WO2007096221A1 - Verfahren und vorrichtung zur erhöhung der abgastemperatur einer brennkraftmaschine - Google Patents

Verfahren und vorrichtung zur erhöhung der abgastemperatur einer brennkraftmaschine Download PDF

Info

Publication number
WO2007096221A1
WO2007096221A1 PCT/EP2007/050646 EP2007050646W WO2007096221A1 WO 2007096221 A1 WO2007096221 A1 WO 2007096221A1 EP 2007050646 W EP2007050646 W EP 2007050646W WO 2007096221 A1 WO2007096221 A1 WO 2007096221A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
internal combustion
combustion engine
turbine
compressor
Prior art date
Application number
PCT/EP2007/050646
Other languages
English (en)
French (fr)
Inventor
Ralf Wirth
Dirk Samuelsen
Werner Christl
Carsten Becker
Michael Kolitsch
Andreas Fritsch
Stefan Motz
Tobias Pfister
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US12/280,320 priority Critical patent/US20090188252A1/en
Priority to JP2008555725A priority patent/JP2009527688A/ja
Priority to EP07704080A priority patent/EP1989408A1/de
Publication of WO2007096221A1 publication Critical patent/WO2007096221A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0236Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using turbine waste gate valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/004Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust drives arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • F02B37/162Control of the pumps by bypassing charging air by bypassing, e.g. partially, intake air from pump inlet to pump outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a method for temporarily increasing the temperature in the exhaust gas of an internal combustion engine having at least two associated turbochargers, each with a compressor in a fresh air supply of the internal combustion engine and each turbine in an exhaust pipe of the internal combustion engine, wherein at least one compressor and / or a turbine is associated with a bypass and with at least one exhaust aftertreatment system downstream of the turbines in the exhaust gas direction.
  • the invention further relates to a device for temporary temperature increase in the exhaust gas of an internal combustion engine with at least two associated turbochargers, each with a compressor in a fresh air supply of the internal combustion engine and each turbine in an exhaust pipe of the internal combustion engine, wherein at least one compressor and / or a turbine is associated with a bypass and at least one exhaust aftertreatment system downstream of the turbines in the exhaust gas direction.
  • particulate filters may be provided in the exhaust aftertreatment system of diesel engines, which must be burned free upon reaching the storage capacity or it may be catalysts, such as so-called DE NOX catalysts are used, which must also be freed from deposits by an increased exhaust gas temperature.
  • a method for controlling an internal combustion engine which comprises means which influence the exhaust gas of the internal combustion engine, wherein in the presence of certain conditions, a special operating state is initiated, in which an increased energy content of the exhaust gas is desired, wherein in the Special mode a combustion focus is influenced such that the exhaust gas temperature increases. The focal point of combustion is thereby shifted in the direction of late.
  • the object of the invention relating to the method is achieved by increasing the volume flow of fresh air and / or exhaust gas conducted via adjusting elements in the bypasses to the volume flow of at least one compressor and / or a turbine passing through the bypasses.
  • This ensures that the boost pressure of the internal combustion engine is lowered, which has a deteriorated efficiency of the internal combustion engine result.
  • Weaker efficiency leads to the desired increase in exhaust gas temperature. Since less exhaust gas is passed over the turbocharger (s) in the process, they are present Protected against overspeed and overheating.
  • the heating of the exhaust system and the exhaust aftertreatment systems contained therein takes place quickly, as more hot exhaust gas flows past the bypasses to the turbocharger turbines, at which heat energy is removed from the exhaust gas. Because of the high exhaust gas temperature, and because the turbines are not completely bypassed, there is still a fast boost pressure build-up. The known from the normal operation of two-stage supercharged internal combustion engines rapid torque build-up is thus retained.
  • An additional reduction of the charge pressure and thus the efficiency of the internal combustion engine can be achieved by reducing the efficiency of at least one turbine by means of an adjustable turbine geometry or a bypass.
  • the temperature increase of the exhaust gas for the regeneration of at least one component of the exhaust aftertreatment system is performed, wherein the control of the adjusting elements is carried out by a control device in response to a determined regeneration requirement of the device.
  • the component may be, for example, a particulate filter in which the adsorbed particles are incinerated at the elevated temperature, or it may be a catalyst, for example a so-called DENOX catalyst, in which increased by an increased
  • the adjusting elements are set according to the most favorable for the operation of the engine settings that during a phase with elevated exhaust temperature, the control elements compared to the normal operating phase are opened further and that during a transition phase between the normal operating phase and the phase with increased Exhaust gas temperature, the control elements, depending on the operating parameters of the internal combustion engine, are opened continuously, so in normal operation the
  • a ramp the slope of which can be designed according to the effects on driving.
  • Controlled operation of the turbocharger adapted to the conditions and requirements, even during the phases of elevated exhaust gas temperature, can be achieved by adapting setpoints and control parameters of pressure and turbine speed controllers stored in the control unit in phases with increased exhaust gas temperature. These generally differ from the default values in normal operation.
  • adjusting elements are arranged in the bypasses, via which the volume flow of fresh air and / or exhaust gas through the bypasses is adjustable, that the opening of the adjusting elements is adjustable by a control unit and that in phases with increased exhaust gas temperature at least one actuator is open compared to normal operating phases.
  • the more open control elements more fresh air or exhaust gas flows past the compressor or the turbine of the turbocharger, which leads to a reduced boost pressure and thus a reduced efficiency with the resulting increase in exhaust gas temperature.
  • one or more adjusting elements can be provided or controlled.
  • the control unit decides on the basis of sensor data which determine the operating state of the internal combustion engine, the state of the exhaust gas and / or the exhaust aftertreatment system based on operating parameters of the internal combustion engine present on the control unit and / or on the basis of predicted states of the exhaust gas and / or of the exhaust aftertreatment system a phase with increased exhaust gas temperature is started.
  • a cost-effective and reliable construction can be achieved in that controllable flaps, valves or check valves are provided as adjusting elements.
  • a two-stage supercharged diesel engine is provided as the internal combustion engine and that the exhaust aftertreatment system includes a particulate filter.
  • Two-stage supercharged diesel engines are currently in the market. They are characterized by an improved compared to single-stage charging efficiency. This improved efficiency makes it difficult for the regeneration of the particulate filter temperature increase of the exhaust gas by reducing the efficiency of the internal combustion engine by known methods. At the same time, the thermal inertia is increased due to the additionally installed parts in such systems.
  • Figure 1 is a schematic representation of a device for increasing the exhaust gas temperature of an internal combustion engine.
  • FIG. 1 shows a schematic representation of a device for increasing the exhaust gas temperature of an internal combustion engine 20.
  • the internal combustion engine 20 is supplied via a fresh air supply 21 fresh air, while the exhaust gas is discharged via an exhaust pipe 22.
  • a first and a second turbine 12, 15 of two turbochargers 10, 13 are integrated in the exhaust pipe 22.
  • a first and a second compressor 11, 14 of the two turbochargers 10, 13 are arranged in the fresh air supply 21.
  • To the first compressor 11, a first bypass 16.1 is connected in parallel with a first actuating element 17.1.
  • the first turbine 12 is also a second bypass 16.2 associated with a second actuator 17.2 and the second turbine 15, a third bypass 16.3 with a third actuator 17.3.
  • the adjusting elements 17.1, 17.2, 17.3 are connected via signal lines 31.1, 31.2, 31.3 to a control unit 30.
  • an exhaust aftertreatment system 23 is arranged in the exhaust pipe 22.
  • the internal combustion engine 20 is a two-stage supercharged diesel engine with a built-in in the exhaust aftertreatment system 23 particulate filter. Not shown are other components of the air system such as throttle valves, sensors and the like.
  • the turbines 12, 15 of the turbocharger 10, 13 and above the compressors 11, 14 are driven in the fresh air supply 21.
  • the compressor 11, 14 generate the boost pressure for the internal combustion engine 20.
  • fresh air can be supplied to the first compressor 11 past the internal combustion engine 20.
  • the air volume flow flowing via the first bypass 16.1 can be adjusted by the first control element 17.1.
  • Exhaust gas can be conducted past the respective turbines 12, 15 via the second and third bypass 16. 2, 16. 3.
  • the respective exhaust gas volume flow passed by can be adjusted with the adjusting elements 17.2, 17.3.
  • Control of the adjusting elements 17.1, 17.2, 17.3 is carried out by the control unit 30, wherein the corresponding control signals to the control elements 17.1, 17.2, 17.3 via the signal lines 31.1, 31.2, 31.3 are supplied.
  • the exhaust gas temperature of the internal combustion engine 20 is significantly dependent on their efficiency, which in turn depends on the build-up boost pressure. Lowering the boost pressure leads to an increase in the exhaust gas temperature.
  • This is inventively achieved in that at least one of the control elements 17.1, 17.2, 17.3 is opened further.
  • the first control element 17.1 while a larger portion of the fresh air supplied to the first compressor 11 passed over and therefore not compressed, resulting in the desired reduction of the boost pressure.
  • the second and the third control element 17.2, 17.3, a larger amount of exhaust gas to the turbines 12, 15 of the Turbocharger 10, 13 passed over, which leads to a reduced drive of the turbines 12, 15 and thereby also to a reduced boost pressure.
  • control unit 30 initiates the temperature increase in the exhaust gas and thus the regeneration of the particulate filter via a corresponding opening of the control elements 17.1, 17.2, 17.3. After completion of the regeneration, the control 30 again sets the intended for normal operation openings of the controls 17.1, 17.2, 17.3.
  • the adjusting elements 17.1, 17.2, 17.3 are set according to known systems.
  • the adjusting elements 17.1, 17.2, 17.3 are opened further compared to normal operation. It can be provided for all turbines 12, 15 and compressor 11, 14 or only for a part of them bypasses 16.1, 16.2, 16.3 or it can all or only a part of the control elements 17.1, 17.2, 17.3 be controlled. In addition to the diverted gas streams, the efficiency of the turbines 12, 15 can be reduced via an adjustment mechanism, not shown.
  • the setpoint values and parameters of the pressure and turbine speed controllers present in the control unit 30 are adapted accordingly in the regeneration mode.
  • transitional operation is switched between the driving conditions of the control elements 17.1, 17.2, 17.3 in normal operation and regeneration mode using a ramp whose slope is designed according to the impact on the driving.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur zeitweisen Temperaturerhöhung im Abgas einer Brennkraftmaschine mit zumindest zwei zugeordneten Turboladern mit jeweils einem Verdichter in einer Frischluftzuführung der Brennkraftmaschine und jeweils einer Turbine in einer Abgasleitung der Brennkraftmaschine, wobei zumindest einem Verdichter und/oder einer Turbine ein Bypass zugeordnet ist und mit zumindest einem den Turbinen in Abgasrichtung nachgeschalteten Abgasnachbehandlungssystem. Dabei wird über Stellelemente in den Bypässen der an zumindest einem Verdichter und/oder einer Turbine durch die Bypässe vorbei geleitete Volumenstrom an Frischluft und/oder an Abgas erhöht, was zu einer Reduzierung des Ladedruckes und dadurch bedingt zu einer Verringerung des Wirkungsgrades der Brennkraftmaschine und einer Erhöhung der Abgastemperatur führt.

Description

30. Januar 2006
ROBERT BOSCH GMBH
Verfahren und Vorrichtung zur Erhöhung der Abgastemperatur einer Brennkraftmaschine
Stand der Technik
Die Erfindung betrifft ein Verfahren zur zeitweisen Temperaturerhöhung im Abgas einer Brennkraftmaschine mit zumindest zwei zugeordneten Turboladern mit jeweils einem Verdichter in einer Frischluftzuführung der Brennkraftmaschine und jeweils einer Turbine in einer Abgasleitung der Brennkraftmaschine, wobei zumindest einem Verdichter und/oder einer Turbine ein Bypass zugeordnet ist und mit zumindest einem den Turbinen in Abgasrichtung nachgeschalteten Abgasnachbehandlungssystem.
Die Erfindung betrifft weiterhin eine Vorrichtung zur zeitweisen Temperaturerhöhung im Abgas einer Brennkraftmaschine mit zumindest zwei zugeordneten Turboladern mit jeweils einem Verdichter in einer Frischluftzuführung der Brennkraftmaschine und jeweils einer Turbine in einer Abgasleitung der Brennkraftmaschine, wobei zumindest einem Verdichter und/oder einer Turbine ein Bypass zugeordnet ist und mit zumindest einem den Turbinen in Abgasrichtung nachgeschalteten Abgasnachbehandlungssystem.
In Abgasnachbehandlungssystemen sind häufig Bauelemente vorgesehen, welche von Zeit zu Zeit regeneriert werden müssen. So können im Abgasnachbehandlungssystem von Dieselmotoren Partikelfilter vorgesehen sein, welche bei Erreichen der Speicherkapazität freigebrannt werden müssen oder es können Katalysatoren, wie beispielsweise so genannte D E NOX- Katalysatoren, eingesetzt sein, die ebenfalls durch eine erhöhte Abgastemperatur von Ablagerungen befreit werden müssen.
In der Schrift DE 199 23 299 ist ein Verfahren zur Steuerung einer Brennkraftmaschine beschrieben, die Mittel umfasst, die das Abgas der Brennkraftmaschine beeinflussen, wobei bei Vorliegen bestimmter Bedingungen ein Sonderbetriebszustand eingeleitet wird, in dem ein erhöhter Energiegehalt des Abgases gewünscht ist, wobei in dem Sonderbetriebszustand ein Verbrennungsschwerpunkt derart beeinflusst wird, dass sich die Abgastemperatur erhöht. Der Verbrennungsschwerpunkt wird dabei in Richtung spät verschoben.
Insbesondere bei zweistufig aufgeladenen Brennkraftmaschinen wird ein im Vergleich zu einstufig aufgeladenen Brennkraftmaschinen deutlicher Anstieg des Wirkungsgrades erreicht. Daher sind weitere Maßnahmen notwendig, den Wirkungsgrad der Brennkraftmaschine so weit zu reduzieren, bis eine ausreichende Temperaturerhöhung im Abgas erreicht wird.
Es ist Aufgabe der Erfindung, ein Verfahren bereitzustellen, welches eine ausreichende Temperaturerhöhung im Abgas von zweistufig aufgeladenen Brennkraftmaschinen ermöglicht und dabei die Betriebseigenschaften der Brennkraftmaschine nicht wesentlich beeinflusst.
Es ist weiterhin Aufgabe der Erfindung, dazu eine Vorrichtung bereit zu stellen.
Vorteile der Erfindung
Die das Verfahren betreffende Aufgabe der Erfindung wird dadurch gelöst, dass über Stellelemente in den Bypässen der an zumindest einem Verdichter und/oder einer Turbine durch die Bypässe vorbei geleitete Volumenstrom an Frischluft und/oder an Abgas erhöht wird. Dadurch wird erreicht, dass der Ladedruck der Brennkraftmaschine abgesenkt wird, was einen verschlechterten Wirkungsgrad der Brennkraftmaschine zur Folge hat. Ein verschlechterter Wirkungsgrad führt zu der gewünschten Erhöhung der Abgastemperatur. Da bei dem Verfahren weniger Abgas über den oder die Turbolader geleitet wird, sind diese vor Überdrehzahl und Überhitzung geschützt. Die Aufheizung des Abgassystems und der darin enthaltenen Abgasnachbehandlungssysteme erfolgt schnell, da mehr heißes Abgas über die Bypässe an den Turbinen der Turbolader vorbei fließt, an welchen dem Abgas Wärmeenergie entzogen wird. Wegen der hohen Abgastemperatur, und da die Turbinen nicht vollständig umgangen werden, erfolgt weiterhin ein schneller Ladedruckaufbau. Der aus dem Normalbetrieb von zweistufig aufgeladenen Brennkraftmaschinen bekannte schnelle Drehmomentaufbau bleibt somit erhalten.
Eine zusätzliche Verringerung des Ladedruckes und somit des Wirkungsgrades der Brennkraftmaschine kann dadurch erreicht werden, dass der Wirkungsgrad von zumindest einer Turbine durch eine verstellbare Turbinengeometrie oder einen Bypass verringert wird.
In einer bevorzugten Ausgestaltungsform der Erfindung ist es vorgesehen, dass die Temperaturerhöhung des Abgases zur Regeneration von zumindest einem Bauelement des Abgasnachbehandlungssystems durchgeführt wird, wobei die Ansteuerung der Stellelemente durch ein Steuergerät in Abhängigkeit von einem ermittelten Regenerationsbedarf des Bauelementes vorgenommen wird. Bei dem Bauelement kann es sich beispielsweise um einen Partikelfilter handeln, bei welchem die angelagerten Partikel bei der erhöhten Temperatur verbrannt werden, oder es kann sich um einen Katalysator, beispielsweise um einen so genannten DENOX-Katalysator, handeln, bei welchem durch eine erhöhte
Abgastemperatur in gewissen Abständen Ablagerungen, insbesondere Schwefel und/oder Schwefelverbindungen, beseitigt werden.
Ist es vorgesehen, dass während einer Normalbetriebsphase die Stellelemente entsprechend der für den Betrieb der Brennkraftmaschine günstigsten Einstellungen eingestellt werden, dass während einer Phase mit erhöhter Abgastemperatur die Stellelemente gegenüber der Normalbetriebsphase weiter geöffnet sind und dass während einer Übergangsphase zwischen der Normalbetriebsphase und der Phase mit erhöhter Abgastemperatur die Stellelemente, abhängig von den Betriebsparametern der Brennkraftmaschine, kontinuierlich geöffnet werden, so kann im Normalbetrieb die
Brennkraftmaschine mit dem optimalen Ladedruck betrieben werden, während zur Erhöhung der Temperatur des Abgases der Ladedruck durch die weiter geöffneten Stellelemente verringert wird. Die Ansteuerung der Stellelemente in der Übergangsphase erfolgt entlang - A -
einer Rampe, deren Steigung entsprechend der Auswirkungen auf den Fahrbetrieb ausgelegt werden kann.
Einen geregelten, auf die Bedingungen und Anforderungen angepassten Betrieb der Turbolader auch während der Phasen erhöhter Abgastemperatur lässt sich dadurch erzielen, dass in Phasen mit erhöhter Abgastemperatur Sollwerte und Steuerparameter von im Steuergerät hinterlegten Druck- und Turbinendrehzahlreglern angepasst werden. Diese unterscheiden sich in der Regel von den Vorgabewerten im Normalbetrieb.
Um die benötigte Temperaturerhöhung im Abgas zu erreichen, kann es notwendig sein, dass begleitende weitere, den Wirkungsgrad der Brennkraftmaschine verringernde Maßnahmen zur Erhöhung der Abgastemperatur vorgenommen werden. Beispielsweise kann es vorgesehen sein, dass im Verbrennungszyklus der Verbrennungsschwerpunkt nach hinten verlegt wird oder dass weitere bekannte Verfahren angewandt werden.
Die die Vorrichtung betreffende Aufgabe der Erfindung wird dadurch gelöst, dass in den Bypässen Stellelemente angeordnet sind, über die der Volumenstrom an Frischluft und/oder an Abgas durch die Bypässe einstellbar ist, dass die Öffnung der Stellelemente durch ein Steuergerät einstellbar ist und dass in Phasen mit erhöhter Abgastemperatur zumindest ein Stellelement gegenüber Normalbetriebsphasen weiter geöffnet ist. Durch die weiter geöffneten Stellelemente fließt mehr Frischluft beziehungsweise Abgas an dem Verdichter beziehungsweise der Turbine des Turboladers vorbei, was zu einem verringerten Ladedruck und somit einem verringerten Wirkungsgrad mit dem dadurch bewirkten Anstieg der Abgastemperatur führt. Dabei können ein oder mehrere Stellelemente vorgesehen beziehungsweise angesteuert werden. Das Steuergerät entscheidet aufgrund von Sensordaten, welche den Betriebszustand der Brennkraftmaschine, den Zustand des Abgases und/oder des Abgasnachbehandlungssystems ermitteln, auf Basis von dem Steuergerät vorliegenden Betriebsparametern der Brennkraftmaschine und/oder auf Basis von prognostizierten Zuständen des Abgases und/oder des Abgasnachbehandlungssystems, wann eine Phase mit erhöhter Abgastemperatur gestartet wird.
Ein kostengünstiger und zuverlässiger Aufbau lässt sich dadurch erreichen, dass als Stellelemente ansteuerbare Klappen, Ventile oder Rückschlagventile vorgesehen sind. In einer bevorzugten Ausführungsform der Erfindung ist es vorgesehen, dass als Brennkraftmaschine ein zweistufig aufgeladener Dieselmotor vorgesehen ist und dass das Abgasnachbehandlungssystem einen Partikelfilter enthält. Zweistufig aufgeladenen Dieselmotoren befinden sich derzeit in der Markteinführung. Sie zeichnen sich durch einen im Vergleich zur einstufigen Aufladung verbesserten Wirkungsgrad aus. Dieser verbesserte Wirkungsgrad erschwert die für die Regeneration des Partikelfilters notwendige Temperaturerhöhung des Abgases durch Verringerung des Wirkungsgrades der Brennkraftmaschine nach bekannten Methoden. Gleichzeitig ist bei solchen Systemen die thermische Trägheit aufgrund der zusätzlich verbauten Teile vergrößert. Dadurch, dass Frischluft beziehungsweise Abgas an den Turboladern vorbei geleitet wird, kann der Ladedruck und somit der Wirkungsgrad des Dieselmotors ausreichend reduziert werden, um die zur Regeneration des Partikelfilters notwendige Abgastemperatur zu erreichen. Weiterhin wird die thermische Trägheit des Systems herab gesetzt, da ein größerer Anteil an heißem Abgas an den Turbinen vorbei geführt wird.
Zeichnungen
Die Erfindung wird im Folgenden anhand eines in der Figur dargestellten Ausführungsbeispieles näher erläutert. Es zeigt:
Figur 1 eine schematische Darstellung einer Vorrichtung zur Erhöhung der Abgastemperatur einer Brennkraftmaschine.
Beschreibung des Ausführungsbeispiels
Figur 1 zeigt in einer schematischen Darstellung eine Vorrichtung zur Erhöhung der Abgastemperatur einer Brennkraftmaschine 20. Der Brennkraftmaschine 20 wird über eine Frischluftzuführung 21 Frischluft zugeführt, während das Abgas über eine Abgasleitung 22 abgeführt wird. Eine erste und eine zweite Turbine 12, 15 zweier Turbolader 10, 13 sind in der Abgasleitung 22 integriert. Ein erster und ein zweiter Verdichter 11, 14 der beiden Turbolader 10, 13 sind in der Frischluftzuführung 21 angeordnet. Zu dem ersten Verdichter 11 ist ein erster Bypass 16.1 mit einem ersten Stellelement 17.1 parallel geschaltet. Der ersten Turbine 12 ist ebenfalls ein zweiter Bypass 16.2 mit einem zweiten Stellelement 17.2 und der zweiten Turbine 15 ein dritter Bypass 16.3 mit einem dritten Stellelement 17.3 zugeordnet. Die Stellelemente 17.1, 17.2, 17.3 sind über Signalleitungen 31.1, 31.2, 31.3 mit einem Steuergerät 30 verbunden. In Abgasrichtung nach der zweiten Turbine 15 ist ein Abgasnachbehandlungssystem 23 in der Abgasleitung 22 angeordnet.
In der dargestellten Ausführungsvariante stellt die Brennkraftmaschine 20 einen zweistufig aufgeladenen Dieselmotor mit einem in dem Abgasnachbehandlungssystem 23 integrierten Partikelfilter dar. Nicht dargestellt sind weitere Komponenten des Luftsystems wie Drosselklappen, Sensoren und dergleichen.
Durch den Abgasstrom werden die Turbinen 12, 15 der Turbolader 10, 13 und darüber die Verdichter 11, 14 in der Frischluftzuführung 21 angetrieben. Die Verdichter 11, 14 erzeugen den Ladedruck für die Brennkraftmaschine 20. Über den Bypass 16.1 kann Frischluft an dem ersten Verdichter 11 vorbei der Brennkraftmaschine 20 zugeführt werden. Der über den ersten Bypass 16.1 fließende Luftvolumenstrom kann durch das erste Stellelement 17.1 eingestellt werden. Über den zweiten und dritten Bypass 16.2, 16.3 kann Abgas an den jeweiligen Turbinen 12, 15 vorbei geführt werden. Der jeweils vorbei geführte Abgasvolumenstrom kann mit den Stellelementen 17.2, 17.3 eingestellt werden. Die
Ansteuerung der Stellelemente 17.1, 17.2, 17.3 erfolgt durch das Steuergerät 30, wobei die entsprechenden Steuersignale den Stellelementen 17.1, 17.2, 17.3 über die Signalleitungen 31.1, 31.2, 31.3 zugeführt werden.
Die Abgastemperatur der Brennkraftmaschine 20 ist maßgeblich von deren Wirkungsgrad abhängig, welcher wiederum von dem aufgebauten Ladedruck abhängt. Ein Absenken des Ladedruckes führt zu einem Anstieg der Abgastemperatur. Dies wird erfindungsgemäß dadurch erreicht, dass zumindest eins der Stellelemente 17.1, 17.2, 17.3 weiter geöffnet wird. Im Falle des ersten Stellelementes 17.1 wird dabei ein größerer Teil der zugeführten Frischluft an dem ersten Verdichter 11 vorbei geführt und daher nicht verdichtet, was zu der gewünschten Verringerung des Ladedruckes führt. Im Falle des zweiten und des dritten Stellelementes 17.2, 17.3 wird eine größere Menge Abgas an den Turbinen 12, 15 der Turbolader 10, 13 vorbei geleitet, was zu einem verringerten Antrieb der Turbinen 12, 15 und dadurch ebenfalls zu einem verringerten Ladedruck führt.
Ist eine Regeneration des in dem Abgasnachbehandlungssystems 23 enthaltenen Partikelfilters durchzuführen, so leitet das Steuergerät 30 über eine entsprechende Öffnung der Steuerelemente 17.1, 17.2, 17.3 die Temperaturerhöhung im Abgas und somit die Regeneration des Partikelfilters ein. Nach Abschluss der Regeneration stellt das Steuerelement 30 wieder die für den Normalbetrieb vorgesehenen Öffnungen der Steuerelemente 17.1, 17.2, 17.3 ein.
Für den Betrieb der Brennkraftmaschine lassen sich somit drei Betriebsarten, der Normalbetrieb, der Regenerationsbetrieb und der Übergangsbetrieb, unterscheiden.
Im Normalbetrieb werden die Stellelemente 17.1, 17.2, 17.3 entsprechend bekannter Systeme eingestellt.
Im Regenerationsbetrieb werden die Stellelemente 17.1, 17.2, 17.3 gegenüber dem Normalbetrieb weiter geöffnet. Dabei können für alle Turbinen 12, 15 und Verdichter 11, 14 oder nur für einen Teil von ihnen Bypässe 16.1, 16.2, 16.3 vorgesehen sein oder es können alle oder nur ein Teil der Stellelemente 17.1, 17.2, 17.3 ansteuerbar sein. Zusätzlich zu den umgeleiteten Gasströmen kann der Wirkungsgrad der Turbinen 12, 15 über einen nicht dargestellten Verstellmechanismus verringert werden. Die Sollwerte und Parameter der im Steuergerät 30 vorhandenen Druck- und Turbinendrehzahlregler werden im Regenerationsbetrieb entsprechend angepasst.
Im Übergangsbetrieb wird zwischen den Ansteuerverhältnissen der Stellelemente 17.1, 17.2, 17.3 im Normalbetrieb und im Regenerationsbetrieb mit Hilfe einer Rampe umgeschaltet, deren Steigung entsprechend der Auswirkungen auf den Fahrbetrieb gestaltet wird.

Claims

30. Januar 2006ROBERT BOSCH GMBHAnsprüche
1. Verfahren zur zeitweisen Temperaturerhöhung im Abgas einer Brennkraftmaschine (20) mit zumindest zwei zugeordneten Turboladern (10, 13) mit jeweils einem Verdichter (11, 14) in einer Frischluftzuführung (21) der Brennkraftmaschine (20) und jeweils einer Turbine (12, 15) in einer Abgasleitung (22) der
Brennkraftmaschine (20), wobei zumindest einem Verdichter (11, 14) und/oder einer Turbine (12, 15) ein Bypass (16.1, 16.2, 16.3) zugeordnet ist und mit zumindest einem den Turbinen (12, 15) in Abgasrichtung nach geschalteten Abgasnachbehandlungssystem (23), dadurch gekennzeichnet, dass über Stellelemente (17.1, 17.2, 17.3) in den Bypässen (16.1, 16.2, 16.3) der an zumindest einem Verdichter (11, 14) und/oder einer Turbine (12, 15) durch die Bypässe (16.1, 16.2, 16.3) vorbei geleitete Volumenstrom an Frischluft und/oder an Abgas erhöht wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Wirkungsgrad von zumindest einer Turbine (12, 15) durch eine verstellbare Turbinengeometrie oder einen Bypass verringert wird.
3. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Temperaturerhöhung des Abgases zur Regeneration von zumindest einem Bauelement des Abgasnachbehandlungssystems (23) durchgeführt wird, wobei die Ansteuerung der Stellelemente (17.1, 17.2, 17.3) durch ein Steuergerät (30) in Abhängigkeit von einem ermittelten Regenerationsbedarf des Bauelementes vorgenommen wird.
4. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass während einer Normalbetriebsphase die Stellelemente (17.1, 17.2, 17.3) entsprechend der für den Betrieb der Brennkraftmaschine (20) günstigsten Einstellungen eingestellt werden, dass während einer Phase mit erhöhter Abgastemperatur die Stellelemente (17.1, 17.2, 17.3) gegenüber der Normalbetriebsphase weiter geöffnet sind und dass während einer Übergangsphase zwischen der Normalbetriebsphase und der Phase mit erhöhter
Abgastemperatur die Stellelemente (17.1, 17.2, 17.3), abhängig von den Betriebsparametern der Brennkraftmaschine (20), kontinuierlich geöffnet werden.
5. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass in Phasen mit erhöhter Abgastemperatur Sollwerte und Steuerparameter von im Steuergerät (30) hinterlegten Druck- und Turbinendrehzahlreglern angepasst werden.
6. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass begleitende weitere, den Wirkungsgrad der Brennkraftmaschine (20) verringernde Maßnahmen zur Erhöhung der Abgastemperatur vorgenommen werden.
7. Vorrichtung zur zeitweisen Temperaturerhöhung im Abgas einer Brennkraftmaschine (20) mit zumindest zwei zugeordneten Turboladern (10, 13) mit jeweils einem Verdichter (11, 14) in einer Frischluftzuführung (21) der Brennkraftmaschine (20) und jeweils einer Turbine (12, 15) in einer Abgasleitung (22) der Brennkraftmaschine (20), wobei zumindest einem Verdichter (11, 14) und/oder einer Turbine (12, 15) ein Bypass (16.1, 16.2, 16.3) zugeordnet ist und mit zumindest einem den Turbinen (12, 15) in Abgasrichtung nach geschalteten
Abgasnachbehandlungssystem (23), dadurch gekennzeichnet, dass in den Bypässen (16.1, 16.2, 16.3) Stellelemente (17.1, 17.2, 17.3) angeordnet sind, über die der Volumenstrom an Frischluft und/oder an Abgas durch die Bypässe (16.1,
16.2, 16.3) einstellbar ist, dass die Öffnung der Stellelemente (17.1, 17.2, 17.3) durch ein Steuergerät (30) einstellbar ist und dass in Phasen mit erhöhter Abgastemperatur zumindest ein Stellelement (17.1, 17.2, 17.3) gegenüber Normalbetriebsphasen weiter geöffnet ist.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass als Stellelemente (17.1, 17.2, 17.3) ansteuerbare Klappen, Ventile oder Rückschlagventile vorgesehen sind.
9. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass als
Brennkraftmaschine (20) ein zweistufig aufgeladener Dieselmotor vorgesehen ist und dass das Abgasnachbehandlungssystem (23) einen Partikelfilter enthält.
PCT/EP2007/050646 2006-02-22 2007-01-23 Verfahren und vorrichtung zur erhöhung der abgastemperatur einer brennkraftmaschine WO2007096221A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/280,320 US20090188252A1 (en) 2006-02-22 2007-01-23 Method and apparatus for increasing the exhaust gas temperature of an internal combustion engine
JP2008555725A JP2009527688A (ja) 2006-02-22 2007-01-23 内燃機関の排気温度の上昇方法および装置
EP07704080A EP1989408A1 (de) 2006-02-22 2007-01-23 Verfahren und vorrichtung zur erhöhung der abgastemperatur einer brennkraftmaschine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006008228A DE102006008228A1 (de) 2006-02-22 2006-02-22 Verfahren und Vorrichtung zur Erhöhung der Abgastemperatur einer Brennkraftmaschine
DE102006008228.1 2006-02-22

Publications (1)

Publication Number Publication Date
WO2007096221A1 true WO2007096221A1 (de) 2007-08-30

Family

ID=37944026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/050646 WO2007096221A1 (de) 2006-02-22 2007-01-23 Verfahren und vorrichtung zur erhöhung der abgastemperatur einer brennkraftmaschine

Country Status (5)

Country Link
US (1) US20090188252A1 (de)
EP (1) EP1989408A1 (de)
JP (1) JP2009527688A (de)
DE (1) DE102006008228A1 (de)
WO (1) WO2007096221A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185737A (ja) * 2008-02-07 2009-08-20 Mazda Motor Corp エンジンの過給装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0722329A2 (pt) * 2007-12-14 2014-04-08 Int Engine Intellectual Prop Controles de temperatura do gás de exaustão e refrigeração do motor para a regeneração após tratamento de diesel
GB2492537B (en) * 2011-06-29 2014-05-14 Perkins Engines Co Ltd Method and apparatus for controlling the operation of a turbocharged internal combustion engine
US9157352B2 (en) 2012-03-26 2015-10-13 General Electric Company Methods and systems for an engine
JP6483463B2 (ja) * 2015-02-13 2019-03-13 本田技研工業株式会社 内燃機関の制御装置
CN105781718A (zh) * 2016-04-26 2016-07-20 哈尔滨工程大学 实现多模式切换的相继增压系统
DE102019202210A1 (de) * 2019-02-19 2020-08-20 Zf Friedrichshafen Ag Verfahren und Steuergerät zum Betreiben eines Kraftfahrzeugs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3125305A1 (de) * 1981-06-27 1983-01-13 Zeuna Stärker GmbH & Co KG, 8900 Augsburg Vorrichtung zum abbrennen von ausgefiltertem russ
JPS59105915A (ja) * 1982-12-10 1984-06-19 Toyota Motor Corp タ−ボチヤ−ジヤ付デイ−ゼルエンジンの排気浄化方法
DE19923299A1 (de) 1999-05-21 2000-11-23 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP1396619A1 (de) * 2002-09-05 2004-03-10 BorgWarner Inc. Aufladesystem für eine Brennkraftmaschine
WO2004097195A1 (de) * 2003-05-02 2004-11-11 Daimlerchrysler Ag Turboladereinrichtung sowie ein verfahren zum betreiben einer turboladereinrichtung
EP1524417A1 (de) * 2003-10-16 2005-04-20 DaimlerChrysler AG Verbrennungsmotor mit Abgasturbolader und Sekundärlufteinblasung, sowie Diagnose und Regelung der Sekundärlufteinblasung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3125305A1 (de) * 1981-06-27 1983-01-13 Zeuna Stärker GmbH & Co KG, 8900 Augsburg Vorrichtung zum abbrennen von ausgefiltertem russ
JPS59105915A (ja) * 1982-12-10 1984-06-19 Toyota Motor Corp タ−ボチヤ−ジヤ付デイ−ゼルエンジンの排気浄化方法
DE19923299A1 (de) 1999-05-21 2000-11-23 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP1396619A1 (de) * 2002-09-05 2004-03-10 BorgWarner Inc. Aufladesystem für eine Brennkraftmaschine
WO2004097195A1 (de) * 2003-05-02 2004-11-11 Daimlerchrysler Ag Turboladereinrichtung sowie ein verfahren zum betreiben einer turboladereinrichtung
EP1524417A1 (de) * 2003-10-16 2005-04-20 DaimlerChrysler AG Verbrennungsmotor mit Abgasturbolader und Sekundärlufteinblasung, sowie Diagnose und Regelung der Sekundärlufteinblasung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185737A (ja) * 2008-02-07 2009-08-20 Mazda Motor Corp エンジンの過給装置

Also Published As

Publication number Publication date
DE102006008228A1 (de) 2007-08-23
US20090188252A1 (en) 2009-07-30
JP2009527688A (ja) 2009-07-30
EP1989408A1 (de) 2008-11-12

Similar Documents

Publication Publication Date Title
DE10161461B4 (de) Verfahren und Vorrichtung zur Regeneration von Partikelfiltern bei Dieselmotoren
DE10161396B4 (de) Verfahren zur Regeneration eines in einem Dieselmotor vorgesehenen Partikelfilters
WO2007096221A1 (de) Verfahren und vorrichtung zur erhöhung der abgastemperatur einer brennkraftmaschine
EP0454943B1 (de) Turbolader an einer Brennkraftmaschine
EP2134943A1 (de) Turboaufgeladene brennkraftmaschine und verfahren
WO2006072339A1 (de) Verfahren zum betrieb einer brennkraftmaschine mit einem abgasturbolader und einer nutzturbine
EP1279815A2 (de) Verfahren und Vorrichtung zum Betreiben eines elektrischen Laders
DE102016115322A1 (de) Vorrichtung und Verfahren zur Regeneration eines Partikelfilters
EP1387058A2 (de) Verfahren zur Ladedruckregelung eines Verbrennungsmotors
EP2208875B1 (de) Ventileinrichtung und Brennkraftmaschinensystem
DE10144663B4 (de) Brennkraftmaschine mit zwei Abgasturboladern mit Verdichterumgehung und Verfahren hierzu
DE102005061876A1 (de) Verfahren und Vorrichtung zur Steuerung eines Abgasnachbehandlungssystems
EP2122137B1 (de) Brennkraftmaschinensystem
DE10232337A1 (de) Verfahren und Vorrichtung zur Überwachung einer Luftmassenmessvorrichtung
EP3061954B1 (de) Verfahren und vorrichtung zur ansteuerung eines antriebssystems eines kraftfahzeugs mit einer aufgeladenen brennkraftmaschine
DE69815233T2 (de) Fehlererkennungsverfahren eines Abgasturboladers mit variabler Kapazität
WO2016001281A1 (de) Brennkraftmaschine
EP1682755B1 (de) Verfahren zum betreiben einer brennkraftmaschine
DE102005055011B4 (de) Kraftfahrzeug mit Handschaltgetriebe und Abgasturboladereinrichtung
DE102004056412A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
EP1368561B1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
DE102014226843A1 (de) Verfahren und Vorrichtung zum bidirektionalen Steuern einer Gasströmung in einer einen Brennraum eines aufgeladenen Verbrennungsmotors umgehenden Brennraum-Bypass-Leitung
DE102009005285A1 (de) Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102015216685B3 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit einer Aufladeeinrichtung
EP3704366B1 (de) Verfahren zum steuern und/oder regeln eines abgasturboladers eines verbrennungsmotors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007704080

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008555725

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12280320

Country of ref document: US