WO2004102676A1 - Photoelectric converting semiconductor device, method for manufacturing same, and processing apparatus used in such method - Google Patents

Photoelectric converting semiconductor device, method for manufacturing same, and processing apparatus used in such method Download PDF

Info

Publication number
WO2004102676A1
WO2004102676A1 PCT/JP2004/005950 JP2004005950W WO2004102676A1 WO 2004102676 A1 WO2004102676 A1 WO 2004102676A1 JP 2004005950 W JP2004005950 W JP 2004005950W WO 2004102676 A1 WO2004102676 A1 WO 2004102676A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyanide
cyan
photoelectric conversion
semiconductor layer
semiconductor device
Prior art date
Application number
PCT/JP2004/005950
Other languages
French (fr)
Japanese (ja)
Inventor
Hikaru Kobayashi
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Publication of WO2004102676A1 publication Critical patent/WO2004102676A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a photoelectric conversion semiconductor device such as a solar cell, a method for manufacturing the same, and a processing apparatus used in the method.
  • Solar cells using semiconductors that utilize the photoelectric conversion function of the parent silicon for the photovoltaic layer have been put into practical use, and the photovoltaic layer of the parent silicon has a single-crystal, polycrystalline, or amorphous thin film.
  • the photovoltaic layer of the parent silicon has a single-crystal, polycrystalline, or amorphous thin film.
  • solar cells that have a single-crystal or polycrystalline matrix silicon photovoltaic layer with an output electrode formed on a semiconductor layer with a pn structure have an amorphous matrix silicon photovoltaic layer.
  • Prospects are expected for its higher photoelectric conversion efficiency and less initial light degradation compared to solar cells.
  • the presence of a defect level in the band gap of a semiconductor lowers the photoelectric conversion efficiency, so it is important to take measures to eliminate the defect level.
  • Such defect levels are also observed in photovoltaic layers made of polycrystalline silicon (polysilicon), microcrystalline silicon, single-crystal silicon, amorphous silicon, and the like.
  • polycrystalline silicon polysilicon
  • microcrystalline silicon single-crystal silicon
  • amorphous silicon a large number of silicon dangling bonds (dangling pounds) exist in a boundary region such as a grain boundary in a polycrystalline silicon / microcrystalline silicon.
  • dangling bonds exist in a photovoltaic layer of a photoelectric conversion element such as a solar cell or a photosensor, there is a possibility that optical characteristics such as photoelectric conversion efficiency may be deteriorated.
  • the present invention is intended to suppress or reduce the decrease in photoelectric conversion efficiency due to such a defect level.
  • the purpose is to provide an effective solution to the solution. Disclosure of the invention
  • the photoelectric conversion semiconductor device of the present invention is a photoelectric conversion semiconductor device comprising a semiconductor layer having a pn structure or a pin structure and an output electrode provided on the semiconductor layer, wherein a surface region or a particle of the semiconductor layer is provided.
  • a boundary region such as a boundary is characterized in that metals or contaminants containing metals are removed and dangling bonds are terminated by cyano groups.
  • the photoelectric conversion semiconductor device of the present invention by removing attached substances such as contaminant metals from the semiconductor layer having a pn structure or a pin structure and terminating dangling bonds with a cyano group, a surface region or a grain boundary or the like can be obtained.
  • the defect in the boundary region is suppressed or eliminated, and high efficiency of the photoelectric conversion semiconductor device is achieved.
  • the method for manufacturing a photoelectric conversion semiconductor device according to the present invention includes a process of removing adhering substances such as contaminant metals from a semiconductor layer and terminating unbonded hands with a cyano group as described above.
  • a cyan treatment in which the semiconductor substrate is exposed to a solution or gas containing a cyanide compound. It is characterized by having a process.
  • the cyan compound includes a non-metallic cyan compound and a metal cyan compound, and any of the cyan compounds can be used.
  • the non-metallic cyanide include hydrogen cyanide, dicyan, and ammonium cyanide.
  • the metal-based cyanide include lithium cyanide, sodium cyanide, rubidium cyanide, and cesium cyanide.
  • Examples of the cyan treatment process include a step of immersing a semiconductor substrate in an aqueous solution containing a non-metallic cyanide compound or an alcohol solution containing a metal-based cyanide compound This is the step of immersion in As the alcohol, methyl alcohol, ethyl alcohol, isopropyl alcohol and the like can be used.
  • the etching of the substrate can be prevented by using alcohol as the solvent.
  • water is used by adding water to the solvent, the water molecule acts as a solvate for the cyanide ion in the solution, and the activity of the cyanide ion can be controlled.
  • the method further includes a rinsing step of rinsing the semiconductor substrate with a cleaning liquid after the cyan treatment process. Due to this rinsing, a cyanide compound of a metal such as copper, or a complex of a metal such as copper and a cyano group or a cyanide ion, which adheres to and remains in a surface region of the semiconductor layer or a boundary region including a grain boundary, etc. It is removed from the semiconductor layer.
  • This rinsing can be performed using a solvent such as pure water or an alcohol solution. Thereafter, if necessary, a drying treatment for removing a solvent or the like from the surface region of the semiconductor layer or the like may be performed.
  • the semiconductor substrate processing apparatus of the present invention includes everything from cyan treatment of a semiconductor substrate to treatment of a rinsed waste liquid, and has a configuration in which a cyan component is not discharged into the environment. That is, the semiconductor substrate processing apparatus of the present invention includes: a cyan processing unit that exposes a semiconductor substrate to a solution or a gas containing a cyan compound; a rinsing unit that rinses the semiconductor substrate after the cyan processing with a cleaning liquid; A cleaning liquid processing unit for decomposing and removing the cyan component in the cleaning liquid after rinsing by ozone treatment or ozone treatment combined with ultraviolet light irradiation, or treatment with hypochlorous acid solution;
  • a semiconductor substrate is treated from the surface with a solution or gas containing a cyanide compound, rinsed after the cyan treatment, and furthermore, a cyan component in a cleaning liquid (waste liquid) after the rinse is removed. Since it can be decomposed and removed, waste liquid containing cyan component is not released to the outside.
  • the photoelectric conversion semiconductor device of the present invention in the surface region or the boundary region of the semiconductor layer, the metal or the contaminant containing the metal is removed, and the dangling bonds are terminated with a cyano group. High efficiency can be realized.
  • the semiconductor substrate is formed of a cyanide compound before, during, or after forming a semiconductor layer having a pn structure or a pin structure, or after forming an output electrode on the semiconductor layer.
  • the surface is treated with a solution or gas containing a cyanide compound
  • the semiconductor layer or the output electrode is rinsed with a cleaning liquid, and the cleaning liquid (waste liquid) after the rinsing is treated with ozone treatment or ozone combined with ultraviolet light irradiation, or the cleaning liquid after the cleaning treatment is treated with a hypochlorous acid solution.
  • FIG. 1 is a sectional view showing a cyan treatment step in one embodiment of the manufacturing method.
  • FIG. 2 is a flow sectional view showing one embodiment for manufacturing a photoelectric conversion semiconductor device.
  • FIG. 3 is a schematic diagram of a processing apparatus for manufacturing a photoelectric conversion semiconductor device.
  • FIG. 1 is a cross-sectional view of a processing device ⁇ in a step of processing a photoelectric conversion device having a photovoltaic layer of polycrystalline silicon as an embodiment of the present invention.
  • the photoelectric conversion device including the aluminum electrode 14 formed on the polycrystalline silicon layer 12 is immersed in a processing tank 16 filled with the processing solution 15.
  • the transparent electrode 13 may be formed on the n-type polycrystalline silicon layer 12, and the aluminum electrode 14 may be formed on the p-type polycrystalline silicon layer 11. Also, not limited to ITO as the transparent electrode 1 3, it is possible to use S N_ ⁇ 2.
  • FIGS. 2A to 2D are flow cross-sectional views showing a process of forming the polycrystalline silicon layer in a photoelectric conversion device having a polycrystalline silicon photovoltaic layer according to an embodiment of the present invention.
  • FIG. 2A to 2D are flow cross-sectional views showing a process of forming the polycrystalline silicon layer in a photoelectric conversion device having a polycrystalline silicon photovoltaic layer according to an embodiment of the present invention.
  • the thickness is 100 to 600! ! !
  • an n-type impurity is diffused to form an n-type diffusion layer 12 of about 0.5 ⁇ m.
  • the n-type diffusion layer 12 may be formed by a thermal diffusion method, an ion implantation method, or the like.
  • Phosphorus or arsenic can be used as n-type impurities Here, phosphorus is used.
  • an aluminum electrode 13 having a thickness of about 200 nm is formed by a sputtering method or a vapor deposition method.
  • a transparent electrode (ITO) 14 having a thickness of about 100 nm was formed by a sputtering method or a vapor deposition method to manufacture a photoelectric conversion device.
  • the above photoelectric conversion device is placed in a processing tank 16 containing a hydrogen cyanide (HCN) aqueous solution 15 adjusted to a concentration of 1 mol and a temperature of 25 ° C. for about 2 minutes. Immerse in hydrogen cyanide aqueous solution 15.
  • HCN hydrogen cyanide
  • the cyan-treated photoelectric conversion device is washed with ultrapure water of 10 ° C.
  • the above-described photoelectric conversion device is described as a method of performing cyan processing in the state of the structure shown in FIG. 2 (d).
  • the present invention is not limited to this.
  • FIGS. 2 (a) to 2 (c) In any of the substrate configurations at any stage, the process of immersing the substrate in the aqueous hydrogen cyanide solution 15 and the subsequent process of cleaning the substrate for processing with ultrapure water can be performed. Works effectively.
  • cyan ions CN-I
  • CN-I cyan ions
  • a positive voltage is applied to the substrate in the range of 0.1 V to 50 V, and the treatment temperature is heated in the range of room temperature to 100 ° C.
  • the action of the cyan treatment was promoted, and the photoelectric conversion devices obtained by the above all realized much higher photoelectric conversion efficiency.
  • the photoelectric conversion efficiency of the photoelectric conversion device according to the present embodiment is 12.3 at maximum when the processing substrate is subjected to a cyan treatment for 2 minutes at an applied voltage of 10 V and a processing temperature of 50 ° C. % Was achieved, and the photoelectric conversion efficiency of the photoelectric conversion device manufactured without performing the cyan treatment was 8.8%, which was a significant improvement in performance.
  • the cyan treatment was performed at a temperature of 50 ° C. without applying a voltage, 10.5% was obtained, and when the cyan treatment was performed at a room temperature by applying a voltage, 10.1% was obtained.
  • the same performance improvement can be obtained when a single crystal silicon substrate is used. Further, similar performance improvement can be obtained when a photoelectric conversion device having a p ⁇ structure or a pin structure is formed on a predetermined substrate, for example, a glass substrate by plasma CVD or the like.
  • treatment with a solution or gas containing a cyanide compound is performed before, during, or after forming a semiconductor layer having a pn structure, or after forming an output electrode on the semiconductor layer. Prepare the process.
  • process I In order to remove metals such as copper, which are contaminants, mainly from the surface region and boundary regions such as grain boundaries of the semiconductor layer, the semiconductor layer is subjected to a solution or gas containing a cyanide compound (for example, mist) in a cyan treatment process. (Hereinafter referred to as process I).
  • a solution or gas containing a cyanide compound for example, mist
  • the solution containing a cyanide compound examples include a solution in which a nonmetallic cyanide compound such as hydrogen cyanide, dicyan or ammonium cyanide is dissolved in a solvent, for example, pure water or an alcohol solution, or potassium cyanide, sodium cyanide, A solution in which a metal cyanide compound such as rubidium cyanide or cesium cyanide is dissolved in an alcoholic solution, and a solution having a concentration of about 1 mol is appropriate.
  • contaminants such as copper existing on the surface of the semiconductor layer or in a boundary region such as a grain boundary form a compound with cyanide, or form a complex with a cyano group or a cyanide ion.
  • those compounds or complexes elute in the solution.
  • the semiconductor layer is rinsed (hereinafter, referred to as a process ⁇ ). That is, in this step II, the semiconductor layer is washed with a solvent such as pure water or an alcohol solution.
  • a solvent such as pure water or an alcohol solution.
  • a cyanide compound of a metal such as copper or a complex of a metal such as copper with a cyano group or a cyanide ion, which adheres to and remains in a boundary region such as a surface region or a grain boundary of the semiconductor layer, is removed. Is removed from the semiconductor layer. Thereafter, if necessary, a drying treatment for removing a solvent or the like from the semiconductor layer is performed.
  • the semiconductor layer is in a state where metals such as copper have been removed.
  • a metal such as copper remaining in the semiconductor layer the measurement lower limit value of the metal atom by Ken ⁇ meter (3 X 1 0 9 atoms / cm 2) with the following is obtained Contact is, reliably It was found to have been removed.
  • the semiconductor layer is treated with the above-mentioned cyanide-containing solution, the attached metal such as copper or a contaminant containing these metals is removed, and at the same time, the boundary such as the surface region and the grain boundary is removed.
  • the effect of eliminating defects in the region due to termination of a dangling bond existing in the region with a cyano group or the like can be obtained.
  • defects such as many dangling bonds and their composites occur on the surface where metals such as copper or contaminants containing these metals are adhered and in the boundary regions such as grain boundaries.
  • the force verified for copper as an example of a contaminated metal
  • the present invention is not limited to copper, and other metal elements, for example, metals such as iron, nickel, cobalt, silver, tungsten, and titanium
  • the processing solution and the cleaning process used in this embodiment are also effective for removing elements from the surface of a substrate or the like.
  • a so-called cyan component such as a cyan compound or a cyano group or a cyanide ion may remain in the rinse solution after the treatment.
  • Washing The purified liquid (rinse waste liquid) is treated in ozone or ozone combined with ultraviolet light irradiation to decompose and remove the cyan component remaining in the rinse waste liquid. As a result, the above-mentioned cyan component does not remain in the rinse waste liquid generated in step II.
  • the cleaning liquid (rinse waste liquid) after the cleaning treatment is subjected to a chemical treatment with a so-called hypochlorous acid solution containing hypochlorite (for example, sodium hypochlorite), so that the rinse waste liquid is removed. It is also possible to decompose and remove the above-mentioned cyan component remaining in the image. In this case, the concentration of the hypochlorous acid solution and the treatment temperature may be appropriately set by estimating the remaining amount of the cyan component in the rinse waste liquid.
  • hypochlorous acid solution containing hypochlorite for example, sodium hypochlorite
  • Steps I and II, and the function of decomposing the residual cyan component in the rinse waste liquid are provided, so that metals such as copper adhering to the substrate or the like or contaminants containing these metals can be removed. Along with the removal, the cyan component remaining in the rinse waste liquid after the cleaning treatment can also be completely decomposed and removed.
  • the photoelectric conversion device has a structure shown in FIG. 2 (d).
  • the cyan treatment is not limited to the structure shown in FIG. 2 (d) .
  • the above-mentioned steps I and II are performed by the photoelectric conversion in the manufactured photoelectric conversion device. It was effective in improving the performance of efficiency.
  • FIG. 3 is a schematic diagram of the processing apparatus of the present embodiment.
  • the processing apparatus main body 20 includes a processing unit 23 for immersing a semiconductor substrate 21 in a processing solution 22, and then takes out the substrate 21. Then, at room temperature, a washing section 24 for washing (rinsing) using a mixed solution of ultrapure water and methanol as a washing liquid, and a so-called rinse waste liquid after washing (rinsing) are introduced. It is equipped with a waste liquid treatment section 25 for ozone treatment.
  • the processing section 23 has a processing solution supply section 26 having a function of supplying and discharging the processing solution 22, and a cleaning section 24. Has a cleaning liquid supply unit 27 '.
  • the waste liquid treatment section 25 includes an ultraviolet ray generation source and a poson generation source, and decomposes the cyan component (CN) remaining in the rinse waste liquid by irradiating the above-mentioned rinse waste liquid with ultraviolet rays and applying ozone.
  • the waste liquid can be made into a rinse waste liquid containing no cyan component.
  • a cyanide-containing aqueous solution formed from a non-metallic cyanide for example, a cyanide such as hydrogen cyanide, dicyan or ammonium cyanide
  • a substrate or the like is immersed in the treatment solution, and then the substrate or the like is used.
  • the so-called rinse waste liquid after taking out and washing (rinsing) it with ultrapure water at room temperature is a dilute aqueous solution having the above-mentioned cyanide content. Therefore, the rinse waste liquid is also introduced into the waste liquid treatment section 25, where ultraviolet light and ozone are applied to the rinse waste liquid to decompose the cyan component (CN) remaining in the rinse waste liquid.
  • CN cyan component
  • the transport mechanism and drying means for taking the substrate 21 into the processing apparatus and taking it out of the processing apparatus take into consideration the gas-phase shutoff inside and outside the processing apparatus. If this is the case, conventional technology can be used sufficiently, so it is omitted.
  • a photoelectric conversion device having a pn structure is described as an example; however, a photoelectric conversion device having a pin structure can achieve the same effect.
  • the same effect can be expected for the semiconductor layer not only of silicon (S i) but also of a III-V compound or an organic semiconductor.
  • the present invention can be used for a photoelectric conversion semiconductor device such as a solar cell having a photovoltaic layer made of polycrystalline silicon, microcrystalline silicon, single crystal silicon, amorphous silicon, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

A photoelectric converting semiconductor device is disclosed wherein a semiconductor layer having a pn structure or a pin structure is processed with a solution containing a nonmetallic cyanogen compound or a solution containing a metallic cyanogen compound, so that defect level is eliminated and contaminant metal is removed from the photoelectric converting semiconductor device, thereby improving the photoelectric conversion efficiency.

Description

明 細 書 光電変換半導体装置、 その製造方法及び製造方法で用いる処理装置 技術分野  Description: Photoelectric conversion semiconductor device, method of manufacturing the same, and processing apparatus used in the method
本発明は、 太陽電池などの光電変換半導体装置とその製造方法及びそ の製造方法で使用する処理装置に関するものである。 背景技術  The present invention relates to a photoelectric conversion semiconductor device such as a solar cell, a method for manufacturing the same, and a processing apparatus used in the method. Background art
半導体を用いた太陽電池は、 光起電力層に母体シリ コンの光電変換機 能を利用するものが実用化され、母体シリコンの光起電力層も、単結晶、 多結晶もしくは非晶質の薄層又は薄膜で実現されている。 とくに、 p n 構造を有する半導体層に出力電極を形成した構造の、 単結晶あるいは多 結晶母体シリコンの光起電力層をそなえた太陽電池は、 非晶質母体シリ コンの光起電力層をそなえた太陽電池に比べて、 光電変換効率が高いこ と及び初期の光劣化現象が少ないことで、 将来性が期待されている。 太陽電池では、 半導体のバンドギヤップ内の欠陥準位の存在によって 光電変換効率が低下するため、欠陥準位を消滅させる対策が重要である。 上述のような欠陥準位は、 多結晶シリコン (ポリシリコン)、微結晶シ リコン、 単結晶シリ コン、 非晶質シリ コンなどによる光起電力層におい ても認められている。 とりわけ、 多結晶シリ コンゃ微結晶シリ コンにお いては、 粒界等の境界領域にシリ コン未結合手 (ダングリングポンド) が多数存在していることが知られている。 未結合手が太陽電池や光セン サーなどの光電変換素子での光起電力層に存在するときに、 光電変換効 率などの光特性の劣化を招くおそれがあった。  Solar cells using semiconductors that utilize the photoelectric conversion function of the parent silicon for the photovoltaic layer have been put into practical use, and the photovoltaic layer of the parent silicon has a single-crystal, polycrystalline, or amorphous thin film. Implemented in layers or thin films. In particular, solar cells that have a single-crystal or polycrystalline matrix silicon photovoltaic layer with an output electrode formed on a semiconductor layer with a pn structure have an amorphous matrix silicon photovoltaic layer. Prospects are expected for its higher photoelectric conversion efficiency and less initial light degradation compared to solar cells. In a solar cell, the presence of a defect level in the band gap of a semiconductor lowers the photoelectric conversion efficiency, so it is important to take measures to eliminate the defect level. Such defect levels are also observed in photovoltaic layers made of polycrystalline silicon (polysilicon), microcrystalline silicon, single-crystal silicon, amorphous silicon, and the like. In particular, it is known that a large number of silicon dangling bonds (dangling pounds) exist in a boundary region such as a grain boundary in a polycrystalline silicon / microcrystalline silicon. When dangling bonds exist in a photovoltaic layer of a photoelectric conversion element such as a solar cell or a photosensor, there is a possibility that optical characteristics such as photoelectric conversion efficiency may be deteriorated.
本発明は、 かかる欠陥準位による光電変換効率の低下の抑制ないしは 解消に有効な解決策を提供することを目的とする。 発明の開示 The present invention is intended to suppress or reduce the decrease in photoelectric conversion efficiency due to such a defect level. The purpose is to provide an effective solution to the solution. Disclosure of the invention
本発明の光電変換半導体装置は、 p n構造又は p i n構造を有する半 導体層及び前記半導体層に設けられた出力電極をそなえた光電変換半導 体装置であって、 前記半導体層の表面領域又は粒界等の境界領域は金属 もしくは金属を含む汚染物質が除去され、 かつ、 未結合手がシァノ基で 終端されていることを特徴とするものである。  The photoelectric conversion semiconductor device of the present invention is a photoelectric conversion semiconductor device comprising a semiconductor layer having a pn structure or a pin structure and an output electrode provided on the semiconductor layer, wherein a surface region or a particle of the semiconductor layer is provided. A boundary region such as a boundary is characterized in that metals or contaminants containing metals are removed and dangling bonds are terminated by cyano groups.
本発明の光電変換半導体装置では、 p n構造又は p i n構造を有する 半導体層から汚染金属等の付着物質を除去し、 かつ、 未結合手をシァノ 基で終端したことにより、 表面領域又は粒界等の境界領域の欠陥を抑制 又は消滅させ、 光電変換半導体装置の高効率化を達成したものである。 本発明の光電変換半導体装置の製造方法は、 上のように半導体層から 汚染金属等の付着物質を除去し、 かつ、 未結合手をシァノ基で終端する 課程を備えたものである。 すなわち、 半導体基板に p n構造又は p i n 構造を形成する前の状態から出力電極形成後の状態までの間の少なくと も 1つの段階において、 その半導体基板をシアン化合物を含む溶液又は 気体に曝すシアン処理過程を備えたことを特徴とするものである。 シアン化合物には非金属系シァン化合物と金属系シアン化合物とがあ り、 いずれのシアン化合物も使用することができる。 非金属シアン化合 物としては、 シアン化水素、 ジシアン又はシアン化アンモ-ゥムなどを 挙げることができる。金属系シアン化合物としては、シアン化力リゥム、 シアン化ナトリ ウム、 シアン化ルビジゥム又はシアン化セシウムなどを 挙げることができる。  In the photoelectric conversion semiconductor device of the present invention, by removing attached substances such as contaminant metals from the semiconductor layer having a pn structure or a pin structure and terminating dangling bonds with a cyano group, a surface region or a grain boundary or the like can be obtained. The defect in the boundary region is suppressed or eliminated, and high efficiency of the photoelectric conversion semiconductor device is achieved. The method for manufacturing a photoelectric conversion semiconductor device according to the present invention includes a process of removing adhering substances such as contaminant metals from a semiconductor layer and terminating unbonded hands with a cyano group as described above. In other words, in at least one stage from a state before forming a pn structure or a pin structure on a semiconductor substrate to a state after forming an output electrode, a cyan treatment in which the semiconductor substrate is exposed to a solution or gas containing a cyanide compound. It is characterized by having a process. The cyan compound includes a non-metallic cyan compound and a metal cyan compound, and any of the cyan compounds can be used. Examples of the non-metallic cyanide include hydrogen cyanide, dicyan, and ammonium cyanide. Examples of the metal-based cyanide include lithium cyanide, sodium cyanide, rubidium cyanide, and cesium cyanide.
シアン処理過程の例として、 半導体基板を非金属系シアン化合物を含 む水溶液に浸漬する工程又は金属系シアン化合物を含むアルコール溶液 に浸漬する工程である。 アルコールとしては、 メチルァ レコール、 ェチ ルアルコール、 イソプロピルアルコール等を用いることができる。 Examples of the cyan treatment process include a step of immersing a semiconductor substrate in an aqueous solution containing a non-metallic cyanide compound or an alcohol solution containing a metal-based cyanide compound This is the step of immersion in As the alcohol, methyl alcohol, ethyl alcohol, isopropyl alcohol and the like can be used.
なお、 基板等がシリ コンの場合、 溶媒にアルコールを用いることによ つて、 基板のエッチングを防止できる。 溶媒に水を付加して用いると、 溶液中でシアン化合物イオンに対して、 水分子が溶媒和として作用し、 シアン化合物イオンの活性を制御できる。  When the substrate or the like is silicon, the etching of the substrate can be prevented by using alcohol as the solvent. When water is used by adding water to the solvent, the water molecule acts as a solvate for the cyanide ion in the solution, and the activity of the cyanide ion can be controlled.
シアン処理過程の後に半導体基板を洗浄液でリ ンスするリ ンス工程を さらに備えていることが好ましい。 このリンスによって、 半導体層の表 面領域又は粒界等を含む境界領域に付着残存する、 銅などの金属のシァ ン化合物、 又は銅などの金属とシァノ基もしくはシアン化物イオンとの 錯体などが、 その半導体層から除去される。 このリ ンスは純水やアルコ ール系溶液などの溶媒を用いて行なうことができる。 その後、 必要に応 じて、 半導体層の表面領域等から溶媒などを除去するための乾燥処理を 行なえばよい。  Preferably, the method further includes a rinsing step of rinsing the semiconductor substrate with a cleaning liquid after the cyan treatment process. Due to this rinsing, a cyanide compound of a metal such as copper, or a complex of a metal such as copper and a cyano group or a cyanide ion, which adheres to and remains in a surface region of the semiconductor layer or a boundary region including a grain boundary, etc. It is removed from the semiconductor layer. This rinsing can be performed using a solvent such as pure water or an alcohol solution. Thereafter, if necessary, a drying treatment for removing a solvent or the like from the surface region of the semiconductor layer or the like may be performed.
本発明の半導体基板処理装置は、 半導体基板のシアン処理からリ ンス を行なった排液の処理までを含むものであり、 シアン成分を環境中に排 出しない構成をもったものである。 すなわち、 本発明の半導体基板処理 装置は、 半導体基板をシアン化合物を含む溶液又は気体に曝すシアン処 理部と、 シアン処理後の前記半導体基板を洗浄液でリンスするリンス部 と、リンス後の洗浄液をオゾン処理もしくは紫外光照射併用オゾン処理、 又は次亜塩素酸溶液で処理してリ ンス後の洗浄液中のシアン成分を分解 除去する洗浄液処理部とを備えている。  The semiconductor substrate processing apparatus of the present invention includes everything from cyan treatment of a semiconductor substrate to treatment of a rinsed waste liquid, and has a configuration in which a cyan component is not discharged into the environment. That is, the semiconductor substrate processing apparatus of the present invention includes: a cyan processing unit that exposes a semiconductor substrate to a solution or a gas containing a cyan compound; a rinsing unit that rinses the semiconductor substrate after the cyan processing with a cleaning liquid; A cleaning liquid processing unit for decomposing and removing the cyan component in the cleaning liquid after rinsing by ozone treatment or ozone treatment combined with ultraviolet light irradiation, or treatment with hypochlorous acid solution;
この半導体基板処理装置を使用すれば、 半導体基板をシアン化合物を 含む溶液又は気体で表面から処理し、 そのシアン処理後にリ ンスし、 さ らにリ ンス後の洗浄液 (廃液) 中のシアン成分を分解除去することがで きるので、 シアン成分を含んだ廃液を外部に放出することがない。 本発明の光電変換半導体装置によると、 半導体層の表面領域又は境界 領域は金属もしくは金属を含む汚染物質が除去され、 かつ、 未結合手が シァノ基で終端されているので、 光電変換半導体装置の高効率化が実現 できる。 If this semiconductor substrate processing apparatus is used, a semiconductor substrate is treated from the surface with a solution or gas containing a cyanide compound, rinsed after the cyan treatment, and furthermore, a cyan component in a cleaning liquid (waste liquid) after the rinse is removed. Since it can be decomposed and removed, waste liquid containing cyan component is not released to the outside. According to the photoelectric conversion semiconductor device of the present invention, in the surface region or the boundary region of the semiconductor layer, the metal or the contaminant containing the metal is removed, and the dangling bonds are terminated with a cyano group. High efficiency can be realized.
本発明の光電変換半導体装置の製造方法によると、 p n構造又は p i n構造を有する半導体層を形成する前、 途中もしくは後、 又は前記半導 体層に出力電極を形成した後、 半導体基板をシアン化合物を含む溶液又 は気体に曝すシアン処理過程をそなえたことにより、 上記半導体層の欠 陥も、 上述のシアンによる未結合手の終端作用などで消滅して、 光電変 換半導体装置の高効率化を達成し、 高性能が実現できる。  According to the method for manufacturing a photoelectric conversion semiconductor device of the present invention, the semiconductor substrate is formed of a cyanide compound before, during, or after forming a semiconductor layer having a pn structure or a pin structure, or after forming an output electrode on the semiconductor layer. With the provision of a cyan treatment process in which the semiconductor layer is exposed to a solution or a gas containing nitrogen, the defects in the semiconductor layer also disappear due to the above-described termination of unbonded hands due to cyan, thereby increasing the efficiency of the photoelectric conversion semiconductor device. To achieve high performance.
また、 本発明の処理装置によると、 p n構造を有する半導体層を形成 する前、 途中もしくは後、 又は前記半導体層に出力電極を形成した後、 シアン化合物を含む溶液又は気体で表面から処理し、 前記半導体層又は 前記出力電極を洗浄液でリンスし、 さらに前記リンス後の洗浄液(廃液) をオゾン処理もしくは紫外光照射併用オゾンで処理し、 又は前記洗浄処 理後の洗浄液を次亜塩素酸溶液で処理する、 それぞれの機能をそなえた ことにより、 実用可能な製造手段で、 半導体光電変換装置の高効率化を 達成し、 高性能が実現できる。 図面の簡単な説明  Further, according to the processing apparatus of the present invention, before, during or after forming a semiconductor layer having a pn structure, or after forming an output electrode on the semiconductor layer, the surface is treated with a solution or gas containing a cyanide compound, The semiconductor layer or the output electrode is rinsed with a cleaning liquid, and the cleaning liquid (waste liquid) after the rinsing is treated with ozone treatment or ozone combined with ultraviolet light irradiation, or the cleaning liquid after the cleaning treatment is treated with a hypochlorous acid solution. By providing the functions of processing and processing, semiconductor photoelectric conversion devices can be made more efficient and achievable with higher performance using practicable manufacturing means. BRIEF DESCRIPTION OF THE FIGURES
第 1図は製造方法の一実施におけるシアン処理工程を示す断面図であ る。  FIG. 1 is a sectional view showing a cyan treatment step in one embodiment of the manufacturing method.
第 2図は光電変換半導体装置を製造する一実施例を示すフロー断面図 である。  FIG. 2 is a flow sectional view showing one embodiment for manufacturing a photoelectric conversion semiconductor device.
第 3図は光電変換半導体装置を製造する処理装置の概要図である。 発明を実施するための最良の形態 FIG. 3 is a schematic diagram of a processing apparatus for manufacturing a photoelectric conversion semiconductor device. BEST MODE FOR CARRYING OUT THE INVENTION
つぎに、本発明を、実施の形態により、図面を参照して詳細に述べる。 本実施の形態では、 多結晶シリ コンにてなる光起電力層を、 シアン成 分を有する化合物にさらすことによって、 その変換効率に顕著な性能向 上が見られたことについて説明する。  Next, embodiments of the present invention will be described in detail with reference to the drawings. In the present embodiment, a description will be given of a case where a photovoltaic layer made of polycrystalline silicon is exposed to a compound having a cyanide component, whereby a remarkable improvement in conversion efficiency has been found.
図 1は、 本発明の実施の形態として、 多結晶シリ コンの光起電力層を 持つ光電変換装置を処理する工程での処理装置內の断面図である。 光起 電力層として p型多結晶シリコン層 1 1及び n型不純物、 例えばリン ( P ) を含む n型多結晶シリコン層 1 2で形成された p n構造を有する 多結晶シリ コン層本体と、 一方の多結晶シリ コン層である D型多結晶シ リコン層 1 1上に形成された I T O (インジウム錫酸化物) にてなる透 明電極 1 3と、 他方の多結晶シリ コン層である n型多結晶シリ コン層 1 2上に形成されたアルミニウム電極 1 4とからなる光電変換装置を、 処 理溶液 1 5を満たす処理槽 1 6内に浸漬する。  FIG. 1 is a cross-sectional view of a processing device で in a step of processing a photoelectric conversion device having a photovoltaic layer of polycrystalline silicon as an embodiment of the present invention. A polycrystalline silicon layer body having a pn structure formed of a p-type polycrystalline silicon layer 11 as a photovoltaic layer and an n-type polycrystalline silicon layer 12 containing n-type impurities, for example, phosphorus (P); A transparent electrode 13 made of ITO (indium tin oxide) formed on a D-type polycrystalline silicon layer 11, which is a polycrystalline silicon layer, and an n-type, another polycrystalline silicon layer, The photoelectric conversion device including the aluminum electrode 14 formed on the polycrystalline silicon layer 12 is immersed in a processing tank 16 filled with the processing solution 15.
なお、 ここで、 透明電極 1 3を n型多結晶シリ コン層 1 2上に、 アル ミユウム電極 1 4を p型多結晶シリコン層 1 1上に形成してもよい。 ま た、 透明電極 1 3としては I T Oに限らず、 S n〇2等を用いることが できる。 Here, the transparent electrode 13 may be formed on the n-type polycrystalline silicon layer 12, and the aluminum electrode 14 may be formed on the p-type polycrystalline silicon layer 11. Also, not limited to ITO as the transparent electrode 1 3, it is possible to use S N_〇 2.
図 2 ( a ) 〜図 2 ( d ) は、 本発明の実施の形態として、 多結晶シリ コンの光起電力層を持つ光電変換装置において、 上記多結晶シリ コン層 の形成工程を示すフロー断面図である。  FIGS. 2A to 2D are flow cross-sectional views showing a process of forming the polycrystalline silicon layer in a photoelectric conversion device having a polycrystalline silicon photovoltaic layer according to an embodiment of the present invention. FIG.
まず、 図 2 ( a ) に示す工程で、 厚さ 1 0 0〜6 0 0 !!!の 型多結 晶シリコン基板 1 1を準備する。  First, in the process shown in Fig. 2 (a), the thickness is 100 to 600! ! ! Prepare a polycrystalline silicon substrate 11 of FIG.
次に、 図 2 ( b ) に示すように n型不純物を拡散して約 0 . 5 μ mの n 型拡散層 1 2を形成する。 n型拡散層 1 2の形成は熱拡散法やイオン注 入法等を用いればよい。 n型不純物としては燐又は砒素を用いることが できるが、 ここでは燐を用いる。 Next, as shown in FIG. 2B, an n-type impurity is diffused to form an n-type diffusion layer 12 of about 0.5 μm. The n-type diffusion layer 12 may be formed by a thermal diffusion method, an ion implantation method, or the like. Phosphorus or arsenic can be used as n-type impurities Here, phosphorus is used.
つづいて、 図 2 ( c ) に示す工程で、 厚さが約 200 nmのアルミ二 ゥム電極 1 3をスパッタリング法又は蒸着法等により形成する。  Subsequently, in a step shown in FIG. 2 (c), an aluminum electrode 13 having a thickness of about 200 nm is formed by a sputtering method or a vapor deposition method.
さらに、図 2 (d) に示す工程で、厚さが約 1 00 nmの透明電極 ( I TO) 14をスパッタリング法又は蒸着法等により形成して、 光電変換 装置を製作した。  Further, in the step shown in FIG. 2 (d), a transparent electrode (ITO) 14 having a thickness of about 100 nm was formed by a sputtering method or a vapor deposition method to manufacture a photoelectric conversion device.
そして次に、 上記光電変換装置を、 図 1に示すように、 濃度 1モル、 温度 25°Cに調節されたシアン化水素 (HCN) 水溶液 1 5を入れた処 理槽 1 6内で、 約 2分間、 シァン化水素水溶液 1 5に浸漬する。  Next, as shown in FIG. 1, the above photoelectric conversion device is placed in a processing tank 16 containing a hydrogen cyanide (HCN) aqueous solution 15 adjusted to a concentration of 1 mol and a temperature of 25 ° C. for about 2 minutes. Immerse in hydrogen cyanide aqueous solution 15.
その後、 シアン処理された光電変換装置を 1 0 o°cの超純水によって 洗浄する。  Then, the cyan-treated photoelectric conversion device is washed with ultrapure water of 10 ° C.
本実施の形態では、 上記光電変換装置を、 図 2 (d) に示す構成体の 状態でシアン処理する方法として述べたが、 これに限らず、 例えば図 2 (a) 〜 (c) に示すいずれの段階の基板構成でも、 シアン化水素水溶 液 1 5に浸漬する処理工程及びその後の処理用基板を超純水によって洗 浄する工程は実施することができ、 そのいずれの段階の基板に対しても 有効に機能する。  In the present embodiment, the above-described photoelectric conversion device is described as a method of performing cyan processing in the state of the structure shown in FIG. 2 (d). However, the present invention is not limited to this. For example, FIGS. 2 (a) to 2 (c) In any of the substrate configurations at any stage, the process of immersing the substrate in the aqueous hydrogen cyanide solution 15 and the subsequent process of cleaning the substrate for processing with ultrapure water can be performed. Works effectively.
シリコン基板等の半導体層では、 上記シアン化合物含有溶液で処理し た際に、 シリコンの表面領域及ぴ粒界等の境界領域に存在する未結合手 がシアンイオン (CN一) で終端されて消滅する、 という作用がある。 特に、 シリ コンやシリ コンを含む化合物の多結晶半導体層では、 銅など の金属あるいはこれらの金属を含む汚染物質が付着した表面領域及び粒 界等の境界領域に多くの未結合手やそれらの複合体などの欠陥準位が生 じるが、 上記シアン化合物含有溶液で処理することで、 上記表面領域に 付着した汚染物質が取り除かれるとともに、 上記欠陥も、 上述のシアン イオンによる未結合手の終端作用などで消滅するという、 欠陥消滅作用 がある。 · In a semiconductor layer such as a silicon substrate, dangling bonds existing in the silicon surface region and boundary regions such as grain boundaries are terminated by cyan ions (CN-I) and disappear when treated with the above-mentioned solution containing a cyanide compound. Has the effect of doing In particular, in the case of a polycrystalline semiconductor layer of silicon or a compound containing silicon, many unbonded bonds and their bonds are formed in a boundary region such as a surface region and a grain boundary to which a metal such as copper or a contaminant containing such a metal adheres. Although a defect level such as a complex is generated, the treatment with the cyan compound-containing solution removes the contaminants adhered to the surface region, and the defect also causes the above-mentioned dangling bonds due to cyan ions. Defect extinction function that disappears due to terminal action There is. ·
そして、 この半導体層での欠陥消滅作用によって、 光伝導度の向上が 認められ、 したがって、 本実施の形態で得た光電変換装置では高い光電 変換効率の性能が実現されたのである。  An improvement in photoconductivity was recognized by the defect annihilation action in the semiconductor layer, and therefore, the photoelectric conversion device obtained in this embodiment achieved high photoelectric conversion efficiency.
本実施の形態では、上記光電変換装置を製造する際に、例えば図 2 (a) 〜 (c) に示すいずれの段階の処理用基板構成で、 図 1で示されるよう な処理装置によるシアン化水素水溶液 1 5に浸漬する処理工程及びその 後の処理用基板を超純水によって洗浄する工程を実施したものでも、 そ れにより得られた光電変換装置は、 いずれも、 本実施の形態におけるシ アン化水素水溶液 1 5への浸漬処理工程及ぴその後の処理用基板を超純 水によって洗浄する工程を実施しないで製作した光電変換装置に比べて 格段に高い光電変換効率の性能が実現された。  In the present embodiment, when manufacturing the above-mentioned photoelectric conversion device, for example, in any of the processing substrate configurations shown in FIGS. 2 (a) to 2 (c), an aqueous solution of hydrogen cyanide by a processing device as shown in FIG. Although the process of immersing in 15 and the subsequent process of cleaning the substrate for processing with ultrapure water were carried out, the photoelectric conversion devices obtained by the processes were all the cyanide according to the present embodiment. Compared to a photoelectric conversion device manufactured without performing the immersion process in a hydrogen aqueous solution 15 and the subsequent process of cleaning the processing substrate with ultrapure water, the performance of a significantly higher photoelectric conversion efficiency was realized.
さらに、 本実施の形態では、 上記光電変換装置を製造する際に、 例え ば図 2 (a) 〜 (d) に示すいずれかの段階の基板構成で、 図 1で示さ れるような処理装置によるシアン化水素水溶液 1 5に浸漬する処理工程 を実施するとき、その基板に正の電圧を 0. 1 Vから 50 Vの範囲で印加 し、 加えて処理温度を室温から 1 00°Cの範囲で加熱すると、 シアン処 理の作用が促進されて、それにより得られた光電変換装置は、いずれも、 さらに格段に高い光電変換効率の性能が実現された。 実験結果では、 本 実施の形態での光電変換装置の光電変換効率は、 処理用基板に印加電圧 1 0V、 処理温度を 50°Cとして 2分間のシアン処理を施すと、 最大で 1 2. 3%が達成され、シアン処理を実施しないで製作した光電変換装置 の光電変換効率が 8. 8%であったのに比べて、大幅に性能向上が見られ た。 また、 電圧を印加しないで温度 50°Cでシアン処理を行なった場合 は 10. 5 %が得られ、 室温で電圧を印加してシアン処理を行なった場 合は 10. 1 %を得た。 • また、 単結晶シリコン基板を用いた場合においても、 同様の性能向上 が得られる。 更に、 所定の基板上、 例えば、 ガラス基板上にプラズマ C V D等を用いて、 p η構造または p i n構造の光電変換装置を形成する 場合にも、 同様の性能向上が得られる。 Further, in the present embodiment, when the above-mentioned photoelectric conversion device is manufactured, for example, the substrate configuration at any one of the stages shown in FIGS. When performing the treatment step of immersing in a hydrogen cyanide aqueous solution 15, a positive voltage is applied to the substrate in the range of 0.1 V to 50 V, and the treatment temperature is heated in the range of room temperature to 100 ° C. In addition, the action of the cyan treatment was promoted, and the photoelectric conversion devices obtained by the above all realized much higher photoelectric conversion efficiency. According to the experimental results, the photoelectric conversion efficiency of the photoelectric conversion device according to the present embodiment is 12.3 at maximum when the processing substrate is subjected to a cyan treatment for 2 minutes at an applied voltage of 10 V and a processing temperature of 50 ° C. % Was achieved, and the photoelectric conversion efficiency of the photoelectric conversion device manufactured without performing the cyan treatment was 8.8%, which was a significant improvement in performance. When the cyan treatment was performed at a temperature of 50 ° C. without applying a voltage, 10.5% was obtained, and when the cyan treatment was performed at a room temperature by applying a voltage, 10.1% was obtained. • The same performance improvement can be obtained when a single crystal silicon substrate is used. Further, similar performance improvement can be obtained when a photoelectric conversion device having a pη structure or a pin structure is formed on a predetermined substrate, for example, a glass substrate by plasma CVD or the like.
本実施の形態では、 p n構造を有する半導体層を形成する前、 途中も しくは後、 又は半導体層に出力電極を形成した後のいずれかの段階で、 シアン化合物を含む溶液又は気体で処理する過程をそなえる。  In this embodiment mode, treatment with a solution or gas containing a cyanide compound is performed before, during, or after forming a semiconductor layer having a pn structure, or after forming an output electrode on the semiconductor layer. Prepare the process.
つぎに汚染物質の除去について具体例を述べる。  Next, a specific example of the removal of contaminants will be described.
この半導体層の主として表面領域及び粒界等の境界領域から汚染物質 である、 銅などの金属を除去するために、 シアン処理過程においてこの 半導体層をシアン化合物を含む溶液又は気体 (例えば霧状) に接触させ る (以下、 工程 I という)。 シアン化合物を含む溶液としては、 シアン化 水素、 ジシアンもしくはシアン化アンモニゥム等の非金属系シアン化合 物を溶媒、 例えば純水もしくはアルコール系溶液に溶かした溶液、 又は シアン化カリ ウム、 シアン化ナトリウム、 シアン化ルビジウムもしくは シアン化セシウム等の金属系シアン化合物をアルコール系溶液に溶かし た溶液で、 濃度 1モル程度の溶液が適当である。 この工程 Iで、 半導体 層の表面又は粒界等の境界領域に存在する銅などの汚染物質はシアンと の化合物を形成し、 又はシァノ基もしくはシアン化物イオンとの錯体を 形成する。 シアン化合物を含む溶液を使用した場合は、 それらの化合物 又は錯体は溶液中に溶出する。  In order to remove metals such as copper, which are contaminants, mainly from the surface region and boundary regions such as grain boundaries of the semiconductor layer, the semiconductor layer is subjected to a solution or gas containing a cyanide compound (for example, mist) in a cyan treatment process. (Hereinafter referred to as process I). Examples of the solution containing a cyanide compound include a solution in which a nonmetallic cyanide compound such as hydrogen cyanide, dicyan or ammonium cyanide is dissolved in a solvent, for example, pure water or an alcohol solution, or potassium cyanide, sodium cyanide, A solution in which a metal cyanide compound such as rubidium cyanide or cesium cyanide is dissolved in an alcoholic solution, and a solution having a concentration of about 1 mol is appropriate. In this step I, contaminants such as copper existing on the surface of the semiconductor layer or in a boundary region such as a grain boundary form a compound with cyanide, or form a complex with a cyano group or a cyanide ion. When solutions containing cyanide are used, those compounds or complexes elute in the solution.
ついで、 上記半導体層をリンスする (以下、 工程 Π という)。 すなわ ち、 この工程 IIでは、 上記半導体層を、 純水又はアルコール系溶液など の溶媒を用いて洗う。 このリンスによって、 半導体層の表面領域又は粒 界等の境界領域に付着残存する、 銅などの金属のシアン化合物あるいは 銅などの金属とシァノ基ないしはシァン化物イオンとの錯体などが、 そ の半導体層から除去される。 その後、 必要に応じて、 半導体層から溶媒 などを除去するための乾燥処理を行う。 Next, the semiconductor layer is rinsed (hereinafter, referred to as a process Π). That is, in this step II, the semiconductor layer is washed with a solvent such as pure water or an alcohol solution. By this rinsing, a cyanide compound of a metal such as copper or a complex of a metal such as copper with a cyano group or a cyanide ion, which adheres to and remains in a boundary region such as a surface region or a grain boundary of the semiconductor layer, is removed. Is removed from the semiconductor layer. Thereafter, if necessary, a drying treatment for removing a solvent or the like from the semiconductor layer is performed.
このようにして、 半導体層は銅などの金属の除去された状態になる。 測定結果によれば、 半導体層に残存する銅などの金属は、 検查測定器に よる金属原子の測定下限値 (3 X 1 0 9原子/ c m 2 ) 以下が得られてお り、 確実に除去されていることがわかった。 Thus, the semiconductor layer is in a state where metals such as copper have been removed. According to the measurement results, a metal such as copper remaining in the semiconductor layer, the measurement lower limit value of the metal atom by Ken查meter (3 X 1 0 9 atoms / cm 2) with the following is obtained Contact is, reliably It was found to have been removed.
また、 半導体層では、 上記シアン化合物含有溶液で処理した際に、 付 着した銅などの金属あるいはこれらの金属を含む汚染物質が除去される とともに、 そのあとの表面領域及ぴ粒界等の境界領域に存在する未結合 手がシァノ基で終端されることなどで、 その領域の欠陥が消滅する、 と いう効果が得られる。特に、シリコンゃシリコン化合物の半導体層では、 銅などの金属あるいはこれらの金属を含む汚染物質が付着した表面及び 粒界等の境界領域に多くの未結合手やそれらの複合体などの欠陥が生じ るが、 上記シアン化合物含有溶液で処理することで、 上記汚染物質が取 り除かれるとともに、 上記欠陥も、 上述のシァノ基による未結合手の終 端作用などで消滅するという、 欠陥消滅作用がある。 そして、 この半導 体層での欠陥消滅作用によって、 光伝導度の向上、 及び高い光電変換効 率の性能が実現される。  In addition, when the semiconductor layer is treated with the above-mentioned cyanide-containing solution, the attached metal such as copper or a contaminant containing these metals is removed, and at the same time, the boundary such as the surface region and the grain boundary is removed. The effect of eliminating defects in the region due to termination of a dangling bond existing in the region with a cyano group or the like can be obtained. In particular, in the semiconductor layer of silicon-silicon compound, defects such as many dangling bonds and their composites occur on the surface where metals such as copper or contaminants containing these metals are adhered and in the boundary regions such as grain boundaries. However, by treating with the cyanide-containing solution, the contaminants are removed, and the defect is also eliminated by the above-mentioned dangling terminal action of the cyano group. is there. And, by the defect annihilation action in the semiconductor layer, improvement in photoconductivity and performance of high photoelectric conversion efficiency are realized.
なお、 本実施の形態では、 汚染金属の例として、 銅について検証した 力 本発明は、 銅に限らず、 他の金属元素、 例えば、 鉄、 ニッケル、 コ バルト、 銀、 タングステン、 チタンなどの金属元素を基板等の表面から 除去するのにも、 この実施の形態で使用の処理溶液及ぴ洗浄過程は有効 である。  Note that, in the present embodiment, the force verified for copper as an example of a contaminated metal The present invention is not limited to copper, and other metal elements, for example, metals such as iron, nickel, cobalt, silver, tungsten, and titanium The processing solution and the cleaning process used in this embodiment are also effective for removing elements from the surface of a substrate or the like.
加えて、上記基板等をリンスする工程 IIでは、処理後のリンス液中に シアン化合物、 又はシァノ基もしくはシアン化物イオンなどのいわゆる シアン成分が残存する可能性があるので、 さらに、 前記洗浄処理後の洗 浄液 (リ ンス廃液) をオゾン又は紫外光照射併用オゾン中で処理して、 リ ンス廃液中に残る上記シアン成分を分解除去する。 これによつて、 ェ 程 II で生じたリンス廃液中に上記シアン成分が残存することがなくな る。 In addition, in the step II of rinsing the substrate or the like, there is a possibility that a so-called cyan component such as a cyan compound or a cyano group or a cyanide ion may remain in the rinse solution after the treatment. Washing The purified liquid (rinse waste liquid) is treated in ozone or ozone combined with ultraviolet light irradiation to decompose and remove the cyan component remaining in the rinse waste liquid. As a result, the above-mentioned cyan component does not remain in the rinse waste liquid generated in step II.
また、 前記洗浄処理後の洗浄液 (リンス廃液) を次亜塩素酸塩 (例え ば、 次亜塩素酸ソーダ) を含む、 いわゆる次亜塩素酸溶液で薬液処理す ることにより、 前記リ ンス廃液中に残る上記シアン成分を分解除去する こともできる。 この場合の次亜塩素酸溶液の濃度及び処理温度は、 前記 リンス廃液中の上記シアン成分の残量を見積もって、 適宜設定すればよ い。  Further, the cleaning liquid (rinse waste liquid) after the cleaning treatment is subjected to a chemical treatment with a so-called hypochlorous acid solution containing hypochlorite (for example, sodium hypochlorite), so that the rinse waste liquid is removed. It is also possible to decompose and remove the above-mentioned cyan component remaining in the image. In this case, the concentration of the hypochlorous acid solution and the treatment temperature may be appropriately set by estimating the remaining amount of the cyan component in the rinse waste liquid.
上記工程 I及ぴ工程 II、 さらに、 上記リ ンス廃液中の残存シアン成分 の分解処理という各機能を備えたことにより、 前記基板等に付着した銅 などの金属あるいはこれらの金属を含む汚染物質の除去とともに、 前記 洗浄処理後の前記リンス廃液中に残るシアン成分をも完全に分解除去す ることができる。  Steps I and II, and the function of decomposing the residual cyan component in the rinse waste liquid are provided, so that metals such as copper adhering to the substrate or the like or contaminants containing these metals can be removed. Along with the removal, the cyan component remaining in the rinse waste liquid after the cleaning treatment can also be completely decomposed and removed.
本実施の形態では、 前記光電変換装置は、 図 2 ( d ) に示す構成体で ある。 シアン処理は図 2 ( d ) に示す構成体に限らず、 例えば図 2 ( a ) ~ ( c ) に示すいずれの段階でも、 上記工程 I及び工程 IIは、 製作され た光電変換装置における光電変換効率の性能向上に有効であった。  In the present embodiment, the photoelectric conversion device has a structure shown in FIG. 2 (d). The cyan treatment is not limited to the structure shown in FIG. 2 (d) .For example, in any of the steps shown in FIGS. 2 (a) to (c), the above-mentioned steps I and II are performed by the photoelectric conversion in the manufactured photoelectric conversion device. It was effective in improving the performance of efficiency.
図 3は、本実施形態の処理装置の概要図であり、処理装置本体 2 0は、 半導体基板等 2 1を処理溶液 2 2に浸漬する処理部 2 3、 ついで、 この 基板等 2 1を取り出して、 室温で、 超純水とメタノールとの混合液を洗 浄液に用いて洗浄 (リ ンス) する洗浄部 2 4、 および洗浄 (リ ンス) し た後の、 いわゆるリンス廃液を導入してオゾン処理する廃液処理部 2 5 を備えたものである。 そして、 上記処理部 2 3には処理溶液 2 2の供給 および排出機能を持った処理溶液供給部 2 6を有し、 また、 洗浄部 2 4 には洗浄液の供給部 2 7'を有する。 FIG. 3 is a schematic diagram of the processing apparatus of the present embodiment. The processing apparatus main body 20 includes a processing unit 23 for immersing a semiconductor substrate 21 in a processing solution 22, and then takes out the substrate 21. Then, at room temperature, a washing section 24 for washing (rinsing) using a mixed solution of ultrapure water and methanol as a washing liquid, and a so-called rinse waste liquid after washing (rinsing) are introduced. It is equipped with a waste liquid treatment section 25 for ozone treatment. The processing section 23 has a processing solution supply section 26 having a function of supplying and discharging the processing solution 22, and a cleaning section 24. Has a cleaning liquid supply unit 27 '.
上記廃液処理部 2 5は、 紫外線発生源およぴォゾン発生源を含み、 上 記リ ンス廃液に紫外線照射およびオゾンを作用させることにより、 上記 リ ンス廃液中に残るシアン成分 ( C N ) を分解してそのリ ンス廃液とと もに、 洗浄廃液回収部 2 8に排出することで、 シアン成分を含まないリ ンス廃液にすることができる。  The waste liquid treatment section 25 includes an ultraviolet ray generation source and a poson generation source, and decomposes the cyan component (CN) remaining in the rinse waste liquid by irradiating the above-mentioned rinse waste liquid with ultraviolet rays and applying ozone. By discharging the rinse waste liquid together with the rinse waste liquid to the cleaning waste liquid recovery section 28, the waste liquid can be made into a rinse waste liquid containing no cyan component.
非金属シアン化合物、 例えばシアン化水素、 ジシアンおよびシアン化 アンモニゥム等のシアン化合物から形成されるシアン化合物含有水溶液 を処理溶液として用いる場合には、 この処理溶液に基板等を浸漬し、 つ いで、 この基板等を取り出して、 室温で、 超純水を用いて洗浄 (リ ンス) した後の、 いわゆるリ ンス廃液は、 上記シアン化合物含有量の希薄な水 溶液である。そこで、このリンス廃液も上記廃液処理部 2 5に導入して、 ここで上記リ ンス廃液に紫外線照射およびオゾンを作用させることによ り、 上記リンス廃液中に残るシアン成分 ( C N ) を分解してそのリンス 廃液とともに、 洗浄廃液回収部 2 8に排出することで、 シアン成分を含 まないリンス廃液にすることができる。  When a cyanide-containing aqueous solution formed from a non-metallic cyanide, for example, a cyanide such as hydrogen cyanide, dicyan or ammonium cyanide, is used as a treatment solution, a substrate or the like is immersed in the treatment solution, and then the substrate or the like is used. The so-called rinse waste liquid after taking out and washing (rinsing) it with ultrapure water at room temperature is a dilute aqueous solution having the above-mentioned cyanide content. Therefore, the rinse waste liquid is also introduced into the waste liquid treatment section 25, where ultraviolet light and ozone are applied to the rinse waste liquid to decompose the cyan component (CN) remaining in the rinse waste liquid. By discharging the rinse waste liquid together with the rinse waste liquid to the washing waste liquid recovery section 28, a rinse waste liquid containing no cyan component can be obtained.
図 3に示す本実施形態の処理装置では、 基板等 2 1を処理装置内へ入 れ, さらに処理装置の外へ取り出すための搬送機構及び乾燥手段は、 処 理装置内外の気相遮断に配慮すれば従来技術で十分対応できるので、 省 略した。  In the processing apparatus of the present embodiment shown in FIG. 3, the transport mechanism and drying means for taking the substrate 21 into the processing apparatus and taking it out of the processing apparatus take into consideration the gas-phase shutoff inside and outside the processing apparatus. If this is the case, conventional technology can be used sufficiently, so it is omitted.
実施の形態では p n構造をもった光電変換装置を例示しているが、 p i n構造をもった光電変換装置についても同様の効果を達成することが できる。  In the embodiment, a photoelectric conversion device having a pn structure is described as an example; however, a photoelectric conversion device having a pin structure can achieve the same effect.
本実施の形態で半導体層は、 シリ コン (S i ) のほかに、 III一 V族化 合物や有機半導体でも同様の作用効果が期待される。 産業上の利用可能性 In the present embodiment, the same effect can be expected for the semiconductor layer not only of silicon (S i) but also of a III-V compound or an organic semiconductor. Industrial applicability
本発明は多結晶シリ コン、 微結晶シリ コン、 単結晶シリ コン、 非晶質 シリ コンなどによる光起電力層を有する太陽電池等の光電変換半導体装 置に利用することができる。  INDUSTRIAL APPLICABILITY The present invention can be used for a photoelectric conversion semiconductor device such as a solar cell having a photovoltaic layer made of polycrystalline silicon, microcrystalline silicon, single crystal silicon, amorphous silicon, or the like.

Claims

請 求 の 範 囲 The scope of the claims
1 . p n構造又は p i n構造を有する半導体層及び前記半導体層に設 けられた出力電極をそなえた光電変換半導体装置において、 1. In a photoelectric conversion semiconductor device including a semiconductor layer having a pn structure or a pin structure and an output electrode provided in the semiconductor layer,
前記半導体層の表面領域又は境界領域は金属もしくは金属を含む汚染 物質が除去され、 かつ、 未結合手がシァノ基で終端されていることを特 徴とする光電変換半導体装置。  A photoelectric conversion semiconductor device, wherein a metal or a contaminant containing a metal is removed from a surface region or a boundary region of the semiconductor layer, and dangling bonds are terminated by a cyano group.
2 . 前記半導体層が多結晶シリ コン、 単結晶シリ コン及び非晶質シリ コンから選ばれた少なく とも一つの物質により構成された請求の範囲第2. The semiconductor device according to claim 1, wherein the semiconductor layer is made of at least one material selected from polycrystalline silicon, single-crystal silicon, and amorphous silicon.
1項に記載の光電変換半導体装置。 2. The photoelectric conversion semiconductor device according to item 1.
3 . 半導体基板に p n構造又は p i n構造をもつ半導体層を形成し、 前記半導体層の p型半導体層と n型半導体層にそれぞれ出力電極を形成 する工程を備えた光電変換半導体装置の製造方法において、 3. A method for manufacturing a photoelectric conversion semiconductor device, comprising: forming a semiconductor layer having a pn structure or a pin structure on a semiconductor substrate; and forming output electrodes on the p-type semiconductor layer and the n- type semiconductor layer of the semiconductor layer. ,
P n構造又は!) i n構造を形成する前の状態から前記出力電極形成後 の状態までの間の少なく とも 1つの段階において、 前記半導体基板をシ アン化合物を含む溶液又は気体に曝すシアン処理過程を備えたことを特 徴とする光電変換半導体装置の製造方法。  P n structure or! At least one stage from the state before forming the in-structure to the state after forming the output electrode includes a cyan treatment step of exposing the semiconductor substrate to a solution or gas containing a cyanide compound. Characteristic method of manufacturing a photoelectric conversion semiconductor device.
4 . 前記シアン化合物は、 シアン化水素、 ジシアン及ぴシアン化アン モニゥムからなる群から選ばれた少なく とも 1つの非金属シアン化合物 である請求の範囲第 3項に記載の製造方法。 4. The method according to claim 3, wherein the cyan compound is at least one non-metallic cyan compound selected from the group consisting of hydrogen cyanide, dicyan, and ammonium cyanide.
5 . 前記シアン処理過程は、 前記半導体基板を非金属系シアン化合物 を含む水溶液に浸漬する工程である請求の範囲第 3項又は第 4項に記載 の製造方法。 5. The cyan treatment step according to claim 3, wherein the semiconductor substrate is a step of immersing the semiconductor substrate in an aqueous solution containing a nonmetallic cyanide. Manufacturing method.
6 . 前記シアン化合物は、 シアン化カリウム、 シアン化ナトリ ウム、 シァン化ルビジゥム及びシアン化セシウムからなる群から選ばれた少な く とも 1つの金属系シアン化合物である請求の範囲第 3項に記載の製造 方法。 6. The method according to claim 3, wherein the cyan compound is at least one metallic cyan compound selected from the group consisting of potassium cyanide, sodium cyanide, rubidium cyanide, and cesium cyanide. .
7 . 前記シアン処理過程の後に前記半導体基板を洗浄液でリンスする リンス工程をさらに備えている請求の範囲第 3項から第 6項のいずれか に記載の製造方法。 7. The manufacturing method according to claim 3, further comprising a rinsing step of rinsing the semiconductor substrate with a cleaning liquid after the cyan treatment process.
8 . 半導体基板を、 シアン化合物を含む溶液又は気体に曝 8. Expose the semiconductor substrate to a solution or gas containing cyanide.
理部と、 With the department,
シアン処理後の前記半導体基板を洗浄液でリンスするリ ンス部と、 前記リンス後の洗浄液をオゾン処理もしくは紫外光照射併用オゾン処 理、 又は次亜塩素酸溶液で処理してリ ンス後の洗浄液中のシアン成分を 分解除去する洗浄液処理部と、 を備えたことを特徴とする半導体基板処  A rinsing section for rinsing the semiconductor substrate after the cyan treatment with a cleaning liquid; and a cleaning liquid after the rinsing after the rinsing cleaning liquid is treated with an ozone treatment or an ultraviolet light irradiation combined ozone treatment or a hypochlorous acid solution. A cleaning liquid processing section for decomposing and removing the cyan component of the semiconductor substrate processing apparatus.
PCT/JP2004/005950 2003-05-14 2004-04-23 Photoelectric converting semiconductor device, method for manufacturing same, and processing apparatus used in such method WO2004102676A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-135474 2003-05-14
JP2003135474A JP2004342723A (en) 2003-05-14 2003-05-14 Photoelectric conversion semiconductor device, its manufacturing method, and treatment device used therein

Publications (1)

Publication Number Publication Date
WO2004102676A1 true WO2004102676A1 (en) 2004-11-25

Family

ID=33447184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005950 WO2004102676A1 (en) 2003-05-14 2004-04-23 Photoelectric converting semiconductor device, method for manufacturing same, and processing apparatus used in such method

Country Status (3)

Country Link
JP (1) JP2004342723A (en)
TW (1) TW200428671A (en)
WO (1) WO2004102676A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066349A (en) * 2006-09-04 2008-03-21 Osaka Univ Optical semiconductor device and method and apparatus of manufacturing the same
WO2012011188A1 (en) * 2010-07-23 2012-01-26 株式会社Kit Solar cell, method for producing same, and device for producing solar cell
JP2012212705A (en) * 2011-03-30 2012-11-01 Dainippon Printing Co Ltd Solar cell module and solar cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499858A (en) * 1972-05-26 1974-01-28
JPS4975481A (en) * 1972-11-17 1974-07-22
JPS5236850A (en) * 1975-09-18 1977-03-22 Mitsubishi Electric Corp Ozon reaction tank
JPS55175928U (en) * 1979-06-05 1980-12-17
JPH1074753A (en) * 1996-09-02 1998-03-17 Kagaku Gijutsu Shinko Jigyodan Method and apparatus for manufacturing semiconductor device
JP2001189484A (en) * 1999-10-19 2001-07-10 Hikari Kobayashi Silicon photoelectric conversion element, and manufacturing method and treatment method therefor
JP2001339084A (en) * 2000-05-29 2001-12-07 Sanyo Electric Co Ltd Semiconductor device and method of manufacturing the same
JP2002289886A (en) * 2001-03-27 2002-10-04 Hikari Kobayashi Method of treating semiconductor film, method of manufacturing photovoltaic element and the photovoltaic element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499858A (en) * 1972-05-26 1974-01-28
JPS4975481A (en) * 1972-11-17 1974-07-22
JPS5236850A (en) * 1975-09-18 1977-03-22 Mitsubishi Electric Corp Ozon reaction tank
JPS55175928U (en) * 1979-06-05 1980-12-17
JPH1074753A (en) * 1996-09-02 1998-03-17 Kagaku Gijutsu Shinko Jigyodan Method and apparatus for manufacturing semiconductor device
JP2001189484A (en) * 1999-10-19 2001-07-10 Hikari Kobayashi Silicon photoelectric conversion element, and manufacturing method and treatment method therefor
JP2001339084A (en) * 2000-05-29 2001-12-07 Sanyo Electric Co Ltd Semiconductor device and method of manufacturing the same
JP2002289886A (en) * 2001-03-27 2002-10-04 Hikari Kobayashi Method of treating semiconductor film, method of manufacturing photovoltaic element and the photovoltaic element

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOBAYASHI H.: "Cyanide treatment ni yoru amorphous silicon taiyo denchi no tokusei kojo", OYO BUTSURI, vol. 71, no. 7, 2002, pages 860 - 863, XP002983008 *
KOBAYASHI H.: "Decrease in gap states at ultrathin si02/si interfaces by crown-ether cyanide treatment", APPLIED PHYSICS LETTERS, vol. 77, no. 26, 2000, pages 4392 - 4394, XP012027020 *

Also Published As

Publication number Publication date
JP2004342723A (en) 2004-12-02
TW200428671A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
JP2581268B2 (en) Semiconductor substrate processing method
KR20110037924A (en) Solar cells and methods and apparatuses for forming the same
EP2817829B1 (en) Method for producing a solar cell
US9537038B2 (en) Solar cell made using a barrier layer between P-type and intrinsic layers
JP3893608B2 (en) Annealed wafer manufacturing method
CN106409977B (en) A kind of cleaning method of silicon chip of solar cell, the preparation method of solar cell
KR100361194B1 (en) Method and apparatus for manufacturing semiconductor devices
JP3325739B2 (en) Silicon wafer cleaning method
WO2004102676A1 (en) Photoelectric converting semiconductor device, method for manufacturing same, and processing apparatus used in such method
US20120129344A1 (en) Process and apparatus for removal of contaminating material from substrates
US8864915B2 (en) Cleaning methods for improved photovoltaic module efficiency
CN111733399A (en) Crystalline silicon solar cell film coating method and film coating equipment
JP2014075418A (en) Silicon substrate for solar cell and manufacturing method therefor, and solar cell
CN107123582A (en) A kind of chemical cleaning method of GaAs photocathodes
JP4091014B2 (en) Semiconductor device cleaning method and semiconductor device manufacturing apparatus cleaning method and cleaning device
JP4094371B2 (en) HF cleaning method and HF cleaning apparatus for silicon wafer
CN115148850B (en) Silicon wafer, preparation method thereof and passivation treatment solution
JPH0547734A (en) Cleaning apparatus
JP5620996B2 (en) Semiconductor device manufacturing apparatus and semiconductor device manufacturing method
JP5717743B2 (en) SOLAR CELL, ITS MANUFACTURING METHOD, AND SOLAR CELL PRODUCTION DEVICE
JP2006128391A (en) Crystalline silicon substrate treatment method and photoelectric conversion element
JPH07142395A (en) Method of manufacturing semiconductor device
JP4280138B2 (en) Method for manufacturing photoelectric conversion device
JP2928538B2 (en) Substrate processing method
JP3354822B2 (en) Semiconductor substrate cleaning method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase