WO2004101279A1 - Packaging material consisting of an at least double-layered composite material for producing containers for packing liquids - Google Patents

Packaging material consisting of an at least double-layered composite material for producing containers for packing liquids Download PDF

Info

Publication number
WO2004101279A1
WO2004101279A1 PCT/EP2004/004820 EP2004004820W WO2004101279A1 WO 2004101279 A1 WO2004101279 A1 WO 2004101279A1 EP 2004004820 W EP2004004820 W EP 2004004820W WO 2004101279 A1 WO2004101279 A1 WO 2004101279A1
Authority
WO
WIPO (PCT)
Prior art keywords
paper
cardboard
polymer
packaging material
aqueous
Prior art date
Application number
PCT/EP2004/004820
Other languages
German (de)
French (fr)
Inventor
Simon Champ
Roland Ettl
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2003122267 external-priority patent/DE10322267A1/en
Priority claimed from DE102004001992A external-priority patent/DE102004001992A1/en
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to BRPI0410262-2A priority Critical patent/BRPI0410262A/en
Priority to EP04731372A priority patent/EP1626866A1/en
Priority to US10/556,471 priority patent/US20070010386A1/en
Priority to CA002525626A priority patent/CA2525626A1/en
Priority to JP2006529749A priority patent/JP2007500628A/en
Publication of WO2004101279A1 publication Critical patent/WO2004101279A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/72Coated paper characterised by the paper substrate
    • D21H19/76Coated paper characterised by the paper substrate the substrate having specific absorbent properties
    • D21H19/78Coated paper characterised by the paper substrate the substrate having specific absorbent properties being substantially impervious to the coating
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/10Packing paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/02Metal coatings
    • D21H19/04Metal coatings applied as foil
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/14Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
    • D21H19/20Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/14Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
    • D21H19/20Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H19/22Polyalkenes, e.g. polystyrene
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/14Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
    • D21H19/24Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H19/30Polyamides; Polyimides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/80Paper comprising more than one coating
    • D21H19/84Paper comprising more than one coating on both sides of the substrate
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/16Sizing or water-repelling agents

Definitions

  • the invention relates to a packaging material made of an at least two-layer composite of glued paper or glued cardboard and at least one water-impermeable film for the packaging of liquids and the use of paper products which are glued in bulk and which are coated on one or both sides with a film made of plastic or Metal are laminated for the production of containers for the packaging of liquids, in particular beverages.
  • EP-B-0 292 975 discloses the use of an emulsion of an alkyl ketene dimer in combination with a cationic resin size and an insolubilizing agent such as alum for the production of cardboard for the packaging of liquids.
  • the cardboard is produced by adding sizing agents and alum to an aqueous slurry of cellulose fibers and dewatering the paper stock on a sieve.
  • EP-A-1 091 043 discloses a process for producing a coated packaging carton, in which an aqueous slurry of cellulose fibers is glued in bulk with an aqueous dispersion of a resin glue, a synthetic sizing agent such as alkyl ketene dimer and at least one aluminum compound, and the aqueous slurry drained on a sieve.
  • the aqueous dispersions of bulk sizing agents may optionally contain a dispersing agent, e.g. cationic starch, casein, cellulose derivatives, polyvinyl alcohols, polyacrylamides or polyethyleneimines.
  • the cardboard is usually coated after the sizing.
  • Paper products for packaging foodstuffs laminated on both sides with a liquid-impermeable layer are known from WO-A-02/090206.
  • the paper products are glued in bulk with aqueous dispersions of alkyl ketene dimers.
  • the amount of alkyl ketene dimers is at least 0.25% by weight, preferably 0.25-0.4% by weight, based on the weight of the dry paper products.
  • multilayer packaging materials the base layer of which consists of paper or cardboard, are described, for example, in WO-A-97/02140, WO-A-97/02181 and WO-A-98/18680.
  • a process for the production of cardboard for packaging liquids is known from the older DE application 10237913.0.
  • the cardboard is produced by mass sizing an aqueous slurry of cellulose fibers with at least one mass sizing agent in the presence of at least one retention agent and at least one cationic polymer and optionally a water-soluble aluminum compound and dewatering the paper stock on a sieve.
  • Sizing agents are alkyl ketene dimers, alkyl and alkenyl succinic anhydrides, alkyl isocyanates, combinations of resin glue and alum and combinations of reaction products of resin glue with carboxylic acid anhydrides and alum.
  • the object of the present invention is to provide further packaging materials based on paper products, the packaging in particular being to have improved edge penetration and improved adhesion of the laminates to paper or cardboard.
  • the object is achieved according to the invention with a packaging material made of an at least two-layer composite of sized paper or sized cardboard and at least one water-impermeable film for the production of containers for the packaging of liquids if the paper or the box is sized in the mass with a polymer sizing agent.
  • the invention also relates to the use of paper products which are each obtainable from
  • Wood pulp is understood to mean, for example, wood pulp, thermomechanical pulp (TMP), chemothermomechanical pulp (CTMP), pressure grinding, semi-pulp, high-yield pulp, refiner mechanical pulp (RMP) and waste paper.
  • TMP thermomechanical pulp
  • CMP chemothermomechanical pulp
  • RMP refiner mechanical pulp
  • pulps that can be used in bleached or unbleached form examples of these are sulfate, sulfite and sodium pulps.
  • Unbleached pulps which are also referred to as unbleached kraft pulp, are preferably used.
  • the fibrous materials can be used alone or as a mixture with one another.
  • mass sizing agent made from synthetic polymers
  • mass sizing agent a polymer sizing agent made from synthetic polymers
  • the polymer sizing agents known from JP-A-58/115 196 are aqueous polymer dispersions which are a sizing agent for paper and at the same time increase the strength of paper. These dispersions are prepared by polymerizing, for example, styrene and alkyl acrylates in the presence of starch and radical-forming polymerization initiators in an aqueous medium.
  • the starch used in each case is broken down or broken down before the polymerization, so that it is soluble in water.
  • the polymers of these dispersions are graft polymers of styrene and alkyl acrylates on starch or modified starch.
  • Further polymer sizing agents are known from EP-B-0257412 and EP-B-0267770. They are obtained by copolymerizing acrylonitrile and / or methacrylonitrile and at least one acrylic acid ester of a monohydric, saturated C 3 to C 8 alcohol in the manner of an emulsion polymerization in an aqueous solution which contains a degraded starch, in the presence of free radical initiators, preferably hydrogen peroxide or redox initiators.
  • the degraded starches have viscosities / 7, from 0.04 to 0.50 dl / g.
  • Such starches are obtained, for example, in the case of oxidative, thermal, acidolytic or enzymatic degradation of a native, cationically or anionically modified starch.
  • Native starches from potatoes, wheat, corn are advantageous. Rice or tapioca used.
  • An enzymatically degraded potato starch is preferred.
  • the degraded starches act as emulsifiers in the copolymerization of, for example, styrene and n-butyl acrylate in an aqueous medium.
  • the aqueous solution in which the copolymerization is carried out contains, for example, 1 to 25% by weight of at least one degraded starch.
  • Such a solution is polymerized, for example, 10 to 150, preferably 40 to 100 parts by weight of the above monomers.
  • styrene can also be used in the copolymerization, cf. WO-A-94 / 05,855th
  • polymer sizing agents based on copolymers of styrene and C 3 -C 8 -alkyl (meth) acrylates are known from WO 02/14393. They are prepared by copolymerizing the monomers mentioned in an aqueous medium in the presence of degraded starch and radical-forming polymerization initiators using a two-stage process.
  • Aqueous polymer dispersions which can be prepared in the presence of synthetic polymeric protective colloids are also suitable as polymer sizing agents. They can be obtained, for example, by copolymerizing 2 to 32 parts of a mixture of
  • di-Ci to C-alkylamino-C 2 to C 4 -alkyl (meth) acrylates which can optionally be protonated or quaternized,
  • nonionic, hydrophobic, ethylenically unsaturated monomers in the case of these monomers, if they are polymerized on their own, form hydrophobic polymers and, if appropriate,
  • a solution copolymer is first prepared by copolymerizing the monomers of groups (1) and (2) and, if appropriate, (3) in a water-miscible organic solvent.
  • Suitable solvents are, for example, C to C 3 carboxylic acids, such as formic acid, acetic acid and propionic acid, or C to C alcohols, such as methanol, ethanol, n-propanol or isopropanol, and ketones such as acetone.
  • the group (1) monomers used are preferably dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, dimethylaminopropyl methacrylate and dimethylaminopropyl acrylate.
  • the monomers of group (1) are preferably used in protonated or quaternized form. Suitable quaternizing agents are, for example, methyl chloride, dimethyl sulfate or benzyl chloride.
  • the group (2) monomers used are nonionic, hydrophobic, ethylenically unsaturated compounds which, when polymerized on their own, form hydrophobic polymers. These include, for example, styrene, methylstyrene, C to Cis-alkyl esters of acrylic acid or methacrylic acid, for example methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, tert-butyl acrylate and isobutyl acrylate as well as isobutyl methacrylate, n-butyl methacrylate and tert. butyl methacrylate.
  • styrene methylstyrene
  • C to Cis-alkyl esters of acrylic acid or methacrylic acid for example methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl
  • Acrylonitrile, methacrylonitrile, vinyl acetate, vinyl propionate and vinyl butyrate are also suitable.
  • Mixtures of the group 2 monomers can also be used in the copolymerization, for example mixtures of styrene and isobutyl acrylate.
  • the solution copolymers used as emulsifiers may optionally also contain monomers of group (3) in copolymerized form, for example monoethylenically unsaturated C 3 -C 5 -carboxylic acids or their anhydrides, for example acrylic acid, methacrylic acid, itaconic acid, maleic acid, maleic anhydride or itaconic anhydride.
  • the molar ratio of (1): (2): (3) is 1: 2.5 to 10: 0 to 1.5.
  • the copolymer solutions thus obtained are diluted with water and, in this form, serve as a protective colloid for the polymerization of the above-mentioned monomer mixtures of components (a) and (b) and, if appropriate, (c).
  • Monomers of group (a) are styrene, acrylonitrile, methacrylonitrile or mixtures of styrene and acrylonitrile or of styrene and methacrylonitrile.
  • the monomers of group (b) used are acrylic acid and / or methacrylic acid esters of d to C 18 alcohols and / or vinyl esters of saturated C 2 to C 4 carboxylic acids.
  • This group of monomers corresponds to the monomers of group (2), which has already been described above.
  • Preferably used as the monomer of group (b) are acrylic acid butyl ester and methacrylic acid butyl ester, for example acrylic acid isobutyl acrylate, acrylic acid n-butyl acrylate and methacrylic acid isobutyl acrylate.
  • Monomers of group (c) are, for example, C 3 -C 5 -monoethylenically unsaturated carboxylic acids, acrylamido-methylpropanesulfonic acid, sodium vinyl sulfonate, vinyl imidazole, N-vinyl formamide, acrylic amide, methacrylamide and N-vinyl imidazoline. 1 to 32 parts by weight of a monomer mixture of the components are used per 1 part by weight of the copolymer. ten (a) to (c).
  • the monomers of components (a) and (b) can be copolymerized in any ratio, for example in the molar ratio 0.1: 1 to 1: 0.1.
  • the monomers of group (c) are used to modify the properties of the copolymers.
  • Sizing agents of this type are described, for example, in EP-B-0 051 144, EP-B-0 058313 and EP-B-0 150 003.
  • Aqueous polymer dispersions which are obtained by copolymerizing
  • the polymer sizing agents are preferably cationic or anionic.
  • the charge of the aqueous dispersions is based either on the type of comonomers polymerized into the copolymers, for example when using basic monomers Polymer sizing agent dispersion cationic, while it becomes anionic by copolymerizing, for example, acrylic acid or its salts, or on the charge of the protective colloid used in each case.
  • the use of cationic starch as an emulsifier leads to cationically adjusted polymer size dispersions.
  • polymer sizing agent i.e. 100% polymer
  • dry paper product for example, 0.1 to 2.0, preferably 0.2 to 0.75% by weight of polymer sizing agent (i.e. 100% polymer), based on dry paper product, is used.
  • the bulk sizing of paper and cardboard can additionally in the presence of aqueous dispersions of reactive sizing agents such as alkyl ketene dimers, C 5 - to C ⁇ alkyl and / or C 5 - to C22-alkenyl succinic anhydrides, chloroformic acid esters and C 12 - to C 36 - alkyl isocyanates and in In the presence of combinations of resin glue and alum or combinations of reaction products of resin glue with carboxylic acid anhydrides and alum.
  • alum or in combination with alum other aluminum-containing compounds such as polyaluminium chlorides or the polyaluminium compounds known from EP-B-1 091 043 can be used.
  • C 12 to C 22 alkyl ketene dimers preference is given to using C 12 to C 22 alkyl ketene dimers, for example stearyl diketene, lauryl diketene, palmityldiketene, oleyl diketene, behenyl diketene or mixtures thereof.
  • Suitable succinic anhydrides are e.g. Decenyl succinic anhydride, octenyl succinic anhydride, dodecenyl succinic anhydride and n-hexadecenyl succinic anhydride.
  • the reactive sizes are usually used in the form of an aqueous dispersion.
  • alkyl ketene dimers are dispersed in an aqueous solution of a cationic starch, or nonionic or anionic emulsifiers are used to stabilize the alkyl ketene dimers.
  • nonionic or anionic emulsifiers are used to stabilize the alkyl ketene dimers.
  • the resulting reactive size dispersions are cationically, neutral or anionically charged.
  • anionic emulsifiers can be added to alkyl ketene dimer dispersions which have been emulsified in water with the aid of cationic starch. If the charge of the anionic emulsifiers outweighs the charge of the cationic emulsifiers, an anionically charged alkyl ketene dimer dispersion is obtained.
  • anionic charged aqueous alkyldiketene dispersions are preferably prepared by emulsifying alkylketene dimers in aqueous solutions of anionic emulsifiers.
  • Anionic emulsifiers which can be used are, for example, condensates of naphthalene sulfonic acid and formaldehyde, sulfonated polystyrene, C 1 -C 22 -alkylsulfuric acids, lignosulfonic acid, phenolsulfonic acid, naphthalenesulfonic acid or the sodium, potassium or ammonium salts of the acids mentioned.
  • Copolymers of acrylic acid and maleic acid are suitable emulsifiers for the preparation of anionic alkyl ketene dimer dispersions.
  • the acid groups of the homo- and copolymers can, for example, be partially or completely neutralized with sodium hydroxide solution, potassium hydroxide solution or with ammonia and can be used in this form as anionic emulsifiers.
  • the molecular weight M w of the homo- and copolymers is, for example, 1000 to 15000 and is preferably in the range from 1500 to 10000.
  • the emulsifiers are used, for example, in amounts of up to 3.5% by weight, preferably up to 2% by weight. -%, based on the reactive sizing agent to be dispersed.
  • the reactive sizing agents are optionally used in the mass sizing of the paper products to be used according to the invention as carrier material for the packaging materials. They are used particularly when packaging materials with particularly good edge penetration are required. They are then used in amounts that are usually required for the production of sized paper products, e.g. 0.1 to 2.0, preferably 0.1 to 0.5 wt .-%, based on dry cellulose fibers. Per 100 parts by weight of polymer sizing agent, for example 0 to 90 parts by weight, preferably 50 to 90 parts by weight, of reactive sizing agents are used.
  • the mixtures each contain, based on the polymer content, for example 5 to 50, preferably 10 to 30% by weight of polymer (100%).
  • the reactive sizing agents preferably alkyl ketene dimer dispersions
  • the alkyl ketene dimer dispersions and at least one polymer sizing agent dispersion can also be added to the paper stock at the same time and then dewatered to form a sheet, or a mixture of a reactive sizing agent such as at least one alkyl sizing agent dispersion and at least one polymer sizing agent dispersion is added to the paper stock and dewatered. then put it under leaf formation.
  • the polymer sizing agents can of course also be used as surface sizing agents, for example by applying them to the surface of the paper using a size press or spraying them onto the surface of the paper.
  • the paper stock is additionally dewatered in the presence of a retention agent.
  • a retention agent In addition to anionic retention aids or nonionic retention aids such as polyacrylamides, cationic polymers are preferably used as retention aids and as drainage aids. This leads to a significant improvement in the runnability of the paper machines. All commercially available products for this purpose can be used as cationic retention agents.
  • cationic polyacrylamides polydiallyldimethylammonium chlorides, polyethyleneimines, polyamines with a molecular weight of more than 50,000, polyamines which may have been modified by grafting on ethyleneimine, polyetheramides, polyvinylimidazoles, polyvinylpyrrolidines, polyvinylimidazolines, polyvinyltetrahydropyrylamino, poly ( Poly (dialkylaminoalkyl (meth) acrylates) in protonated or quaternized form and also polyamidoamines from a dicarboxylic acid such as adipic acid and polyalkylene polyamines such as diethylenetriamine amine which are grafted with ethyleneimine and crosslinked with polyethylene glycol dichlorohydrin ethers according to the teaching of DE-B-24348amamido which have been reacted with epichlorohydrin to form water-soluble condensation products and copolymers of acrylamide or me
  • the cationic polymers which are used as retention agents have, for example, K values according to Fikentscher of at least 140 (determined in 5% strength aqueous saline solution at a polymer concentration of 0.5% by weight, a temperature of 25 ° C. and a pH of 7). They are preferably used in amounts of 0.01 to 0.3% by weight, based on dry cellulose fibers.
  • At least one cationic polymer can optionally be added to the aqueous slurry of cellulose fibers in addition to the substances already mentioned.
  • cationic polymers are polymers containing vinylamine units, polymers containing vinylguanidine units, polymers containing dialkylaminoalkyl (meth) acrylamide units, polyethyleneimines, polyamidoamines grafted with ethyleneimine and / or polydiallyldimethylammonium chlorides.
  • the men The amount of cationic polymers is, for example, 0.001 to 2.0% by weight, preferably 0.01 to 0.1% by weight, based on dry cellulose fibers.
  • Polymers containing vinylamine units are known, cf. US-A-4,421,602, US-A-5,334,287, EP-A-0216387, US-A-5,981, 689, WO-A-00/63295 and US-A-6,121, 409. They are produced by hydrolysis of open-chain polymers containing N-vinylcarboxamide units. These polymers are e.g. obtainable by polymerizing N-vinylformamide, N-vinyl-N-methylformamide, N-vinylacetamide, N-vinyl-N-methylacetamide, N-vinyl-N-ethylacetamide and N-vinylpropionamide. The monomers mentioned can be polymerized either alone or together with other monomers.
  • Suitable monoethylenically unsaturated monomers which are copolymerized with the N-vinyicarboxamides are all compounds which can be copolymerized therewith.
  • Examples include vinyl esters of saturated carboxylic acids of 1 to 6 carbon atoms such as vinyl formate, vinyl acetate, vinyl propionate and vinyl butyrate and vinyl ethers such as C to C 6 alkyl vinyl ether, for example methyl or ethyl vinyl ether.
  • Suitable comonomers are esters, amides and nitriles of ethylenically unsaturated C 3 to C 6 carboxylic acids, for example methyl acrylate, methyl methacrylate, ethyl acrylate and ethyl methacrylate, acrylamide and methacrylamide and also acrylonitrile and methacrylonitrile.
  • carboxylic acid esters are derived from glycols or polyalkylene glycols, only one OH group being esterified in each case, e.g. Hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, hydroxypropyl methacrylate, hydroxybutyl methacrylate and acrylic acid monoesters of polyalkylene glycols with a molecular weight of 500 to 10000.
  • esters of ethylenically unsaturated carboxylic acids such as dimethylamethylamethylethylaminoethylaminoethylaminoethylaminoethylaminoethylamethylethylamate, such as aminoethylaminoethyl , Dimethylaminopropyl acrylate, Dimethylaminopropyl methacrylate, Diethylaminopropylacrylat, Dimethylaminobutylacrylat and Diethyaminobutylacrylat.
  • carboxylic acids such as dimethylamethylamethylethylaminoethylaminoethylaminoethylaminoethylamethylethylamate, such as aminoethylaminoethyl , Dimethylaminopropyl acrylate, Dimethylaminopropyl methacrylate, Diethylaminopropylacrylat, Dimethylaminobutylacrylat and Die
  • the basic acrylates can be used in the form of the free bases, the salts with mineral acids such as hydrochloric acid, sulfuric acid or nitric acid, the salts with organic acids such as formic acid, acetic acid, propionic acid or the sulfonic acids or in quaternized form.
  • Suitable quaternizing agents are, for example, dimethyl sulfate, diethyl sulfate, methyl chloride, ethyl chloride or benzyl chloride.
  • Suitable comonomers are amides of ethylenically unsaturated carboxylic acids such as acrylamide, methacrylamide and N-alkyl mono- and diamides of monoethylenically unsaturated carboxylic acids with alkyl radicals of 1 to 6 carbon atoms, for example N- Methyl acrylamide, N, N-dimethylacrylamide, N-methyl methacrylamide, N-ethyl acrylamide, N-propylacrylamide and tert.
  • amides of ethylenically unsaturated carboxylic acids such as acrylamide, methacrylamide and N-alkyl mono- and diamides of monoethylenically unsaturated carboxylic acids with alkyl radicals of 1 to 6 carbon atoms, for example N- Methyl acrylamide, N, N-dimethylacrylamide, N-methyl methacrylamide, N-ethyl acrylamide, N-propylacrylamide and tert.
  • Butylacrylamide and basic (meth) acrylamides such as dimethylaminoethyl acrylamide, dimethylaminoethyl methacrylamide, diethylaminoethyl acrylamide, diethylaminoethyl methacrylamide, dimethylaminopropylacrylamide, diethylaminopropylacrylamide, dimethylaminopropyl methacrylamide and diethylaminopropyl methacrylamide.
  • N-vinylpyrrolidone N-vinylcaprolactam
  • acrylonitrile methacrylonitrile
  • N-vinylimidazole substituted N-vinylimidazoles
  • N-vinyl-2-methylimidazole N-vinyl-4-methylimidazole
  • N-vinyl-5-methylimidazole N-vinyl-2-ethylimidazole
  • N-vinylimidazolines such as N-vinylimidazoline, N-vinyl-2-methylimidazoline and N- vinyl-2-ethylimidazoline.
  • N-vinylimidazoles and N-vinylimidazolines are also used in neutralized or in quaternized form with mineral acids or organic acids, the quaternization preferably being carried out with dimethyl sulfate, diethyl sulfate, methyl chloride or benzyl chloride.
  • Diallyldialkylammonium halides such as e.g. Diallyldimethylammonium chloride.
  • copolymers contain, for example
  • the comonomers are preferably free from acid groups.
  • polymers containing vinylamine units In order to prepare polymers containing vinylamine units, one preferably starts from homopolymers of N-vinylformamide or from copolymers which are obtained by copolymerizing
  • hydrolysis of the homo- or of the copolymers to form vinylamine units from the polymerized N-vinylformamide units are, the degree of hydrolysis being, for example, 5 to 100 mol%, preferably 70 to 100 mol%.
  • the polymers described above are hydrolysed by known processes by the action of acids, bases or enzymes. When acids are used as hydrolysis agents, the vinylamine units of the polymers are present as ammonium salts, while the free amino groups are formed in the hydrolysis with bases.
  • the degree of hydrolysis of the homo- and copolymers is 80 to 95 mol%.
  • the degree of hydrolysis of the homopolymers is synonymous with the vinylamine units in the polymers.
  • hydrolysis of the ester groups can occur with formation of vinyl alcohol units. This is particularly the case if the copolymers are hydrolysed in the presence of sodium hydroxide solution.
  • Polymerized acrylonitrile is also chemically changed during the hydrolysis. This creates, for example, amide groups or carboxyl groups.
  • the homo- and copolymers containing vinylamine units can optionally contain up to 20 mol% of amidine units which are formed, for example, by reaction of formic acid with two adjacent amino groups or by intramolecular reaction of an amino group with a neighboring amide group, for example of polymerized N-vinylformamide.
  • the moimass M w of the polymers containing vinylamine units is, for example, 500 to 10 million, preferably 1000 to 5 million (determined by light scattering). This molar mass range corresponds, for example, to K values of 5 to 300, preferably 10 to 250 (determined according to H. Fikentscher in 5% aqueous sodium chloride solution at 25 ° C. and a polymer concentration of 0.5% by weight).
  • the polymers containing vinylamine units are preferably used in salt-free form.
  • Salt-free aqueous solutions of polymers containing vinylamine units can be prepared, for example, from the salt-containing polymer solutions described above with the aid of ultrafiltration on suitable membranes at separation limits of, for example, 1000 to 500,000 daltons, preferably 10,000 to 300,000 daltons.
  • the aqueous solutions of other polymers containing amino and / or ammonium groups described below can also be obtained with the aid of ultrafiltration in a salt-free form.
  • Derivatives of polymers containing vinylamine units can also be used as cationic polymers.
  • suitable derivatives from the polymers containing vinylamine units by amidation, alkylation, sulfonamide formation, urea formation, thiourea formation, carbamate formation, acylation, carboxymethylation, phosphonomethylation or Michael addition of the amino groups of the polymer.
  • the polymers containing vinylamine units also include hydrolyzed graft polymers of, for example, N-vinylformamide on polyalkylene glycols, polyvinyl acetate, polyvinyl alcohol, polyvinylformamides, polysaccharides such as starch, oligosaccharides or monosaccharides.
  • the graft polymers can be obtained by free-radically polymerizing, for example, N-vinylformamide in an aqueous medium in the presence of at least one of the graft bases mentioned, together with copolymerizable other monomers, and then hydrolyzing the grafted vinylformamide units to vinylamine units in a known manner.
  • Polymers of dialkylaminoalkyl (meth) acrylamides are also suitable as cationic polymers.
  • Suitable monomers for the production of such polymers are, for example, dimethylaminoethyl acrylamide, dimethylaminoethyl methacrylamide, dimethylaminopropylacrylamide, dimethylaminopropyl methacrylamide, diethylaminoethyl acrylamide, diethylaminoethyl methacrylamide and diethylaminopropyl acrylamide.
  • These monomers can be used in the polymerization in the form of the free bases, the salts with inorganic or organic acids or in quaternized form.
  • the polymers can be radically polymerized to give homopolymers or together with other copolymerizable monomers to give copolymers.
  • the polymers contain, for example, at least 30 mol%, preferably at least 70 mol%, of the basic monomers mentioned in copolymerized form.
  • polyethyleneimines which can be prepared, for example, by polymerizing ethyleneimine in aqueous solution in the presence of acid-releasing compounds, acids or Lewis acids as a catalyst.
  • Polyethyleneimines for example, have molecular weights of up to 2 million, preferably from 200 to 1,000,000. Polyethyleneimines with molecular weights of 500 to 750,000 are particularly preferably used.
  • the polyethyleneimines can optionally be modified, for example alkoxylated, alkylated or amidated. They can also be subjected to Michael addition or plug synthesis.
  • the derivatives of polyethyleneimines obtainable here are also suitable as cationic polymers.
  • Polyamidoamines grafted with ethyleneimine are also suitable, which can be obtained, for example, by condensing dicarboxylic acids with polyamines and subsequently grafting ethyleneimine.
  • Suitable polyamidoamines are obtained, for example, by reacting dicarboxylic acids with 4 to 10 carbon atoms with polyalkylene polyamines which contain 3 to 10 basic nitrogen atoms in the molecule.
  • dicarboxylic acids are succinic acid, maleic acid, adipic acid, glutaric acid, suberic acid, sebacic acid or terephthalic acid. Mixtures of dicarboxylic acids can also be used in the preparation of the polyamidoamines, as can mixtures of several polyalkylene polyamines.
  • Suitable polyalkylene polyamines are, for example, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylenetriamine, tripropylenetetramine, dihexamethylenetriamine, aminopropylethylenediamine and bis-aminopropylethylenediamine.
  • the dicarboxylic acids and polyalkylene polyamines are heated to higher temperatures, for example to temperatures in the range from 120 to 220, preferably 130 to 180 ° C.
  • the water generated during the condensation is removed from the system. Lactones or lactams of carboxylic acids having 4 to 8 carbon atoms can optionally also be used in the condensation.
  • 0.8 to 1.4 moles of a polyalkylene polyamine are used per mole of a dicarboxylic acid.
  • These polyamidoamines are grafted with ethyleneimine.
  • the grafting reaction is carried out, for example, in the presence of acids or Lewis acids such as sulfuric acid or boron trifluoride etherates at temperatures of, for example, 80 to 100.degree.
  • acids or Lewis acids such as sulfuric acid or boron trifluoride etherates at temperatures of, for example, 80 to 100.degree.
  • Compounds of this type are described for example in DE-B-24 34 816.
  • the optionally crosslinked polyamidoamines which may have been additionally grafted with ethyleneimine before crosslinking, are also suitable as cationic polymers.
  • the crosslinked polyamidoamines grafted with ethyleneimine are water-soluble and have, for example, an average molecular weight M w of 3000 to 2 million daltons.
  • Typical crosslinkers are, for example, epichlorohydrin or bischlorohydrin ethers of alkylene glycols and polyalkylene glycols.
  • Polyallylamines are also suitable as cationic polymers. Polymers of this type are obtained by homopolymerizing allylamine, preferably in a form neutralized with acids, or by copolymerizing allylamine with other monoethylenically unsaturated monomers described above as comonomers for N-vinylcarboxamides.
  • water-soluble crosslinked polyethyleneimines which are obtainable by reacting polyethyleneimines with crosslinkers such as epichlorohydrin or bischlorohydrin ethers of polyalkylene glycols having 2 to 100 ethylene oxide and / or propylene oxide units and still have free primary and / or secondary amino groups.
  • Amidic polyethyleneimines which are obtainable, for example, by amidating polyethyleneimines with d- to ds-monocarboxylic acids are also suitable.
  • Other suitable cationic polymers are alkylated polyethyleneimines and alkoxylated polyethyleneimines. In alkoxylation, 1 to 5 ethylene oxide or propylene oxide units are used, for example, per NH unit in polyethyleneimine.
  • the above-mentioned cationic polymers have e.g. K values from 8 to 300, preferably 15 to 180 (determined according to H. Fikentscher in 5% aqueous saline solution at 25% and a polymer concentration of 0.5% by weight). At a pH of 4.5, for example, they have a charge density of at least 1, preferably at least 4 meq / g polyelectrolyte.
  • Cationic polymers which are preferred are polymers containing vinylamine units and polyethyleneimines. Examples for this are:
  • Vinylamine homopolymers 10 to 100% hydrolyzed polyvinylformamides, partially or completely hydrolyzed copolymers of vinylformamide and vinyl acetate, vinyl alcohol, vinylpyrrolidone or acrylamide, each with molecular weights from 3,000 to 2,000,000 and
  • Polyethyleneimines crosslinked polyethyleneimines or amidated polyethyleneimines, each of which has a molecular weight of 500 to 3,000,000.
  • the polymer content of the aqueous solution is, for example, 1 to 60, preferably 2 to 15 and usually 5 to 10% by weight.
  • Cardboard is usually produced by dewatering a slurry of cellulose fibers.
  • the use of kraft pulp is preferred.
  • the use of TMP and CTMP is also of particular interest.
  • the pH of the cellulose fiber slurry is, for example, 4 to 8, preferably 6 to 8.
  • the paper stock can be dewatered discontinuously or continuously on a paper machine.
  • the order of addition of cationic polymer, bulk sizing agent and retention agent can be chosen arbitrarily.
  • the retention agent and then the cationic polymer preferably polyvinylamine, and then at least one reactive sizing agent such as alkyl ketene dimer, alkyl or alkenyl succinic anhydride in combination with an aluminum compound or a mixture of these sizing agents and a polymer sizing agent are added to the aqueous cellulose fiber slurry added.
  • at least one polymer sizing agent is metered in first, then the retention agent and finally the cationic polymer.
  • other auxiliaries which are usually suitable can also be used, for example fixing agents, dyes, bactericides and dry and / or wet strength agents for paper.
  • a cardboard which is sized in mass and has a basis weight of 80 to 400 g / m 2 , preferably 120 to 220 g / m 2, is obtained .
  • the box is coated on one or both sides with a film made of plastic or metal such as aluminum.
  • Suitable plastic films can be made from polyethylene, polypropylene, polyamide or polyester.
  • the foils can be bonded to the glued paper products using an adhesive.
  • films are usually used, which are coated with an adhesive, and the composite is pressed.
  • the films can also be processed directly by the action of heat and pressure with the cardboard to form a composite, from which the suitable structures for the production of the packaging for liquids are then cut out.
  • the packaging is preferably used in the food sector, e.g. for packaging drinks such as mineral water, juices or milk or for the production of drinking vessels such as cups.
  • the percentages in the examples mean percentages by weight.
  • the K values were determined according to H. Fikentscher, Cellulose-Chemie, Vol. 13, 58-64 and 71-74 (1932) in 5% aqueous saline solution at a temperature of 25 ° C. and a pH of 7 determined at a polymer concentration of 0.5 wt .-%.
  • the molecular weights Mw of the polymers were measured by light scattering. Examples
  • the cardboard produced is laminated on both sides with an adhesive tape made of polyethylene. The thickness of the cardboard is then determined. Test strips of size 25 x 75 mm are then cut from the box and weighed in each case. In order to determine the edge penetration, the test strips are immersed in a bath containing a 30% hydrogen peroxide solution heated to 70 ° C. The test strips are removed from the bath after a dwell time of 10 minutes. Excess hydrogen peroxide is absorbed with filter paper. The test strips are weighed again. The edge penetration in kg / m 2 is then calculated from the weight increase.
  • the ink floating time (measured in minutes) is the time it takes a test ink according to DIN 53126 to reach 50% through a test sheet.
  • Determination was carried out in accordance with DIN 53 132 by storing the paper sheets in water for a period of 60 seconds.
  • the water absorption is given in g / m 2 .
  • Polymer sizing agent A Basoplast® 250D (aqueous dispersion of a copolymer, produced by emulsion polymerization of acrylonitrile and n-butyl acrylate in Presence of degraded cationic starch as an emulsifier and hydrogen peroxide as an initiator).
  • Polymer sizing agent B Basoplast® 265D (aqueous dispersion of a copolymer, produced by emulsion polymerization of styrene and n-butyl acrylate in the presence of degraded cationic starch as emulsifier and hydrogen peroxide as initiator).
  • Polymer sizing agent C Basoplast® PR8172 (aqueous dispersion of a copolymer, produced by emulsion polymerization of styrene and n-butyl acrylate in the presence of cationic starch as emulsifier and hydrogen peroxide as initiator).
  • the leaves were then dried on a steam-heated drying cylinder at a temperature of 90 ° C to a water content of 6-10%. After drying, the Cobb value of the leaves was determined.
  • the sheets were then laminated on both sides with an adhesive tape made of polyethylene with a density of 0.918 g / cm 3 (heating the composite under pressure to 30 ° C.). The edge penetration of the three-layer composite was then determined. The results are shown in Table 3.
  • the leaves were then dried on a steam-heated drying cylinder at a temperature of 90 ° C to a water content of 6-10%. After drying, the Cobb value of the leaves was determined.
  • the sheets were then glued on both sides with an adhesive tape made of polyethylene (pressing the composite under pressure). The edge penetration of the three-layer composite against hydrogen peroxide was then determined. The results are shown in Table 3.

Landscapes

  • Paper (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Abstract

The invention relates to a packaging material consisting of an at least double-layered composite comprising paper or cardboard which is glued into the mass by means of a polymer gluing agent and at least one film which is impermeable to water, for producing containers for packing liquids. The invention also relates to the use of paper products for producing containers for packing liquids, especially drinks, said paper products being respectively obtained by (i) gluing a paper material consisting of an aqueous suspension of cellulose fibres into the mass by means of at least one polymer gluing agent or a polymer gluing agent and an aqueous dispersion of an alkyl ketene dimer or the mixtures thereof in the presence of a retention agent and optionally a water-soluble aluminium compound and optionally at least one cationic polymer, (ii) the paper material is drained on the wire of a paper machine, (iii) the paper product is dried, and (iv) the paper product is laminated on one or both sides with a plastic or metal film.

Description

Verpackungsmaterial aus einem mindestens zweischichtigen Verbundmaterial zur Herstellung von Behältern für die Verpackungen von FlüssigkeitenPackaging material from an at least two-layer composite material for the production of containers for packaging liquids
Beschreibungdescription
Die Erfindung betrifft ein Verpackungsmaterial aus einem mindestens zweischichtigen Verbund aus geleimtem Papier oder geleimtem Karton und mindestens einer wasserundurchlässigen Folie für die Verpackung von Flüssigkeiten und die Verwendung von Papierprodukten, die in der Masse geleimt und die ein- oder beidseitig mit einer Folie aus einem Kunststoff oder Metall laminiert sind, zur Herstellung von Behältern für die Verpackung von Flüssigkeiten, insbesondere von Getränken.The invention relates to a packaging material made of an at least two-layer composite of glued paper or glued cardboard and at least one water-impermeable film for the packaging of liquids and the use of paper products which are glued in bulk and which are coated on one or both sides with a film made of plastic or Metal are laminated for the production of containers for the packaging of liquids, in particular beverages.
Aus der EP-B-0 292 975 ist die Verwendung einer Emulsion eines Alkylketendimeren in Kombination mit einem kationischen Harzleim und einem unlöslichmachenden Mittel wie Alaun, zur Herstellung von Karton für die Verpackung von Flüssigkeiten bekannt. Die Herstellung des Kartons erfolgt dabei durch Zugabe von Leimungsmittel und von Alaun zu einer wässrigen Aufschlämmung von Cellulosefasern und Entwässern des Papierstoffs auf einem Sieb.EP-B-0 292 975 discloses the use of an emulsion of an alkyl ketene dimer in combination with a cationic resin size and an insolubilizing agent such as alum for the production of cardboard for the packaging of liquids. The cardboard is produced by adding sizing agents and alum to an aqueous slurry of cellulose fibers and dewatering the paper stock on a sieve.
Aus der EP-A-1 091 043 ist ein Verfahren zur Herstellung eines beschichteten Verpackungskartons bekannt, wobei man eine wässrige Aufschlämmung von Cellulosefasern in der Masse mit einer wässrigen Dispersion eines Harzleims, eines synthetischen Leimungsmittels wie Alkylketendimer und mindestens einer Aluminiumverbindung leimt und die wässrige Aufschlämmung auf einem Sieb entwässert. Die wässrigen Dispersi- onen der Masseleimungsmittel können gegebenenfalls ein Dispergiermittel enthalten, z.B. kationische Stärke, Kasein, Cellulosederivate, Polyvinylalkohole, Polyacrylamide oder Polyethylenimine. Der Karton wird üblicherweise im Anschluß an die Leimung beschichtet.EP-A-1 091 043 discloses a process for producing a coated packaging carton, in which an aqueous slurry of cellulose fibers is glued in bulk with an aqueous dispersion of a resin glue, a synthetic sizing agent such as alkyl ketene dimer and at least one aluminum compound, and the aqueous slurry drained on a sieve. The aqueous dispersions of bulk sizing agents may optionally contain a dispersing agent, e.g. cationic starch, casein, cellulose derivatives, polyvinyl alcohols, polyacrylamides or polyethyleneimines. The cardboard is usually coated after the sizing.
Beidseitig mit einer flüssigkeitsundurchlässigen Schicht laminierte Papierprodukte für die Verpackung von Lebensmitteln sind aus der WO-A-02/090206 bekannt. Die Papierprodukte sind in der Masse mit wässrigen Dispersionen von Alkylketendimeren geleimt. Die Menge an Alkylketendimeren beträgt mindestens 0,25 Gew.-%, vorzugsweise 0,25 - 0,4 Gew.-%, bezogen auf das Gewicht der trockenen Papierprodukte.Paper products for packaging foodstuffs laminated on both sides with a liquid-impermeable layer are known from WO-A-02/090206. The paper products are glued in bulk with aqueous dispersions of alkyl ketene dimers. The amount of alkyl ketene dimers is at least 0.25% by weight, preferably 0.25-0.4% by weight, based on the weight of the dry paper products.
Weitere mehrschichtige Verpackungsmaterialien, deren Basis-Schicht aus Papier oder Karton besteht, werden beispielsweise in WO-A-97/02140, WO-A-97/02181 und WO- A-98/18680 beschrieben.Further multilayer packaging materials, the base layer of which consists of paper or cardboard, are described, for example, in WO-A-97/02140, WO-A-97/02181 and WO-A-98/18680.
Aus dem Stand der Technik ist außerdem bekannt, Leimungsmittelmischungen aus wässrigen Dispersionen von Alkylketendimeren und Polymerleimungsmitteln zur Mas- seleimung von Papier und Karton zu verwenden, vgl. DE-A-32 35 529, WO-A-94/05855 und WO-A-96/31650.It is also known from the prior art to use sizing agent mixtures from aqueous dispersions of alkyl ketene dimers and polymer sizing agents for mass to use gluing of paper and cardboard, cf. DE-A-32 35 529, WO-A-94/05855 and WO-A-96/31650.
Aus der älteren DE-Anmeldung 10237913.0 ist ein Verfahren zur Herstellung von Kar- ton für die Verpackung von Flüssigkeiten bekannt. Der Karton wird bei diesem Verfahren durch Masseleimung einer wässrigen Aufschlämmung von Cellulosefasern mit mindestens einem Masseleimungsmittel in Gegenwart mindestens eines Retentions- mittels und mindestens eines kationischen Polymeren und gegebenenfalls einer wasserlöslichen Aluminiumverbindung und Entwässern des Papierstoffs auf einem Sieb hergestellt. Als Leimungsmittel werden Alkylketendimere, Alkyl- und Alkenylbernstein- säureanhydride, Alkylisocyanate, Kombinationen aus Harzleim und Alaun sowie Kombinationen aus Umsetzungsprodukten von Harzleim mit Carbonsäureanhydriden und Alaun beschrieben.A process for the production of cardboard for packaging liquids is known from the older DE application 10237913.0. In this process, the cardboard is produced by mass sizing an aqueous slurry of cellulose fibers with at least one mass sizing agent in the presence of at least one retention agent and at least one cationic polymer and optionally a water-soluble aluminum compound and dewatering the paper stock on a sieve. Sizing agents are alkyl ketene dimers, alkyl and alkenyl succinic anhydrides, alkyl isocyanates, combinations of resin glue and alum and combinations of reaction products of resin glue with carboxylic acid anhydrides and alum.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, weitere Verpackungsmateria- len auf Basis von Papierprodukten zur Verfügung zu stellen, wobei die Verpackungen insbesondere eine verbesserte Kantenpenetration und eine verbesserte Haftung der Laminate auf Papier oder Karton aufweisen sollen.The object of the present invention is to provide further packaging materials based on paper products, the packaging in particular being to have improved edge penetration and improved adhesion of the laminates to paper or cardboard.
Die Aufgabe wird erfindungsgemäß gelöst mit einem Verpackungsmaterial aus einem mindestens zweischichtigen Verbund aus geleimtem Papier oder geleimtem Karton und mindestens einer wasserundurchlässigen Folie zur Herstellung von Behältern für die Verpackung von Flüssigkeiten, wenn das Papier oder der Karton jeweils in der Masse mit einem Polymerleimungsmittel geleimt ist.The object is achieved according to the invention with a packaging material made of an at least two-layer composite of sized paper or sized cardboard and at least one water-impermeable film for the production of containers for the packaging of liquids if the paper or the box is sized in the mass with a polymer sizing agent.
Gegenstand der Erfindung ist außerdem die Verwendung von Papierprodukten, die jeweils erhältlich sind durchThe invention also relates to the use of paper products which are each obtainable from
Masseleimung eines Papierstoffs aus einer wässrigen Aufschlämmung von Cellulose- fasern mit mindestens einem Polymerleimungsmittel als Masseleimungsmittel oder mit einem Polymerleimungsmittel und einer wässrigen Dispersion eines Alkylketendimeren oder deren Mischungen in Gegenwart eines Retentionsmittels und gegebenenfalls einer wasserlöslichen Aluminiumverbindung und gegebenenfalls mindestens eines kationischen Polymeren, Entwässern des Papierstoffs auf dem Sieb einer Papiermaschine, Trocknen des Papierprodukts und ein- oder beidseitiges Laminieren des Papierprodukts mit einer Folie aus einem Kunststoff oder Metall, zur Herstellung von Behältern für die Verpackung von Flüssigkeiten, insbesondere von Getränken. Für die Herstellung von geleimtem Papier oder geleimtem Karton kann man sämtliche, überlicherweise in der Papierindustrie verwendeten Cellulosefasern einsetzen, z.B. Fasern aus Holzstoff und allen Einjahrespflanzen. Unter Holzstoff versteht man bei- spielsweise Holzschliff, thermomechanischen Stoff (TMP), chemothermomechanischen Stoff (CTMP), Druckschliff, Halbzellstoff, Hochausbeutezellstoff, Refiner Mechanical Pulp (RMP) und Altpapier. Außerdem eignen sich Zellstoffe, die in gebleichter oder in ungebleichter Form verwendet werden können. Beispiele hierfür sind Sulfat-, Sulfit- und Natronzellstoffe. Vorzugsweise verwendet man ungebleichte Zellstoffe, die auch als ungebleichter Kraftzellstoff bezeichnet werden. Die Faserstoffe können allein oder in Mischung untereinander eingesetzt werden.Bulk sizing of a paper stock from an aqueous slurry of cellulose fibers with at least one polymer sizing agent as bulk sizing agent or with a polymer sizing agent and an aqueous dispersion of an alkyl ketene dimer or mixtures thereof in the presence of a retention aid and optionally a water-soluble aluminum compound and optionally at least one cationic polymer, dewatering the paper stock the sieve of a paper machine, drying the paper product and laminating the paper product on one or both sides with a film made of a plastic or metal, for the production of containers for the packaging of liquids, in particular beverages. For the production of glued paper or glued cardboard all cellulose fibers commonly used in the paper industry can be used, for example fibers made from wood pulp and all annual plants. Wood pulp is understood to mean, for example, wood pulp, thermomechanical pulp (TMP), chemothermomechanical pulp (CTMP), pressure grinding, semi-pulp, high-yield pulp, refiner mechanical pulp (RMP) and waste paper. Also suitable are pulps that can be used in bleached or unbleached form. Examples of these are sulfate, sulfite and sodium pulps. Unbleached pulps, which are also referred to as unbleached kraft pulp, are preferably used. The fibrous materials can be used alone or as a mixture with one another.
Bei der Masseleimung von Papier oder Karton erfolgt die Leimung während des Herstellungsprozesses dieser Materialien, indem man zum Papierstoff ein sogenanntes Masseleimungsmittel zusetzt und ihn auf dem Sieb einer Papiermaschine unter Blattbildung entwässert. Erfindungsgemäß wird als Masseleimungsmittel ein Polymerleimungsmittel aus synthetischen Polymeren verwendet. Bei den aus der JP-A-58/115 196 bekannten Polymerleimungsmitteln handelt es sich um wässrige Polymerdispersionen, die ein Leimungsmittel für Papier sind und gleichzeitig die Festigkeit von Papier erhöhen. Diese Dispersionen werden durch Polymerisieren von beispielsweise Styrol und Alkylacrylaten in Gegenwart von Stärke und Radikale bildenden Polymerisationsinitiatoren in wässrigem Medium hergestellt. Die jeweils verwendete Stärke wird vor der Polymerisation aufgeschlossen oder auch abgebaut, so daß sie in Wasser löslich ist. Die Polymeren dieser Dispersionen sind Pfropfpolymerisate von Styrol und Alkylacryla- ten auf Stärke bzw. modifizierter Stärke.In the case of mass sizing of paper or cardboard, sizing takes place during the manufacturing process of these materials by adding a so-called mass sizing agent to the paper stock and dewatering it on the sieve of a paper machine with sheet formation. According to the invention, a polymer sizing agent made from synthetic polymers is used as the mass sizing agent. The polymer sizing agents known from JP-A-58/115 196 are aqueous polymer dispersions which are a sizing agent for paper and at the same time increase the strength of paper. These dispersions are prepared by polymerizing, for example, styrene and alkyl acrylates in the presence of starch and radical-forming polymerization initiators in an aqueous medium. The starch used in each case is broken down or broken down before the polymerization, so that it is soluble in water. The polymers of these dispersions are graft polymers of styrene and alkyl acrylates on starch or modified starch.
Weitere Polymerleimungsmittel sind aus der EP-B-0257412 und der EP-B-0267770 bekannt. Sie werden durch Copolymerisieren von Acrylnitril und/oder Methacrylnitril und mindestens einem Acrylsäureester eines einwertigen, gesättigten C3- bis C8- Alkohols nach Art einer Emulsionspolymerisation in einer wässrigen Lösung, die eine abgebaute Stärke enthält, in Gegenwart von Radikale bildenden Initiatoren, vorzugsweise Wasserstoffperoxid oder Redoxinitiatoren, hergestellt. Die abgebauten Stärken haben Viskositäten /7,-von 0,04 bis 0,50 dl/g. Solche Stärken werden beispielsweise bei einem oxidativen, thermischen, azidolytischen oder einem enzymatischen Abbau einer nativen, kationisch oder anionisch modifizierten Stärke erhalten. Mit Vorteil werden native Stärken aus Kartoffeln, Weizen, Mais. Reis oder Tapioka eingesetzt. Bevorzugt wird eine enzymatisch abgebaute Kartoffelstärke. Die abgebauten Stärken wirken als Emulgatoren bei der Copolymerisation von beispielsweise Styrol und n-Butylacrylat in wässrigem Medium. Die wässrige Lösung, in der die Copolymerisation durchgeführt wird, enthält beispielsweise 1 bis 25 Gew.-% mindestens einer abgebauten Stärke. In 100 Gew.-Teilen einer solchen Lösung polymerisiert man beispielsweise 10 bis 150, vorzugsweise 40 bis 100 Gew.-Teile der obengenannten Monomeren. Anstelle von Acrylnitril und/oder Methacrylnitril kann auch Styrol bei der Copolymerisation eingesetzt werden, vgl. WO-A-94/05855. Man erhält wässrige Dispersionen von Copolymeren mit einem mittleren Teilchendurchmesser von beispielsweise 50 bis 500nm, vorzugsweise 100 bis 300 nm. Bei diesen Polymerdispersionen handelt es sich vermutlich um Pfropfpolymerisate der jeweils eingesetzten Monomeren auf abgebauter Stärke.Further polymer sizing agents are known from EP-B-0257412 and EP-B-0267770. They are obtained by copolymerizing acrylonitrile and / or methacrylonitrile and at least one acrylic acid ester of a monohydric, saturated C 3 to C 8 alcohol in the manner of an emulsion polymerization in an aqueous solution which contains a degraded starch, in the presence of free radical initiators, preferably hydrogen peroxide or redox initiators. The degraded starches have viscosities / 7, from 0.04 to 0.50 dl / g. Such starches are obtained, for example, in the case of oxidative, thermal, acidolytic or enzymatic degradation of a native, cationically or anionically modified starch. Native starches from potatoes, wheat, corn are advantageous. Rice or tapioca used. An enzymatically degraded potato starch is preferred. The degraded starches act as emulsifiers in the copolymerization of, for example, styrene and n-butyl acrylate in an aqueous medium. The aqueous solution in which the copolymerization is carried out contains, for example, 1 to 25% by weight of at least one degraded starch. In 100 parts by weight of such a solution is polymerized, for example, 10 to 150, preferably 40 to 100 parts by weight of the above monomers. Instead of acrylonitrile and / or methacrylonitrile, styrene can also be used in the copolymerization, cf. WO-A-94 / 05,855th Aqueous dispersions of copolymers with an average particle diameter of, for example, 50 to 500 nm, preferably 100 to 300 nm, are obtained. These polymer dispersions are presumably graft polymers of the monomers used in each case on degraded starch.
Weitere Polymerleimungsmittel auf Basis von Copolymerisaten von Styrol und C3- bis C8-AIkyl(meth)acrylaten sind aus der WO 02/14393 bekannt. Sie werden durch Copo- lymerisieren der genannten Monomeren in wässrigem Medium in Gegenwart von abgebauter Stärke und Radikale bildenden Polymerisationsinitiatoren nach einem zweistufigen Verfahren hergestellt.Further polymer sizing agents based on copolymers of styrene and C 3 -C 8 -alkyl (meth) acrylates are known from WO 02/14393. They are prepared by copolymerizing the monomers mentioned in an aqueous medium in the presence of degraded starch and radical-forming polymerization initiators using a two-stage process.
Als Polymerleimungsmittel kommen auch solche wässrigen Polymerdispersionen in Betracht, die in Gegenwart von synthetischen polymeren Schutzkolloiden herstellbar sind. Sie sind beispielsweise erhältlich durch Copolymerisieren von 2 bis 32 Teilen einer Mischung ausAqueous polymer dispersions which can be prepared in the presence of synthetic polymeric protective colloids are also suitable as polymer sizing agents. They can be obtained, for example, by copolymerizing 2 to 32 parts of a mixture of
(a) Styrol, Acrylnitril und/oder Methacrylnitril,(a) styrene, acrylonitrile and / or methacrylonitrile,
(b) Acrylsäure- und/oder Methacrylsäureester von d- bis C18-Alkoholen und/oder Vinylester von gesättigtem C2- bis C4-Carbonsäuren und ggf.(b) acrylic acid and / or methacrylic acid esters of d to C 18 alcohols and / or vinyl esters of saturated C 2 to C 4 carboxylic acids and optionally
(c) anderen monoethylenisch ungesättigten copolymerisierbaren Monomeren(c) other monoethylenically unsaturated copolymerizable monomers
in wäßriger Lösung in Gegenwart von 1 Gew. -Teil eines Lösungscopolymerisats ausin aqueous solution in the presence of 1 part by weight of a solution copolymer
(1 ) Di-C-i- bis C -Alkylamino-C2- bis C4-Alkyl(meth)acrylaten, die ggf. protoniert oder quatemiert sein können,(1) di-Ci to C-alkylamino-C 2 to C 4 -alkyl (meth) acrylates, which can optionally be protonated or quaternized,
(2) nichtionischen, hydrophoben, ethylenisch ungesättigten Monomeren, bei diesen Monomeren, wenn sie für sich alleine polymerisiert werden, hydrophobe Polymerisate bilden und ggf.(2) nonionic, hydrophobic, ethylenically unsaturated monomers, in the case of these monomers, if they are polymerized on their own, form hydrophobic polymers and, if appropriate,
(3) monoethylenisch ungesättigten C3- bis C5-Carbonsäuren oder ihren Anhydriden, wobei das Molverhältnis von (1 ) : (2) : (3) = 1 : 2,5 bis 10 : 0 bis 1 ,5 beträgt, co- polymerisiert. Man stellt zunächst ein Lösungscopolymerisat her, in dem man die Monomeren der Gruppen (1) und (2) sowie ggf. (3) in einem mit Wasser mischbaren organischen Lösemittel copolymerisiert. Geeignete Lösemittel sind beispielsweise C bis C3- Carbonsäuren, wie Ameisensäure, Essigsäure und Propionsäure oder C bis C - Alkohole, wie Methanol, Ethanol, n-Propanol oder Isopropanol und Ketone wie Aceton. Als Monomere der Gruppe (1) verwendet man vorzugsweise Dimethylaminoethylacry- lat, Dimethylaminoethylmethacrylat, Dimethylaminopropylmethacrylat und Dimethyla- minopropylacrylat. Die Monomeren der Gruppe (1) werden vorzugsweise in protonier- ter oder in quaternierter Form eingesetzt. Geeignete Quaternierungsmittel sind bei- spielsweise Methylchlorid, Dimethyisulfat oder Benzylchlorid.(3) monoethylenically unsaturated C 3 to C 5 carboxylic acids or their anhydrides, the molar ratio of (1): (2): (3) = 1: 2.5 to 10: 0 to 1.5 being co- polymerized. A solution copolymer is first prepared by copolymerizing the monomers of groups (1) and (2) and, if appropriate, (3) in a water-miscible organic solvent. Suitable solvents are, for example, C to C 3 carboxylic acids, such as formic acid, acetic acid and propionic acid, or C to C alcohols, such as methanol, ethanol, n-propanol or isopropanol, and ketones such as acetone. The group (1) monomers used are preferably dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, dimethylaminopropyl methacrylate and dimethylaminopropyl acrylate. The monomers of group (1) are preferably used in protonated or quaternized form. Suitable quaternizing agents are, for example, methyl chloride, dimethyl sulfate or benzyl chloride.
Als Monomere der Gruppe (2) verwendet man nichtionische, hydrophobe, ethylenisch ungesättigte Verbindungen, die, wenn sie für sich allein polymerisiert werden, hydrophobe Polymerisate bilden. Hierzu gehören beispielsweise Styrol, Methylstyrol, C bis Cis-Alkylester von Acrylsäure oder Methacrylsäure, beispielsweise Methylacrylat, Ethy- lacrylat, n-Propylacrylat, Isopropylacrylat, n-Butylacrylat, tert.Butylacrylat und Isobuty- lacrylat sowie Isobutylmethacrylat, n-Butylmethacrylat und tert.Butylmethacrylat. Außerdem eignen sich Acrylnitril, Methacrylnitril, Vinylacetat, Vinylpropionat und Vinylbu- tyrat. Man kann auch Mischungen der Monomeren der Gruppe 2 bei der Copolymerisa- tion einsetzen, z.B. Mischungen aus Styrol und Isobutylacrylat. Die als Emulgator dienenden Lösungscopolymerisate können ggf. noch Monomeren der Gruppe (3) einpo- lymerisiert enthalten, z.B. monoethylenisch ungesättigte C3- bis C5-Carbonsäuren oder ihre Anhydride, z.B. Acrylsäure, Methacrylsäure, Itakonsäure, Maleinsäure, Maleinsäureanhydrid oder Itaconsäureanhydrid. Das Molverhältnis von (1 ) : (2) : (3) beträgt 1 : 2,5 bis 10 : 0 bis 1 ,5. Die so erhaltenen Copolymerisatlösungen werden mit Wasser verdünnt und dienen in dieser Form als Schutzkolloid für die Polymerisation der obenangegebenen Monomermischungen aus den Komponenten (a) und (b) und ggf. (c). Als Monomere der Gruppe (a) kommen Styrol, Acrylnitril, Methacrylnitril oder Mischungen aus Styrol und Acrylnitril oder aus Styrol und Methacrylnitril in Betracht. Als Monomere der Gruppe (b) verwendet man Acrylsäure- und/oder Methacrylsäureester von d- bis C18-Alkoholen und/oder Vinylester von gesättigten C2- bis C4-Carbonsäuren. Diese Gruppe von Monomeren entspricht den Monomeren der Gruppe (2), die oben bereits beschrieben wurde. Vorzugsweise verwendet man als Monomer der Gruppe (b) Acryl- säurebutylester und Methacrylsäurebutylester, z.B. Acrylsäureisobutylacrylat, Acrylsäu- re-n-butylacrylat und Methacrylsäureisobutylacrylat. Monomere der Gruppe (c) sind beispielsweise C3- bis C5-monoethylenisch ungesättigte Carbonsäuren, Acrylamido- methylpropansulfonsäure, Natriumvinylsulfonat, Vinylimidazol, N-Vinylformamid, Acry- lamid, Methacrylamid und N-Vinylimidazolin. Pro 1 Gew.-Teil des Copolymerisates verwendet man 1 bis 32 Gew.-Teile einer Monomermischung aus den Komponen- ten (a) bis (c). Die Monomeren der Komponenten (a) und (b) können dabei in einem beliebigen Verhältnis copolymerisiert werden, z.B. im Molverhältnis 0,1 : 1 bis 1 : 0,1.The group (2) monomers used are nonionic, hydrophobic, ethylenically unsaturated compounds which, when polymerized on their own, form hydrophobic polymers. These include, for example, styrene, methylstyrene, C to Cis-alkyl esters of acrylic acid or methacrylic acid, for example methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, tert-butyl acrylate and isobutyl acrylate as well as isobutyl methacrylate, n-butyl methacrylate and tert. butyl methacrylate. Acrylonitrile, methacrylonitrile, vinyl acetate, vinyl propionate and vinyl butyrate are also suitable. Mixtures of the group 2 monomers can also be used in the copolymerization, for example mixtures of styrene and isobutyl acrylate. The solution copolymers used as emulsifiers may optionally also contain monomers of group (3) in copolymerized form, for example monoethylenically unsaturated C 3 -C 5 -carboxylic acids or their anhydrides, for example acrylic acid, methacrylic acid, itaconic acid, maleic acid, maleic anhydride or itaconic anhydride. The molar ratio of (1): (2): (3) is 1: 2.5 to 10: 0 to 1.5. The copolymer solutions thus obtained are diluted with water and, in this form, serve as a protective colloid for the polymerization of the above-mentioned monomer mixtures of components (a) and (b) and, if appropriate, (c). Monomers of group (a) are styrene, acrylonitrile, methacrylonitrile or mixtures of styrene and acrylonitrile or of styrene and methacrylonitrile. The monomers of group (b) used are acrylic acid and / or methacrylic acid esters of d to C 18 alcohols and / or vinyl esters of saturated C 2 to C 4 carboxylic acids. This group of monomers corresponds to the monomers of group (2), which has already been described above. Preferably used as the monomer of group (b) are acrylic acid butyl ester and methacrylic acid butyl ester, for example acrylic acid isobutyl acrylate, acrylic acid n-butyl acrylate and methacrylic acid isobutyl acrylate. Monomers of group (c) are, for example, C 3 -C 5 -monoethylenically unsaturated carboxylic acids, acrylamido-methylpropanesulfonic acid, sodium vinyl sulfonate, vinyl imidazole, N-vinyl formamide, acrylic amide, methacrylamide and N-vinyl imidazoline. 1 to 32 parts by weight of a monomer mixture of the components are used per 1 part by weight of the copolymer. ten (a) to (c). The monomers of components (a) and (b) can be copolymerized in any ratio, for example in the molar ratio 0.1: 1 to 1: 0.1.
Die Monomeren der Gruppe (c) werden im Bedarfsfalls zur Modifizierung der Eigen- schaffen der Copolymerisate verwendet.If necessary, the monomers of group (c) are used to modify the properties of the copolymers.
Leimungsmittel dieser Art werden beispielsweise beschrieben in EP-B-0 051 144, EP- B-0 058313 und EP-B-0 150 003.Sizing agents of this type are described, for example, in EP-B-0 051 144, EP-B-0 058313 and EP-B-0 150 003.
Als Polymerleimungsmittel verwendet man vorzugsweise wässrige Polymerdispersionen, die durch Copolymerisieren vonAqueous polymer dispersions which are obtained by copolymerizing
20 bis 65 Gew.-% Styrol, Acrylnitril und/oder Methacrylnitril,20 to 65% by weight of styrene, acrylonitrile and / or methacrylonitrile,
80 bis 35 Gew.-% Acrylsäure- und/oder Methacrylsäureester von einwertigen gesättig- ten C3- bis C8- Alkoholen und80 to 35% by weight of acrylic acid and / or methacrylic acid esters of monovalent saturated C 3 to C 8 alcohols and
0 bis 20 Gew.-% anderen monoethylenisch ungesättigten copolymerisierbaren Monomeren wie Acrylamid, Methacrylamid, Vinylformamid, Acrylsäure, Methacrylsäure, Maleinsäure, Itaconsäure, 2-Acrylamido-2-methylpropansulfonsäure oder basischen Monomeren wie Dimethylaminoethylacrylat, Dimethylaminoethylmethacrylat, Dimethyla- minopropylacrylat oder Dimethylaminopropylmethacrylat, wobei die basischen Monomeren meistens als Hydrochloride oder in mit Methylchlorid, Dimeethylsulfat oder Ben- zylchlorid quatemierter Form eingesetzt werden,0 to 20% by weight of other monoethylenically unsaturated copolymerizable monomers such as acrylamide, methacrylamide, vinylformamide, acrylic acid, methacrylic acid, maleic acid, itaconic acid, 2-acrylamido-2-methylpropanesulfonic acid or basic monomers such as dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, dimethylaminopropyl acrylate or dimethylaminoethyl acrylate basic monomers are mostly used as hydrochlorides or in a form quaternized with methyl chloride, dimeethyl sulfate or benzyl chloride,
in Gegenwart von Radikale bildenden Initiatoren nach Art einer Emulsionspolymerisati- on in einer wässrigen Lösung einer abgebauten Stärke als Schutzkolloid erhältlich sind.are available as protective colloid in the presence of free radical initiators in the manner of an emulsion polymerization in an aqueous solution of a degraded starch.
Weiterhin verwendet man bevorzugt als Polymerleimungsmittel wässrige Polymerdispersionen, die durch Copolymerisieren vonFurthermore, aqueous polymer dispersions which are obtained by copolymerizing
60 bis 90 Gew.-% Styrol und/oder Methylstyrol,60 to 90% by weight of styrene and / or methylstyrene,
10 bis 40 Gew.-% Butadien-1 ,3 und/oder Isopren und10 to 40 wt .-% butadiene-1, 3 and / or isoprene and
0 bis 20 Gew.-% anderen monoethylenisch ungesättigten copolymerisierbaren Monomeren wie Acrylsäure, Methacrylsäure, Itaconsäure, Acrylamid, Methacrylamid oder N- Vinylpyrrolidon,0 to 20% by weight of other monoethylenically unsaturated copolymerizable monomers such as acrylic acid, methacrylic acid, itaconic acid, acrylamide, methacrylamide or N-vinylpyrrolidone,
in Gegenwart von Radikale bildenden Initiatoren nach Art einer Emulsionspolymerisation in einer wässrigen Lösung einer abgebauten Stärke als Schutzkolloid erhältlich sind. Die Polymerleimungsmittel sind vorzugsweise kationisch oder anionisch. Die Ladung der wässrigen Dispersionen beruht entweder auf der Art der in die Copolymeren einpo- lymerisierten Comonomeren, z.B. bei Verwendung von basischen Monomeren ist die Polymerleimungsmitteldispersion kationisch, während sie durch Einpolymerisieren von beispielsweise Acrylsäure oder ihrer Salze anionisch wird, oder aber auf der Ladung des jeweils verwendeten Schutzkolloids. So führt beispielsweise die Verwendung von kationischer Stärke als Emulgator zu kationisch eingestellten Polymerleimungsmittel- Dispersionen.are available as protective colloid in the presence of free radical initiators in the manner of an emulsion polymerization in an aqueous solution of a degraded starch. The polymer sizing agents are preferably cationic or anionic. The charge of the aqueous dispersions is based either on the type of comonomers polymerized into the copolymers, for example when using basic monomers Polymer sizing agent dispersion cationic, while it becomes anionic by copolymerizing, for example, acrylic acid or its salts, or on the charge of the protective colloid used in each case. For example, the use of cationic starch as an emulsifier leads to cationically adjusted polymer size dispersions.
Für die Masseleimung von Papier oder Karton setzt man beispielsweise 0,1 bis 2,0, vorzugsweise 0,2 bis 0,75 Gew.-% Polymerleimungsmittel (d.h. 100%iges Polymer), bezogen auf trockenes Papierprodukt ein.For mass sizing of paper or cardboard, for example, 0.1 to 2.0, preferably 0.2 to 0.75% by weight of polymer sizing agent (i.e. 100% polymer), based on dry paper product, is used.
Die Masseleimung von Papier und Karton kann zusätzlich in Gegenwart von wässrigen Dispersionen von Reaktivleimungsmitteln wie Alkylketendimeren, C5- bis C^-Alkyl- und/oder C5- bis C22-Alkenylbernsteinsäureanhydriden, Chlorameisensäureestern und C12- bis C36- Alkylisocyanaten sowie in Gegenwart von Kombinationen aus Harzleim und Alaun oder von Kombinationen aus Umsetzungsprodukten von Harzleim mit Carbonsäureanhydriden und Alaun vorgenommen werden. Anstelle von Alaun oder auch in Kombination mit Alaun kann man andere Aluminium enthaltende Verbindungen wie Polyaluminiumchloride oder die aus der EP-B-1 091 043 bekannten Polyaluminiumver- bindungen einsetzen.The bulk sizing of paper and cardboard can additionally in the presence of aqueous dispersions of reactive sizing agents such as alkyl ketene dimers, C 5 - to C ^ alkyl and / or C 5 - to C22-alkenyl succinic anhydrides, chloroformic acid esters and C 12 - to C 36 - alkyl isocyanates and in In the presence of combinations of resin glue and alum or combinations of reaction products of resin glue with carboxylic acid anhydrides and alum. Instead of alum or in combination with alum, other aluminum-containing compounds such as polyaluminium chlorides or the polyaluminium compounds known from EP-B-1 091 043 can be used.
Von den Reaktivleimungsmitteln werden vorzugsweise C12- bis C22-Alkylketendimere eingesetzt, z.B. Stearyldiketen, Lauryldiketen, Palmityldiketen, Oleyldiketen, Behenyl- diketen oder deren Gemische.Of the reactive sizing agents, preference is given to using C 12 to C 22 alkyl ketene dimers, for example stearyl diketene, lauryl diketene, palmityldiketene, oleyl diketene, behenyl diketene or mixtures thereof.
Geeignete Bernsteinsäureanhydride sind z.B. Decenylbernsteinsäureanhydrid, Octe- nylbemsteinsäureanhydrid, Dodecenylbernsteinsäureanhydrid und n- Hexadecenylbernsteinsäureanhydrid.Suitable succinic anhydrides are e.g. Decenyl succinic anhydride, octenyl succinic anhydride, dodecenyl succinic anhydride and n-hexadecenyl succinic anhydride.
Die Reaktivleimungsmittel werden üblicherweise in Form einer wässrigen Dispersion eingesetzt. Beispielsweise dispergiert man Alkylketendimere in einer wässrigen Lösung einer kationischen Stärke oder man verwendet nichtionische oder anionische Emulga- toren zur Stabilisierung der Alkylketendimeren. Je nach Art und Menge der verwendeten Emulgatoren bzw. Mischungen von miteinander verträglichen Emulgatoren sind die entstehenden Reaktivleimungsmitteldispersionen kationisch, neutral oder anionisch geladen.The reactive sizes are usually used in the form of an aqueous dispersion. For example, alkyl ketene dimers are dispersed in an aqueous solution of a cationic starch, or nonionic or anionic emulsifiers are used to stabilize the alkyl ketene dimers. Depending on the type and amount of emulsifiers used or mixtures of mutually compatible emulsifiers, the resulting reactive size dispersions are cationically, neutral or anionically charged.
Beispielsweise kann man zu Alkylketendimerdispersionen, die mit Hilfe von kationischer Stärke in Wasser emulgiert wurden, anionische Emulgatoren zusetzen. Sofern die Ladung der anionischen Emulgatoren die Ladung der kationischen Emulgatoren überwiegt, erhält man eine anionisch geladene Alkylketendimerdispersion. Anionisch geladene wässrige Alkyldiketendispersionen werden vorzugsweise durch Emulgieren von Alkylketendimeren in wässrigen Lösungen von anionischen Emulgatoren hergestellt. Als anionische Emulgatoren kann man beispielsweise Kondensate aus Naphtha- linsulfonsäure und Formaldehyd, sulfoniertes Polystyrol, C-ι0- bis C22- Alkylschwefelsäuren, Ligninsulfonsäure, Phenolsulfonsäure, Naphthalinsulfonsäure oder die Natrium-, Kalium- oder Ammoniumsalze der genannten Säuren verwenden. Auch Copolymerisate aus Acrylsäure und Maleinsäure, Homopolymerisate der Acrylsäure, Homopolymerisate der Methacrylsäure, Copolymerisate aus Isobuten und Maleinsäure und/oder Acrylsäure, hydrolysierte Copolymerisate aus Isobuten oder Diiso- buten und Maleinsäureanhydrid sind geeignete Emulgatoren für die Herstellung von anionischen Alkylketendimerdispersionen. Die Säuregruppen der Homo- und Copoly- meren können beispielsweise partiell oder vollständig mit Natronlauge, Kalilauge oder mit Ammoniak neutralisiert sein und in dieser Form als anionische Emulgatoren eingesetzt werden. Die Molmasse Mw der Homo- und der Copolymeren beträgt beispielswei- se 1000 bis 15000 und liegt vorzugsweise in dem Bereich von 1500 bis 10000. Die Emulgatoren werden beispielsweise in Mengen bis zu 3,5 Gew.-%, vorzugsweise bis zu 2 Gew.-%, bezogen auf das zu dispergierende Reaktivleimungsmittel eingesetzt.For example, anionic emulsifiers can be added to alkyl ketene dimer dispersions which have been emulsified in water with the aid of cationic starch. If the charge of the anionic emulsifiers outweighs the charge of the cationic emulsifiers, an anionically charged alkyl ketene dimer dispersion is obtained. anionic charged aqueous alkyldiketene dispersions are preferably prepared by emulsifying alkylketene dimers in aqueous solutions of anionic emulsifiers. Anionic emulsifiers which can be used are, for example, condensates of naphthalene sulfonic acid and formaldehyde, sulfonated polystyrene, C 1 -C 22 -alkylsulfuric acids, lignosulfonic acid, phenolsulfonic acid, naphthalenesulfonic acid or the sodium, potassium or ammonium salts of the acids mentioned. Copolymers of acrylic acid and maleic acid, homopolymers of acrylic acid, homopolymers of methacrylic acid, copolymers of isobutene and maleic acid and / or acrylic acid, hydrolyzed copolymers of isobutene or diisobutene and maleic anhydride are suitable emulsifiers for the preparation of anionic alkyl ketene dimer dispersions. The acid groups of the homo- and copolymers can, for example, be partially or completely neutralized with sodium hydroxide solution, potassium hydroxide solution or with ammonia and can be used in this form as anionic emulsifiers. The molecular weight M w of the homo- and copolymers is, for example, 1000 to 15000 and is preferably in the range from 1500 to 10000. The emulsifiers are used, for example, in amounts of up to 3.5% by weight, preferably up to 2% by weight. -%, based on the reactive sizing agent to be dispersed.
Die Reaktivleimungsmittel werden bei der Masseleimung der erfindungsgemäß als Trägermaterial für die Verpackungsmaterialien einzusetzenden Papierprodukte wahlweise verwendet. Sie werden insbesondere dann eingesetzt, wenn Verpackungsmaterialien mit einer besonders guten Kantenpenetration gewünscht werden. Sie werden dann in Mengen eingesetzt, die üblicherweise für die Herstellung geleimter Papierprodukte erforderlich sind, z.B. 0,1 bis 2,0, vorzugsweise 0,1 bis 0,5 Gew.-%, bezogen auf trockene Cellulosefasem. Pro 100 Gew.-Teile Polymerleimungsmittel setzt man beispielsweise 0 bis 90 Gew.-Teile, vorzugsweise 50 bis 90 Gew.-Teile an Reaktivleimungsmitteln ein. Wenn man Mischungen aus einer Polymerleimungsmittel-Dispersion und einer wässrigen Dispersion eines Reaktivleimungsmittels einsetzt, so enthalten die Mischungen, jeweils bezogen auf den Polymergehalt, beispielsweise 5 bis 50, vor- zugsweise 10 bis 30 Gew.-% Polymer (100%ig).The reactive sizing agents are optionally used in the mass sizing of the paper products to be used according to the invention as carrier material for the packaging materials. They are used particularly when packaging materials with particularly good edge penetration are required. They are then used in amounts that are usually required for the production of sized paper products, e.g. 0.1 to 2.0, preferably 0.1 to 0.5 wt .-%, based on dry cellulose fibers. Per 100 parts by weight of polymer sizing agent, for example 0 to 90 parts by weight, preferably 50 to 90 parts by weight, of reactive sizing agents are used. If mixtures of a polymer sizing agent dispersion and an aqueous dispersion of a reactive sizing agent are used, the mixtures each contain, based on the polymer content, for example 5 to 50, preferably 10 to 30% by weight of polymer (100%).
Sofern Reaktivleimungsmittel zusammen mit einem Polymerleimungsmittel eingesetzt werden, kann man die Reaktivleimungsmittel, vorzugsweise Alkylketendimer- Dispersionen, zunächst zum Papierstoff zugeben und dann die Polymerleimungsmittel- Dispersionen dosieren. Man kann jedoch auch die Alkylketendimer-Dispersion und mindestens eine Polymerleimungsmittel-Dispersion gleichzeitig dem Papierstoff zufügen und ihn dann unter Blattbildung entwässern oder man setzt eine Mischung aus einem Reaktivleimungsmittel wie mindestens einer Alkylketendimer-Dispersion und mindestens einer Polymerleimungsmittel-Dispersion dem Papierstoff zu und entwäs- sert ihn danach unter Blattbildung. Die Polymerleimungsmittel können selbstverständlich auch als Oberflächenleimungs- mittel verwendet werden, indem man sie z.B. mit Hilfe einer Leimpresse auf die Oberfläche des Papiers aufbringt oder auf die Oberfläche des Papiers aufsprüht.If reactive sizing agents are used together with a polymer sizing agent, the reactive sizing agents, preferably alkyl ketene dimer dispersions, can first be added to the paper stock and then the polymer sizing agent dispersions can be metered in. However, the alkyl ketene dimer dispersion and at least one polymer sizing agent dispersion can also be added to the paper stock at the same time and then dewatered to form a sheet, or a mixture of a reactive sizing agent such as at least one alkyl sizing agent dispersion and at least one polymer sizing agent dispersion is added to the paper stock and dewatered. then put it under leaf formation. The polymer sizing agents can of course also be used as surface sizing agents, for example by applying them to the surface of the paper using a size press or spraying them onto the surface of the paper.
Das Entwässern des Papierstoffs erfolgt zusätzlich in Gegenwart eines Retentionsmit- tels. Neben anionischen Retentionsmitteln oder nichtionischen Retentionsmitteln wie Polyacrylamiden werden bevorzugt kationische Polymere als Retentions- und als Entwässerungshilfsmittel eingesetzt. Dadurch wird eine signifikante Verbesserung der Runnability der Papiermaschinen erreicht. Als kationische Retentionsmittel kann man sämtliche dafür im Handel erhältlichen Produkte verwenden. Hierbei handelt es sich beispielsweise um kationische Polyacrylamide, Polydiallyldimethylammoniumchloride, Polyethylenimine, Polyamine mit einer Molmasse von mehr als 50000, Polyamine, die gegebenenfalls durch Aufpfropfen von Ethylenimin modifiziert sind, Polyetheramide, Polyvinylimidazole, Polyvinylpyrrolidine, Polyvinylimidazoline, Polyvinyltetrahydropyri- ne, Poly(dialkylaminoalkylvinylether), PoIy(dialkylaminoaIkyl(meth)acrylate) in proto- nierter oder in quaternierter Form sowie um Polyamidoamine aus einer Dicarbonsäure wie Adipinsäure und Polyalkylenpolyaminen wie Diethylentriaminamin, die mit Ethylenimin gepfropft und mit Polyethylenglykoldichlorhydrinethern gemäß der Lehre der DE- B-2434816 vernetzt sind oder um Polyamidoamine, die mit Epichlorhydrin zu wasserlöslichen Kondensationsprodukten umgesetzt sind sowie um Copolymerisate von Acrylamid oder Methacrylamid und Dialkylaminoethylacrylaten oder-methacrylaten, beispielsweise Copolymerisate aus Acrylamid und Dimethylaminoethylacrylat in Form des Salzes mit Salzsäure oder in mit Methylchlorid quaternierter Form. Weitere geeignete Retentionsmittel sind sogenannte Mikropartikelsysteme aus kationischen Polymeren wie kationischer Stärke und feinteiliger Kieselsäure oder aus kationischen Polymeren wie kationischem Polyacrylamid und Bentonit.The paper stock is additionally dewatered in the presence of a retention agent. In addition to anionic retention aids or nonionic retention aids such as polyacrylamides, cationic polymers are preferably used as retention aids and as drainage aids. This leads to a significant improvement in the runnability of the paper machines. All commercially available products for this purpose can be used as cationic retention agents. These are, for example, cationic polyacrylamides, polydiallyldimethylammonium chlorides, polyethyleneimines, polyamines with a molecular weight of more than 50,000, polyamines which may have been modified by grafting on ethyleneimine, polyetheramides, polyvinylimidazoles, polyvinylpyrrolidines, polyvinylimidazolines, polyvinyltetrahydropyrylamino, poly ( Poly (dialkylaminoalkyl (meth) acrylates) in protonated or quaternized form and also polyamidoamines from a dicarboxylic acid such as adipic acid and polyalkylene polyamines such as diethylenetriamine amine which are grafted with ethyleneimine and crosslinked with polyethylene glycol dichlorohydrin ethers according to the teaching of DE-B-24348amamido which have been reacted with epichlorohydrin to form water-soluble condensation products and copolymers of acrylamide or methacrylamide and dialkylaminoethyl acrylates or methacrylates, for example copolymers of acrylamide and dimethylamino ethyl acrylate in the form of the salt with hydrochloric acid or in the form quaternized with methyl chloride. Other suitable retention agents are so-called microparticle systems made from cationic polymers such as cationic starch and finely divided silica or from cationic polymers such as cationic polyacrylamide and bentonite.
Die kationischen Polymerisate, die als Retentionsmittel eingesetzt werden, haben bei- spielsweise K-Werte nach Fikentscher von mindestens 140 (bestimmt in 5 %iger wäßriger Kochsalzlösung bei einer Polymerkonzentration von 0,5 Gew.-%, einer Temperatur von 25°C und einem pH-Wert von 7). Sie werden vorzugsweise in Mengen von 0,01 bis 0,3 Gew.-%, bezogen auf trockene Cellulosefasem, eingesetzt.The cationic polymers which are used as retention agents have, for example, K values according to Fikentscher of at least 140 (determined in 5% strength aqueous saline solution at a polymer concentration of 0.5% by weight, a temperature of 25 ° C. and a pH of 7). They are preferably used in amounts of 0.01 to 0.3% by weight, based on dry cellulose fibers.
Zu der wäßrigen Aufschlämmung von Cellulosefasem kann man gegebenenfalls zusätzlich zu den bereits genannten Stoffen mindestens ein kationisches Polymer zusetzten. Beispiele für kationische Polymere sind Vinylamineinheiten enthaltende Polymere, Vinylguanidineinheiten enthaltende Polymere, Dialkylaminoal- kyl(meth)acrylamideinheiten enthaltende Polymere, Polyethylenimine, mit Ethylenimin gepfropfte Polyamidoamine und/oder Polydiallyldimethylammoniumchloride. Die Men- ge an kationischen Polymeren beträgt beispielsweise 0,001 bis 2,0 Gew.-%, vorzugsweise 0,01 bis 0,1 Gew.-%, bezogen auf trockene Cellulosefasem.At least one cationic polymer can optionally be added to the aqueous slurry of cellulose fibers in addition to the substances already mentioned. Examples of cationic polymers are polymers containing vinylamine units, polymers containing vinylguanidine units, polymers containing dialkylaminoalkyl (meth) acrylamide units, polyethyleneimines, polyamidoamines grafted with ethyleneimine and / or polydiallyldimethylammonium chlorides. The men The amount of cationic polymers is, for example, 0.001 to 2.0% by weight, preferably 0.01 to 0.1% by weight, based on dry cellulose fibers.
Vinylamineinheiten enthaltende Polymere sind bekannt, vgl. US-A-4,421,602, US-A- 5,334,287, EP-A-0216387, US-A-5,981 ,689, WO-A-00/63295 und US-A-6,121 ,409. Sie werden durch Hydrolyse von offenkettigen N-Vinylcarbonsäureamideinheiten enthaltenden Polymeren hergestellt. Diese Polymeren sind z.B. erhältlich durch Polymeri- sieren von N-Vinylformamid, N-Vinyl-N-methylformamid, N-Vinylacetamid, N-Vinyl-N- methylacetamid, N-Vinyl-N-ethylacetamid und N-Vinylpropionamid. Die genannten Mo- nomeren können entweder allein oder zusammen mit anderen Monomeren polymerisiert werden.Polymers containing vinylamine units are known, cf. US-A-4,421,602, US-A-5,334,287, EP-A-0216387, US-A-5,981, 689, WO-A-00/63295 and US-A-6,121, 409. They are produced by hydrolysis of open-chain polymers containing N-vinylcarboxamide units. These polymers are e.g. obtainable by polymerizing N-vinylformamide, N-vinyl-N-methylformamide, N-vinylacetamide, N-vinyl-N-methylacetamide, N-vinyl-N-ethylacetamide and N-vinylpropionamide. The monomers mentioned can be polymerized either alone or together with other monomers.
Als monoethylenisch ungesättigte Monomere, die mit den N-Vinyicarbonsäureamiden copolymerisiert werden, kommen alle damit copolymerisierbaren Verbindungen in Be- tracht. Beispiele hierfür sind Vinylester von gesättigten Carbonsäuren von 1 bis 6 Kohlenstoffatomen wie Vinylformiat, Vinylacetat, Vinylpropionat und Vinylbutyrat und Vinyl- ether wie C bis C6-Alkylvinylether, z.B. Methyl- oder Ethylvinylether. Weitere geeignete Comonomere sind Ester, Amide und Nitrile von ethylenisch ungesättigten C3- bis C6- Carbonsäuren, beispielsweise Methylacrylat, Methylmethacrylat, Ethylacrylat und Ethylmethacrylat, Acrylamid und Methacrylamid sowie Acrylnitril und Methacrylnitril.Suitable monoethylenically unsaturated monomers which are copolymerized with the N-vinyicarboxamides are all compounds which can be copolymerized therewith. Examples include vinyl esters of saturated carboxylic acids of 1 to 6 carbon atoms such as vinyl formate, vinyl acetate, vinyl propionate and vinyl butyrate and vinyl ethers such as C to C 6 alkyl vinyl ether, for example methyl or ethyl vinyl ether. Further suitable comonomers are esters, amides and nitriles of ethylenically unsaturated C 3 to C 6 carboxylic acids, for example methyl acrylate, methyl methacrylate, ethyl acrylate and ethyl methacrylate, acrylamide and methacrylamide and also acrylonitrile and methacrylonitrile.
Weitere geeignete Carbonsäureester leiten sich von Glykolen oder bzw. Polyalky- lenglykolen ab, wobei jeweils nur eine OH-Gruppe verestert ist, z.B. Hydroxyethylacry- lat, Hydroxyethylmethacrylat, Hydroxypropylacrylat, Hydroxybutylacrylat, Hydroxypro- pylmethacrylat, Hydroxybutylmethacrylat sowie Acrylsäuremonoester von Polyalky- lenglykolen einer Molmasse von 500 bis 10000. Weitere geeignete Comonomere sind Ester von ethylenisch ungesättigten Carbonsäuren mit Aminoalkoholen wie beispielsweise Dimethylaminoethylacrylat, Dimethylaminoethylmethacrylat, Diethylaminoethy- lacrylat, Diethylaminoethylmethacrylat, Dimethylaminopropylacrylat, Dimethylami- nopropylmethacrylat, Diethylaminopropylacrylat, Dimethylaminobutylacrylat und Diethy- laminobutylacrylat. Die basischen Acrylate können in Form der freien Basen, der Salze mit Mineralsäuren wie Salzsäure, Schwefelsäure oder Salpetersäure, der Salze mit organischen Säuren wie Ameisensäure, Essigsäure, Propionsäure oder der Sulfonsäu- ren oder in quaternierter Form eingesetzt werden. Geeignete Quaternierungsmittel sind beispielsweise Dimethylsulfat, Diethylsulfat, Methylchlorid, Ethylchlorid oder Benzylch- lorid.Other suitable carboxylic acid esters are derived from glycols or polyalkylene glycols, only one OH group being esterified in each case, e.g. Hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, hydroxypropyl methacrylate, hydroxybutyl methacrylate and acrylic acid monoesters of polyalkylene glycols with a molecular weight of 500 to 10000. Other suitable comonomers are esters of ethylenically unsaturated carboxylic acids such as dimethylamethylamethylethylaminoethylaminoethylaminoethylaminoethylamethylethylamate, such as aminoethylaminoethyl , Dimethylaminopropyl acrylate, Dimethylaminopropyl methacrylate, Diethylaminopropylacrylat, Dimethylaminobutylacrylat and Diethyaminobutylacrylat. The basic acrylates can be used in the form of the free bases, the salts with mineral acids such as hydrochloric acid, sulfuric acid or nitric acid, the salts with organic acids such as formic acid, acetic acid, propionic acid or the sulfonic acids or in quaternized form. Suitable quaternizing agents are, for example, dimethyl sulfate, diethyl sulfate, methyl chloride, ethyl chloride or benzyl chloride.
Weitere geeignete Comonomere sind Amide ethylenisch ungesättigter Carbonsäuren wie Acrylamid, Methacrylamid sowie N-Alkylmono- und Diamide von monoethylenisch ungesättigten Carbonsäuren mit Alkylresten von 1 bis 6 C-Atomen, z.B. N- Methylacrylamid, N,N-Dimethylacrylamid, N-Methylmethacrylamid, N-Ethylacrylamid, N-Propylacrylamid und tert. Butylacrylamid sowie basische (Meth)acrylamide, wie z.B. Dimethylaminoethylacrylamid, Dimethylaminoethylmethacrylamid, Diethylaminoethylac- rylamid, Diethylaminoethylmethacrylamid, Dimethylaminopropylacrylamid, Diethylami- nopropylacrylamid, Dimethylaminopropylmethacrylamid und Diethylaminopropyl- methacrylamid.Other suitable comonomers are amides of ethylenically unsaturated carboxylic acids such as acrylamide, methacrylamide and N-alkyl mono- and diamides of monoethylenically unsaturated carboxylic acids with alkyl radicals of 1 to 6 carbon atoms, for example N- Methyl acrylamide, N, N-dimethylacrylamide, N-methyl methacrylamide, N-ethyl acrylamide, N-propylacrylamide and tert. Butylacrylamide and basic (meth) acrylamides, such as dimethylaminoethyl acrylamide, dimethylaminoethyl methacrylamide, diethylaminoethyl acrylamide, diethylaminoethyl methacrylamide, dimethylaminopropylacrylamide, diethylaminopropylacrylamide, dimethylaminopropyl methacrylamide and diethylaminopropyl methacrylamide.
Weiterhin sind als Comonomere geeignet N-Vinylpyrrolidon, N-Vinylcaprolactam, Acrylnitril, Methacrylnitril, N-Vinylimidazol sowie substituierte N-Vinylimidazole wie z.B. N- Vinyl-2-methylimidazol, N-Vinyl-4-methylimidazol, N-Vinyl-5-methylimidazol, N-Vinyl-2- ethylimidazol und N-Vinylimidazoline wie N-Vinylimidazolin, N-Vinyl-2-methylimidazolin und N-Vinyl-2-ethylimidazolin. N-Vinylimidazole und N-Vinylimidazoline werden außer in Form der freien Basen auch in mit Mineralsäuren oder organischen Säuren neutralisierter oder in quaternisierter Form eingesetzt, wobei die Quaternisierung vorzugswei- se mit Dimethylsulfat, Diethylsulfat, Methylchlorid oder Benzylchlorid vorgenommen wird. In Frage kommen auch Diallyldialkylammoniumhalogenide wie z.B. Diallyldi- methylammoniumchlorid.Also suitable as comonomers are N-vinylpyrrolidone, N-vinylcaprolactam, acrylonitrile, methacrylonitrile, N-vinylimidazole and substituted N-vinylimidazoles such as e.g. N-vinyl-2-methylimidazole, N-vinyl-4-methylimidazole, N-vinyl-5-methylimidazole, N-vinyl-2-ethylimidazole and N-vinylimidazolines such as N-vinylimidazoline, N-vinyl-2-methylimidazoline and N- vinyl-2-ethylimidazoline. In addition to the free bases, N-vinylimidazoles and N-vinylimidazolines are also used in neutralized or in quaternized form with mineral acids or organic acids, the quaternization preferably being carried out with dimethyl sulfate, diethyl sulfate, methyl chloride or benzyl chloride. Diallyldialkylammonium halides such as e.g. Diallyldimethylammonium chloride.
Die Copolymerisate enthalten beispielsweiseThe copolymers contain, for example
95 bis 5 mol-%, vorzugsweise 90 bis 10 mol-% mindestens eines N- Vinylcarbonsäureamids und95 to 5 mol%, preferably 90 to 10 mol% of at least one N-vinylcarboxamide and
5 bis 95 mol-%, vorzugsweise 10 bis 90 mol-% andere, damit copolymerisierbare monoethylenisch ungesättigte Monomere5 to 95 mol%, preferably 10 to 90 mol% of other monoethylenically unsaturated monomers copolymerizable therewith
in einpolymerisierter Form. Die Comonomeren sind vorzugsweise frei von Säuregruppen.in polymerized form. The comonomers are preferably free from acid groups.
Um Vinylamineinheiten enthaltende Polymerisate herzustellen, geht man vorzugsweise von Homopolymerisaten des N-Vinylformamids oder von Copolymerisaten aus, die durch Copolymerisieren vonIn order to prepare polymers containing vinylamine units, one preferably starts from homopolymers of N-vinylformamide or from copolymers which are obtained by copolymerizing
N-Vinylformamid mitN-vinylformamide with
Vinylformiat, Vinylacetat, Vinylpropionat, Acrylnitril, N-Vinylcaprolactam, N- Vinylharnstoff, N-Vinylpyrrolidon oder d- bis C6-AlkylvinylethernVinyl formate, vinyl acetate, vinyl propionate, acrylonitrile, N-vinyl caprolactam, N-vinyl urea, N-vinyl pyrrolidone or d- to C 6 -alkyl vinyl ethers
und anschließende Hydrolyse der Homo- oder der Copolymerisate unter Bildung von Vinylamineinheiten aus den einpolymerisierten N-Vinylformamideinheiten erhältlich sind, wobei der Hydrolysegrad z.B. 5 bis 100 mol-%, vorzugsweise 70 bis 100 mol-% beträgt. Die Hydrolyse der oben beschriebenen Polymerisate erfolgt nach bekannten Verfahren durch Einwirkung von Säuren, Basen oder Enzymen. Bei Verwendung von Säuren als Hydrolysemittel liegen die Vinylamineinheiten der Polymerisate als Ammo- niumsalz vor, während bei der Hydrolyse mit Basen die freie Aminogruppen entstehen.and subsequent hydrolysis of the homo- or of the copolymers to form vinylamine units from the polymerized N-vinylformamide units are, the degree of hydrolysis being, for example, 5 to 100 mol%, preferably 70 to 100 mol%. The polymers described above are hydrolysed by known processes by the action of acids, bases or enzymes. When acids are used as hydrolysis agents, the vinylamine units of the polymers are present as ammonium salts, while the free amino groups are formed in the hydrolysis with bases.
In den meisten Fällen beträgt der Hydrolysegrad der Homo- und Copolymerisate 80 bis 95 mol-%. Der Hydrolysegrad der Homopolymerisate ist gleichbedeutend mit dem Gehalt der Polymerisate an Vinylamineinheiten. Bei Copolymerisaten, die Vinylester ein- polymerisiert enthalten, kann neben der Hydrolyse der N-Vinylformamideinheiten eine Hydrolyse der Estergruppen unter Bildung von Vinylalkoholeinheiten eintreten. Dies ist insbesondere dann der Fall, wenn man die Hydrolyse der Copolymerisate in Gegenwart von Natronlauge durchführt. Einpolymerisiertes Acrylnitril wird ebenfalls bei der Hydrolyse chemisch verändert. Hierbei entstehen beispielsweise Amidgruppen oder Carboxylgruppen. Die Vinylamineinheiten enthaltenden Homo- und Copolymeren können gegebenenfalls bis zu 20 mol-% an Amidineinheiten enthalten, die z.B. durch Reaktion von Ameisensäure mit zwei benachbarten Aminogruppen oder durch intramolekulare Reaktion einer Aminogruppe mit einer benachbarten Amidgruppe z.B. von ein- polymerisiertem N-Vinylformamid entsteht. Die Moimassen Mw der Vinylamineinheiten enthaltenden Polymerisate betragen z.B. 500 bis 10 Millionen, vorzugsweise 1000 bis 5 Millionen (bestimmt durch Lichtstreuung). Dieser Molmassenbereich entspricht beispielsweise K-Werten von 5 bis 300, vorzugsweise 10 bis 250 (bestimmt nach H. Fikentscher in 5 %iger wässriger Kochsalzlösung bei 25°C und einer Polymerkonzentration von 0,5 Gew.-%).In most cases, the degree of hydrolysis of the homo- and copolymers is 80 to 95 mol%. The degree of hydrolysis of the homopolymers is synonymous with the vinylamine units in the polymers. In the case of copolymers which contain vinyl esters in copolymerized form, in addition to the hydrolysis of the N-vinylformamide units, hydrolysis of the ester groups can occur with formation of vinyl alcohol units. This is particularly the case if the copolymers are hydrolysed in the presence of sodium hydroxide solution. Polymerized acrylonitrile is also chemically changed during the hydrolysis. This creates, for example, amide groups or carboxyl groups. The homo- and copolymers containing vinylamine units can optionally contain up to 20 mol% of amidine units which are formed, for example, by reaction of formic acid with two adjacent amino groups or by intramolecular reaction of an amino group with a neighboring amide group, for example of polymerized N-vinylformamide. The moimass M w of the polymers containing vinylamine units is, for example, 500 to 10 million, preferably 1000 to 5 million (determined by light scattering). This molar mass range corresponds, for example, to K values of 5 to 300, preferably 10 to 250 (determined according to H. Fikentscher in 5% aqueous sodium chloride solution at 25 ° C. and a polymer concentration of 0.5% by weight).
Die Vinylamineinheiten enthaltenden Polymeren werden vorzugsweise in salzfreier Form eingesetzt. Salzfreie wässrige Lösungen von Vinylamineinheiten enthaltenden Polymerisaten können beispielsweise aus den oben beschriebenen salzhaltigen Polymerlösungen mit Hilfe einer Ultrafiltration an geeigneten Membranen bei Trenngrenzen von beispielsweise 1000 bis 500 000 Dalton, vorzugsweise 10 000 bis 300 000 Dalton hergestellt werden. Auch die unten beschriebenen wässrigen Lösungen von Amino- und/oder Ammoniumgruppen enthaltenden anderen Polymeren können mit Hilfe einer Ultrafiltration in salzfreier Form gewonnen werden.The polymers containing vinylamine units are preferably used in salt-free form. Salt-free aqueous solutions of polymers containing vinylamine units can be prepared, for example, from the salt-containing polymer solutions described above with the aid of ultrafiltration on suitable membranes at separation limits of, for example, 1000 to 500,000 daltons, preferably 10,000 to 300,000 daltons. The aqueous solutions of other polymers containing amino and / or ammonium groups described below can also be obtained with the aid of ultrafiltration in a salt-free form.
Auch Derivate von Vinylamineinheiten enthaltenden Polymeren können als kationische Polymere eingesetzt werden. So ist es beispielsweise möglich, aus den Vinylamineinheiten enthaltenden Polymeren durch Amidierung, Alkylierung, Sulfonamidbildung, Harnstoffbildung, Thiohamstoffbildung, Carbamatbildung, Acylierung, Carboximethylie- rung, Phosphonomethylierung oder Michaeladdition der Aminogruppen des Polymeren eine Vielzahl von geeigneten Derivaten herzustellen. Von besonderem Interesse sind hierbei unvemetzte Polyvinylguanidine, die durch Reaktion von Vinylamineinheiten enthaltenden Polymeren, vorzugsweise Polyvinylaminen, mit Cyanamid (R1R2N-CN, wobei R1 ,R2 = H, d- bis C -Alkyl, C3- bis C6-Cycloalkyl, Phenyl, Benzyl, alkylsubstitu- iertes Phenyl oder Naphthyl bedeuten) zugänglich sind, vgl. US-A-6,087,448, Spalte 3, Zeile 64 bis Spalte 5, Zeile 14.Derivatives of polymers containing vinylamine units can also be used as cationic polymers. For example, it is possible to produce a large number of suitable derivatives from the polymers containing vinylamine units by amidation, alkylation, sulfonamide formation, urea formation, thiourea formation, carbamate formation, acylation, carboxymethylation, phosphonomethylation or Michael addition of the amino groups of the polymer. Are of particular interest here uncrosslinked polyvinylguanidines, which are obtained by reaction of polymers containing vinylamine units, preferably polyvinylamines, with cyanamide (R 1 R 2 N-CN, where R 1 , R 2 = H, d- to C -alkyl, C 3 - to C 6 -cycloalkyl , Phenyl, benzyl, alkyl-substituted phenyl or naphthyl) are accessible, cf. US-A-6,087,448, column 3, line 64 to column 5, line 14.
Zu den Vinylamineinheiten enthaltenden Polymeren gehören auch hydrolysierte Pfropfpolymerisate von beispielsweise N-Vinylformamid auf Polyalkylenglykolen, Poly- vinylacetat, Polyvinylalkolhol, Poiyvinylformamiden, Pölysacchariden wie Stärke, Oligo- sacchariden oder Monosacchariden. Die Pfropfpolymerisate sind dadurch erhältlich, daß man beispielsweise N-Vinylformamid in wäßrigem Medium in Gegenwart mindestens einer der genannten Pfropfgrundlagen gegebenenfalls zusammen mit copolymerisierbaren anderen Monomeren radikalisch polymerisiert und die aufgepfropften Vinyl- formamideinheiten anschließend in bekannten Weise zu Vinylamineinheiten hydroly- siert.The polymers containing vinylamine units also include hydrolyzed graft polymers of, for example, N-vinylformamide on polyalkylene glycols, polyvinyl acetate, polyvinyl alcohol, polyvinylformamides, polysaccharides such as starch, oligosaccharides or monosaccharides. The graft polymers can be obtained by free-radically polymerizing, for example, N-vinylformamide in an aqueous medium in the presence of at least one of the graft bases mentioned, together with copolymerizable other monomers, and then hydrolyzing the grafted vinylformamide units to vinylamine units in a known manner.
Als kationische Polymere kommen auch Polymerisate von Dialkylaminoal- kyl(meth)acrylamiden in Betracht. Geeignete Monomere für die Herstellung solcher Polymere sind beispielsweise Dimethylaminoethylacrylamid, Dimethylaminoethyl- methacrylamid, Dimethylaminopropylacrylamid, Dimethylaminopropylmethacrylamid, Diethylaminoethylacrylamid, Diethylaminoethylmethacrylamid und Diethylaminopropy- lacrylamid. Diese Monomeren können in Form der freien Basen, der Salze mit anorganischen oder organischen Säuren oder in quaternisierter Form bei der Polymerisation eingesetzt werden. Sie können zu Homopolymerisaten oder zusammen mit anderen copolymerisierbaren Monomeren zu Copolymerisaten radikalisch polymerisiert werden. Die Polymerisate enthalten beispielsweise mindestens 30 MoI-%, vorzugsweise mindestens 70 Mol-.% der der genannten basischen Monomeren einpolymerisiert.Polymers of dialkylaminoalkyl (meth) acrylamides are also suitable as cationic polymers. Suitable monomers for the production of such polymers are, for example, dimethylaminoethyl acrylamide, dimethylaminoethyl methacrylamide, dimethylaminopropylacrylamide, dimethylaminopropyl methacrylamide, diethylaminoethyl acrylamide, diethylaminoethyl methacrylamide and diethylaminopropyl acrylamide. These monomers can be used in the polymerization in the form of the free bases, the salts with inorganic or organic acids or in quaternized form. They can be radically polymerized to give homopolymers or together with other copolymerizable monomers to give copolymers. The polymers contain, for example, at least 30 mol%, preferably at least 70 mol%, of the basic monomers mentioned in copolymerized form.
Weitere geeignete kationische Polymere sind Polyethylenimine, die beispielsweise durch Polymerisation von Ethylenimin in wässriger Lösung in Gegenwart von säureabspaltenden Verbindungen, Säuren oder Lewis-Säuren als Katalysator hergestellbar sind. Polyethylenimine haben beispielsweise Molmassen bis zu 2 Millionen, vorzugsweise von 200 bis 1.000 000. Besonders bevorzugt werden Polyethylenimine mit Molmassen von 500 bis 750 000 eingesetzt. Die Polyethylenimine können gegebenenfalls modifiziert werden, z.B. alkoxyliert, alkyliert oder amidiert werden. Sie können außerdem einer Michaeladdition oder einer Steckersynthese unterworfen werden. Die dabei erhältlichen Derivate von Polyethyleniminen sind ebenfalls als kationische Polymere geeignet. Außerdem kommen mit Ethylenimin gepfropfte Polyamidoamine in Betracht, die beispielsweise durch Kondensieren von Dicarbonsäuren mit Polyaminen und anschließendes Aufpfropfen von Ethylenimin erhältlich sind. Geeignete Polyamidoamine erhält man beispielsweise dadurch, daß man Dicarbonsäuren mit 4 bis 10 Kohlenstoffatomen mit Polyalkylenpolyaminen umsetzt, die 3 bis 10 basische Stickstoffatome im Molekül enthalten. Beispiele für Dicarbonsäuren sind Bernsteinsäure, Maleinsäure, Adipinsäu- re, Glutarsäure, Korksäure, Sebacinsäure oder Terephthalsäure. Bei der Herstellung der Polyamidoamine kann man auch Mischungen von Dicarbonsäuren einsetzen, e- benso Mischungen aus mehreren Polyalkylenpolyaminen. Geeignete Polyalkylenpoly- amine sind beispielsweise Diethylentriamin, Triethylentetramin, Tetraethylenpentamin, Dipropylentriamin, Tripropylentetramin, Dihexamethylentriamin, Aminopropylethylendi- amin und Bis-aminopropylethylendiamin. Die Dicarbonsäuren und Polyalkylenpolyami- ne werden zur Herstellung der Polyamidoamine auf höhere Temperaturen erhitzt, z.B. auf Temperaturen in dem Bereich von 120 bis 220, vorzugsweise 130 bis 180°C. Das bei der Kondensation entstehende Wasser wird aus dem System entfernt. Bei der Kondensation kann man gegebenenfalls auch Lactone oder Lactame von Carbonsäuren mit 4 bis 8 C-Atomen einsetzen. Pro Mol einer Dicarbonsäure verwendet man beispielsweise 0,8 bis 1 ,4 Mol eines Polyalkylenpolyamins. Diese Polyamidoamine werden mit Ethylenimin gepfropft. Die Pfropfreaktion wird beispielsweise in Gegenwart von Säuren oder Lewis-Säuren wie Schwefelsäure oder Bortrifluoridetheraten bei Temperaturen von beispielsweise 80 bis 100°C durchgeführt. Verbindungen dieser Art werden beispielsweise in der DE-B-24 34 816 beschrieben.Other suitable cationic polymers are polyethyleneimines, which can be prepared, for example, by polymerizing ethyleneimine in aqueous solution in the presence of acid-releasing compounds, acids or Lewis acids as a catalyst. Polyethyleneimines, for example, have molecular weights of up to 2 million, preferably from 200 to 1,000,000. Polyethyleneimines with molecular weights of 500 to 750,000 are particularly preferably used. The polyethyleneimines can optionally be modified, for example alkoxylated, alkylated or amidated. They can also be subjected to Michael addition or plug synthesis. The derivatives of polyethyleneimines obtainable here are also suitable as cationic polymers. Polyamidoamines grafted with ethyleneimine are also suitable, which can be obtained, for example, by condensing dicarboxylic acids with polyamines and subsequently grafting ethyleneimine. Suitable polyamidoamines are obtained, for example, by reacting dicarboxylic acids with 4 to 10 carbon atoms with polyalkylene polyamines which contain 3 to 10 basic nitrogen atoms in the molecule. Examples of dicarboxylic acids are succinic acid, maleic acid, adipic acid, glutaric acid, suberic acid, sebacic acid or terephthalic acid. Mixtures of dicarboxylic acids can also be used in the preparation of the polyamidoamines, as can mixtures of several polyalkylene polyamines. Suitable polyalkylene polyamines are, for example, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylenetriamine, tripropylenetetramine, dihexamethylenetriamine, aminopropylethylenediamine and bis-aminopropylethylenediamine. To produce the polyamidoamines, the dicarboxylic acids and polyalkylene polyamines are heated to higher temperatures, for example to temperatures in the range from 120 to 220, preferably 130 to 180 ° C. The water generated during the condensation is removed from the system. Lactones or lactams of carboxylic acids having 4 to 8 carbon atoms can optionally also be used in the condensation. For example, 0.8 to 1.4 moles of a polyalkylene polyamine are used per mole of a dicarboxylic acid. These polyamidoamines are grafted with ethyleneimine. The grafting reaction is carried out, for example, in the presence of acids or Lewis acids such as sulfuric acid or boron trifluoride etherates at temperatures of, for example, 80 to 100.degree. Compounds of this type are described for example in DE-B-24 34 816.
Auch die gegebenenfalls vernetzten Polyamidoamine, die gegebenenfalls noch zusätz- lieh vor der Vernetzung mit Ethylenimin gepfropft sind, kommen als kationische Polymere in Betracht. Die vernetzten, mit Ethylenimin gepfropften Polyamidoamine sind wasserlöslich und haben z.B. ein mittleres Molgewicht Mw von 3000 bis 2 Million Dalton. Übliche Vernetzer sind z.B. Epichlorhydrin oder Bischlorhydrinether von Alky- lenglykolen und Polyalkylenglykolen.The optionally crosslinked polyamidoamines, which may have been additionally grafted with ethyleneimine before crosslinking, are also suitable as cationic polymers. The crosslinked polyamidoamines grafted with ethyleneimine are water-soluble and have, for example, an average molecular weight M w of 3000 to 2 million daltons. Typical crosslinkers are, for example, epichlorohydrin or bischlorohydrin ethers of alkylene glycols and polyalkylene glycols.
Als kationische Polymere kommen auch Polyallylamine in Betracht. Polymerisate dieser Art werden erhalten durch Homopolymerisation von Allylamin, vorzugsweise in mit Säuren neutralisierter Form oder durch Copolymerisieren von Allylamin mit anderen monoethylenisch ungesättigten Monomeren, die oben als Comonomere für N- Vinylcarbonsäureamide beschrieben sind.Polyallylamines are also suitable as cationic polymers. Polymers of this type are obtained by homopolymerizing allylamine, preferably in a form neutralized with acids, or by copolymerizing allylamine with other monoethylenically unsaturated monomers described above as comonomers for N-vinylcarboxamides.
Außerdem eignen sich wasserlösliche vernetzte Polyethylenimine, die durch Reaktion von Polyethyleniminen mit Vernetzern wie Epichlorhydrin oder Bischlorhydrinethern von Polyalkylenglykolen mit 2 bis 100 Ethylenoxid- und/oder Propylenoxid-Einheiten erhältlich sind und noch über freie primäre und/oder sekundäre Aminogruppen verfü- gen. Auch amidische Polyethylenimine sind geeignet, die beispielsweise durch Amidie- rung von Polyethyleniminen mit d- bis ds-Monocarbonsäuren erhältlich sind. Weitere geeignete kationische Polymere sind alkylierte Polyethylenimine und alkoxylierte Polyethylenimine. Bei der Alkoxylierung verwendet man z.B. pro NH-Einheit im Polyethy- lenimin 1 bis 5 Ethylenoxid- bzw. Propylenoxideinheiten.Also suitable are water-soluble crosslinked polyethyleneimines which are obtainable by reacting polyethyleneimines with crosslinkers such as epichlorohydrin or bischlorohydrin ethers of polyalkylene glycols having 2 to 100 ethylene oxide and / or propylene oxide units and still have free primary and / or secondary amino groups. Amidic polyethyleneimines which are obtainable, for example, by amidating polyethyleneimines with d- to ds-monocarboxylic acids are also suitable. Other suitable cationic polymers are alkylated polyethyleneimines and alkoxylated polyethyleneimines. In alkoxylation, 1 to 5 ethylene oxide or propylene oxide units are used, for example, per NH unit in polyethyleneimine.
Die obengenannten kationischen Polymerisate haben z.B. K-Werte von 8 bis 300, vorzugsweise 15 bis 180 (bestimmt nach H. Fikentscher in 5 %iger wässriger Kochsalzlösung bei 25 % und einer Polymerkonzentration von 0,5 Gew.-%). Bei einem pH-Wert von 4,5 haben sie beispielsweise eine Ladungsdichte von mindestens 1 , vorzugsweise mindestens 4 mVal/g Polyelektrolyt.The above-mentioned cationic polymers have e.g. K values from 8 to 300, preferably 15 to 180 (determined according to H. Fikentscher in 5% aqueous saline solution at 25% and a polymer concentration of 0.5% by weight). At a pH of 4.5, for example, they have a charge density of at least 1, preferably at least 4 meq / g polyelectrolyte.
Bevorzugt in Betracht kommende kationische Polymere sind Vinylamineinheiten enthaltende Polymere und Polyethylenimine. Beispiele hierfür sind:Cationic polymers which are preferred are polymers containing vinylamine units and polyethyleneimines. Examples for this are:
Vinylamin-Homopolymere, 10 bis 100 % hydrolysierte Polyvinylformamide, partiell oder vollständig hydrolysierte Copolymerisate aus Vinylformamid und Vinylacetat, Vinylalko- hol, Vinylpyrrolidon oder Acrylamid jeweils mit Molmassen von 3.000 - 2.000 000 sowieVinylamine homopolymers, 10 to 100% hydrolyzed polyvinylformamides, partially or completely hydrolyzed copolymers of vinylformamide and vinyl acetate, vinyl alcohol, vinylpyrrolidone or acrylamide, each with molecular weights from 3,000 to 2,000,000 and
Polyethylenimine, vernetzte Polyethylenimine oder amidierte Polyethylenimine, die jeweils Molmassen von 500 bis 3.000.000 haben.Polyethyleneimines, crosslinked polyethyleneimines or amidated polyethyleneimines, each of which has a molecular weight of 500 to 3,000,000.
Der Polymergehalt der wäßrigen Lösung beträgt beispielsweise 1 bis 60, vorzugsweise 2 bis 15 und meistens 5 bis 10 Gew.-%.The polymer content of the aqueous solution is, for example, 1 to 60, preferably 2 to 15 and usually 5 to 10% by weight.
Die Herstellung von Karton erfolgt üblicherweise durch Entwässern einer Aufschlämmung von Cellulosefasem. Bevorzugt ist die Verwendung von Kraftzellstoff. Von besonderem Interesse ist weiterhin der Einsatz von TMP und CTMP. Der pH-Wert der Cellulosefaseraufschlämmung beträgt beispielsweise 4 bis 8, vorzugsweise 6 bis 8. Die Entwässerung des Papierstoffs kann diskontinuierlich oder kontinuierlich auf einer Papiermaschine vorgenommen werden. Die Reihenfolge der Zugabe von kationischem Polymer, Masseleimungsmittel und Retentionsmittel kann beliebig gewählt werden. Bevorzugt wird aber eine Verfahrensweise, bei der man zu der wäßrigen Cellulosefaseraufschlämmung zunächst das Retentionsmittel und dann das kationische Polymer, vorzugsweise Polyvinylamin, und anschließend mindestens ein Reaktivleimungsmittel wie Alkylketendimer, Alkyl- oder Alkenylbemsteinsäureanhydrid in Kombination mit einer Aluminiumverbindung oder eine Mischung dieser Masseleimungsmittel und ein Polymerleimungsmittel zusetzt. Gemäß einer anderen Ausführungsform wird zunächst mindestens ein Polymerleimungsmittel, dann das Retentionsmittel und zuletzt das kati- onische Polymerisat dosiert. Bei der Herstellung der erfindungsgemäß zu verwendenden Papierprodukte kann man andere, üblicherweise in Betracht kommende Hilfsmittel mitverwenden, z.B. Fixiermittel, Farbstoffe, Bakterizide und Trocken- und/oder Naßverfestiger für Papier.Cardboard is usually produced by dewatering a slurry of cellulose fibers. The use of kraft pulp is preferred. The use of TMP and CTMP is also of particular interest. The pH of the cellulose fiber slurry is, for example, 4 to 8, preferably 6 to 8. The paper stock can be dewatered discontinuously or continuously on a paper machine. The order of addition of cationic polymer, bulk sizing agent and retention agent can be chosen arbitrarily. However, a procedure is preferred in which the retention agent and then the cationic polymer, preferably polyvinylamine, and then at least one reactive sizing agent such as alkyl ketene dimer, alkyl or alkenyl succinic anhydride in combination with an aluminum compound or a mixture of these sizing agents and a polymer sizing agent are added to the aqueous cellulose fiber slurry added. According to another embodiment, at least one polymer sizing agent is metered in first, then the retention agent and finally the cationic polymer. In the production of the paper products to be used according to the invention, other auxiliaries which are usually suitable can also be used, for example fixing agents, dyes, bactericides and dry and / or wet strength agents for paper.
Nach dem Entwässern des Papierstoffs und Trocknen des Papierprodukts erhält man einen in der Masse geleimten Karton mit einem Flächengewicht von 80 bis 400 g/m2, vorzugsweise 120 bis 220 g/m2. Der Karton wird ein- oder beidseitig mit einer Folie aus Kunststoff oder Metall wie Aluminium beschichtet.After the paper stock has been dewatered and the paper product has been dried, a cardboard which is sized in mass and has a basis weight of 80 to 400 g / m 2 , preferably 120 to 220 g / m 2, is obtained . The box is coated on one or both sides with a film made of plastic or metal such as aluminum.
Geeignete Kunststoffolien können aus Polyethylen, Polypropylen, Polyamid oder Polyester hergestellt werden. Die Folien können beispielsweise mit Hilfe eines Klebstoffs mit den geleimten Papierprodukten verbunden werden. In solchen Fällen verwendet man meistens Folien, die mit einem Klebemittel beschichtet sind und verpresst den Verbund. Man kann jedoch auch die Oberfläche der geleimten Papierprodukte mit einem Klebemittel beschichten und die Folien dann ein- oder beidseitig aufbringen und den entstehenden Verbund verpressen. Die Folien können jedoch auch direkt durch Einwirkung von Hitze und Druck mit dem Karton zu einem Verbund verarbeitet werden, aus dem dann die geeigneten Gebilde für die Herstellung der Verpackung für Flüssig- keiten ausgeschnitten werden. Die Verpackungen werden vorzugsweise auf dem Lebensmittelsektor eingesetzt, z.B. zum Verpacken von Getränken wie Mineralwasser, Säften oder Milch oder zur Herstellung von Trinkgefäßen wie Bechern. Bei diesen Verpackungen kommt es darauf an, daß sie über eine gute Kantenpenetration verfügen, d.h. der Karton soll möglichst wenig oder praktisch keine Flüssigkeit aufnehmen. Die Haftung von Folien auf den mit Polymerleimungsmitteln geleimten Papierprodukten ist besser als diejenige von Folien auf Papierprodukten, die ausschließlich mit Alkylketendimeren geleimt sind.Suitable plastic films can be made from polyethylene, polypropylene, polyamide or polyester. For example, the foils can be bonded to the glued paper products using an adhesive. In such cases, films are usually used, which are coated with an adhesive, and the composite is pressed. However, one can also coat the surface of the sized paper products with an adhesive and then apply the films on one or both sides and press the resulting composite. However, the films can also be processed directly by the action of heat and pressure with the cardboard to form a composite, from which the suitable structures for the production of the packaging for liquids are then cut out. The packaging is preferably used in the food sector, e.g. for packaging drinks such as mineral water, juices or milk or for the production of drinking vessels such as cups. It is important for these packages that they have good edge penetration, i.e. the box should absorb as little or practically no liquid as possible. The adhesion of foils to paper products sized with polymer sizing agents is better than that of foils to paper products sized exclusively with alkyl ketene dimers.
Falls sich aus dem Zusammenhang nichts anderes ergibt, bedeuten die Prozentanga- ben in den Beispielen Gewichtsprozent. Die K-Werte wurden nach H. Fikentscher, Cel- lulose-Chemie, Bd. 13, 58-64 und 71-74 (1932) in 5 %iger wäßriger Kochsalzlösung bei einer Temperatur von 25°C und einem pH-Wert von 7 bei einer Polymerkonzentration von 0,5 Gew.-% bestimmt. Die Molmassen Mw der Polymeren wurden durch Lichtstreuung gemessen. BeispieleUnless the context indicates otherwise, the percentages in the examples mean percentages by weight. The K values were determined according to H. Fikentscher, Cellulose-Chemie, Vol. 13, 58-64 and 71-74 (1932) in 5% aqueous saline solution at a temperature of 25 ° C. and a pH of 7 determined at a polymer concentration of 0.5 wt .-%. The molecular weights Mw of the polymers were measured by light scattering. Examples
Bestimmung der KantenpenetrationDetermination of edge penetration
Der jeweils hergestellte Karton wird beidseitig mit einem Klebeband aus Polyethylen laminiert. Man bestimmt dann die Dicke des Kartons. Aus dem Karton werden anschließend Teststreifen der Größe 25 x 75 mm geschnitten und jeweils gewogen. Um die Kantenpenetration zu ermitteln taucht man die Teststreifen in Bad ein, das eine auf 70°C temperierte 30 %ige Wasserstoffperoxidlösung enthält. Die Teststreifen werden dem Bad nach einer Verweilzeit von 10 Minuten entnommen. Überschüssiges Wasserstoffperoxid wird mit Filterpapier aufgenommen. Die Teststreifen werden wiederum gewogen. Aus der Gewichtszunahme berechnet man dann die Kantenpenetration in kg/m2.The cardboard produced is laminated on both sides with an adhesive tape made of polyethylene. The thickness of the cardboard is then determined. Test strips of size 25 x 75 mm are then cut from the box and weighed in each case. In order to determine the edge penetration, the test strips are immersed in a bath containing a 30% hydrogen peroxide solution heated to 70 ° C. The test strips are removed from the bath after a dwell time of 10 minutes. Excess hydrogen peroxide is absorbed with filter paper. The test strips are weighed again. The edge penetration in kg / m 2 is then calculated from the weight increase.
TintenschwimmdauerInk flotation time
Die Tintenschwimmdauer (gemessen in Minuten) ist diejenige Zeit, die eine Prüftinte nach DIN 53126 bis zum 50 %igen Durchschlag durch ein Testblatt benötigt.The ink floating time (measured in minutes) is the time it takes a test ink according to DIN 53126 to reach 50% through a test sheet.
Cobb-WertCobb value
Bestimmung erfolgte nach DIN 53 132 durch Lagerung der Papierblätter für einen Zeitraum von 60 Sekunden in Wasser. Die Wasseraufnahme wird in g/m2 angegeben.Determination was carried out in accordance with DIN 53 132 by storing the paper sheets in water for a period of 60 seconds. The water absorption is given in g / m 2 .
Beispiele 1 bis 6Examples 1 to 6
Zu einem Papierstoff mit einer Stoffdichte von 10 g/l aus 100% ungebleichtem Kief ern- sulfatzellstoff mit einem Mahlgrad von 20° SR (Schopper-Riegler) gab man, jeweils bezogen auf trockenen Papierstoff, 0,75% einer kationischen Stärke (Solvitose BPN) als Retentionsmittel und stellte den pH-Wert der Mischung auf 7 ein. Dann dosierte man jeweils die in der Tabelle angegebenen Mengen an Stearyldiketen in Form einer wässrigen Dispersion (Basoplast® 4118MC) und eine wässrige Dispersion der ebenfalls in Tabelle 1 genannten Polymerleimungsmittel. Die Faseraufschlämmungen wurden jeweils durchmischt und auf einem Rapid-Köthen-Blattbildner entwässert. Man erhielt Blätter mit einem Flächengewicht von 150 g/m2.To a paper stock with a consistency of 10 g / l made of 100% unbleached pine sulfate pulp with a freeness of 20 ° SR (Schopper-Riegler), 0.75% of a cationic starch (Solvitose BPN ) as a retention agent and adjusted the pH of the mixture to 7. The amounts of stearyldiketene given in the table were then metered in in the form of an aqueous dispersion (Basoplast® 4118MC) and an aqueous dispersion of the polymer sizing agents also listed in Table 1. The fiber slurries were each mixed and dewatered on a Rapid-Koethen sheet former. Sheets with a basis weight of 150 g / m 2 were obtained .
Folgende Polymerleimungsmittel wurden eingesetzt:The following polymer sizes were used:
Polymerleimungsmittel A: Basoplast® 250D (wässrige Dispersion eines Copolymerisa- tes, hergestellt durch Emulsionspolymerisation von Acrylnitril und n-Butylacrylat in Gegenwart von abgebauter kationischer Stärke als Emulgator und Wasserstoffperoxid als Initiator).Polymer sizing agent A: Basoplast® 250D (aqueous dispersion of a copolymer, produced by emulsion polymerization of acrylonitrile and n-butyl acrylate in Presence of degraded cationic starch as an emulsifier and hydrogen peroxide as an initiator).
Polymerleimungsmittel B: Basoplast® 265D (wässrige Dispersion eines Copolymerisa- tes, hergestellt durch Emulsionspolymerisation von Styrol und n-Butylacrylat in Gegenwart von abgebauter kationischer Stärke als Emulgator und Wasserstoffperoxid als Initiator).Polymer sizing agent B: Basoplast® 265D (aqueous dispersion of a copolymer, produced by emulsion polymerization of styrene and n-butyl acrylate in the presence of degraded cationic starch as emulsifier and hydrogen peroxide as initiator).
Polymerleimungsmittel C: Basoplast® PR8172 (wässrige Dispersion eines Copolyme- risates, hergestellt durch Emulsionspolymerisation von Styrol und n-Butylacrylat in Gegenwart von kationischer Stärke als Emulgator und Wasserstoffperoxid als Initiator).Polymer sizing agent C: Basoplast® PR8172 (aqueous dispersion of a copolymer, produced by emulsion polymerization of styrene and n-butyl acrylate in the presence of cationic starch as emulsifier and hydrogen peroxide as initiator).
Tabelle 1Table 1
Figure imgf000019_0001
Figure imgf000019_0001
Die Blätter wurden anschließend auf einem mit Dampf beheizten Trockenzylinder bei einer Temperatur von 90°C auf einen Wassergehalt von 6 - 10% getrocknet. Nach dem Trocknen wurde der Cobb-Wert der Blätter bestimmt. Die Blätter wurden anschließend beidseitig mit einem Klebeband aus Polyethylen der Dichte 0,918 g/cm3 laminiert (Erhitzen des Verbundes unter Druck auf 30°C). Danach bestimmte man die Kantenpenetration des dreischichtigen Verbundes. Die Ergebnisse sind in Tabelle 3 angegeben.The leaves were then dried on a steam-heated drying cylinder at a temperature of 90 ° C to a water content of 6-10%. After drying, the Cobb value of the leaves was determined. The sheets were then laminated on both sides with an adhesive tape made of polyethylene with a density of 0.918 g / cm 3 (heating the composite under pressure to 30 ° C.). The edge penetration of the three-layer composite was then determined. The results are shown in Table 3.
Vergleichsbeispiele 1 bis 4Comparative Examples 1 to 4
Zu einem Papierstoff mit einer Stoffdichte von 10 g/l aus 100% ungebleichtem Kiefern- sulfatzellstoff mit einem Mahlgrad von 20° SR (Schopper-Riegler) gab man, jeweils bezogen auf trockenen Papierstoff, 0,75% einer kationischen Stärke (Solvitose BPN) als Retentionsmittel und stellte den pH-Wert der Mischung auf 7 ein. Dann dosierte man jeweils die in Tabelle 2 angegebenen Mengen an Stearyldiketen in Form einer wässrigen Dispersion (Basoplast® 4118MC). Danach durchmischte man jeweils die wässrigen Faseraufschlämmungen und entwässerte sie auf einem Rapid-Köthen- Blattbildner zu einem Papierprodukt mit einem Flächengewicht von 150 g/m2.To a paper stock with a consistency of 10 g / l made from 100% unbleached pine sulfate pulp with a freeness of 20 ° SR (Schopper-Riegler), 0.75% of a cationic starch (Solvitose BPN) was added, each based on dry paper stock as a retention aid and adjusted the pH of the mixture to 7. The amounts of stearyl diketene given in Table 2 were then metered in in the form of an aqueous dispersion (Basoplast® 4118MC). Then they were mixed aqueous fiber slurries and dewatered them on a Rapid-Koethen sheet former to give a paper product with a basis weight of 150 g / m 2 .
Tabelle 2Table 2
Figure imgf000020_0001
Figure imgf000020_0001
Die Blätter wurden anschließend auf einem mit Dampf beheizten Trockenzylinder bei einer Temperatur von 90°C auf einen Wassergehalt von 6 - 10% getrocknet. Nach dem Trocknen wurde der Cobb-Wert der Blätter bestimmt. Die Blätter wurden an- schließend beidseitig mit einem Klebeband aus Polyethylen verklebt (Verpressen des Verbundes unter Druck). Danach bestimmte man die Kantenpenetration des dreischichtigen Verbundes gegenüber Wasserstoffperoxid. Die Ergebnisse sind in Tabelle 3 angegeben.The leaves were then dried on a steam-heated drying cylinder at a temperature of 90 ° C to a water content of 6-10%. After drying, the Cobb value of the leaves was determined. The sheets were then glued on both sides with an adhesive tape made of polyethylene (pressing the composite under pressure). The edge penetration of the three-layer composite against hydrogen peroxide was then determined. The results are shown in Table 3.
Tabelle 3Table 3
Figure imgf000020_0002
Figure imgf000020_0002

Claims

Patentansprüche claims
1. Verpackungsmaterial aus einem mindestens zweischichtigen Verbund aus geleimtem Papier oder geleimtem Karton und mindestens einer wasserundurch- lässigen Folie zur Herstellung von Behältern für die Verpackung von Flüssigkeiten, dadurch gekennzeichnet, daß das Papier oder der Karton jeweils mit einem Polymerleimungsmittel geleimt ist.1. Packaging material made of an at least two-layer composite of sized paper or sized cardboard and at least one water-impermeable film for the production of containers for the packaging of liquids, characterized in that the paper or the box is sized with a polymer sizing agent.
2. Verpackungsmaterial nach Anspruch 1 , dadurch gekennzeichnet, dass das Pa- pier oder der Karton jeweils in der Masse mit einem Polymerleimungsmittel geleimt ist.2. Packaging material according to claim 1, characterized in that the paper or the cardboard is sized in the mass with a polymer sizing agent.
3. Verpackungsmaterial nach Anspruch 1 , dadurch gekennzeichnet, dass das Papier oder der Karton jeweils in der Oberfläche mit einem Polymerleimungsmittel geleimt ist.3. Packaging material according to claim 1, characterized in that the paper or the cardboard is sized in the surface with a polymer sizing agent.
4. Verpackungsmaterial nach Anspruch 1 , dadurch gekennzeichnet, dass das Papier oder der Karton zusätzlich in Gegenwart von wässrigen Dispersionen von Reaktivleimungsmitteln und/oder Kombinationen aus Harzleim und Alaun geleimt ist.4. Packaging material according to claim 1, characterized in that the paper or cardboard is additionally sized in the presence of aqueous dispersions of reactive sizing agents and / or combinations of resin size and alum.
5. Verpackungsmaterial nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Papier oder der Karton erhältlich ist durch nacheinander erfolgende Zugabe von wässrigen Alkylketen-Dispersionen und wässrigen Polymerleimungsmittel- Dispersionen zum Papierstoff und Entwässern des Papierstoffs auf dem Sieb einer Papiermaschine.5. Packaging material according to claim 1 or 2, characterized in that the paper or cardboard is obtainable by adding aqueous alkyl ketene dispersions and aqueous polymer sizing agent dispersions in succession to the pulp and dewatering the pulp on the wire of a paper machine.
6. Verpackungsmaterial nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Papier oder der Karton erhältlich ist durch gleichzeitige Zuga- be von wässrigen Alkylketendimer-Dispersionen und wässrigen Polymer- leimungsmittel-Dispersionen zum Papierstoff und Entwässern des Papierstoffs auf dem Sieb einer Papiermaschine.6. Packaging material according to one of claims 1 or 2, characterized in that the paper or the cardboard is obtainable by simultaneous addition of aqueous alkyl ketene dimer dispersions and aqueous polymer size dispersions for the paper stock and dewatering of the paper stock on the wire of a paper machine ,
7. Verpackungsmaterial nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Papier oder der Karton erhältlich ist durch Leimung mit einer Leimungsmit- telmischung aus einer wässrigen Polymerleimungsmittel-Dispersion und einer wässrigen Alkylketendimer-Dispersion. 7. Packaging material according to claim 1 or 2, characterized in that the paper or the cardboard is obtainable by sizing with a sizing agent mixture of an aqueous polymer sizing agent dispersion and an aqueous alkyl ketene dimer dispersion.
8. Verpackungsmaterial nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Papier oder der Karton zusätzlich in Gegenwart von kationischen Polymeren geleimt ist.8. Packaging material according to one of claims 1 to 7, characterized in that the paper or cardboard is additionally sized in the presence of cationic polymers.
9. Verpackungsmaterial nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Papier oder der Karton jeweils beidseitig mit einer wasserundurchlässigen Folie aus Kunststoff und/oder Metall laminiert ist.9. Packaging material according to one of claims 1 to 8, characterized in that the paper or the cardboard is laminated on both sides with a water-impermeable film made of plastic and / or metal.
10. Verpackungsmaterial nach einem der Ansprüche 1 bis 9, dadurch gekennzeich- net, dass das Papier oder der Karton ein- oder beidseitig mit einer Folie aus Polyethylen, Polypropylen, Copolymer aus Ethylen und Propylen, Polyester, Polyvi- nylalkohol, Copolymer aus Ethylen und Vinylacetat, Copolymer aus Ethylen und Vinylalkohol, Polyamid und/oder Aluminium laminiert ist.10. Packaging material according to one of claims 1 to 9, characterized in that the paper or the cardboard on one or both sides with a film of polyethylene, polypropylene, copolymer of ethylene and propylene, polyester, polyvinyl alcohol, copolymer of ethylene and Vinyl acetate, copolymer of ethylene and vinyl alcohol, polyamide and / or aluminum is laminated.
11. Verpackungsmaterial nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Papier oder der Karton ein Flächengewicht von 80 bis 400 g/m2 hat und beidseitig mit einer Folie aus Polyethylen laminiert ist.11. Packaging material according to one of claims 1 to 8, characterized in that the paper or cardboard has a basis weight of 80 to 400 g / m 2 and is laminated on both sides with a film made of polyethylene.
12. Verwendung von Papierprodukten, die jeweils erhältlich sind durch12. Use of paper products that are available through
(i) Masseleimung eines Papierstoffs aus einer wässrigen Aufschlämmung von Cellulosefasem mit mindestens einem Polymerleimungsmittel oder mit einem Polymerleimungsmittel und einer wässrigen Dispersion eines Alkylketendimeren oder deren Mischungen in Gegenwart eines Retentionsmittels und gegebenenfalls einer wasserlöslichen Aluminiumverbindung und gegebenenfalls mindestens eines kationischen Polymeren, (ii) Entwässern des Papierstoffs auf dem Sieb einer Papiermaschine, (iii) Trocknen des Papierprodukts und(i) mass sizing of a paper stock from an aqueous slurry of cellulose fibers with at least one polymer sizing agent or with a polymer sizing agent and an aqueous dispersion of an alkyl ketene dimer or mixtures thereof in the presence of a retention aid and optionally a water-soluble aluminum compound and optionally at least one cationic polymer, (ii) dewatering the Paper stock on the wire of a paper machine, (iii) drying the paper product and
(iv) ein- oder beidseitiges Laminieren des Papierprodukts mit einer Folie aus einem Kunststoff oder Metall,(iv) laminating the paper product on one or both sides with a film made of a plastic or metal,
zur Herstellung von Behältern für die Verpackung von Flüssigkeiten, insbesondere von Getränken. for the production of containers for the packaging of liquids, in particular beverages.
PCT/EP2004/004820 2003-05-16 2004-05-06 Packaging material consisting of an at least double-layered composite material for producing containers for packing liquids WO2004101279A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BRPI0410262-2A BRPI0410262A (en) 2003-05-16 2004-05-06 packaging material and use of paper products
EP04731372A EP1626866A1 (en) 2003-05-16 2004-05-06 Packaging material consisting of an at least double-layered composite material for producing containers for packing liquids
US10/556,471 US20070010386A1 (en) 2003-05-16 2004-05-06 Packaging material consisting of an at least double-layered composite material for producing containers for packing liquids
CA002525626A CA2525626A1 (en) 2003-05-16 2004-05-06 Packaging material consisting of an at least double-layered composite material for producing containers for packing liquids
JP2006529749A JP2007500628A (en) 2003-05-16 2004-05-06 Packaging material containing at least two layers of laminated material for producing a liquid packaging container

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10322267.7 2003-05-16
DE2003122267 DE10322267A1 (en) 2003-05-16 2003-05-16 Packaging material, useful for liquids and beverages, comprises an at least two layer laminate of paper or card sized with a polymer sizing agent and at least one water-impermeable film
DE102004001992.4 2004-01-13
DE102004001992A DE102004001992A1 (en) 2004-01-13 2004-01-13 Packaging material, useful for liquids and beverages, comprises an at least two layer laminate of paper or card sized with a polymer sizing agent and at least one water-impermeable film

Publications (1)

Publication Number Publication Date
WO2004101279A1 true WO2004101279A1 (en) 2004-11-25

Family

ID=33453863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/004820 WO2004101279A1 (en) 2003-05-16 2004-05-06 Packaging material consisting of an at least double-layered composite material for producing containers for packing liquids

Country Status (6)

Country Link
US (1) US20070010386A1 (en)
EP (1) EP1626866A1 (en)
JP (1) JP2007500628A (en)
BR (1) BRPI0410262A (en)
CA (1) CA2525626A1 (en)
WO (1) WO2004101279A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2109373A1 (en) * 2007-01-24 2009-10-21 Tetra Laval Holdings & Finance SA A method of treating a packed food for purposes of extending its shelf-life
JP2010511798A (en) * 2006-12-01 2010-04-15 アクゾ ノーベル ナムローゼ フェンノートシャップ Packaging material laminate
CN102896857A (en) * 2012-11-06 2013-01-30 云南创新新材料股份有限公司 Paper-based aluminum-plastic composite material and preparation method thereof
CN103614945A (en) * 2013-11-26 2014-03-05 浙江亚欣包装材料有限公司 Production process integrating positioned aluminum washing and medium plating processes
WO2020151950A1 (en) * 2019-01-21 2020-07-30 Sig Technology Ag Method including generating a layer sequence from three compositions of at least partly different ph, especially for producing a carrier layer

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI120509B (en) * 2008-04-09 2009-11-13 Stora Enso Oyj Liquid packaging board that can withstand solvents, its preparation process and use, and a beverage cup made therefrom
WO2011062173A1 (en) * 2009-11-18 2011-05-26 綜研化学株式会社 Resin particles and process for production thereof
FR2970005B1 (en) * 2010-12-31 2014-03-28 Saint Gobain Technical Fabrics FLAME RETARDANT COMPOSITION BASED ON MINERAL FIBERS, AND MATS OBTAINED
WO2013089638A1 (en) * 2011-12-15 2013-06-20 Innventia Ab System and process for improving paper and paper board
CN104863021A (en) * 2015-04-29 2015-08-26 安徽顺彤包装材料有限公司 Production process of packaging paperboard
US10438868B2 (en) * 2017-02-20 2019-10-08 Microjet Technology Co., Ltd. Air-cooling heat dissipation device
US11828027B1 (en) * 2022-08-31 2023-11-28 Packaging And Crating Technologies, Llc Fire resistant retail product packaging materials and method of manufacturing same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115196A (en) * 1981-12-26 1983-07-08 日本カ−リツト株式会社 Paper strength enhancer having size effect
DE3235529A1 (en) * 1982-09-25 1984-03-29 Basf Ag, 6700 Ludwigshafen Paper size
EP0257412A1 (en) * 1986-08-14 1988-03-02 BASF Aktiengesellschaft Paper-sizing agent based on particulate aqueous dispersions
EP0580405A1 (en) * 1992-07-21 1994-01-26 Hercules Incorporated Use of a composition for sizing paper and cardboard
WO1994005855A1 (en) * 1992-09-01 1994-03-17 Basf Aktiengesellschaft Mixtures of paper sizing agents
WO1996031650A1 (en) * 1995-04-03 1996-10-10 Basf Aktiengesellschaft Paper sizing agent mixtures
DE19753212A1 (en) * 1997-12-01 1999-06-02 Basf Ag Process for mass sizing paper, cardboard and cardboard
DE19960411A1 (en) * 1999-12-15 2001-07-05 Dupont Performance Coatings Aqueous dispersion adhesive used for paper sizing and food and medicine packaging comprises a hydroxyfunctional polyurethane and/or poly(meth)acrylate binder and sheet mineral
WO2001049938A1 (en) * 1999-12-29 2001-07-12 Minerals Technologies Inc. Liquid packaging paper
WO2002090206A1 (en) * 2001-05-10 2002-11-14 Tetra Laval Holdings & Finance S A A packaging laminate for a retortable packaging container
WO2004022851A1 (en) * 2002-08-14 2004-03-18 Basf Aktiengesellschaft Method for the production of cardboard made of cellulose fibres for packaging liquids

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013480A (en) * 1971-09-13 1977-03-22 The Dow Chemical Company Cellulosic sizing agents
US4029885A (en) * 1975-12-31 1977-06-14 Nalco Chemical Company Cationic starch sizing
US4559103A (en) * 1982-08-05 1985-12-17 Honshu Seishi Kabushiki Kaisha Packaging paper and packaging material for packaging metallic material and method of producing the same
US4977004A (en) * 1987-09-28 1990-12-11 Tropicana Products, Inc. Barrier structure for food packages
SE461404C (en) * 1988-06-22 1999-11-15 Betzdearborn Inc Gluing composition, process for making thereof, process for making glued paper, and glued paper
WO1992018013A1 (en) * 1991-04-17 1992-10-29 Dunapack Rt. Cellulose-based package material having an increased adsorption capacity and process for the manufacture thereof
DE4133123A1 (en) * 1991-10-05 1993-04-08 Basf Ag USE OF COPOLYMERISATES FROM LONG-CHAIN OLEFINS AND MALEINIC ACID ANHYDRIDE IN THE FORM OF HALBAMIDES WITH MORPHOLINE AS A SIZING AGENT FOR PAPER
US5401562A (en) * 1992-03-27 1995-03-28 Fuji Photo Film Co., Ltd. Paper material for photosensitive materials and method of producing the same
US5308441A (en) * 1992-10-07 1994-05-03 Westvaco Corporation Paper sizing method and product
DE19505751A1 (en) * 1995-02-20 1996-08-22 Basf Ag Aqueous alkyldiketene dispersions and their use as sizing agents for paper
DE19540998A1 (en) * 1995-11-03 1997-05-07 Basf Ag Aqueous alkyldiketene dispersions and their use as sizing agents for paper
DE19654390A1 (en) * 1996-12-27 1998-07-02 Basf Ag Process for making paper
US6368457B1 (en) * 1997-08-05 2002-04-09 Westvaco Corporation Internal paper sizing agent
DE19806745A1 (en) * 1998-02-18 1999-08-19 Bayer Ag Aqueous polymer dispersion useful as surface sizing agent for paper, cardboard etc.

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115196A (en) * 1981-12-26 1983-07-08 日本カ−リツト株式会社 Paper strength enhancer having size effect
DE3235529A1 (en) * 1982-09-25 1984-03-29 Basf Ag, 6700 Ludwigshafen Paper size
EP0257412A1 (en) * 1986-08-14 1988-03-02 BASF Aktiengesellschaft Paper-sizing agent based on particulate aqueous dispersions
EP0580405A1 (en) * 1992-07-21 1994-01-26 Hercules Incorporated Use of a composition for sizing paper and cardboard
WO1994005855A1 (en) * 1992-09-01 1994-03-17 Basf Aktiengesellschaft Mixtures of paper sizing agents
WO1996031650A1 (en) * 1995-04-03 1996-10-10 Basf Aktiengesellschaft Paper sizing agent mixtures
DE19753212A1 (en) * 1997-12-01 1999-06-02 Basf Ag Process for mass sizing paper, cardboard and cardboard
DE19960411A1 (en) * 1999-12-15 2001-07-05 Dupont Performance Coatings Aqueous dispersion adhesive used for paper sizing and food and medicine packaging comprises a hydroxyfunctional polyurethane and/or poly(meth)acrylate binder and sheet mineral
WO2001049938A1 (en) * 1999-12-29 2001-07-12 Minerals Technologies Inc. Liquid packaging paper
WO2002090206A1 (en) * 2001-05-10 2002-11-14 Tetra Laval Holdings & Finance S A A packaging laminate for a retortable packaging container
WO2004022851A1 (en) * 2002-08-14 2004-03-18 Basf Aktiengesellschaft Method for the production of cardboard made of cellulose fibres for packaging liquids

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 198333, Derwent World Patents Index; Class A18, AN 1983-738069, XP002297733 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010511798A (en) * 2006-12-01 2010-04-15 アクゾ ノーベル ナムローゼ フェンノートシャップ Packaging material laminate
EP2109373A1 (en) * 2007-01-24 2009-10-21 Tetra Laval Holdings & Finance SA A method of treating a packed food for purposes of extending its shelf-life
EP2109373A4 (en) * 2007-01-24 2012-05-16 Tetra Laval Holdings & Finance A method of treating a packed food for purposes of extending its shelf-life
CN102896857A (en) * 2012-11-06 2013-01-30 云南创新新材料股份有限公司 Paper-based aluminum-plastic composite material and preparation method thereof
CN103614945A (en) * 2013-11-26 2014-03-05 浙江亚欣包装材料有限公司 Production process integrating positioned aluminum washing and medium plating processes
WO2020151950A1 (en) * 2019-01-21 2020-07-30 Sig Technology Ag Method including generating a layer sequence from three compositions of at least partly different ph, especially for producing a carrier layer

Also Published As

Publication number Publication date
BRPI0410262A (en) 2006-05-16
US20070010386A1 (en) 2007-01-11
EP1626866A1 (en) 2006-02-22
CA2525626A1 (en) 2004-11-25
JP2007500628A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
EP0606889B1 (en) Crosslinked vinyl alcohol/vinylamine copolymers for dry end paper addition
EP1183422B1 (en) Modifying starch with cationic polymers and use of the modified starches as dry-strength agent for paper
EP2920364B1 (en) Emulsification of alkenyl succinic anhydride with an amine-containing homopolymer or copolymer
CN104532674A (en) Method for increasing the dry strength of paper, paperboard, and cardboard
CN102648254A (en) Surface application of polymers and polymer mixtures to improve paper strength
EP1727937B1 (en) Aqueous dispersions of reactive gluing agents, method for the production and the use thereof
EP1819876A2 (en) Paper sizing agent
EP1626866A1 (en) Packaging material consisting of an at least double-layered composite material for producing containers for packing liquids
WO2010020551A1 (en) Method for increasing the dry strength of paper, paperboard and cardboard
US11365517B2 (en) Method for manufacturing a multi-layered paperboard, multi-layered paperboard and composition for use in multi-layered paperboard manufacturing
WO1998050630A1 (en) Method for producing paper, paperboard and cardboard
WO2010026101A1 (en) Method for manufacturing paper, cardboard and paperboard using endo-beta-1,4 glucanases as dewatering means
DE4105919A1 (en) AQUEOUS PENDINGS OF FINE-PARTIC FILLERS AND THEIR USE FOR THE PRODUCTION OF FUEL-CONTAINING PAPER
DE10322267A1 (en) Packaging material, useful for liquids and beverages, comprises an at least two layer laminate of paper or card sized with a polymer sizing agent and at least one water-impermeable film
WO2004022847A1 (en) Use of polymers containing vinylamine units as promoters for alkyldiketene glueing
KR102485733B1 (en) Method for producing corrugated cardboard
DE102004001992A1 (en) Packaging material, useful for liquids and beverages, comprises an at least two layer laminate of paper or card sized with a polymer sizing agent and at least one water-impermeable film
DE102004002370A1 (en) Packaging material for production of liquid containers, e.g. fruit juice or milk cartons, comprises water-impermeable foil laminated with cardboard containing finely-divided water-insoluble or -swellable polymer particles
WO2004022851A1 (en) Method for the production of cardboard made of cellulose fibres for packaging liquids
KR20060013657A (en) Packaging material consisting of an at least double-layered composite material for producing containers for packing liquids
DE10237912A1 (en) Bulk sizing of paper or cardboard using an anionic dispersion of sizing agents and retention aids comprises adding a cationic polymer to the pulp
US20230279614A1 (en) Foam-assisted application of sizing agents to paper products

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004731372

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007010386

Country of ref document: US

Ref document number: 10556471

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2525626

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020057021753

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048134496

Country of ref document: CN

Ref document number: 2006529749

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 3399/CHENP/2005

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 1020057021753

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004731372

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0410262

Country of ref document: BR

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWW Wipo information: withdrawn in national office

Ref document number: 2004731372

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10556471

Country of ref document: US