WO2004097195A1 - Turboladereinrichtung sowie ein verfahren zum betreiben einer turboladereinrichtung - Google Patents

Turboladereinrichtung sowie ein verfahren zum betreiben einer turboladereinrichtung Download PDF

Info

Publication number
WO2004097195A1
WO2004097195A1 PCT/EP2004/003100 EP2004003100W WO2004097195A1 WO 2004097195 A1 WO2004097195 A1 WO 2004097195A1 EP 2004003100 W EP2004003100 W EP 2004003100W WO 2004097195 A1 WO2004097195 A1 WO 2004097195A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
turbine
mass flow
catalytic converter
turbocharger device
Prior art date
Application number
PCT/EP2004/003100
Other languages
English (en)
French (fr)
Inventor
Ulrich Heinl
Heiko Sass
Original Assignee
Daimlerchrysler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimlerchrysler Ag filed Critical Daimlerchrysler Ag
Publication of WO2004097195A1 publication Critical patent/WO2004097195A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/001Engines characterised by provision of pumps driven at least for part of the time by exhaust using exhaust drives arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2053By-passing catalytic reactors, e.g. to prevent overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/004Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust drives arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/007Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in parallel, e.g. at least one pump supplying alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/08EGR systems specially adapted for supercharged engines for engines having two or more intake charge compressors or exhaust gas turbines, e.g. a turbocharger combined with an additional compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • F01N13/107More than one exhaust manifold or exhaust collector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2340/00Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
    • F01N2340/04Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses characterised by the arrangement of an exhaust pipe, manifold or apparatus in relation to vehicle frame or particular vehicle parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0412Multiple heat exchangers arranged in parallel or in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • Turbocharger device and a method for operating a turbocharger device
  • the invention relates to a turbocharger device and a method for operating a turbocharger device according to the preambles of the independent claims.
  • a turbocharger device with two exhaust gas turbochargers in which the exhaust gas mass flow can be switched over.
  • the exhaust gas mass flow is directed through both turbines, while at high engine speeds, the high-pressure turbine is bypassed and the exhaust gas mass flow is directed only through the low-pressure turbine.
  • the exhaust gas mass flow is switched over in such a way that a minimal exhaust gas mass flow always flows through the high-pressure turbine, even at high engine speeds.
  • variable partial flows of the exhaust gas mass flow are divided between the high pressure turbine, the low pressure turbine and the fresh air side with exhaust gas recirculation of the internal combustion engine.
  • the object of the invention is to provide a turbocharger device and a method for operating such a turbocharger device, in which a further improvement with regard to pollutant emissions is possible.
  • the object is achieved according to the invention by the features of the independent claims.
  • a series circuit comprising a turbine and a first exhaust gas catalytic converter is provided in the exhaust gas line, wherein a switchable bypass line through which the exhaust gas mass flow can flow is provided, which branches off from the exhaust gas line upstream of the series circuit and re-opens into the exhaust line in an outlet downstream of the series circuit.
  • Exhaust gas temperatures that are too low can be avoided, which lie outside the optimum range of the operating temperature for the conversion of pollutants contained in the exhaust gas, such as hydrocarbons and carbon monoxides, of the exhaust gas cleaning device. Due to the series connection of the turbine and the first exhaust gas catalytic converter and the switchable bypass of the series connection, no additional components are required which switch over an exhaust gas mass flow through the first exhaust gas catalytic converter, since a switchover that is usually present is also used for the turbine.
  • the exhaust gas catalytic converter connects downstream of the turbine. This is advantageous since the exhaust gas energy in the turbine can be used essentially undisturbed.
  • a regular catalytic exhaust gas cleaning device is provided downstream of the junction.
  • a light-off temperature of the catalytic reaction in the first exhaust gas catalytic converter can be achieved much more quickly than with conventional systems. Therefore, an effective conversion of the pollutants takes place in the exhaust gas, even if the regular exhaust gas cleaning device should not yet be at its operating temperature.
  • the first exhaust gas catalytic converter can be designed smaller, since it only has to be designed for medium mass flows. In this way, an increasing exhaust gas back pressure can be specifically optimized.
  • the design of the regular exhaust gas purification device can also be adapted, taking into account the pre-cleaning in the first exhaust gas catalytic converter, and possibly smaller or designed with less catalytic material.
  • At least two exhaust gas turbochargers are provided, the turbines of which the exhaust gas mass flow can flow through in succession in the direction of flow. This enables a two-stage supercharging of the internal combustion engine with high dynamics.
  • a second switchable bypass line is preferably provided, which branches off from the exhaust line downstream of the first series connection and opens into the exhaust line downstream of a second turbine. This enables flexible adjustment of the exhaust gas mass flows which act on the turbines of the exhaust gas turbocharger.
  • At least two exhaust gas turbochargers are provided, at least one of which has a double flow, so that the exhaust gas mass flow can flow through its turbines in parallel.
  • the favorable light-off behavior of the exhaust gas catalytic converter or the upstream of a regular exhaust gas purification device can thus also be used in a multi-fluid arrangement.
  • two turbines can be assigned a common exhaust gas catalytic converter, which is favorable for installation space and costs.
  • At least one further series circuit comprising a further exhaust gas catalytic converter and a further turbine is used, which can be bypassed with a further bypass line through which the exhaust gas mass flow can flow.
  • the light-off behavior of the catalytic reaction in the exhaust gas catalytic converter or the upstream of the regular exhaust gas cleaning device can thus be favorably influenced.
  • the method according to the invention for operating a turbocharger device is characterized in that the exhaust gas mass flow is precleaned by a turbine and a first exhaust gas catalytic converter when it passes through a series connection before it is fed to a further catalytic exhaust gas cleaning device.
  • the exhaust gas mass flow is conducted at high engine speeds essentially through the bypass line of a high-pressure turbine and drives a low-pressure turbine, whereby in a further advantageous development a residual flow of the exhaust gas mass flow keeps the first exhaust gas catalytic converter at an elevated temperature.
  • the exhaust gas catalytic converter is therefore essentially permanently ready for operation when the internal combustion engine is running.
  • Fig. 1 shows an arrangement of the internal combustion engine and two in
  • Fig. 2 shows a preferred double-flow arrangement with double-flow high-pressure stage and single-flow
  • An internal combustion engine 1 has exhaust gas-side pipelines 2, through which an exhaust gas mass flow is carried away from the internal combustion engine 1, and supply air-side pipelines 3, with which combustion air is supplied to the internal combustion engine 1.
  • two exhaust gas turbochargers are provided.
  • air supply line 13 air flows in the flow direction S2 and is compressed by compressors 5, 8 of the exhaust gas turbocharger.
  • Exhaust gas flows from the internal combustion engine 1 in an exhaust line 15 in the flow direction SI.
  • Turbines 4, 7 of the two exhaust gas turbochargers are arranged in the exhaust line 15 and are driven by the exhaust gas mass flow.
  • the turbocharger which is arranged downstream of the internal combustion engine 1 in relation to the exhaust gas flow, expediently has a turbine 4, preferably a high-pressure turbine, while the following exhaust-gas turbocharger has a turbine 7 as a low-pressure turbine.
  • the two turbines 4, 7 can be of different sizes, the low-pressure turbine being larger than the high-pressure turbine.
  • the turbine 4 drives the compressor 5 over a shaft 6, the turbine 7 drives the compressor 8 via a shaft 9.
  • An exhaust gas recirculation is provided in the air supply line 13, an exhaust gas mass flow of the air, in particular the combustion air, being supplied via an exhaust gas line 10. The amount of the admixed exhaust gas mass flow can be adjusted as required by means of an adjusting means 11.
  • a charge air cooler 12 is provided in the air supply line 13, which cools the compressed air to a desired temperature.
  • a confluence of the exhaust gas mass flow in the air supply line 13 can be provided between the two compressors 5, 8, downstream of the compressor 5 or also downstream of the charge air cooler 12. Additional coolers can optionally be provided, for example after each compressor, in particular if more than two exhaust gas turbochargers are provided.
  • a series circuit 22 comprising a turbine 4 and a first exhaust gas catalytic converter 20 is preferably provided in the exhaust line 15, a switchable bypass line 16 through which the exhaust gas mass flow can flow being provided, which branches off from the exhaust line 15 upstream of the arrangement and in a junction 14 downstream of the arrangement in the exhaust pipe 15 opens again.
  • a first actuating means 17 is provided, which releases or blocks the cross section of the bypass line 16. In a favorable further development it can be provided that the adjusting means 17 releases or blocks the cross section step by step or continuously.
  • the exhaust gas catalytic converter 20 adjoins the turbine 4 downstream, preferably directly.
  • the first exhaust gas catalytic converter 20 can also be arranged upstream of the turbine 4. This position is shown in dashed lines in the figure. Downstream of the junction 14 is one Catalytic exhaust gas purification device 21 is provided, in which the regular exhaust gas purification takes place. A special switching unit for the exhaust gas mass flows is not required due to the existing actuator 17 in the context of a multi-stage charging.
  • the first exhaust gas catalytic converter 20 is therefore flowed through when the flow through the turbine 4 is released as required by a control unit (not shown). If there is no flow through the turbine 4 or only a small exhaust gas mass flow is applied, the first exhaust gas catalytic converter 20 is likewise not supplied or a small exhaust gas mass flow is applied.
  • the exhaust gas mass flow flows successively through the turbines 4, 7 in the direction of flow SI, turbine 4 being assigned to the high-pressure stage and turbine 7 to the low-pressure stage.
  • a second switchable bypass line 18 is provided, which branches off from the exhaust line 15 downstream of the first series circuit 22 and opens into the exhaust line 15 downstream of the second turbine 7.
  • each turbine 4, 4 ' forms a series circuit 22, 22' with a first exhaust gas catalytic converter 20, 20 '.
  • Both series circuits 22, 22 'each have a switchable bypass line 16, 16', the cross section of which is released or blocked by actuating means 17, 17 '.
  • a common exhaust gas catalytic converter 20 can be assigned to the two turbines 4, 4 '.
  • the Exhaust gas catalytic converter 20 or the exhaust gas catalytic converters 20, 20 ′ are arranged downstream of the turbine 4 or the turbines 4, 4 ′.
  • the exhaust gas catalytic converter 20 or the exhaust gas catalytic converters 20, 20 ′ can also be arranged upstream of the turbine 4 or the turbines 4, 4 ′.
  • the second stage is a single-flow, low-pressure stage and comprises an exhaust gas turbocharger with a turbine 7, which drives a compressor 8 via a shaft 9.
  • this exhaust gas turbocharger can also be designed with two passages.
  • At least one further series circuit 22, 22 ′ is preferably provided, comprising a further exhaust gas catalytic converter and a further turbine, which can be bypassed with a further bypass line through which the exhaust gas mass flow can flow.
  • an exhaust gas mass flow at least temporarily drives a turbine 4, 4 ', 7, the exhaust gas mass flow being at least partially switchable between an exhaust line 15, 15' and a bypass line 16, 16 'depending on operating parameters, and the exhaust gas mass flow being passed through Series circuit 22, 22 'of a turbine 4, 4' and a first exhaust gas catalytic converter 20, 20 'is pre-cleaned before it is fed to a further catalytic exhaust gas purification device 21.
  • the exhaust gas mass flow at high speeds of the internal combustion engine 1 is essentially passed through the bypass line 16 of a high-pressure turbine and drives a low-pressure turbine downstream, so that only the low-pressure stage is used to build up the boost pressure of the combustion air.
  • Both, or preferably all, exhaust gas turbochargers are in operation in the low speed range.
  • the first exhaust gas catalytic converter (s) 20, 20 ' which are provided in series connections with turbines 4 and / or 4' and which are particularly preferably arranged between the high pressure turbine and the low pressure turbine, high conversion rates of pollutants in the exhaust gas can be achieved quickly , In this case, it may be sufficient to design the exhaust gas catalytic converter 20, 20 ′ with regard to the exhaust gas counterpressure only for the correspondingly lower air mass flows on the exhaust gas side.
  • a residual flow of the exhaust-gas mass flow via the high-pressure turbine can ensure a constantly high temperature level in the exhaust-gas catalytic converter 20, 20 ', so that it can be used practically immediately, for example at low speeds, both or all, exhaust gas turbochargers are put into operation.
  • the first exhaust gas catalytic converter 20, 20 ′ is connected upstream of the regular exhaust gas cleaning device 21, component masses lying between the internal combustion engine and the exhaust gas cleaning device 21 interfere less with regard to the exhaust gas temperature, and an improved pollutant reduction is achieved. This applies in particular to highly dynamic driving cycles in which there is a risk that the regular exhaust gas cleaning device 21 can only reach the operating temperature at relatively low temperatures or only with a delay.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Supercharger (AREA)

Abstract

Die Erfindung betrifft eine Turboladereinrichtung für eine Brennkraftmaschine (1) mit mindestens einem Abgasturbolader, dessen Turbine (4, 7) in einer Abgasleitung (15) vom Abgas der Brennkraftmaschine (1) antreibbar und dessen Verdichter (5, 8) in einer Luftzuführleitung (13) angeordnet und zum Komprimieren von Verbrennungsluft der Brennkraftmaschine (1) vorgesehen ist. Dabei ist eine Serienschaltung (22) aus einer Turbine (4) und einem ersten Abgaskatalysator (20) in der Abgasleitung (15) vorgesehen. Ebenso ist eine vom Abgasmassenstrom durchströmbare, schaltbare Umgehungsleitung (16) vorgesehen, die stromauf der Serienschaltung von der Abgasleitung (15) abzweigt und in einer Einmündung (14) stromab der Serienschaltung in die Abgasleitung (15) wieder einmündet. Ebenso betrifft die Erfindung ein Verfahren zum Betreiben der Turboladereinrichtung.

Description

Turboladereinrichtung sowie ein Verfahren zum Betreiben einer Turboladereinrichtung
Die Erfindung betrifft eine Turboladereinrichtung sowie ein Verfahren zum Betreiben einer Turboladereinrichtung nach den Oberbegriffen der unabhängigen Ansprüche.
Aus der Offenlegungsschrif DE 198 37 978 AI ist eine Turboladereinrichtung mit zwei Abgasturbolädern bekannt, bei der der Abgasmassenstrom umschaltbar ist. Bei niederen Drehzahlen der Brennkraftmaschine wird der Abgasmassenstrom über beide Turbinen geleitet, während bei hohen Drehzahlen der Brennkraftmaschine die Hochdruckturbine umgangen und der Abgasmassenstrom nur über die Niederdruckturbine geleitet wird. Um ein schnelles Ansprechen der Hochdruckturbine zu gewährleisten, erfolgt die Umschaltung des Abgasmassenstroms so, dass die Hochdruckturbine auch bei hohen Motordrehzahlen stets mit einem minimalen Abgasmassenstrom durchströmt wird. Um die Betriebsweise hinsichtlich des Kraftstoffverbrauchs und der Schadstoffemission zu optimieren, werden variable Teilströme des Abgasmassenstroms auf die Hochdruckturbine, die Niederdruckturbine und die Frischluftseite mit Abgasrückführung der Brennkraftmaschine aufgeteilt.
Aufgabe der Erfindung ist es, eine Turboladereinrichtung und ein Verfahren zum Betreiben einer solchen Turboladereinrichtung anzugeben, bei dem eine weitere Verbesserung hinsichtlich der Schadstoffemission möglich ist. Die Aufgabe wird erfindungsgemäß durch die Merkmale der unabhängigen Ansprüche gelöst .
Gemäß der Erfindung ist eine Serienschaltung aus einer Turbine und einem ersten Abgaskatalysator in der Abgasleitung vorgesehen, wobei eine vom Abgasmassenstrom durchströmbare, schaltbare Umgehungsleitung vorgesehen ist, die stromauf der Serienschaltung von der Abgasleitung abzweigt und in einer Einmündung stromab der Serienschaltung in die Abgasleitung wieder einmündet. Damit ist es möglich, durch den ersten Abgaskatalysator die an sich ungünstige, vom Austritt des Abgases aus der Brennkraftmaschine entfernte Einbauposition der regulären Abgasreinigungsvorrichtung zumindest teilweise auszugleichen. Die Masse und die Oberfläche eines Abgasturboladers wirken zusätzlich als Wärmesenke, was besonders bei mehrstufigen Abgasturboladereinrichtungen das Problem noch verstärkt. Es kann vermieden werden, dass sich zu geringe Abgastemperaturen einstellen, die außerhalb des optimalen Bereichs der Betriebstemperatur für die Umsetzung von im Abgas enthaltenen Schadstoffen, wie etwa Kohlenwasserstoffe und Kohlenmonoxide, der Abgasreinigungsvorrichtung liegen. Durch die Serienschaltung von Turbine und erstem Abgaskatalysator und die schaltbare Umgehung der Serienschaltung sind keine zusätzlichen Bauteile notwendig, die einen Abgasmassenstrom durch den ersten Abgaskatalysator umschalten, da eine üblicherweise vorhandene Umschaltung für die Turbine mit verwendet wird.
In einer bevorzugten Weiterbildung schließt sich, bezogen auf eine Strömungsrichtung eines Abgasmassenstroms, der Abgaskatalysator stromab an die Turbine an. Dies ist vorteilhaft, da so die Abgasenergie in der Turbine im wesentlichen ungestört genutzt werden kann.
In einer bevorzugten Weiterbildung ist stromab der Einmündung eine reguläre katalytische Abgasreinigungsvorrichtung vorgesehen. In einem entsprechenden Fahrzyklus, während dessen der Ladedruck mit zwei oder mehr Abgasturboladern erzeugt wird, kann eine Anspringtemperatur der katalytischen Reaktion im ersten Abgaskatalysator sehr viel schneller erreicht werden als bei üblichen Systemen. Daher findet eine wirkungsvolle Umsetzung der Schadstoffe im Abgas statt, auch wenn die reguläre Abgasreinigungsvorrichtung noch nicht auf ihrer Betriebstemperatur sein sollte. Der erste Abgaskatalysator kann kleiner ausgelegt sein, da er nur für mittlere Massenströme ausgelegt werden muss. Dadurch kann ein ansteigender Abgasgegendruck gezielt optimiert werden. Entsprechend kann auch die Auslegung der regulären Abgasreinigungsvorrichtung unter Berücksichtigung der Vorreinigung im ersten Abgaskatalysator angepasst werden und gegebenenfalls kleiner ausfallen oder mit weniger katalytischem Material ausgelegt werden.
In einer bevorzugten Ausgestaltung sind mindestens zwei Abgasturbolader vorgesehen, deren Turbinen in Strömungsrichtung nacheinander vom Abgasmassenstrom durchströmbar sind. Dadurch ist eine zweistufige Aufladung der Brennkraftmaschine mit hoher Dynamik möglich. Bevorzugt ist dabei eine zweite schaltbare Umgehungsleitung vorgesehen, die stromab der ersten Serienschaltung von der Abgasleitung abzweigt und stromab einer zweiten Turbine in die Abgasleitung mündet. Dies ermöglicht eine flexible Einstellung der Abgasmassenströme, welche die Turbinen der Abgasturbolader beaufschlagen.
In einer bevorzugten alternativen Ausgestaltung sind mindestens zwei Abgasturbolader vorgesehen, wobei mindestens einer zweiflutig ausgebildet ist, so dass dessen Turbinen parallel vom Abgasmassenstrom durchströmbar sind. Damit kann das günstige Anspringverhalten des oder der einer regulären Abgasreinigungsvorrichtung vorgeschalteten Abgaskatalysatoren auch in einer mehrflu igen Anordnung genutzt werden. Dabei kann in einer mehrflutigen Anordnung zwei Turbinen ein gemeinsamer Abgaskatalysator zugeordnet sein, was günstig für Bauraum und Kosten ist.
In günstiger Weiterbildung der Erfindung ist vorgesehen, dass beim Einsatz von mehr als zwei Abgasturboladern mindestens eine weitere Serienschaltung aus einem weiteren Abgaskatalysator und einer weiteren Turbine eingesetzt ist, welche mit einer vom Abgasmassenstrom durchströmbaren weiteren Umgehungsleitung umgehbar ist. Damit kann das Anspringverhalten der katalytischen Reaktion in dem oder den der regulären Abgasreinigungsvorrichtung vorgeschalteten Abgaskatalysatoren günstig beeinflusst werden.
Das erfindungsgemäße Verfahren zum Betreiben einer Turboladereinrichtung ist dadurch gekennzeichnet, dass der Abgasmassenstrom beim Durchlaufen einer Serienschaltung von einer Turbine und einem ersten Abgaskatalysator vorgereinigt wird, bevor er einer weiteren katalytischen Abgasreinigungsvorrichtung zugeführt wird.
In günstiger Weiterbildung der Erfindung wird der Abgasmassenstrom bei hohen Drehzahlen der Brennkraftmaschine im wesentlichen durch die Umgehungsleitung einer Hochdruckturbine geleitet und treibt eine Niederdruckturbine an, wobei in vorteilhafter Weiterentwicklung ein Reststrom des Abgasmassenstroms den ersten Abgaskatalysator auf einer erhöhten Temperatur hält. Der Abgaskatalysator ist daher bei laufender Brennkraftmaschine im wesentlichen dauerhaft betriebsbereit .
Weitere Vorteile und Ausgestaltungen der Erfindung sind der Beschreibung und den weiteren Ansprüchen zu entnehmen. Es versteht sich, dass die einzelnen Ausgestaltungen auch in Kombination miteinander eingesetzt werden können. Im folgenden ist die Erfindung anhand einer Zeichnung detailliert beschrieben.
Dabei zeigen in schematischer Darstellung:
Fig. 1 eine Anordnung von Brennkraftmaschine und zwei in
Serie miteinander geschalteten Abgasturboladern gemäß der Erfindung und Fig. 2 eine bevorzugte zweiflutige Anordnung mit zweiflutiger Hochdruckstufe und einflutiger
Niederdruckstufe .
Fig. 1 zeigt eine bevorzugte Turboladereinrichtung für eine Brennkraftmaschine, bei der mindesten zwei Abgasturbolader vorgesehen sind. Eine Brennkraftmaschine 1 weist abgasseitige Rohrleitungen 2, durch welche ein Abgasmassenstrom von der Brennkraftmaschine 1 weggeführt wird und zuluftseitige Rohrleitungen 3 auf, mit denen der Brennkraftmaschine 1 Verbrennungsluft zugeführt wird. In der gezeigten Ausführung sind zwei Abgasturbolader vorgesehen. In einer Luf zuführleitung 13 strömt Luft in Strömungsrichtung S2 und wird durch Verdichter 5, 8 der Abgasturbolader komprimiert. In einer Abgasleitung 15 strömt Abgas aus der Brennkraftmaschine 1 in Strömungsrichtung SI. In der Abgasleitung 15 sind Turbinen 4, 7 der beiden Abgasturbolader angeordnet und werden vom Abgasmassenstrom angetrieben. Zweckmäßigerweise weist der bezogen auf die Abgasströmung erste stromab der Brennkraftmaschine 1 angeordnete Turbolader eine Turbine 4 auf, vorzugsweise eine Hochdruckturbine, während der folgende Abgasturbolader eine Turbine 7 als Niederdruckturbine aufweist. Die beiden Turbinen 4, 7 können unterschiedlich groß ausgebildet sein, wobei die Niederdruckturbine größer als die Hochdruckturbine ausgebildet ist . Die Turbine 4 treibt den Verdichter 5 über eine Welle 6, die Turbine 7 treibt den Verdichter 8 über eine Welle 9 an. In der Luftzuführleitung 13 ist eine Abgasrückführung vorgesehen, wobei über eine Abgasleitung 10 ein Abgasmassenstrom der Luft, insbesondere der Verbrennungsluft, zugeführt wird. Mittels eines Stellmittels 11 kann die Menge des beigemischten Abgasmassenstroms bedarfsabhängig eingestellt werden. Weiterhin ist in der Luftzuführleitung 13 ein Ladeluftkühler 12 vorgesehen, der die komprimierte Luft auf eine gewünschte Temperatur abkühlt. Eine Einmündung des Abgasmassenstroms in die Luftzuführleitung 13 kann zwischen den beiden Verdichtern 5, 8, stromab des Verdichters 5 oder auch stromab des Ladeluftkühlers 12 vorgesehen sein. Es können optional weitere Kühler vorgesehen sein, etwa nach jedem Verdichter, insbesondere wenn mehr als zwei Abgasturbolader vorgesehen sind.
Bevorzugt ist eine Serienschaltung 22 aus einer Turbine 4 und einem ersten Abgaskatalysator 20 in der Abgasleitung 15 vorgesehen, wobei eine vom Abgasmassenstrom durchströmbare, schaltbare Umgehungsleitung 16 vorgesehen ist, die stromauf der Anordnung von der Abgasleitung 15 abzweigt und in einer Einmündung 14 stromab der Anordnung in die Abgasleitung 15 wieder einmündet. Zur Umschaltung des Abgasmassenstroms ist ein erstes Stellmittel 17 vorgesehen, welcher den Querschnitt der Umgehungsleitung 16 freigibt oder sperrt. In einer günstigen Weiterbildung kann vorgesehen sein, dass das Stellmittel 17 stufenweise oder kontinuierlich den Querschnitt freigibt oder sperrt .
Besonders bevorzugt schließt sich, bezogen auf die Strömungsrichtung SI des Abgasmassenstroms, der Abgaskatalysator 20 stromab an die Turbine 4 an, vorzugsweise unmittelbar. In alternativer Ausgestaltung kann der erste Abgaskatalysator 20 auch stromauf der Turbine 4 angeordnet sein. Diese Position ist in der Figur gestrichelt eingezeichnet. Stromab der Einmündung 14 ist eine katalytische Abgasreinigungsvorrichtung 21 vorgesehen, in welcher die reguläre Abgasreinigung stattfindet. Eine spezielle Umschalteinheit für die Abgasmassenströme wird aufgrund des vorhandenen Stellorgans 17 im Rahmen einer mehrstufigen Aufladung nicht benötigt. Daher wird der erste Abgaskatalysator 20 dann durchströmt, wenn bedarfsabhängig von einem nicht dargestellten Steuergerät die Durchströmung der Turbine 4 freigegeben wird. Wird die Turbine 4 nicht durchströmt oder nur mit einem geringen Abgasmassenstrom beaufschlagt, so wird der erste Abgaskatalysator 20 ebenso nicht oder mit einem geringen Abgasmassenstrom beaufschlagt .
In der bevorzugten Anordnung sind die Turbinen 4, 7 in Strömungsrichtung SI nacheinander vom Abgasmassenstrom durchströmt, wobei Turbine 4 der Hochdruckstufe und Turbine 7 der Niederdruckstufe zugeordnet ist .
Weiterhin ist eine zweite schaltbare Umgehungsleitung 18 vorgesehen, die stromab der ersten Serienschaltung 22 von der Abgasleitung 15 abzweigt und stromab der zweiten Turbine 7 in die Abgasleitung 15 mündet.
Fig. 2 zeigt eine bevorzugte mehrflutige Anordnung, bei der mindestens zwei Abgasturbolader vorgesehen sind. Die Anordnung ist zweiflutig ausgebildet, wobei die Hochdruckstufe Turbinen 4, 4' aufweist, die parallel vom Abgasmassenstrom beaufschlagbar sind und die beide über eine Welle 6 einen Verdichter 5 antreiben. Gleiche oder sich entsprechende Elemente sind mit denselben Bezugszeichen wie in Fig. 1 bezeichnet. In bevorzugter Ausführung bildet jede Turbine 4, 4' mit einem ersten Abgaskatalysator 20, 20' eine Serienschaltung 22, 22'. Beide Serienschaltungen 22, 22' weisen jeweils eine schaltbare Umgehungsleitung 16, 16' auf, deren Querschnitt durch Stellmittel 17, 17' freigegeben oder gesperrt wird. Optional kann den beiden Turbinen 4, 4' ein gemeinsamer Abgaskatalysator 20 zugeordnet sein. Dies erlaubt eine Platz sparende Bauweise. Vorzugsweise ist der Abgaskatalysator 20 oder die Abgaskatalysatoren 20, 20' stromab der Turbine 4 bzw. der Turbinen 4, 4' angeordnet. Wie in dem vorhergehenden Ausführungsbeispiel als Option bereits beschrieben, kann der Abgaskatalysator 20 bzw. können die Abgaskatalysatoren 20, 20' auch stromauf der Turbine 4 bzw. der Turbinen 4, 4' angeordnet sein.
Die zweite Stufe ist eine einflutige Niederdruckstufe und umfasst einen Abgasturbolader mit einer Turbine 7, welche über eine Welle 9 einen Verdichter 8 antreibt. Optional kann auch dieser Abgasturbolader zweiflutig ausgeführt sein.
Für ein- und/oder zweiflutige Ausführungen ist bevorzugt beim Einsatz von mehr als zwei Abgasturboladern mindestens eine weitere Serienschaltung 22, 22' aus einem weiteren Abgaskatalysator und einer weiteren Turbine vorgesehen, welche mit einer vom Abgasmassenstrom durchströmbaren weiteren Umgehungsleitung umgehbar ist.
Gemäß dem erfindungsgemäßen Verfahren treibt ein Abgasmassenstrom zumindest zeitweise eine Turbine 4, 4', 7 an, wobei der Abgasmassenstrom abhängig von Betriebsparametern zwischen einer Abgasleitung 15, 15' und einer Umgehungsleitung 16, 16' zumindest teilweise umschaltbar ist und wobei der Abgasmassenstrom beim Durchlaufen einer Serienschaltung 22, 22' aus einer Turbine 4, 4' und einem ersten Abgaskatalysator 20, 20' vorgereinigt wird, bevor er einer weiteren katalytischen Abgasreinigungsvorrichtung 21 zugeführt wird.
Bei einer beispielhaften zweistufigen Ausführung wird der Abgasmassenstrom bei hohen Drehzahlen der Brennkraftmaschine 1 im wesentlichen durch die Umgehungsleitung 16 einer Hochdruckturbine geleitet und treibt stromab eine Niederdruckturbine an, so dass nur die Niederdruckstufe zum Ladedruckaufbau der Verbrennungsluft verwendet wird. Im niederen Drehzahlbereich sind beide, bzw. vorzugsweise alle, Abgasturbolader in Betrieb. Durch ein relativ schnelles Anspringen des oder der ersten Abgaskatalysatoren 20, 20', welche in Serienschaltungen mit Turbinen 4 und/oder 4' vorgesehen sind, und die besonders bevorzugt zwischen Hochdruckturbine und Niederdruckturbine angeordnet sind, können rasch hohe Umsatzraten von Schadstoffen im Abgas erzielt werden. Dabei ist es gegebenenfalls ausreichend, den Abgaskatalysator 20, 20' hinsichtlich des Abgasgegendrucks nur für die entsprechend geringeren Luftmassenströme auf der Abgasseite auszulegen. Beim hauptsächlichen Betrieb der Niederdruckstufe (im Falle einer zweistufigen Abgasturboladereinrichtung) kann ein Reststrom des Abgasmassenstroms über die Hochdruckturbine für ein konstant hohes Temperaturniveau im Abgaskatalysator 20, 20' sorgen, so dass dieser praktisch sofort einsetzbar ist, wenn etwa bei niederen Drehzahlen beide, bzw. alle, Abgasturbolader in Betrieb genommen werden.
Da der erste Abgaskatalysator 20, 20' der regulären Abgasreinigungsvorrichtung 21 vorgeschaltet ist, stören zwischen der Brennkraftmaschine und der Abgasreinigungsvorrichtung 21 liegende Bauteilmassen bezüglich der Abgastemperatur weniger, und eine verbesserte Schadstoffreduzierung wird erreicht. Dies gilt besonders für hochdynamische Fahrzyklen, bei denen die Gefahr besteht, dass die reguläre Abgasreinigungsvorrichtung 21 nur relativ niedrige Temperaturen oder nur verzögert die Betriebstemperatur erreichen kann.

Claims

Patentansprüche
Turboladereinrichtung für eine Brennkraftmaschine (1) mit mindestens einem Abgasturbolader, dessen Turbine (4, 4', 7) in einer Abgasleitung (15) vom Abgas der Brennkraftmaschine (1) antreibbar und dessen Verdichter
(5, 8) in einer Luftzuführleitung (13) angeordnet und zum Komprimieren von Verbrennungsluft der Brennkraftmaschine
(1) vorgesehen ist, d a d u r c h g e k e n n z e i c h n e t , dass eine Serienschaltung (22, 22') aus einer Turbine (4,
4') und einem ersten Abgaskatalysator (20, 20') in der
Abgasleitung (15, 15') vorgesehen ist, wobei eine vom
Abgasmassenstrom durchströmbare, schaltbare
Umgehungsleitung (16, 16') vorgesehen ist, die stromauf der Serienschaltung von der Abgasleitung (15, 15') abzweigt und in einer Einmündung (14) stromab der
Serienschaltung in die Abgasleitung (15) wieder einmündet .
Turbo1ädereinrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass sich, bezogen auf eine Strömungsrichtung (SI) eines
Abgasmassenstroms, der Abgaskatalysator (20, 20') stromab an die Turbine (4, 4') anschließt.
Turboladereinrichtung nach Anspruch 1 oder 2 , d a d u r c h g e k e n n z e i c h n e t , dass stromab der Einmündung (14) eine katalytische Abgasreinigungsvorrichtung (21) vorgesehen ist.
4. Turboladereinrichtung nach mindestens einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , dass mindestens zwei Abgasturbolader vorgesehen sind, deren Turbinen (4, 7) in Strömungsrichtung (SI) nacheinander vom Abgasmassenstrom beaufschlagbar sind.
5. Turboladereinrichtung nach mindestens einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , dass eine zweite schaltbare Umgehungsleitung (18) vorgesehen ist, die stromab der ersten Serienschaltung (22, 22') von der Abgasleitung (15) abzweigt und stromab einer zweiten Turbine (7) in die Abgasleitung (15) mündet .
6. Turboladereinrichtung nach mindestens einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , dass mindestens zwei Abgasturbolader vorgesehen sind, deren Turbinen (4, 4') parallel vom Abgasmassenstrom beaufschlagbar sind.
7. Turboladereinrichtung nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t , dass zwei Turbinen (4, 4') ein gemeinsamer Abgaskatalysator (20) zugeordnet ist.
8. Turboladereinrichtung nach mindestens einem der Ansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t , dass beim Einsatz von mehr als zwei Abgasturboladern mindestens eine weitere Serienschaltung (22, 22') aus einem weiteren Abgaskatalysator und einer weiteren Turbine vorgesehen ist, welche mit einer vom Abgasmassenstrom durchströmbaren weiteren Umgehungsleitung umgehbar ist.
9. Turboladereinrichtung nach mindestens einem der Ansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t , dass eine Abgasrückführleitung (10) vorgesehen ist, welche, bezogen auf eine Luftströmungsrichtung (S2) der Verbrennungsluft, stromauf oder stromab eines Verdichters (5, 8) in die Ladeluftzuführleitung (13) mündet.
10. Turboladereinrichtung nach mindestens einem der Ansprüche 1 bis 9, d a d u r c h g e k e n n z e i c h n e t , dass bei einer mehrflutigen Turboladereinrichtung jeder Turbine (4, 4') ein separater Abgaskatalysator (20, 20') in der Serienschaltung (22, 22') zugeordnet ist.
11. Turboladereinrichtung nach mindestens einem der Ansprüche 1 bis 10, d a d u r c h g e k e n n z e i c h n e t , dass bei einer mehrflutigen Turboladereinrichtung den Turbinen (4, 4') ein gemeinsamer Abgaskatalysator (20, 20') in der Serienschaltung (22, 22') zugeordnet ist.
12. Verfahren zum Betreiben einer Turboladereinrichtung nach zumindest einem der vorangegangenen Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass ein Abgasmassenstrom zumindest zeitweise eine Turbine (4, 7) antreibt, wobei der Abgasmassenstrom abhängig von Betriebsparametern zwischen einer Abgasleitung (15) und einer Umgehungsleitung (16) zumindest teilweise umschaltbar ist und wobei der Abgasmassenstrom beim Durchlaufen einer Serienschaltung (22) von einer Turbine (4) und einem ersten Abgaskatalysator (20) vorgereinigt wird, bevor er einer weiteren katalytischen Abgasreinigungsvorrichtung (21) zugeführt wird.
13. Verfahren nach Anspruch 12, d a d u r c h g e k e n n z e i c h n e t , dass der Abgasmassenstrom bei hohen Drehzahlen der Brennkraftmaschine (1) im wesentlichen durch die Umgehungsleitung (16) einer Hochdruckturbine geleitet wird und stromab eine Niederdruckturbine antreibt .
14. Verfahren nach Anspruch 12 oder 13, d a d u r c h g e k e n n z e i c h n e t , dass bei hohen Drehzahlen ein Reststrom des Abgasmassenstroms durch den ersten Abgaskatalysator (20, 20') geleitet wird und diesen auf einer erhöhten Temperatur hält .
PCT/EP2004/003100 2003-05-02 2004-03-24 Turboladereinrichtung sowie ein verfahren zum betreiben einer turboladereinrichtung WO2004097195A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10319594A DE10319594A1 (de) 2003-05-02 2003-05-02 Turboladereinrichtung sowie ein Verfahren zum Betreiben einer Turboladereinrichtung
DE10319594.7 2003-05-02

Publications (1)

Publication Number Publication Date
WO2004097195A1 true WO2004097195A1 (de) 2004-11-11

Family

ID=33305092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/003100 WO2004097195A1 (de) 2003-05-02 2004-03-24 Turboladereinrichtung sowie ein verfahren zum betreiben einer turboladereinrichtung

Country Status (2)

Country Link
DE (1) DE10319594A1 (de)
WO (1) WO2004097195A1 (de)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004027593A1 (de) * 2004-06-05 2005-12-29 Man B & W Diesel Ag Motorenanlage mit Abgasturboaufladung und Betrieb eines SCR-Katalysators
EP1640598A1 (de) * 2004-09-22 2006-03-29 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Aufgeladene Brennkraftmaschine und Verfahren zur Verbesserung des Emissionsverhaltens einer aufgeladenen Brennkraftmaschine
EP1691052A1 (de) * 2005-01-18 2006-08-16 Bayerische Motorenwerke Aktiengesellschaft Abgasanlage für eine Brennkraftmaschine
EP1728989A1 (de) * 2005-05-31 2006-12-06 BorgWarner Inc. Mehrstufige Turboladeranordnung
WO2007096221A1 (de) * 2006-02-22 2007-08-30 Robert Bosch Gmbh Verfahren und vorrichtung zur erhöhung der abgastemperatur einer brennkraftmaschine
EP1903197A2 (de) 2006-07-27 2008-03-26 Iveco S.p.A. Motor mit Energierückgewinnungs- und Katalysatorabgas-Behandlungsverfahren
WO2008125579A1 (de) 2007-04-16 2008-10-23 Napier Turbochargers Limited Turboaufgeladene brennkraftmaschine und verfahren
WO2008155268A1 (de) * 2007-06-21 2008-12-24 Robert Bosch Gmbh Brennkraftmaschine mit zweistufiger turboaufladung und oxidationskatalysator
EP1754870A3 (de) * 2005-08-18 2009-04-29 Volkswagen Aktiengesellschaft Brennkraftmaschine mit Abgasturboaufladung
WO2009081233A1 (en) * 2007-12-21 2009-07-02 Renault Trucks Arrangement for an exhaust line of an internal combustion engine
WO2009111223A3 (en) * 2008-02-29 2009-12-03 Borgwarner Inc. Multi-stage turbocharging system with thermal bypass
EP2148061A1 (de) * 2008-07-22 2010-01-27 Caterpillar Motoren GmbH & Co. KG Zweistufiger Turboladungsverbrennungsmotor
DE102008061222A1 (de) 2008-12-09 2010-06-17 Man Diesel Se Mehrstufig aufgeladene Brennkraftmaschine mit integrierter Abgasreinigungseinrichtung
WO2010099031A2 (en) * 2009-02-26 2010-09-02 Borgwarner Inc. Internal combustion engine
CN101865018A (zh) * 2009-04-16 2010-10-20 Ifp公司 用于内燃机的带尾气净化设备的二级增压系统及其控制方法
US20110023480A1 (en) * 2009-07-29 2011-02-03 Ford Global Technologies, Llc Twin turbo diesel aftertreatment system
CN101660443B (zh) * 2008-05-28 2011-08-10 中国第一汽车集团公司 以排气温度为变量的车载scr计量喷射系统
WO2012121925A2 (en) * 2011-03-04 2012-09-13 Borgwarner Inc. Multi-stage turbocharger arrangement
DE102011086778A1 (de) 2011-11-22 2013-05-23 Robert Bosch Gmbh Brennkraftmaschine mit einem Abgasstrang und mit zweistufiger Turboaufladung
WO2013153257A1 (en) * 2012-04-13 2013-10-17 Wärtsilä Finland Oy Arrangement for treating exhaust gases of an internal combustion piston engine, an internal combustion piston engine and method of treating exhaust gas of an internal combustion piston engine
WO2013160530A1 (en) 2012-04-27 2013-10-31 Wärtsilä Finland Oy An internal combustion engine and a method of controlling the operation thereof
US8671682B2 (en) * 2004-09-27 2014-03-18 Borgwarner Inc Multi-stage turbocharging system utilizing VTG turbine stage(s)
WO2015071540A1 (en) 2013-11-18 2015-05-21 Wärtsilä Finland Oy Arrangement for treating exhaust gas in a turbocharged internal combustion engine and method of operating a turbocharged internal combustion engine
WO2016124445A1 (en) * 2015-02-06 2016-08-11 Jaguar Land Rover Limited A multi-stage exhaust turbocharger system
WO2016124444A1 (en) * 2015-02-06 2016-08-11 Jaguar Land Rover Limited A multi-stage exhaust turbocharger system

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20032559A1 (it) * 2003-12-22 2005-06-23 Iveco Spa Metodo pere il ricircolo dei gas di scarico in motore sovralimentato ed impianto motore sovralimentato
DE102004057397A1 (de) * 2004-11-27 2006-06-08 Daimlerchrysler Ag Abgasturbolader für eine Brennkraftmaschine
DE102004058955A1 (de) * 2004-12-08 2006-06-29 Bayerische Motoren Werke Ag Brennkraftmaschine mit einem Abgasstrang
CN101067397A (zh) * 2004-12-14 2007-11-07 博格华纳公司 涡轮气流调节阀系统
US20060137343A1 (en) 2004-12-14 2006-06-29 Borgwarner Inc. Turbine flow regulating valve system
DE102005008657A1 (de) * 2005-02-25 2006-08-31 Daimlerchrysler Ag Motorbremsverfahren für eine Brennkraftmaschine mit zwei in Reihe geschalteten Abgasturboladern
DE102005043060B4 (de) * 2005-09-07 2012-10-04 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Turboladereinrichtung für eine Brennkraftmaschine
US7426831B2 (en) 2005-10-06 2008-09-23 Borgwarner Inc. Turbo charging system
FR2892981B1 (fr) * 2005-11-09 2009-10-23 Renault Sas Dispositif d'echappement de moteur et moteur
DE102006004725A1 (de) * 2006-02-02 2007-08-09 Bayerische Motoren Werke Ag Abgaskrümmer für eine Reihen-Brennkraftmaschine
DE102008017280B4 (de) * 2008-04-04 2017-01-26 Man Truck & Bus Ag Anordnung zur Beeinflussung des Umsatzverhaltens von Abgaskatalysatoren
DE102009005285B4 (de) * 2009-01-21 2012-03-22 Audi Ag Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102010005813A1 (de) * 2010-01-27 2011-07-28 Bayerische Motoren Werke Aktiengesellschaft, 80809 Abgasanlage für eine Brennkraftmaschine
DE102010055059A1 (de) * 2010-12-17 2012-06-21 Audi Ag Vorrichtung zum Aufladen von Brennkraftmaschinen
DE102014205876A1 (de) * 2014-03-28 2015-10-01 Mtu Friedrichshafen Gmbh Anordnung zur Nachbehandlung von Abgas und Brennkraftmaschine
AT516613B1 (de) * 2015-05-05 2016-07-15 Avl List Gmbh Verfahren zum betreiben einer brennkraftmaschine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4444012A (en) * 1981-04-18 1984-04-24 Daimler-Benz Aktiengesellschaft Exhaust pipe arrangement for a turbocharged multi-cylinder internal combustion engine having catalytic converters
JPS59141709A (ja) * 1983-01-31 1984-08-14 Mazda Motor Corp タ−ボ過給機付エンジンの排気浄化装置
JPS63309726A (ja) * 1987-06-10 1988-12-16 Yanmar Diesel Engine Co Ltd 排気タ−ボ過給機付内燃機関の排気ガス処理装置
DE19837978A1 (de) 1998-04-16 1999-11-04 3K Warner Turbosystems Gmbh Aufgeladene Brennkraftmaschine
US20020112478A1 (en) * 1998-04-16 2002-08-22 Frank Pfluger Turbocharged internal combustion engine
US20030074899A1 (en) * 2001-10-24 2003-04-24 Hitachi, Ltd. Engine supercharging system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4444012A (en) * 1981-04-18 1984-04-24 Daimler-Benz Aktiengesellschaft Exhaust pipe arrangement for a turbocharged multi-cylinder internal combustion engine having catalytic converters
JPS59141709A (ja) * 1983-01-31 1984-08-14 Mazda Motor Corp タ−ボ過給機付エンジンの排気浄化装置
JPS63309726A (ja) * 1987-06-10 1988-12-16 Yanmar Diesel Engine Co Ltd 排気タ−ボ過給機付内燃機関の排気ガス処理装置
DE19837978A1 (de) 1998-04-16 1999-11-04 3K Warner Turbosystems Gmbh Aufgeladene Brennkraftmaschine
US20020112478A1 (en) * 1998-04-16 2002-08-22 Frank Pfluger Turbocharged internal combustion engine
US20030074899A1 (en) * 2001-10-24 2003-04-24 Hitachi, Ltd. Engine supercharging system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 0082, no. 70 (M - 344) 11 December 1984 (1984-12-11) *
PATENT ABSTRACTS OF JAPAN vol. 0131, no. 48 (M - 812) 11 April 1989 (1989-04-11) *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004027593A1 (de) * 2004-06-05 2005-12-29 Man B & W Diesel Ag Motorenanlage mit Abgasturboaufladung und Betrieb eines SCR-Katalysators
EP1640598A1 (de) * 2004-09-22 2006-03-29 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Aufgeladene Brennkraftmaschine und Verfahren zur Verbesserung des Emissionsverhaltens einer aufgeladenen Brennkraftmaschine
US8671682B2 (en) * 2004-09-27 2014-03-18 Borgwarner Inc Multi-stage turbocharging system utilizing VTG turbine stage(s)
EP1691052A1 (de) * 2005-01-18 2006-08-16 Bayerische Motorenwerke Aktiengesellschaft Abgasanlage für eine Brennkraftmaschine
EP1728989A1 (de) * 2005-05-31 2006-12-06 BorgWarner Inc. Mehrstufige Turboladeranordnung
EP1754870A3 (de) * 2005-08-18 2009-04-29 Volkswagen Aktiengesellschaft Brennkraftmaschine mit Abgasturboaufladung
WO2007096221A1 (de) * 2006-02-22 2007-08-30 Robert Bosch Gmbh Verfahren und vorrichtung zur erhöhung der abgastemperatur einer brennkraftmaschine
EP1903197A3 (de) * 2006-07-27 2009-05-27 Iveco S.p.A. Motor mit Energierückgewinnungs- und Katalysatorabgas-Behandlungsverfahren
EP1903197A2 (de) 2006-07-27 2008-03-26 Iveco S.p.A. Motor mit Energierückgewinnungs- und Katalysatorabgas-Behandlungsverfahren
WO2008125579A1 (de) 2007-04-16 2008-10-23 Napier Turbochargers Limited Turboaufgeladene brennkraftmaschine und verfahren
US20100139269A1 (en) * 2007-04-16 2010-06-10 Continental Automotive Gmbh Turbocharged internal combustion engine and method
WO2008155268A1 (de) * 2007-06-21 2008-12-24 Robert Bosch Gmbh Brennkraftmaschine mit zweistufiger turboaufladung und oxidationskatalysator
WO2009081233A1 (en) * 2007-12-21 2009-07-02 Renault Trucks Arrangement for an exhaust line of an internal combustion engine
WO2009111223A3 (en) * 2008-02-29 2009-12-03 Borgwarner Inc. Multi-stage turbocharging system with thermal bypass
EP2271832A4 (de) * 2008-02-29 2013-05-01 Borgwarner Inc Mehrstufiges turboladungssystem mit wärmebypass
US8511066B2 (en) 2008-02-29 2013-08-20 Borgwarner Inc. Multi-stage turbocharging system with thermal bypass
EP2271832A2 (de) * 2008-02-29 2011-01-12 Borgwarner Inc. Mehrstufiges turboladungssystem mit wärmebypass
CN101660443B (zh) * 2008-05-28 2011-08-10 中国第一汽车集团公司 以排气温度为变量的车载scr计量喷射系统
EP2148061A1 (de) * 2008-07-22 2010-01-27 Caterpillar Motoren GmbH & Co. KG Zweistufiger Turboladungsverbrennungsmotor
DE102008061222A1 (de) 2008-12-09 2010-06-17 Man Diesel Se Mehrstufig aufgeladene Brennkraftmaschine mit integrierter Abgasreinigungseinrichtung
WO2010099031A3 (en) * 2009-02-26 2010-12-09 Borgwarner Inc. Internal combustion engine
CN102317593A (zh) * 2009-02-26 2012-01-11 博格华纳公司 内燃发动机
WO2010099031A2 (en) * 2009-02-26 2010-09-02 Borgwarner Inc. Internal combustion engine
US20100263372A1 (en) * 2009-04-16 2010-10-21 Alexandre Pagot Two-stage supercharging system with exhaust gas purification device for internal-combustion engine and method for controlling same
CN101865018A (zh) * 2009-04-16 2010-10-20 Ifp公司 用于内燃机的带尾气净化设备的二级增压系统及其控制方法
US8495876B2 (en) * 2009-04-16 2013-07-30 Ifp Two-stage supercharging system with exhaust gas purification device for internal-combustion engine and method for controlling same
US20110023480A1 (en) * 2009-07-29 2011-02-03 Ford Global Technologies, Llc Twin turbo diesel aftertreatment system
US8371108B2 (en) * 2009-07-29 2013-02-12 Ford Global Technologies, Llc Twin turbo diesel aftertreatment system
WO2012121925A2 (en) * 2011-03-04 2012-09-13 Borgwarner Inc. Multi-stage turbocharger arrangement
WO2012121925A3 (en) * 2011-03-04 2012-11-08 Borgwarner Inc. Multi-stage turbocharger arrangement
US9541093B2 (en) 2011-03-04 2017-01-10 Borgwarner Inc. Multi-stage turbocharger arrangement
DE102011086778A1 (de) 2011-11-22 2013-05-23 Robert Bosch Gmbh Brennkraftmaschine mit einem Abgasstrang und mit zweistufiger Turboaufladung
CN104220712A (zh) * 2012-04-13 2014-12-17 瓦锡兰芬兰有限公司 用于处理内燃活塞发动机的废气的装置、内燃活塞发动机和处理内燃活塞发动机的废气的方法
WO2013153257A1 (en) * 2012-04-13 2013-10-17 Wärtsilä Finland Oy Arrangement for treating exhaust gases of an internal combustion piston engine, an internal combustion piston engine and method of treating exhaust gas of an internal combustion piston engine
KR101840908B1 (ko) 2012-04-13 2018-05-04 바르실라 핀랜드 오이 내연 피스톤 엔진의 배기 가스들을 처리하기 위한 배열체, 내연 피스톤 엔진 및 내연 피스톤 엔진의 배기 가스를 처리하기 위한 방법
WO2013160530A1 (en) 2012-04-27 2013-10-31 Wärtsilä Finland Oy An internal combustion engine and a method of controlling the operation thereof
WO2015071540A1 (en) 2013-11-18 2015-05-21 Wärtsilä Finland Oy Arrangement for treating exhaust gas in a turbocharged internal combustion engine and method of operating a turbocharged internal combustion engine
WO2016124445A1 (en) * 2015-02-06 2016-08-11 Jaguar Land Rover Limited A multi-stage exhaust turbocharger system
WO2016124444A1 (en) * 2015-02-06 2016-08-11 Jaguar Land Rover Limited A multi-stage exhaust turbocharger system
GB2534926B (en) * 2015-02-06 2018-06-06 Jaguar Land Rover Ltd A multi-stage exhaust turbocharger system

Also Published As

Publication number Publication date
DE10319594A1 (de) 2004-11-18

Similar Documents

Publication Publication Date Title
WO2004097195A1 (de) Turboladereinrichtung sowie ein verfahren zum betreiben einer turboladereinrichtung
EP1763627B1 (de) Brennkraftmaschine mit abgasnachbehandlung und verfahren zu deren betrieb
EP1400667B1 (de) Brennkraftmaschine mit Abgasturboaufladung
EP1828562A1 (de) Verfahren zum betrieb einer brennkraftmaschine mit einem abgasturbolader und einer nutzturbine
WO2010020323A1 (de) Abgasturbolader für eine brennkraftmaschine eines kraftfahrzeugs
EP1937957A1 (de) Anordnung zur rückführung und kühlung von abgas einer brennkraftmaschine
DE102004027593A1 (de) Motorenanlage mit Abgasturboaufladung und Betrieb eines SCR-Katalysators
EP2134943A1 (de) Turboaufgeladene brennkraftmaschine und verfahren
WO2010052055A1 (de) Brennkraftmaschine mit turbolader und oxidationskatalysator
EP1619368A1 (de) Sequentielle Laderansteuerung mit Zylinderabschaltung
DE102009004418A1 (de) Verfahren zur Nachbehandlung eines Abgasstroms einer mehrzylindrigen Brennkraftmaschine eines Fahrzeuges sowie Abgasnachbehandlungsvorrichtung
WO2008155268A1 (de) Brennkraftmaschine mit zweistufiger turboaufladung und oxidationskatalysator
EP1640595A1 (de) Aufgeladene Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
EP2212540B1 (de) Vorrichtung und verfahren zur rückführung von abgas eines verbrennungsmotors
WO2010072227A1 (de) Abgasrückführungssystem und verfahren zur abgasrückführung
EP1633967A2 (de) Brennkraftmaschine mit abgasrückführeinrichtung und verfahren hierzu
WO2004031552A2 (de) Brennkraftmaschine mit einem abgasturbolader und einer abgasrückführeinrichtung
DE102018120179B4 (de) Abgastrakt für eine Verbrennungskraftmaschine und Verbrennungskraftmaschine
DE102009051027B4 (de) Antriebsaggregat mit einer Dieselbrennkraftmaschine und Abgasrückführung sowie Verfahren zum Betreiben eines solchen Antriebsaggregats
DE102019103001A1 (de) Partikelfilterbaugruppe für Kraftfahrzeug, Kraftfahrzeug und Verfahren zum Regenerieren eines Partikelfilters
DE102009051028B4 (de) Antriebsaggregat sowie Verfahren zum Betreiben eines Antriebsaggregats
DE102004050778A1 (de) Abgasrückführsystem für eine Brennkraftmaschine
AT510599B1 (de) Brennkraftmaschine
EP2058486B1 (de) Aufgeladene Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102020103350A1 (de) Abgasstrang einer Brennkraftmaschine mit Abgasturbolader und Katalysator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase