JPH0547734A - Cleaning apparatus - Google Patents

Cleaning apparatus

Info

Publication number
JPH0547734A
JPH0547734A JP23227991A JP23227991A JPH0547734A JP H0547734 A JPH0547734 A JP H0547734A JP 23227991 A JP23227991 A JP 23227991A JP 23227991 A JP23227991 A JP 23227991A JP H0547734 A JPH0547734 A JP H0547734A
Authority
JP
Japan
Prior art keywords
cleaning
ultrapure water
light
processed
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23227991A
Other languages
Japanese (ja)
Inventor
Tadahiro Omi
忠弘 大見
Takayuki Imaoka
孝之 今岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP23227991A priority Critical patent/JPH0547734A/en
Priority to EP92917995A priority patent/EP0661385A1/en
Priority to PCT/JP1992/001048 priority patent/WO1993004210A1/en
Publication of JPH0547734A publication Critical patent/JPH0547734A/en
Priority to US08/680,519 priority patent/US6146135A/en
Priority to US10/120,628 priority patent/US6949478B2/en
Priority to US11/129,710 priority patent/US20050206018A1/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To effectively remove impurities on a surface of an optical processing element by incorporating a function of shielding a light in a part of a member to be processed, in contact with chemicals or ultrapure water to be used for cleaning in an apparatus for cleaning or drying the member to be processed. CONSTITUTION:A cleaning vessel 3 for cleaning semiconductor 2 is mounted in a light shielding vessel 1 for shielding an external light. Nitrogen gas 6 is supplied from a nitrogen gas supply unit 4 to the vessel 1 through a tube 5. On the other hand, ultrapure water 9 in which dissolved oxygen is removed, is supplied from an ultrapure water supply unit 7 to the vessel 3 mounted in the vessel 1 through a tube 8. Further, the ultrapure water after the semiconductor 2 is cleaned, is fed to a waste water processor 12 through a waste water reservoir 10 and a piping 11 to be processed. The gas 6 substituted for the atmosphere in the vessel 1 is discharged through a discharge valve 13 and a piping 14. Thus, impurities on the surface of a member to be processed can be effectively removed without adherence of the impurities due to excitation of electrons or holes by a light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば、半導体ウェハ
のような被処理体を、付着物の完全除去状態にすべく洗
浄処理を行う工程において、前記被処理体を、洗浄また
は乾燥するための洗浄装置に関わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is for cleaning or drying an object to be processed, such as a semiconductor wafer, in a step of performing a cleaning process so as to completely remove adhered substances. Involved in cleaning equipment.

【0002】[0002]

【従来の技術】従来、半導体の洗浄は例えば以下の技術
を用いて行われている。すなわち、硫酸過酸化水素水混
合溶液、塩酸過酸化水素水混合溶液、アンモニア過酸化
水素水混合溶液、フッ酸過酸化水素水溶液等の薬液、お
よび超純水を組み合わせて用い、半導体表面の原子レベ
ルでの平坦性を損なうことなく、半導体表面に付着して
いる、有機物、微粒子、金属、自然酸化膜を除去する技
術である。たとえば、下記に示す工程を用いる。 (1)硫酸過酸化水素洗浄(硫酸:過酸化水素=4:1、体積比) 5分 (2)超純水洗浄 5分 (3)硫酸過酸化水素洗浄(硫酸:過酸化水素=4:1、体積比) 5分 (4)超純水洗浄 5分 (5)フッ酸過酸化水素洗浄(フッ酸0.5%、過酸化水素10%) 1分 (6)超純水洗浄 5分 (7)硫酸過酸化水素洗浄(硫酸:過酸化水素=4:1、体積比) 5分 (8)超純水洗浄 10分 (9)フッ酸過酸化水素洗浄(フッ酸0.5%、過酸化水素10%) 1分 (10)超純水洗浄 10分 (11)アンモニア過酸化水素洗浄 (アンモニア水:過酸化水素:超純水=0.05:1:5、体積比) 10分 (12)超純水洗浄 10分 (13)高温超純水浸漬(約90℃) 10分 (14)フッ過酸化水素洗浄(フッ酸0.5%、過酸化水素10%) 1分 (15)超純水洗浄 10分 (16)塩酸過酸化水素洗浄 (塩酸:過酸化水素:超純水=1:1:6、体積比) 10分 (17)高温超純水浸漬(約90℃) 10分 (18)超純水洗浄 10分 (19)フッ酸過酸化水素洗浄(フッ酸0.5%、過酸化水素10%) 1分 (20)超純水洗浄 10分 (21)窒素ガスブロー乾燥 2分
2. Description of the Related Art Conventionally, cleaning of semiconductors has been performed by using, for example, the following techniques. That is, a mixture of sulfuric acid / hydrogen peroxide water mixed solution, hydrochloric acid / hydrogen peroxide water mixed solution, ammonia / hydrogen peroxide water mixed solution, chemical solution such as hydrofluoric acid / hydrogen peroxide aqueous solution, and ultrapure water are used in combination to obtain an atomic level on the semiconductor surface. This is a technique for removing organic substances, fine particles, metals, and natural oxide films adhering to the semiconductor surface without impairing the flatness in the above. For example, the steps shown below are used. (1) Sulfuric acid / hydrogen peroxide cleaning (sulfuric acid: hydrogen peroxide = 4: 1, volume ratio) 5 minutes (2) Ultrapure water cleaning 5 minutes (3) Sulfuric acid / hydrogen peroxide cleaning (sulfuric acid: hydrogen peroxide = 4: 1, volume ratio) 5 minutes (4) Ultrapure water cleaning 5 minutes (5) Hydrofluoric acid hydrogen peroxide cleaning (hydrofluoric acid 0.5%, hydrogen peroxide 10%) 1 minute (6) Ultrapure water cleaning 5 minutes (7 ) Sulfuric acid hydrogen peroxide cleaning (sulfuric acid: hydrogen peroxide = 4: 1, volume ratio) 5 minutes (8) Ultrapure water cleaning 10 minutes (9) Fluoric acid hydrogen peroxide cleaning (hydrofluoric acid 0.5%, hydrogen peroxide 10 %) 1 minute (10) Ultrapure water cleaning 10 minutes (11) Ammonia hydrogen peroxide cleaning (Ammonia water: Hydrogen peroxide: Ultrapure water = 0.05: 1: 5, Volume ratio) 10 minutes (12) Ultrapure water Cleaning 10 minutes (13) High temperature ultrapure water immersion (about 90 ℃) 10 minutes (14) Fluorine hydrogen peroxide cleaning (hydrofluoric acid 0.5%, hydrogen peroxide 10%) 1 minute (15) Ultrapure water cleaning 10 minutes ( 16) Hydrochloric acid hydrogen peroxide cleaning (hydrochloric acid: hydrogen peroxide: ultrapure water = 1: 1: 6, body Product ratio) 10 minutes (17) High temperature ultrapure water immersion (about 90 ° C) 10 minutes (18) Ultrapure water cleaning 10 minutes (19) Hydrofluoric acid hydrogen peroxide cleaning (hydrofluoric acid 0.5%, hydrogen peroxide 10%) 1 minute (20) Ultrapure water cleaning 10 minutes (21) Nitrogen gas blow drying 2 minutes

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記従
来技術には、少なくとも次の二つの問題点がある。
However, the above-mentioned prior art has at least the following two problems.

【0004】まず、前記従来の半導体洗浄技術は、全て
の工程を照明の下で行う、あるいは、少なくとも遮光の
配慮のない環境下で行うため、洗浄または乾燥の被対象
物である半導体は、照射される光の持つエネルギーで励
起される。その時、光を遮断した環境下における半導体
と較べて、半導体内の自由電子および正孔(ホール)の
数が増加する。例えば、シリコンに例えばホウ素(B)
を添加したp型領域を持つ半導体を光照射の有る環境下
で洗浄した場合に、光により励起された電子が、洗浄液
中の金属イオン(正の荷電を持つ)と電荷交換し、金属
が半導体表面に吸着してしまう。一方、例えばシリコン
に例えばリン(P)を添加したn型領域を持つ半導体
を、光照射の有る環境下で洗浄した場合に、光により励
起された正孔(ホール)が、洗浄液中の陰イオン(負の
荷電を持つ)と電荷交換し、陰イオンが半導体表面に吸
着してしまう。
First, in the conventional semiconductor cleaning technique, all the steps are performed under illumination, or at least in an environment where light shielding is not taken into consideration. Therefore, a semiconductor which is an object to be cleaned or dried is irradiated. It is excited by the energy of the light. At that time, the number of free electrons and holes in the semiconductor increases as compared with the semiconductor in an environment where light is blocked. For example, silicon (for example, boron (B))
When a semiconductor having a p-type region doped with is washed in an environment with light irradiation, electrons excited by light exchange charge with metal ions (having a positive charge) in the washing liquid, and the metal is a semiconductor. Adsorbs on the surface. On the other hand, for example, when a semiconductor having an n-type region in which, for example, phosphorus (P) is added to silicon is washed in an environment with light irradiation, holes excited by light are anions in the washing liquid. Charges are exchanged with (having a negative charge), and anions are adsorbed on the semiconductor surface.

【0005】さらに、前記従来の半導体洗浄技術は、少
なくとも超純水洗浄を不活性なガス雰囲気では行ってい
ないため、雰囲気中の酸素が超純水中に溶解し、被処理
体である半導体表面を酸化することで、超純水洗浄中に
半導体表面に半導体の特性を劣化させる自然酸化膜が成
長してしまう。しかも、自然酸化膜が成長する際に、半
導体例えばシリコンよりも酸化されやすい金属例えば、
鉄(Fe)、アルミニウム(Al)、ナトリウム(N
a)等は、金属酸化物を生成して、自然酸化膜中に取り
込まれることで、半導体表面を金属汚染してしまう。す
なわち、半導体洗浄を不活性雰囲気で行わない場合、そ
れ自体半導体の特性を劣化させる自然酸化膜の形成およ
び自然酸化膜中への金属酸化物の取り込みによる金属汚
染の原因となる。
Further, in the conventional semiconductor cleaning technique, at least ultrapure water is not cleaned in an inert gas atmosphere. Therefore, oxygen in the atmosphere is dissolved in the ultrapure water, so that the semiconductor surface to be processed is treated. As a result, the natural oxide film that deteriorates the characteristics of the semiconductor grows on the surface of the semiconductor during the cleaning with ultrapure water. Moreover, when a natural oxide film grows, a metal that is more easily oxidized than a semiconductor such as silicon, for example,
Iron (Fe), Aluminum (Al), Sodium (N
In the case of a) and the like, metal oxides are generated and taken into the natural oxide film, so that the semiconductor surface is metal-contaminated. That is, when semiconductor cleaning is not performed in an inert atmosphere, it causes metal contamination due to the formation of a natural oxide film which itself deteriorates the characteristics of the semiconductor and the incorporation of metal oxides into the natural oxide film.

【0006】本発明は、被処理体である半導体等に対
し、半導体等の表面の不純物を効果的に除去し、半導体
表面に光による電子あるいは正孔(ホール)の励起由来
の不純物付着を起こさせず、表面に自然酸化膜等の変質
を起こさせない洗浄装置を提供することを目的とする。
The present invention effectively removes impurities on the surface of a semiconductor or the like from the object to be processed, and causes impurities to adhere to the semiconductor surface due to the excitation of electrons or holes by light. It is an object of the present invention to provide a cleaning device that does not cause deterioration of the surface such as a natural oxide film.

【0007】[0007]

【課題を解決するための手段】本発明の洗浄装置は、被
処理体を洗浄または乾燥する装置において、少なくと
も、被処理体が、洗浄に用いられる薬液あるいは超純水
に接する部分に、光を遮断する手段を設けたことを特徴
とする。
A cleaning device of the present invention is a device for cleaning or drying an object to be processed, wherein at least a portion of the object to be processed is exposed to a chemical solution or ultrapure water used for cleaning. It is characterized in that means for shutting off is provided.

【0008】[0008]

【作用】本発明の洗浄装置は、被処理体を洗浄または乾
燥する装置において、少なくとも、半導体が、洗浄に用
いられる薬液あるいは超純水に接する部分に、光を遮断
する機能を備えたため、被処理体である半導体が光の持
つエネルギーによって励起されることがない。その結
果、被処理体である半導体に対し、半導体表面に光によ
る電子あるいは正孔(ホール)の励起由来の不純物付着
を起こさせずに、被処理体表面の不純物を効果的に除去
することができる。さらに、本発明の洗浄装置は、内部
雰囲気を置換可能な容器と、前記容器内に不活性なガス
を供給する機能と、溶存酸素を低減した超純水を供給す
る機能を備えたため、被処理体表面に自然酸化膜等の変
質を起こすことなく被処理体表面の不純物を効果的に除
去することができる。
The cleaning apparatus of the present invention has a function of blocking light, in the apparatus for cleaning or drying an object to be processed, since at least a portion where the semiconductor is in contact with the chemical solution or ultrapure water used for cleaning has a function of blocking light. The semiconductor that is the processing body is not excited by the energy of light. As a result, it is possible to effectively remove the impurities on the surface of the object to be processed without causing the adhesion of the impurities resulting from the excitation of electrons or holes (holes) by light to the semiconductor that is the object to be processed. it can. Further, since the cleaning apparatus of the present invention has a container capable of replacing the internal atmosphere, a function of supplying an inert gas into the container, and a function of supplying ultrapure water with reduced dissolved oxygen, It is possible to effectively remove impurities on the surface of the object to be processed without causing deterioration of the natural oxide film or the like on the surface of the object.

【0009】[0009]

【実施例】図1は、本発明の実施例を示すものである。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the present invention.

【0010】外部からの光を遮断し、内部雰囲気を置換
可能な遮光容器1の内部に、被処理体である半導体2を
洗浄するための洗浄容器3が設置されている。
A cleaning container 3 for cleaning the semiconductor 2 which is the object to be processed is installed inside the light-shielding container 1 which can block the light from the outside and replace the internal atmosphere.

【0011】前記遮光容器1には、不活性ガス(たとえ
ば窒素ガス)供給装置4から前記窒素ガス供給装置4に
接続された窒素ガス供給配管5を介して、窒素ガス6が
供給されるよう構成されている。
Nitrogen gas 6 is supplied to the light shielding container 1 from an inert gas (for example, nitrogen gas) supply device 4 through a nitrogen gas supply pipe 5 connected to the nitrogen gas supply device 4. Has been done.

【0012】一方、前記遮光容器内に設置された洗浄容
器には、水中の溶存酸素を除去する機能を有する超純水
供給装置7から、前記超純水供給装置7に接続された、
超純水供給配管8を介して、溶存酸素を除去された超純
水9が供給されるよう構成されている。
On the other hand, a cleaning container installed in the light-shielding container is connected to the ultrapure water supply device 7 from an ultrapure water supply device 7 having a function of removing dissolved oxygen in water.
The ultrapure water 9 from which dissolved oxygen has been removed is supplied through the ultrapure water supply pipe 8.

【0013】さらに、前記半導体2を洗浄した後の超純
水は、廃液受け容器10、廃液送液配管11を介して廃
液処理装置12に送られ処理されるよう構成されてい
る。
Further, the ultrapure water after cleaning the semiconductor 2 is sent to a waste liquid processing unit 12 through a waste liquid receiving container 10 and a waste liquid sending pipe 11 for processing.

【0014】また、前記遮光容器内雰囲気を置換した窒
素ガス6は、ガス排気バルブ13、ガス排気配管を介し
て排気されるよう構成されている。
Further, the nitrogen gas 6 in which the atmosphere in the light-shielding container has been replaced is exhausted through the gas exhaust valve 13 and the gas exhaust pipe.

【0015】本実施例は、上記のように構成されている
ので、被処理体である半導体2を、溶存酸素を除去した
超純水9で洗浄する際に、前記半導体に外部からの光が
照射されることがなく、従って、前記半導体2が光の持
つエネルギーで励起されることがなく、その結果、被処
理体である半導体に対し、半導体表面に光による電子あ
るいは正孔(ホール)の励起由来の不純物付着を起こさ
せずに洗浄を行うことができる。
Since this embodiment is configured as described above, when the semiconductor 2 which is the object to be processed is washed with ultrapure water 9 from which dissolved oxygen has been removed, the semiconductor is exposed to external light. Therefore, the semiconductor 2 is not excited by the energy of light, and as a result, the semiconductor, which is the object to be processed, is exposed to electrons or holes due to light on the semiconductor surface. It is possible to perform cleaning without causing the adhesion of impurities derived from excitation.

【0016】また、本実施例は、上記のように構成され
ているので、被洗浄体である半導体2を、溶存酸素を除
去した超純水9で洗浄する際に、前記遮光容器1内の洗
浄雰囲気から前記超純水9の中に酸素ガスが溶解するこ
とがなく、従って被処理体である半導体2の表面が酸化
されることがない。その結果、半導体表面に自然酸化膜
等の変質を起こすことなく洗浄を行うことができる。
Further, since the present embodiment is configured as described above, when the semiconductor 2 which is the object to be cleaned is cleaned with the ultrapure water 9 from which dissolved oxygen is removed, the inside of the light shielding container 1 is cleaned. Oxygen gas is not dissolved in the ultrapure water 9 from the cleaning atmosphere, and therefore the surface of the semiconductor 2 that is the object to be processed is not oxidized. As a result, cleaning can be performed without causing deterioration of the natural oxide film or the like on the semiconductor surface.

【0017】表1は、図1に示す装置を用いて、5枚の
シリコンウェハ(n型100)を洗浄した後のシリコン
ウェハ表面の付着金属と自然酸化膜厚を、光照射の有
無、窒素ガスによる雰囲気の置換有無とに分けて測定し
た結果である。
Table 1 shows the deposited metal and natural oxide film thickness on the surface of the silicon wafers after cleaning five silicon wafers (n type 100) using the apparatus shown in FIG. The results are obtained by measuring whether the atmosphere is replaced by gas or not.

【0018】遮光容器1の容積は20l、遮光容器1に
供給する窒素ガス流量は20l/min、窒素ガス中の酸素
濃度は1ppb以下、窒素ガス中の水分濃度は1ppb
以下とした。また、洗浄容器3の容積は0.5l、洗浄
容器3に供給する超純水流量は3l/min、超純水中の溶
存酸素濃度は10ppb、超純水中の銅イオン(C
2+)濃度は1ppt、超純水中の鉄イオン(Fe2+
濃度は1pptとした。また超純水洗浄時間は60分と
した。
The light-shielding container 1 has a volume of 20 l, the flow rate of nitrogen gas supplied to the light-shielding container 1 is 20 l / min, the oxygen concentration in the nitrogen gas is 1 ppb or less, and the water concentration in the nitrogen gas is 1 ppb.
Below. The volume of the cleaning container 3 is 0.5 l, the flow rate of ultrapure water supplied to the cleaning container 3 is 3 l / min, the concentration of dissolved oxygen in the ultrapure water is 10 ppb, and the copper ion (C
u 2+ ) concentration is 1 ppt, iron ion (Fe 2+ ) in ultrapure water
The concentration was 1 ppt. The cleaning time with ultrapure water was 60 minutes.

【0019】[0019]

【表1】 表1が示すように、従来の半導体洗浄法である被処理
体である半導体に光照射があり、洗浄を行う雰囲気を不
活性ガス(例えば窒素ガス)で 置換しないで 半導体を
洗浄した場合、洗浄後のシリコンウェハ表面には、銅、
鉄といった金属不純物が検出され、また、自然酸化膜の
形成も検出された。一方、本発明の、被処理体である半
導体への光を遮断し、洗浄を行う雰囲気を不活性ガス
(例えば窒素)で充分置換して半導体を洗浄した場合、
洗浄後のシリコンウェハ表面には、銅、鉄といった金属
不純物は検出されず、自然酸化膜の形成も検出されな
い。
[Table 1] As shown in Table 1, when the semiconductor, which is the conventional semiconductor cleaning method, is the object to be processed and is irradiated with light, and the semiconductor is cleaned without replacing the atmosphere for cleaning with an inert gas (for example, nitrogen gas), cleaning is performed. After the silicon wafer surface, copper,
Metallic impurities such as iron were detected, and the formation of native oxide film was also detected. On the other hand, in the case of cleaning the semiconductor of the present invention by blocking light to the semiconductor that is the object to be processed and sufficiently replacing the atmosphere for cleaning with an inert gas (for example, nitrogen),
Metal impurities such as copper and iron are not detected on the surface of the silicon wafer after cleaning, and formation of a natural oxide film is not detected.

【0020】また、、被処理体である半導体への光を遮
断しても、洗浄を行う雰囲気を不活性ガス(例えば窒
素)で充分置換しなければ、洗浄後のシリコンウェハ表
面には、自然酸化膜の成長と共に、シリコンより酸化さ
れやすい鉄が付着していることが分かった。
Further, even if the light to the object to be processed is blocked, unless the atmosphere for cleaning is sufficiently replaced with an inert gas (for example, nitrogen), the surface of the silicon wafer after cleaning is naturally It was found that iron, which is more easily oxidized than silicon, adheres as the oxide film grows.

【0021】以上の結果は、本実施例の洗浄装置を用い
ることにより、洗浄の被処理体である半導体表面に、半
導体表面に光による電子あるいは正孔(ホール)の励起
由来の不純物付着を起こさせず、半導体表面に自然酸化
膜等の変質を起こさせない洗浄が可能になったことを示
している。
The above results show that, by using the cleaning apparatus of this embodiment, impurities are attached to the semiconductor surface, which is the object to be cleaned, due to the excitation of electrons or holes by light on the semiconductor surface. This indicates that cleaning was possible without causing deterioration of the natural oxide film or the like on the semiconductor surface.

【0022】本実施例は、遮光が可能な容器1を用い
て、被処理体対して遮光を行ったが、遮光は、洗浄を行
う部屋の内部全体の光を遮断することで行っても良く、
あるいは他の遮光手段を用いても良い。また、本実施例
では、窒素ガスを用いて説明したが、窒素ガスと同様に
被処理体に対して不活性であるアルゴンガスを用いても
良く、他の不活性ガスを用いても同様の効果が得られ
る。さらに、本実施例は、超純水洗浄工程を例にとって
説明したが、超純水洗浄後の乾燥工程においても、遮
光、および不活性雰囲気で、洗浄した半導体を乾燥する
ことで、より不純物付着あるいは自然酸化膜の形成を効
果的に防ぐことが可能になる。もちろん、半導体洗浄の
その他の工程においても遮光、および不活性雰囲気で、
洗浄した半導体を乾燥することで、より不純物付着ある
いは自然酸化膜の形成を効果的に防ぐことが可能にな
る。
In the present embodiment, the container 1 capable of shielding light is used to shield the object to be treated, but the light may be shielded by shielding the entire light inside the room where the cleaning is performed. ,
Alternatively, other light shielding means may be used. Further, although the present embodiment has been described using nitrogen gas, argon gas which is inert to the object to be processed may be used similarly to nitrogen gas, and other inert gas may be used. The effect is obtained. Further, although the present embodiment has been described with respect to the ultrapure water cleaning process as an example, even in the drying process after the ultrapure water cleaning, by drying the cleaned semiconductor in a light-shielding and inert atmosphere, more impurities can be attached. Alternatively, it becomes possible to effectively prevent the formation of the natural oxide film. Of course, also in other steps of semiconductor cleaning, in a light-shielding and inert atmosphere,
By drying the washed semiconductor, it becomes possible to effectively prevent the attachment of impurities or the formation of a natural oxide film.

【0023】[0023]

【発明の効果】以上説明したように、請求項1に係わる
発明によれば、被処理体を洗浄または、乾燥する装置に
おいて、少なくとも、被処理体が、洗浄に用いられる薬
液あるいは超純水に接する部分に、光を遮断する機能を
持たせたので、被処理体である半導体等が光の持つエネ
ルギーによって励起されることがなく、その結果、被処
理体である半導体等に対し、被処理体表面に光による電
子あるいは正孔(ホール)の励起由来の不純物付着を起
こさせずに、被処理体表面の不純物を効果的に除去する
ことが可能な洗浄装置が得られる。
As described above, according to the invention of claim 1, in an apparatus for cleaning or drying an object to be processed, at least the object to be processed is a chemical solution or ultrapure water used for cleaning. Since the contacting part has a function of blocking light, the semiconductor or the like to be processed is not excited by the energy of light, and as a result, the semiconductor or the like to be processed is not processed. It is possible to obtain a cleaning apparatus capable of effectively removing impurities on the surface of the object to be processed without causing impurities to adhere to the surface of the body due to excitation of electrons or holes by light.

【0024】さらに、請求項2に係わる発明によれば、
被処理体を洗浄または、乾燥する装置において、内部雰
囲気を置換可能な容器と、前記容器内に不活性なガスを
供給する機能と、溶存酸素を低減した超純水を供給する
機能を備えたため、被処理体表面に自然酸化膜等の変質
を起こすことなく被処理体表面の不純物を効果的に除去
することが可能な洗浄装置が得られる。
Further, according to the invention of claim 2,
The apparatus for cleaning or drying the object to be processed has a container capable of replacing the internal atmosphere, a function of supplying an inert gas into the container, and a function of supplying ultrapure water with reduced dissolved oxygen. It is possible to obtain a cleaning device capable of effectively removing impurities on the surface of the object to be processed without causing deterioration of the surface of the object to be processed such as a natural oxide film.

【0025】請求項3に係わる発明によれば、前記内部
雰囲気を置換可能な容器内に、少なくとも、被処理体
が、洗浄に用いられる薬液あるいは超純水に接する部分
を設置したため、被処理体表面に自然酸化膜等の変質を
起こすことなく被処理体表面の不純物を効果的に除去す
ることが可能な洗浄装置が得るのにより効果的である。
請求項4に係わる発明によれば、前記内部雰囲気を置換
可能な容器内に、少なくとも、被処理体を、超純水によ
る最終洗浄および付着した超純水を乾燥する部分を設置
したため被処理体表面に自然酸化膜等の変質を起こすこ
となく被処理体表面の不純物を効果的に除去することが
可能な洗浄装置が得るのにより効果的である。
According to the third aspect of the present invention, since at least a portion of the object to be treated is in contact with the chemical solution or ultrapure water used for cleaning in the container capable of displacing the internal atmosphere, the object to be treated is installed. It is more effective to obtain a cleaning device capable of effectively removing impurities on the surface of the object to be processed without causing deterioration of the surface such as a natural oxide film.
According to the invention of claim 4, since at least the object to be processed is installed in the container capable of displacing the internal atmosphere, a portion for final cleaning with ultrapure water and drying of the attached ultrapure water is installed. It is more effective to obtain a cleaning device capable of effectively removing impurities on the surface of the object to be processed without causing deterioration of the surface such as a natural oxide film.

【0026】請求項5に係わる発明によれば、前記不活
性なガスを、窒素としたため、ランニングコストダウン
に効果的である。
According to the invention of claim 5, since the inert gas is nitrogen, it is effective in reducing the running cost.

【0027】請求項6に係わる発明によれば、前記不活
性なガスを、アルゴンとしたため、窒素と同様安価で入
手しやすく、ランニングコストダウンに効果的である。
According to the invention of claim 6, since the inert gas is argon, it is as inexpensive as nitrogen and easily available, and is effective in reducing running costs.

【0028】請求項7に係わる発明によれば、前記活性
なガス中の酸素濃度が1ppm以下、前記溶存酸素を低
減した超純水中の溶存酸素が、50ppb以下としたた
め、被処理体表面に自然酸化膜等の変質を起こすことな
く被処理体表面の不純物を効果的に除去することが可能
な洗浄装置が得るのにより効果的である。
According to the invention of claim 7, the oxygen concentration in the active gas is 1 ppm or less, and the dissolved oxygen in the ultrapure water in which the dissolved oxygen is reduced is 50 ppb or less. It is more effective to obtain a cleaning device that can effectively remove impurities on the surface of the object to be processed without causing deterioration of the natural oxide film or the like.

【0029】請求項8に係わる発明によれば、前記遮断
する光が、1.1eV以上のエネルギーを持つ光を遮断
する機能を持たせたため、被処理体である被処理体が光
の持つエネルギーによって励起されることがなく、その
結果、被処理体である被処理体に対し、被処理体表面に
光による電子あるいは正孔(ホール)の励起由来の不純
物付着を起こさせずに、被処理体表面の不純物を効果的
に除去することが可能な洗浄装置を得るのに効果的であ
る。
According to the invention of claim 8, since the light to be blocked has a function of blocking light having energy of 1.1 eV or more, the energy to be processed by the object to be processed is Is not excited, and as a result, the target object to be processed can be processed without causing impurities to adhere to the surface of the target object due to the excitation of electrons or holes by light. It is effective to obtain a cleaning device capable of effectively removing impurities on the body surface.

【0030】請求項9に係わる発明によれば、前記遮断
する光が、3.4eV以上のエネルギーを持つ光を遮断
する機能を持たせたので、効果的である。請求項10に
係わる発明によれば、前記遮断する光が、6.2eV以
上のエネルギーを持つ光を遮断する機能を持たせたの
で、より効果的である。
The invention according to claim 9 is effective because the light to be blocked has a function of blocking light having energy of 3.4 eV or more. The invention according to claim 10 is more effective because the light to be blocked has a function of blocking light having energy of 6.2 eV or more.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係わる洗浄装置の概略構成図
である。
FIG. 1 is a schematic configuration diagram of a cleaning device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 遮光容器、 2 半導体(被処理体)、 3 洗浄容器、 4 不活性ガス供給装置、 5 不活性ガス供給配管、 6 不活性ガス、 7 超純水供給装置(溶存酸素除去機能を持つ)、 8 超純水供給配管、 9 超純水、 10 廃液受け容器、 11 廃液送液配管、 12 廃液処理装置、 13 ガス排気バルブ、 14 ガス排気配管。 1 light-shielding container, 2 semiconductor (object to be processed), 3 cleaning container, 4 inert gas supply device, 5 inert gas supply pipe, 6 inert gas, 7 ultrapure water supply device (having dissolved oxygen removal function), 8 ultrapure water supply pipe, 9 ultrapure water, 10 waste liquid receiving container, 11 waste liquid sending pipe, 12 waste liquid processing device, 13 gas exhaust valve, 14 gas exhaust pipe.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 被処理体を洗浄または乾燥する装置にお
いて、少なくとも、被処理体が、洗浄に用いられる薬液
あるいは超純水に接する部分に、光を遮断する手段を設
けたことを特徴とする洗浄装置。
1. A device for cleaning or drying an object to be processed, characterized in that at least a part of the object to be processed that comes into contact with a chemical solution or ultrapure water used for cleaning is provided with a means for blocking light. Cleaning device.
【請求項2】 内部雰囲気を置換可能な容器と、前記容
器内に不活性なガスを供給する手段と、溶存酸素を低減
した超純水を供給する手段を設けたことを特徴とする請
求項1に記載の洗浄装置。
2. A container which can replace the internal atmosphere, a means for supplying an inert gas into the container, and a means for supplying ultrapure water with reduced dissolved oxygen. The cleaning device according to 1.
【請求項3】 前記内部雰囲気を置換可能な容器内に、
少なくとも、被処理体が、洗浄に用いられる薬液あるい
は超純水に接する部分を設置することを特徴とする請求
項1または請求項2に記載の洗浄装置。
3. A container capable of replacing the internal atmosphere,
3. The cleaning apparatus according to claim 1, wherein at least a portion of the object to be treated is in contact with a chemical solution or ultrapure water used for cleaning.
【請求項4】 前記内部雰囲気を置換可能な容器内に、
少なくとも、被処理体を、超純水による最終洗浄および
付着した超純水を乾燥する部分を設置することを特徴と
する請求項1乃至請求項3のいずれか1項に記載の洗浄
装置。
4. A container capable of replacing the internal atmosphere,
The cleaning apparatus according to any one of claims 1 to 3, wherein at least a portion for subjecting the object to be processed to final cleaning with ultrapure water and drying of the attached ultrapure water is installed.
【請求項5】 前記不活性なガスが、窒素であることを
特徴とする請求項1乃至請求項4のいずれか1項に記載
の洗浄装置。
5. The cleaning apparatus according to any one of claims 1 to 4, wherein the inert gas is nitrogen.
【請求項6】 前記不活性なガスが、アルゴンであるこ
とを特徴とする請求項1乃至請求項5のいずれか1項に
記載の洗浄装置。
6. The cleaning apparatus according to claim 1, wherein the inert gas is argon.
【請求項7】 前記不活性なガス中の酸素濃度が10p
pm以下、前記溶存酸素を低減した超純水中の溶存酸素
が、50ppb以下であることを特徴とする請求項1乃
至請求項6のいずれか1項に記載の洗浄装置。
7. The oxygen concentration in the inert gas is 10 p
7. The cleaning apparatus according to claim 1, wherein the dissolved oxygen in the ultrapure water in which the dissolved oxygen is reduced to pm or less is 50 ppb or less.
【請求項8】 前記遮断する光が、1.1eV以上のエ
ネルギーを持つ光を遮断する機能を持つことを特徴とす
る請求項1乃至請求項7いずれか1項に記載の洗浄装
置。
8. The cleaning apparatus according to claim 1, wherein the light to be blocked has a function of blocking light having an energy of 1.1 eV or more.
【請求項9】 前記遮断する光が、3.4eV以上のエ
ネルギーを持つ光を遮断する機能を持つことを特徴とす
る請求項1乃至請求項7いずれか1項に記載の洗浄装
置。
9. The cleaning apparatus according to claim 1, wherein the light to be blocked has a function of blocking light having an energy of 3.4 eV or more.
【請求項10】 前記遮断する光が、6.2eV以上の
エネルギーを持つ光を遮断する機能を持つことを特徴と
する、請求項1乃至請求項7いずれか1項に記載の洗浄
装置。
10. The cleaning apparatus according to claim 1, wherein the light to be blocked has a function of blocking light having an energy of 6.2 eV or more.
JP23227991A 1991-08-19 1991-08-20 Cleaning apparatus Pending JPH0547734A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP23227991A JPH0547734A (en) 1991-08-20 1991-08-20 Cleaning apparatus
EP92917995A EP0661385A1 (en) 1991-08-19 1992-08-19 Method for forming oxide film
PCT/JP1992/001048 WO1993004210A1 (en) 1991-08-19 1992-08-19 Method for forming oxide film
US08/680,519 US6146135A (en) 1991-08-19 1996-07-09 Oxide film forming method
US10/120,628 US6949478B2 (en) 1991-08-19 2002-04-11 Oxide film forming method
US11/129,710 US20050206018A1 (en) 1991-08-19 2005-05-13 Oxide film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23227991A JPH0547734A (en) 1991-08-20 1991-08-20 Cleaning apparatus

Publications (1)

Publication Number Publication Date
JPH0547734A true JPH0547734A (en) 1993-02-26

Family

ID=16936743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23227991A Pending JPH0547734A (en) 1991-08-19 1991-08-20 Cleaning apparatus

Country Status (1)

Country Link
JP (1) JPH0547734A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6129098A (en) * 1997-08-29 2000-10-10 Kabushiki Kaisha Ultraclean Technology Research Institute Apparatus for injecting constant quantitative chemicals and a method thereof
US6350322B1 (en) 1997-03-21 2002-02-26 Micron Technology, Inc. Method of reducing water spotting and oxide growth on a semiconductor structure
JP2005213498A (en) * 2005-01-17 2005-08-11 Pre-Tech Co Ltd Cleaning fluid and cleaning method
JP2015228458A (en) * 2014-06-02 2015-12-17 富士通株式会社 Compound semiconductor device and method of manufacturing the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656289B2 (en) 1997-03-21 2003-12-02 Micron Technology, Inc. Method of reducing water spotting and oxide growth on a semiconductor structure
US7422639B2 (en) 1997-03-21 2008-09-09 Micron Technology, Inc. Method of reducing water spotting and oxide growth on a semiconductor structure
US6601595B2 (en) 1997-03-21 2003-08-05 Micron Technology, Inc. Method of reducing water spotting and oxide growth on a semiconductor structure
US6607001B1 (en) * 1997-03-21 2003-08-19 Micron Technology, Inc. System of reducing water spotting and oxide growth on a semiconductor structure
US6641677B1 (en) 1997-03-21 2003-11-04 Micron Technology, Inc. Method of reducing water spotting and oxide growth on a semiconductor structure
US6645311B2 (en) 1997-03-21 2003-11-11 Micron Technology, Inc. Method of reducing water spotting and oxide growth on a semiconductor structure
US6350322B1 (en) 1997-03-21 2002-02-26 Micron Technology, Inc. Method of reducing water spotting and oxide growth on a semiconductor structure
US6896740B2 (en) 1997-03-21 2005-05-24 Micron Technology, Inc. Method of reducing water spotting and oxide growth on a semiconductor structure
US7204889B2 (en) 1997-03-21 2007-04-17 Micron Technology, Inc. Method of reducing water spotting and oxide growth on a semiconductor structure
US7163019B2 (en) 1997-03-21 2007-01-16 Micron Technology, Inc. Method of reducing water spotting and oxide growth on a semiconductor structure
US6129098A (en) * 1997-08-29 2000-10-10 Kabushiki Kaisha Ultraclean Technology Research Institute Apparatus for injecting constant quantitative chemicals and a method thereof
JP2005213498A (en) * 2005-01-17 2005-08-11 Pre-Tech Co Ltd Cleaning fluid and cleaning method
JP4554377B2 (en) * 2005-01-17 2010-09-29 株式会社プレテック Cleaning liquid and cleaning method
JP2015228458A (en) * 2014-06-02 2015-12-17 富士通株式会社 Compound semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP3086719B2 (en) Surface treatment method
US6346505B1 (en) Cleaning solution for electromaterials and method for using same
US5332444A (en) Gas phase cleaning agents for removing metal containing contaminants from integrated circuit assemblies and a process for using the same
JP2001015472A (en) Method and device for projecting ultraviolet ray
JPH08172068A (en) Cleaning method of semiconductor substrate and manufacturing method of semiconductor device
JP3174823B2 (en) Silicon wafer cleaning method
JP3535820B2 (en) Substrate processing method and substrate processing apparatus
JPH0547734A (en) Cleaning apparatus
WO1995015006A1 (en) Washing apparatus, semiconductor production apparatus and semiconductor production line
JPH0555184A (en) Cleaning method
JPH08264498A (en) Silicon wafer cleaning method
JPH09270412A (en) Cleaning device and method
JPS6072233A (en) Washing device for semiconductor wafer
JP4344855B2 (en) Method for preventing organic contamination of substrate for electronic device and substrate for electronic device preventing organic contamination
JP2001185520A (en) Method of surface treatment of substrate for forming semiconductor element
US5695570A (en) Method for the photo-stimulated removal of trace metals from a semiconductor surface
JPH0547735A (en) Cleaning apparatus
JP3397117B2 (en) Cleaning water and cleaning method for electronic materials
JP3649534B2 (en) Silicon wafer and silicon oxide cleaning solution
JPH05109683A (en) Removal of metallic impurity in semiconductor silicon wafer cleaning fluid
JPH056884A (en) Cleaning method for silicon wafer
JPH11293288A (en) Cleaning water for electronic material and cleaning liquid for electronic material
EP0571950A2 (en) Removal of metal contamination
WO2006016448A1 (en) Apparatus for evaluating semiconductor wafer
JPH04259221A (en) Washing solution