms a first section 530, as shown in FIG. 12B. This first section 5
30は、 アルティック含有基板 10の主面 1 OA, 10 Bに各々対応する主面 5 30 A, 530 B、各第二切断面 92に対応する側面 530 C, 530D、及び、 アルティック含有基板 10の端面 10 E, 10 Fに対応する端面 530 E、 53 OFを有している。 ここで、 第一の切片 530の側面 530 C, 530D間の幅 530Wは、 第一実施形態における第一の切片 30の幅 30Wの約 3倍程度とさ れている。 続いて、 第一の切片 530の側面 530 C、 530Dを研磨する。 【0078】 次に、 図 1 3に示すように、 第一の切片 530を、 第一の切片 5 30の主面 530Aに平行な複数の第二切断面 92に沿って所定間隔で切断して、 図 1 3 Bに示すように第二の切片 560を得る。 30 is a principal surface 5 30 A, 530 B respectively corresponding to the principal surface 1 OA, 10 B of the Altic-containing substrate 10, a side surface 530 C, 530 D corresponding to each second cut surface 92, and an Altic-containing substrate It has end surfaces 530E, 53OF corresponding to the ten end surfaces 10E, 10F. Here, the width 530W between the side surfaces 530C and 530D of the first section 530 is about three times the width 30W of the first section 30 in the first embodiment. Subsequently, the side surfaces 530C and 530D of the first section 530 are polished. Next, as shown in FIG. 13, the first section 530 is cut at predetermined intervals along a plurality of second cut surfaces 92 parallel to the main surface 530A of the first section 530. Obtain a second section 560 as shown in FIG. 13B.
【0079】 ここで、 第二の切片 560は、 第二切断面 92に対応する主面 5 60A、 560 Bと、 長手方向に延びる側面 560 C、 560Dと、 長手方向の 両端の端面 5 6 0 E、 5 6 0 Fを有しアルティック含有材料から形成されている。 また、 第二の切片 5 6 0の主面 5 6 O Aと主面 5 6 0 Bとの間隔 5 6 O Wを、 第 —の切片 5 3 0の幅 5 3 O Wよりも狭くなるように第一の切片 5 3 0を切断する。[0079] Here, the second section 560 includes main surfaces 560A and 560B corresponding to the second cut surface 92, side surfaces 560C and 560D extending in the longitudinal direction, and longitudinal sections 560C and 560D. It has end faces 560 E and 560 F at both ends and is made of an Altic-containing material. In addition, the distance 56OW between the main surface 56OA and the main surface 560B of the second section 560 is set to be smaller than the width 53OW of the second section 530. Cut section 5 3 0
【0 0 8 0】 次に、 図 1 4に示すように、 第二の切片 5 6 0の主面 5 6 0 A上 に、 端面 5 6 0 Eから端面 5 6 0 Fまで側面 5 6 0 C, 5 6 0 Dの延在方向に平 行に延びる溝 5 7 0を所定間隔で複数形成する。ここで、溝 5 7 0間の距離 W 2、 側面 5 6 0 Dに最も近い溝 5 7 0と側面 5 6 0 Dとの間の距離 W 3、 及び、 側面[0800] Next, as shown in Fig. 14, on the main surface 560A of the second section 560, the side surface 560 extends from the end surface 560E to the end surface 560F. A plurality of grooves 570 extending in parallel with the extending directions of C and 560D are formed at predetermined intervals. Here, the distance W2 between the grooves 570, the distance W3 between the groove 570 and the side 560D closest to the side 560D, and the side
5 6 0 Cに最も近い溝 5 7 0と側面 5 6 0 Cとの間の距 W 1は、 何れも同じ距 離とされている。 また、 各溝 5 7 0は、 側面 5 6 0 Dと平 fi^な側壁 5 7 0 A及び 側壁 5 7 0 Bと、 側壁 5 7 0 Aと側壁 5 7 0 Bとの下端同士を接続する底面 5 7The distance W 1 between the groove 570 closest to 560 C and the side surface 560 C is the same. Also, each groove 570 connects the side surfaces 560D, the flat side walls 570A and 570B, and the lower ends of the side walls 570A and 570B. Bottom 5 7
0 Cとによって形成され、 断面矩形状を呈している。 この溝 5 7 0は、 所定の幅 W S、 所定の深さ Dを有する。 例えば、 幅 W Sは 1 0〜2 0 0 /i m程度、 深さ D は、 1 0 0〜2 0 0 程度とすることができる。 0 C, and has a rectangular cross section. The groove 570 has a predetermined width WS and a predetermined depth D. For example, the width WS can be about 100 to 200 / im, and the depth D can be about 100 to 200.
【0 0 8 1】 次に、 図 1 5に示すように、 スパッタリングや蒸着等により、 金 属原子や金属微小粒子等を、 第二の切片 5 6 0で溝 5 7 0が形成された主面 5 6 Next, as shown in FIG. 15, metal atoms, metal microparticles, and the like were formed by sputtering, vapor deposition, or the like on the second section 560 where the groove 570 was formed. Face 5 6
O A側から吹き付ける。 これにより、 第二の切片 5 6 0の側面 5 6 0 C、 5 6 0 D、 主面 5 6 0 A、 溝 5 7 0内の各表面にわたって金属膜 5 8 0が形成される。 ここで、 金属膜 5 8 0の材料は、 第一の製造方法の金属膜 4 0や金属膜 4 2と同 様である。 O Spray from A side. As a result, the metal film 580 is formed over the surfaces of the side surfaces 560C and 560D, the main surface 560A, and the grooves 570 of the second section 560. Here, the material of the metal film 580 is the same as the metal film 40 or the metal film 42 of the first manufacturing method.
【0 0 8 2】 次に、 図 1 6に示すように、 金属膜 5 8 0の内、 第二の切片 5 6 0の主面 5 6 O A上に対応する面上にフィルムレジスト 5 9 0を加熱圧着する。 そして、 所定のマスクでフィルムレジスト 5 9 0を露光、 現像することにより、 フィルムレジスト 5 9 0を図 1 7に示すようにパターユングしてレジストパター ン 5 9 1を形成し、 金属膜 5 8 0の一部を露出させる。  Next, as shown in FIG. 16, a film resist 590 is formed on the surface of the metal film 580 corresponding to the main surface 56 OA of the second section 560. Is heat-pressed. Then, by exposing and developing the film resist 590 with a predetermined mask, the film resist 590 is patterned as shown in FIG. 17 to form a resist pattern 591, and the metal film 58 Expose part of 0.
[ 0 0 8 3 ] そして、 イオンミリング等によって、 パターニングされたレジス トパターン 5 9 1をマスクとして、 図 1 8に示すように、 金属膜 5 8 0を所定の 厚み除去する。 ここで、 この所定の厚みは、 金属膜 580のうちで主面 56 OA 上に形成された部分を完全に除去できるように設定する。これによつて、同時に、 金属膜 580で溝 570の底面 570 C上に設けられた部分も除去される。 そし て、 これによつて、 第二の切片 560の側面 560 C上に金属膜 58 OCが、 側 面 56 OD上に金属膜 58 OD力 溝 570の側壁 57 OAには金属膜 40 a力 溝 570の側壁 570 Bには金属膜 42 aが各々形成される。 また、 第二の切片 560の主面 56 OA上には、 パターニングされた金属膜 65が形成される。 【0084】 次に、第二の切片 560の裏面、すなわち、主面 560 B側から、 第二の切片 560を、 溝 570に達するまで研磨し、 図 1 9に示すように、 この 第二の切片 560を複数に分割して、 平面パネルディスプレイ用スぺーサ 660 を得る。 ここでは、 この研磨の過程で、 金属膜 580 Cが金属膜 42 aとなり、 金属膜 580Dが金属膜 40 aとなり、 また、 第二の切片 560は分割されてべ ース 50となる。 [0883] Then, using a resist pattern 591 patterned by ion milling or the like as a mask, as shown in FIG. Remove the thickness. Here, the predetermined thickness is set so that a portion of the metal film 580 formed on the main surface 56 OA can be completely removed. Thereby, at the same time, the portion of the metal film 580 provided on the bottom surface 570C of the groove 570 is also removed. Then, the metal film 58 OC is formed on the side surface 560 C of the second section 560, and the metal film 58 is formed on the side surface 56 OD. The metal film 42a is formed on each of the side walls 570B of the 570. In addition, a patterned metal film 65 is formed on the main surface 56 OA of the second section 560. Next, the second section 560 is polished from the back surface of the second section 560, that is, the main surface 560B side, until it reaches the groove 570, and as shown in FIG. The section 560 is divided into a plurality to obtain a spacer 660 for a flat panel display. Here, in this polishing process, the metal film 580C becomes the metal film 42a, the metal film 580D becomes the metal film 40a, and the second section 560 is divided into the base 50.
【0085】 本実施形態によれば、 第一実施形態に係る製造方法と同様の作用 効果が奏されるのに加えて、 第二の切片 560の主面 56 OAに対して溝 570 を形成した後に、 側面 560C, 560D、 溝 570内、 及び主面 560 A上に 金属膜 580を形成し、 これをパターユングすることにより、 金属膜 40 a, 4 2 a及び金属膜 65のベースとなる金属膜 580を少ない工数で形成することが できている。 また、 このように溝 570が形成され、 金属膜 40 a, 42 a, 6 5が形成された状態の第二の切片 560を後側から研磨して分割することにより、 所望とする平面パネルディスプレイ用スぺ一サ 660を得ているので、 所望とす る平面パネルディスプレイ用スぺーサ 1 03よりも大きな第二の切片 560に対 して、 金属膜 580の形成やパター-ング作業ができる。 このため、 作業性が向 上されて、 スぺーサ 103の信頼性や歩留まりが向上する。  [0085] According to the present embodiment, in addition to the same operation and effect as the manufacturing method according to the first embodiment, the groove 570 is formed in the main surface 56OA of the second section 560. Later, a metal film 580 is formed on the side surfaces 560C and 560D, inside the groove 570, and on the main surface 560A, and is patterned to form a metal film serving as a base for the metal films 40a, 42a and the metal film 65. The film 580 can be formed with a small number of steps. Further, the second section 560 in which the grooves 570 are formed and the metal films 40a, 42a, and 65 are formed is polished from the rear side and divided to obtain a desired flat panel display. Since the spacer 660 is obtained, a metal film 580 can be formed or patterned on the second section 560 larger than the desired flat panel display spacer 103. . Therefore, workability is improved, and the reliability and yield of spacer 103 are improved.
【0086】 なお、 本発明は上記実施形態に限定されない。 例えば、 各切断ェ 程での分割数は任意である。 産業上の利用可能性 [0086] The present invention is not limited to the above embodiment. For example, the number of divisions in each cutting step is arbitrary. Industrial applicability
【0 0 8 7】 以上、 説明したように、 本発明に係るスぺーサ及び用いた平面パ ネルデ、イスプレイによれば、 画像の歪みやにじみを低減させることができる。  [0887] As described above, according to the spacer according to the present invention, and the planar panel and spray used, it is possible to reduce image distortion and bleeding.

Claims

請求の範囲 The scope of the claims
1 . A 1 203及び T i Cを含む焼結体によって形成された基板を、 前記基板 の主面と交差し、 かつ、 互いに平行な一対の第一切断面に沿って切断し第一の切 片を形成する第一切断工程と、 1. A 1 2 0 3 and T i a substrate formed by a sintered body containing C, intersect the main surface of the substrate, and the first cut along the first cutting plane of the pair parallel to each other A first cutting step of forming a piece of
前記第一の切片を、 前記第一の切片において前記基板の主面に対応する面に平 行な一対の第二切断面に沿って切断して第二の切片を得る第二切断工程と、 を含む平面パネルディスプレイ用スぺーサの製造方法。  A second cutting step of cutting the first slice along a pair of second cut surfaces parallel to a surface corresponding to the main surface of the substrate in the first slice to obtain a second slice; A method for manufacturing a spacer for a flat panel display, including:
2 . 前記第二切断工程を実施する前に、 前記第一の切片において前記第一切 断面に対応する面上に金属膜を各々形成する工程をさらに含む、 請求項 1に記載 の平面パネルディスプレイ用スぺーサの製造方法。  2. The flat panel display according to claim 1, further comprising: before performing the second cutting step, a step of forming a metal film on a surface corresponding to the first section in the first section. Manufacturing method for spacers.
3 . 前記第二切断工程を実行した後に、 第二の切片において前記第二切断面 に対応する面上に、 パターニングされた金属膜を形成する工程をさらに含む、 請 求項 1に記載の平面パネルディスプレイ用スぺーサの製造方法。  3. The plane according to claim 1, further comprising a step of forming a patterned metal film on a surface of the second slice corresponding to the second cut surface after performing the second cutting step. Manufacturing method of spacer for panel display.
4 . 前記第二の切片の一方の主面に、 前記第一切断面に対応する面と平行に 延びる溝を形成する工程と、  4. a step of forming a groove on one main surface of the second section, the groove extending parallel to a surface corresponding to the first cut surface;
前記主面上、 前記溝の内面上、 及び、 前記第一切断面に対応する面上に金属膜 を形成する工程と、  Forming a metal film on the main surface, on the inner surface of the groove, and on a surface corresponding to the first cut surface;
前記主面上に形成された金属膜をパターニングする工程と、  Patterning a metal film formed on the main surface,
前記金属膜を形成した後に、 前記第二の切片のうち、 他方の主面から前記溝ま での部分を除去し、 前記第二の切片を複数に分割する工程と、  After forming the metal film, removing a portion of the second section from the other main surface to the groove, and dividing the second section into a plurality of steps;
を含む、 請求項 1に記載の平面パネルディスプレイ用スぺーサの製造方法。 The method for producing a spacer for a flat panel display according to claim 1, comprising:
5 . A 1 203及び T i Cを含む焼結体によって形成された基板を、 前記基板 の主面と交差し、 かつ、 互いに平行な一対の第一切断面に沿って切断して第一の 切片を形成し、 前記第一の切片を、 前記第一の切片において前記基板の表面に対 応する面に平行な一対の第二切断面に沿って切断することにより形成された平面 パネノレディスプレイ用スぺーサ。 5. The substrate formed by a sintered body containing A 1 2 0 3 and T i C, intersects with the principal surface of the substrate, and then cut along the first cutting plane of the pair of parallel first A plane panel formed by forming one section and cutting the first section along a pair of second cut surfaces parallel to a surface corresponding to the surface of the substrate in the first section. A spacer for a no-display.
PCT/JP2004/007339 2003-05-23 2004-05-21 Planar panel display spacer producing method and planar panel display spacer WO2004105073A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003146760A JP4200046B2 (en) 2003-05-23 2003-05-23 Manufacturing method of spacer for flat panel display, and spacer for flat panel display
JP2003-146760 2003-05-23

Publications (1)

Publication Number Publication Date
WO2004105073A1 true WO2004105073A1 (en) 2004-12-02

Family

ID=33475310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007339 WO2004105073A1 (en) 2003-05-23 2004-05-21 Planar panel display spacer producing method and planar panel display spacer

Country Status (2)

Country Link
JP (1) JP4200046B2 (en)
WO (1) WO2004105073A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030613A (en) * 1998-05-01 2000-01-28 Canon Inc Manufacture of image forming device, and image forming device
JP2003303562A (en) * 2002-04-11 2003-10-24 Tdk Corp Flat panel display, spacer for flat display, and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030613A (en) * 1998-05-01 2000-01-28 Canon Inc Manufacture of image forming device, and image forming device
JP2003303562A (en) * 2002-04-11 2003-10-24 Tdk Corp Flat panel display, spacer for flat display, and its manufacturing method

Also Published As

Publication number Publication date
JP2004349177A (en) 2004-12-09
JP4200046B2 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
EP0871195A1 (en) Field emission element, fabrication method thereof, and field emission display
JPH04137343A (en) Picture display device
JP2004228084A (en) Field emission element
JP2004265781A (en) Flat display device
JP3409468B2 (en) Particle emission device, field emission device, and manufacturing method thereof
TW483015B (en) Field emission cathode electron emission device and electron emission device manufacturing method
WO2004105073A1 (en) Planar panel display spacer producing method and planar panel display spacer
JP3691450B2 (en) Flat panel display, flat panel display spacer, and manufacturing method thereof
JP2000182543A (en) Planar display device
JP4133675B2 (en) Flat panel display spacer, flat panel display spacer manufacturing method, and flat panel display
JP3890049B2 (en) Manufacturing method of spacer for flat panel display
JPH01302642A (en) Flat plate type image display device
JPH11213923A (en) Flat surface display device and manufacture thereof
JP3667946B2 (en) Method for manufacturing fluorescent display tube
JPH07130304A (en) Flat type image display device
TWI269340B (en) Image display device
EP1387387A1 (en) Image display device
JP3798778B2 (en) Manufacturing method of spacer for flat panel display
KR20000010173A (en) Spacer for field emission display and forming method thereof
JP2005141926A (en) Cold cathode field electron emission display device
WO2006025175A1 (en) Display unit
EP1737017A1 (en) Image display and method for fabricating the same
JPH11329209A (en) Negative electrode structure and electron gun structure
JP2009081012A (en) Field emission display element and its manufacturing method
WO2007017990A1 (en) Display

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase