WO2004102037A1 - Reducteur avec excentriques - Google Patents

Reducteur avec excentriques Download PDF

Info

Publication number
WO2004102037A1
WO2004102037A1 PCT/FR2003/001443 FR0301443W WO2004102037A1 WO 2004102037 A1 WO2004102037 A1 WO 2004102037A1 FR 0301443 W FR0301443 W FR 0301443W WO 2004102037 A1 WO2004102037 A1 WO 2004102037A1
Authority
WO
WIPO (PCT)
Prior art keywords
eccentric
eccentrics
toothed
eccentric shafts
reducer
Prior art date
Application number
PCT/FR2003/001443
Other languages
English (en)
Inventor
François Durand
Original Assignee
Durand Francois
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Durand Francois filed Critical Durand Francois
Priority to PCT/FR2003/001443 priority Critical patent/WO2004102037A1/fr
Publication of WO2004102037A1 publication Critical patent/WO2004102037A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • F16H2001/327Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear with orbital gear sets comprising an internally toothed ring gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/12Arrangements for adjusting or for taking-up backlash not provided for elsewhere
    • F16H2057/126Self-adjusting during operation, e.g. by a spring

Definitions

  • the oscillation of the crown around the wheel can be done by the synchronized and simultaneous rotation of two eccentrics whose axes are parallel to the axes of the crown and the toothed wheel, these two eccentrics rotate in the outer part of the crown to internal teeth, this is visible in FIG. 1 of European patent application EP 0465 292 A1.
  • the bearings of the eccentrics then take up forces corresponding to the low speed torque but they rotate with a high speed since it is equal to the low speed multiplied by the reduction ratio of the eccentric gear train, these bearings withstand large forces by turning relatively fast.
  • the object of the present invention is a reducer with eccentrics which takes advantage of the advantages of this type of reducer, namely: - A large gear reduction with a single gear train.
  • the reducer with eccentrics comprises four eccentric shafts forming two pairs located at 90 ° relative to each other.
  • the eccentrics each rotating in a bearing which is integral with a sliding block which can slide in the external part of the crown with internal toothing.
  • These sliding blocks, one per bearing, four per inner gear ring, can respectively slide parallel to the plane formed by the axes of rotation of the two eccentric shafts forming a pair.
  • Each of the two planes formed by each pair of eccentric shafts passes rigorously through the axis of rotation of the toothed wheel with external toothing, that is to say through the axis of the low speed shaft of the reducer.
  • each eccentric shaft swivels in the gearbox housing and is fitted with a toothed pinion.
  • the four toothed pinions, one for each eccentric shaft mesh with a toothed wheel which is centered by means of bearings on the slow shaft of the reducer.
  • the high speed pinion of the gearbox rotates in the casing and meshes with the aforementioned toothed wheel which meshes with the pinions of the eccentric shafts.
  • the gearbox housing has a joint plane passing through the axis of rotation of the eccentric shaft, on each of these joint planes is screwed a cover which holds the bearings of the eccentric shaft and seals. Thanks to these covers, the eccentric bearings, which are the most stressed parts of the reducer, can be maintained or even replaced without having to dismantle the reducer assembly, this is very interesting for large power assemblies such as large wind turbines for which a very long service life for installation and very easy maintenance is essential.
  • each eccentric shaft has two offset eccentrics l 'relative to each other by 180 ° and there are two crowns with internal teeth located in parallel but offset by 180 ° which oscillate around the toothed wheel with external teeth.
  • the parasitic forces due to the oscillating masses of one ring are then compensated by those of the other ring. Because of the machining tolerances for the various mechanical parts, the distribution of the loads between the two crowns with internal teeth could not be ensured, consequently, it is preferable to also have two wheels with external teeth centered on the hub. slow tree.
  • Each of these toothed wheels is then connected in rotation to the hub by elastic elements which allow under load a very slight rotation of each toothed wheel relative to the slow shaft hub, thus the distribution of the loads between the two crowns with internal toothing will between 50%, 50% and 60%, 40%, it can never be 100%, 0%.
  • elastic elements which allow under load a very slight rotation of each toothed wheel relative to the slow shaft hub, thus the distribution of the loads between the two crowns with internal toothing will between 50%, 50% and 60%, 40%, it can never be 100%, 0%.
  • elasticity in rotation is harmful, in these cases there is then only one toothed wheel with external teeth which is rigidly connected to the slow shaft of the reducer.
  • each of the four eccentrics for an internal tooth crown is an integral part of each eccentric shaft which is provided with a pinion which meshes with the toothed wheel which is centered using bearings on the slow gear shaft
  • the other four eccentrics for the other inner gear ring are an integral part of an eccentric tube which is centered on the eccentric shaft
  • each eccentric shaft and its eccentric tube corresponding are rigidly connected together in rotation by locking rings like Ringfeder or Stiiwe.
  • the eccentric shaft gears are also rigidly connected in rotation with the eccentric shafts by locking rings like Ringfeder or Stiiwe.
  • the slow shaft hub being made of steel, it is advantageous to make the toothed wheels with external teeth in aluminum bronze with high resistance this to simplify the lubrication by having a very good efficiency and to increase the surfaces of teeth in contact since the modulus of elasticity of aluminum bronze is smaller than that of steel.
  • Figure 1 is a section through the plane common to the axis of the slow shaft and the speed shaft of the reducer, section 1.1 of Figure 4.
  • FIG. 2 is a section passing through a gear train crown, toothed wheel as well as by the four eccentrics and corresponding sliding blocks, section II, II in FIGS. 1 and 3.
  • FIG. 3 is a section through the axis of an eccentric shaft, section 111.111 of Figure 2
  • - Figure 4 is a section through the median plane of the gears of eccentric shafts, their toothed wheel and the high speed gear.
  • - Figure 5 is similar to Figure 3 but has a single toothed wheel secured to the slow shaft as well as eccentric shafts, eccentric tubes and pinions of eccentric shafts which are respectively connected by locking rings .
  • 1 is the slow shaft of the reducer
  • 2 is the flange for fixing the hub of the propeller of the wind turbine
  • this flange 2 is secured to the slow shaft 1 by the grooves 3 for rotation and the screws located in 4 for the axial direction.
  • the bore of the slow shaft 1 and of the flange 2 is large enough to allow the passage of a man during the mounting or maintenance of the mechanisms which are in the hub of the propeller for the orientation of the blades.
  • 5 and 6 are the bearings which take up the reactions due to the propeller of the wind turbine and to the meshes in the reduction gear.
  • 7 is the hub for the toothed wheels with external toothing 8 and 9, the grooves 10 make it integral in rotation with the slow shaft 1.
  • the toothed wheels 8 and 9 are made integral in rotation with the hub 7 by the elastic elements 11 and 12, these twenty-four elastic elements per toothed wheel 8 or 9 are U-shaped, they are embedded in the corresponding grooves 13 of the hub 7, the ends of the branches of U are in contact with the corresponding grooves 14 of the wheels 8 or 9.
  • the plates 17, 18 are respectively integral with the internal gear rings 15 and 16.
  • the brackets 19 and 20 are both embedded in and screwed onto the plates 17, 18.
  • the sliding blocks 21, 22 in bronze for plain bearings can slide between the brackets 19, 20.
  • the sliding blocks 21, 22 serve as bearings for the eccentrics 23, 24 which form an integral part with the eccentric shafts 25.
  • the eccentric shafts 25 rotate d in the casing formed by the two half casings 26 and 27, this by means of the bearings 28, 29 and 30.
  • the covers 31 screwed onto the joint planes 46 of the half casings 26 or 27 hold the bearings 28, 29, 30 and provide sealing.
  • the plates 35, 36 are embedded and screwed on the brackets 19, 20 to stiffen the assembly, these plates 35, 36 have a hole 37 for the passage of the oil hose under pressure.
  • 38 are the gears of the eccentric shafts 25, they mesh with the crown 39 which is centered on the output shaft 1 by the bearings 40, 41 are holes in the crown 39 in order to have access to the screws 42 and 43 to screw the assembly nuts of the half casings 26 and 27.
  • 44 is the high speed pinion which rotates in the casing 26, 27 using the bearings 45.
  • the reinforcements 47, 48 on the half casings 26, 27 are there all over the length of these half casings, they are intended to receive the fixing brackets 49 and 50, these brackets vary according to the installations. In FIG.
  • the toothed wheel 8 meshes with the crowns with internal teeth 15 and 16, the crown 16 oscillates while being centered by means of the eccentrics 24 which form an integral part of the eccentric shafts 25.
  • the crown 15 oscillates while being centered by means of the eccentrics 23 which form an integral part of the eccentric tubes 51 which are centered on the eccentric shafts 25.
  • the eccentric shafts 25 are made to rotate with the eccentric tubes 51 by means of the locking rings 52, the rings 53 are reinforcements for the eccentric tubes 51.
  • the pinions 38 and the eccentric shafts 25 are made integral in rotation by means of the locking rings 54.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)

Abstract

Réducteur avec excentriques comportant un arbre basse vitesse (1) centré dans un carter (26, 27), cet arbre (1) étant solidaire d'un moyeu (7) lui même solidaire de roues dentées (8, 9) qui engrènent avec des couronnes à denture intérieure (15, 16) qui oscillent autour des roues dentées (8, 9) à l'aide d'excentriques (23, 24) solidaires d'arbres d'excentriques (25) caractérisé en ce que il y a quatre arbres d'excentriques (25) formant deux paires situées à 90° l'une par rapport à l'autre, les excentriques (23, 24) tournant chacun dans un palier qui est solidaire d'un bloc coulissant (21, 22) qui peut coulisser dans la partie extérieure des couronnes à denture intérieure (15, 16), ces blocs coulissants (21, 22), un par palier, quatre par couronne à denture intérieure (15, 16), pouvant respectivement coulisser parallèlement au plan formé par les axes de rotation des deux arbres d'excentriques (25) formant paire, chacun des deux plans formé par chaque paire d'arbres d'excentriques (25) passant rigoureusement par l'axe de rotation de la roue dentée à denture extérieure (8, 9), donc par l'axe de l'arbre basse vitesse (1) du réducteur.

Description

REDUCTEUR avec EXCENTRIQUES
Lorsqu'un train d'engrenages est composé d'une couronne à denture intérieure et d'une roue à denture extérieure engrenant ensemble, le nombre de dents de la roue à denture extérieure étant légèrement inférieur à celui de la couronne à denture intérieure, l'entraxe entre la roue à denture extérieure et la couronne à denture intérieure est très faible, il est égal à la moitié de la différence des nombres de dents multiplié par le module. En faisant osciller à l'aide d'excentriques soit la roue dans la couronne soit la couronne autour de la roue, il est possible d'obtenir avec un seul train d'engrenages un rapport de réduction ou de multiplication important puisque sa valeur est égale au nombre de dents de la roue divisé par la différence des nombres de dents de la couronne et de la roue. L'oscillation de la couronne autour de la roue peut se faire par la rotation synchronisée et simultanée de deux excentriques dont les axes sont parallèles aux axes de la couronne et de la roue dentée, ces deux excentriques tourillonnent dans la partie extérieure de la couronne à denture intérieure, ceci est visible sur la figure 1 de la demande de brevet européen EP 0465 292 Al. Les paliers des excentriques reprennent alors des efforts correspondant au couple basse vitesse mais ils tournent avec une vitesse élevée puisqu'elle est égale à la basse vitesse multipliée par le rapport de réduction du train d'engrenages à excentriques, ces paliers supportent de gros efforts en tournant relativement vite. Lorsque la différence de nombres de dents entre couronne et roue dentée est faible, entre deux et quatre dents, les conditions d'engrènement sont telles que d'une part la portance se fait sur des surfaces et non pas sur des lignes et que d'autre part les glissements relatifs entre les dents en contact sont pratiquement inexistants, les dents travaillent comme des cannelures, en conséquence, les charges transmissibles par un tel train d'engrenages sont très importantes, leur limite n'est pas fixée par les dents proprement dites mais par les paliers des excentriques d'une part et par l'ovalisation de la couronne à denture intérieure d'autre part. Le but de la présente invention est un réducteur avec excentriques qui profite des avantages de ce type de réducteur, à savoir : - Une grande démultiplication avec un seul train d'engrenages.
- Portance des dents sur des surfaces.
- Glissements extrêmement faibles pour les dents en contact.
Ceci en minimisant l'inconvénient principal de ce type de réducteur, à savoir, la grande sollicitation des paliers d'excentriques. A cet effet, le réducteur avec excentriques selon l'invention comporte quatre arbres à excentriques formant deux paires situées à 90° l'une par rapport à l'autre. Les excentriques tournant chacun dans un palier qui est solidaire d'un bloc coulissant qui peut coulisser dans la partie extérieure de la couronne à denture intérieure. Ces blocs coulissants, un par palier, quatre par couronne à denture intérieure, peuvent respectivement coulisser parallèlement au plan formé par les axes de rotations des deux arbres d'excentriques formant paire. Chacun des deux plans formé par chaque paire d'arbres d'excentriques passe rigoureusement par l'axe de rotation de la roue dentée à denture extérieure, c'est à dire par l'axe de l'arbre basse vitesse du réducteur. De cette façon la couronne à denture intérieure est centrée par les blocs coulissants et chaque palier d'excentrique ne supporte que les réactions des efforts d'engrènement qui sont perpendiculaires au plan formé par sa paire d'arbres d'excentriques, ceci réduit considérablement les efforts supportés par chacun des paliers d'excentriques. Chaque arbre d'excentriques tourillonne dans le carter du réducteur et est muni d'un pignon denté. Les quatre pignons dentés, un par arbre d'excentriques, engrènent avec une roue dentée qui est centrée à l'aide de paliers sur l'arbre lent du réducteur. Le pignon grande vitesse du réducteur tourillonne dans le carter et engrène avec la roue dentée précitée qui engrène avec les pignons des arbres d'excentriques. Pour chaque arbre d'excentriques le carter du réducteur comporte un plan de joint passant par l'axe de rotation de l'arbre d'excentriques, sur chacun de ces plans de joint est vissé un capot qui maintient les paliers de l'arbre d'excentriques et assure l'étanchéité. Grâce à ces capots les paliers d'excentriques, qui sont les pièces les plus sollicitées du réducteur, peuvent être entretenus ou même remplacés sans avoir à démonter l'ensemble du réducteur, ceci est très intéressant pour les ensembles de grandes puissances comme les grosses éoliennes pour lesquels une durée de vie très longue pour l'installation et une très grande facilité d'entretien est indispensable. Dès que la vitesse des arbres d'excentriques dépasse 150 tours par minute, les masses oscillantes deviennent la source d'efforts parasites qui peuvent être nuisibles, en conséquence, il faut les compenser et pour cela chaque arbre d'excentriques a deux excentriques décalés l'un par rapport à l'autre de 180° et il ya deux couronnes à denture intérieure situées en parallèle mais décalées de 180° qui oscillent autour de la roue dentée à denture extérieure. Les efforts parasites dus aux masses oscillantes d'une couronne sont alors compensés par ceux de l'autre couronne. A cause des tolérances d'usinage pour les différentes pièces mécaniques, la répartition des charges entre les deux couronnes à denture intérieure pourrait ne pas être assurée, en conséquence, il est préférable d'avoir également deux roues à denture extérieure centrées sur le moyeu d'arbre lent. Chacune de ces roues dentée est alors reliée en rotation au moyeu par des éléments élastiques qui permettent sous charge une très légère rotation de chaque roue dentée par rapport au moyeu d'arbre lent, ainsi la répartition des charges entre les deux couronnes à denture intérieure sera située entre 50%,50% et 60%,40%, elle ne pourra jamais être 100%,0%. Pour certaines applications comme les réducteurs de positionnement par exemple, une élasticité en rotation est nuisible, dans ces cas il n'y a alors qu'une seule roue dentée à dentures extérieures qui est rigidement reliée à l'arbre lent du réducteur. Cette roue dentée engrène avec les deux couronnes à dentures intérieures, chacun des quatre excentriques pour une couronne à dentures intérieures fait partie intégrante de chaque arbre à excentrique qui est muni d'un pignon qui engrène avec la roue dentée qui est centrée à l'aide de paliers sur l'arbre lent du réducteur, les quatre autres excentriques pour l'autre couronne à dentures intérieures font partie intégrante d'un tube à excentrique qui est centré sur l'arbre à excentrique, chaque arbre à excentrique et son tube à excentrique correspondant sont reliés rigidement entre eux en rotation par des anneaux de blocage genre Ringfeder ou Stiiwe. Les pignons d'arbre d'excentrique sont également reliés rigidement en rotation avec les arbres à excentrique par des anneaux de blocage genre Ringfeder ou Stiiwe.
Pour éliminer les influences des tolérances d'usinages sur la répartition des charges entre les deux couronnes à dentures intérieures, il est procédé de la façon suivante : 1) Les dentures des quatre pignons pour les arbres à excentrique sont exécutées en même temps. 2) Les pignons, arbres à excentrique et tubes à excentrique sont assemblés en ayant leurs positions relatives théoriques.
3) Le réducteur avec son arbre lent, sa roue dentée à denture extérieure, ses deux couronnes à denture intérieure, la roue dentée centrée à l'aide de paliers sur l'arbre lent et les quatre ensembles formés par les arbres à excentrique, les pignons et les tubes à excentrique est assemblé.
4) Les anneaux de blocages entre arbres à excentrique et tubes à excentrique ainsi qu'entre arbres à excentrique et pignons sont débloqués.
5) L'arbre lent du réducteur est bloqué en rotation et en agissant simultanément sur les arbres à excentrique, les dents de la couronne à denture intérieure correspondant aux excentriques des arbres à excentrique sont mises en contact avec les dents de la roue dentée de l'arbre lent du réducteur. 6) Sans faire tourner les arbres à excentrique les dents de chacun des pignons des arbres à excentrique sont mises en contact avec les dents de la roue dentée qui est centrée à l'aide de paliers sur l'arbre lent du réducteur, les anneaux de blocage entre pignons et arbres à excentrique sont alors rebloqués. 7) Sans faire tourner les arbres à excentrique et en agissant simultanément sur les tubes à excentrique, les dents de la couronne à denture intérieure correspondant aux excentriques des tubes à excentrique sont mises en contact avec les dents de la roue dentée de l'arbre lent du réducteur, les anneaux de blocage entre arbres à excentrique et tubes à excentrique sont alors rebloqués. 8) La finition du montage de l'ensemble du réducteur peut alors être faite.
Le moyeu d'arbre lent étant en acier, il est intéressant de réaliser les roues dentées à denture extérieure en bronze d'aluminium à grande résistance ceci pour simplifier la lubrification en ayant un très bon rendement et augmenter les surfaces de dents en contact puisque le module d'élasticité du bronze d'aluminium est plus petit que celui de l'acier.
Les figures ci annexées représentent à titre indicatif et non limitatif un réducteur avec excentriques selon l'invention, l'exemple choisi est un réducteur pour éolienne de grande puissance, il travaille en multiplicateur pour passer de 17 à 1500 tours par minute.
- La figure 1 est une coupe passant par le plan commun à l'axe de l'arbre lent et de l'arbre rapide du réducteur, coupe 1,1 de la figure 4.
- La figure 2 est une coupe passant par un train d'engrenages couronne, roue dentée ainsi que par les quatre excentriques et blocs coulissants correspondants, coupe II,II sur les figures 1 et 3.
- La figure 3 est une coupe passant par l'axe d'un arbre à excentriques, coupe 111,111 de la figure 2
- La figure 4 est une coupe passant par le plan médian des pignons d'arbres d'excentriques, de leur roue dentée et du pignon grande vitesse. - La figure 5 est similaire à la figure 3 mais comporte une seule roue dentée solidaire de l'arbre lent ainsi que des arbres à excentrique, des tubes à excentrique et des pignons d'arbres à excentrique qui sont respectivement reliés par des anneaux de blocage. 1 est l'arbre lent du réducteur, 2 est le flasque pour la fixation du moyeu de l'hélice de 1'éolienne, cette flasque 2 est solidaire de l'arbre lent 1 par les cannelures 3 pour la rotation et les vis situées en 4 pour le sens axial. L'alésage de l'arbre lent 1 et de la flasque 2 est suffisamment grand pour permettre le passage d'un homme lors du montage ou de l'entretien des mécanismes qui se trouvent dans le moyeu de l'hélice pour l'orientation des pales. 5 et 6 sont les roulements qui reprennent les réactions dues à l'hélice de l'éolienne et aux engrènements dans le réducteur. 7 est le moyeu pour les roues dentées à denture extérieure 8 et 9, les cannelures 10 le rendent solidaire en rotation avec l'arbre lent 1. Les roues dentées 8 et 9 sont rendues solidaires en rotation avec le moyeu 7 par les éléments élastiques 11 et 12, ces éléments élastiques au nombre de vingt quatre par roue dentée 8 ou 9 sont en forme de U, ils sont encastrés dans les rainures 13 correspondantes du moyeu 7, les extrémités des branches de U sont en contact avec les rainures 14 correspondantes des roues 8 ou 9. Les plaques 17, 18 font respectivement corps avec les couronnes à dentures intérieures 15 et 16. Les équerres 19 et 20 sont à la fois encastrées dans et vissées sur les plaques 17, 18. Les blocs coulissants 21, 22 en bronze pour paliers lisses peuvent coulisser entre les équerres 19, 20. Les blocs coulissants 21, 22 servent de paliers pour les excentriques 23, 24 qui font corps avec les arbres d'excentriques 25. Les arbres d'excentriques 25 tourillonnent dans le carter formé par les deux demis carters 26 et 27, ceci par l'intermédiaire des paliers 28, 29 et 30. Les capots 31 vissés sur les plans de joint 46 des demis carters 26 ou 27 maintiennent les paliers 28, 29, 30 et assurent l'étanchéité. Sur les capots 31 il y a les petits capots 32 qui comportent un raccord en33 pour les canalisations d'huile sous pression, les raccords 33 sont reliés chacun à un raccord en 34 sur les blocs coulissants 21 , 22 par une boucle de tuyau flexible,( non représentée ) pour l' alimentation en huile sous pression des paliers d'excentriques 23, 24. Les plaques 35, 36 sont encastrées et vissées sur les équerres 19, 20 pour rigidifier l'ensemble, ces plaques 35, 36 ont un trou 37 pour le passage du flexible d'huile sous pression. 38 sont les pignons des arbres d'excentriques 25, ils engrènent avec la couronne 39 qui est centrée sur l'arbre de sortie 1 par les roulements 40, 41 sont des trous dans la couronne 39 afin d'avoir accès aux vis 42 et 43 pour visser les écrous d'assemblage des demis carters 26 et 27.44 est le pignon grande vitesse qui tourillonne dans le carter 26, 27 à l'aide des roulements 45. Les renforcements 47, 48 sur les demis carters 26, 27 sont là sur toute la longueur de ces demis carters, ils sont destinés à recevoir les équerres de fixation 49 et 50, ces équerres varient selon les installations. Sur la figure 5 la roue dentée 8 engrène avec les couronnes à denture intérieure 15 et 16, la couronne 16 oscille en étant centrée à l'aide des excentriques 24 qui font partie intégrante des arbres à excentrique 25. La couronne 15 oscille en étant centrée à l'aide des excentriques 23 qui font partie intégrante des tubes à excentrique 51 qui sont centrés sur les arbres à excentrique 25. Les arbres à excentrique 25 sont rendus solidaires en rotation avec les tubes à excentrique 51 à l'aides des anneaux de blocages 52, les anneaux 53 sont des renforts pour les tubes à excentrique 51. Les pignons 38 et les arbres à excentrique 25 sont rendus solidaires en rotation à l'aide des anneaux de blocage 54.

Claims

REVENDICATIONS
1) Réducteur avec excentriques basé sur Pengrènement d'une roue dentée à denture extérieure avec une couronne à denture intérieure, la différence de nombres de dents entre roue et couronne étant de 2 à 4 dents, la couronne oscillant autour de la roue à l'aide d'excentriques, réducteur comportant un arbre basse vitesse (1) centré dans un carter (26, 27), cet arbre (1) étant solidaire d'un moyeu (7) lui même solidaire de roues dentées (8, 9) qui engrènent avec des couronnes à denture intérieure (15, 16) qui oscillent autour des roues dentées (8, 9) à l'aide d'excentriques (23, 24) solidaires d'arbres d'excentriques (25) caractérisé en ce que il y a quatre arbres d'excentriques (25) formant deux paires situées à 90° l'une par rapport à l'autre, les excentriques (23, 24) tournant chacun dans un palier qui est solidaire d'un bloc coulissant (21, 22) qui peut coulisser dans la partie extérieure des couronnes à denture intérieure (15, 16), ces blocs coulissants (21, 22), un par palier, quatre par couronne à denture intérieure (15, 16), pouvant respectivement coulisser parallèlement au plan formé par les axes de rotation des deux arbres d'excentriques (25) formant paire, chacun des deux plans formé par chaque paire d'arbres d'excentriques (25) passant rigoureusement par l'axe de rotation de la roue dentée à denture extérieure (8, 9), donc par l'axe de l'arbre basse vitesse (1) du réducteur. 2) Réducteur avec excentriques selon revendication 1 caractérisé en ce que chacun des quatre arbres d'excentriques (25) qui tourillonne dans le carter (26, 27) du réducteur est muni d'un pignon denté (38) qui engrène avec une roue dentée (39) qui est centrée à l'aide de paliers (40) sur l'arbre basse vitesse (1) du réducteur et que le pignon grande vitesse (44) qui tourillonne également dans le carter (26, 27) du réducteur engrène avec la même roue dentée (39) que les pignons (38) des arbres d'excentriques. 3) Réducteur avec excentriques selon revendications 1 et 2 caractérisé en ce que les demis carters (26, 27) ont des plans de joint (46) passant par l'axe des arbres d'excentriques (25) et sur lesquels des capots (31) sont vissés. 4) Réducteur à excentriques selon revendications 1 et 2 caractérisé en ce qu'il n'y a qu'une seule roue dentée à denture extérieure (8), que cette roue dentée (8) est solidaire de l'arbre lent (1), que cette roue dentée (8) engrène avec les deux couronnes à dentures intérieure (15,16), que chacun des excentriques (24) pour une couronne à denture intérieure (16) fait partie intégrante de l'arbre à excentrique (25)qui est rigidement relié en rotation à un pignon (38) par des anneaux de blocage (54), que les excentriques (23) pour l'autre couronne à denture intérieure (15) font partie intégrante d'un tube à excentrique (51) qui est centré sur l'arbre à excentrique (25) et que les arbres à excentrique (25) et les tubes à excentriques (51) sont respectivement reliés rigidement en rotation entre eux par des anneaux de blocages (52).
PCT/FR2003/001443 2003-05-12 2003-05-12 Reducteur avec excentriques WO2004102037A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/FR2003/001443 WO2004102037A1 (fr) 2003-05-12 2003-05-12 Reducteur avec excentriques

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2003/001443 WO2004102037A1 (fr) 2003-05-12 2003-05-12 Reducteur avec excentriques

Publications (1)

Publication Number Publication Date
WO2004102037A1 true WO2004102037A1 (fr) 2004-11-25

Family

ID=33443096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/001443 WO2004102037A1 (fr) 2003-05-12 2003-05-12 Reducteur avec excentriques

Country Status (1)

Country Link
WO (1) WO2004102037A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105178317A (zh) * 2015-10-21 2015-12-23 陈伟 油温报警少齿差内啮合四分流桩机减速机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0465292A1 (fr) 1990-07-06 1992-01-08 ROCKWELL BODY AND CHASSIS SYSTEMS - FRANCE, en abrégé: ROCKWELL BCS - FRANCE Motoréducteur d'entraînement de pièces telles que des accessoires de véhicules automobiles, notamment un toît ouvrant
US5401220A (en) * 1993-07-28 1995-03-28 Peerless-Winsmith, Inc. Speed reducer with planocentric gear arrangement
FR2716513A1 (fr) * 1994-02-24 1995-08-25 Durand Francois Réducteur planétaire à excentriques.
US6129647A (en) * 1994-06-13 2000-10-10 Durand; Francois Gear reducer comprising eccentrics
US6491601B1 (en) * 1999-03-12 2002-12-10 Robert Bosch Gmbh Eccentric toothed gearing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0465292A1 (fr) 1990-07-06 1992-01-08 ROCKWELL BODY AND CHASSIS SYSTEMS - FRANCE, en abrégé: ROCKWELL BCS - FRANCE Motoréducteur d'entraînement de pièces telles que des accessoires de véhicules automobiles, notamment un toît ouvrant
US5401220A (en) * 1993-07-28 1995-03-28 Peerless-Winsmith, Inc. Speed reducer with planocentric gear arrangement
FR2716513A1 (fr) * 1994-02-24 1995-08-25 Durand Francois Réducteur planétaire à excentriques.
US6129647A (en) * 1994-06-13 2000-10-10 Durand; Francois Gear reducer comprising eccentrics
US6491601B1 (en) * 1999-03-12 2002-12-10 Robert Bosch Gmbh Eccentric toothed gearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105178317A (zh) * 2015-10-21 2015-12-23 陈伟 油温报警少齿差内啮合四分流桩机减速机
CN105178317B (zh) * 2015-10-21 2017-03-22 陈伟 油温报警少齿差内啮合四分流桩机减速机

Similar Documents

Publication Publication Date Title
CA2809579C (fr) Dispositif d'entrainement et broyeur correspondant
BE1012509A5 (fr) Train d'engrenages epicycloidaux pour eolienne.
EP2753429A1 (fr) Entraînement de broyeur vertical à plusieurs entraînements principaux
EP3102795A1 (fr) Turbomachine équipée d'un groupe de lubrification
EP2576995B1 (fr) Boite d'engrenages dans une turbomachine
WO2011027427A1 (fr) Génératrice éolienne
WO2014033416A1 (fr) Boite d'engrenages de prise de mouvement sur une turbomachine, composée d'une chaîne cinématique a lignes d'engrenages s'étendant dans des plans non parallèles
CA2785407C (fr) Broyeur muni d'un dispositif d'entrainement pour une couronne dentee
JP2009250213A (ja) 風力発電装置
FR2832480A1 (fr) Reducteur avec excentriques
WO2004102037A1 (fr) Reducteur avec excentriques
EP4108900B1 (fr) Porte-satellites pour un reducteur de vitesse de turbomachine d'aeronef
FR3017544A1 (fr) Dispositif d'entrainement de broyeur a cylindres verticaux
EP0765444B1 (fr) Reducteur a excentriques
FR3026389A1 (fr) Boite d'entrainement d'une helice pour moteur a helice
EP4108899A1 (fr) Porte-satellites pour un reducteur de vitesse de turbomachine d'aeronef
FR2570155A1 (fr) Reducteur planetaire avec deux excentriques doubles
FR2771153A1 (fr) Reducteur epicycloidal ou cycloidal et articulation de robot equipee d'un tel reducteur
EP3763932A1 (fr) Reducteur mécanique pour une turbomachine d'aéronef
EP3289189A1 (fr) Turbomoteur encastrable dans un boitier reducteur
EP3721118B1 (fr) Train planetaire
FR2727655A1 (fr) Groupe moto-propulseur electrique ou hydraulique pour vehicule automobile
FR2833673A1 (fr) Reducteur a grand rapport
FR3097269A1 (fr) Integration d’un reservoir d’huile a un reducteur mecanique de turbomachine d’aeronef
FR2716513A1 (fr) Réducteur planétaire à excentriques.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN IN JP NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP