WO2004096468A1 - Composite rod and production method therefor and arc welding contact tip and resistance welding electrode comprising the composite rod - Google Patents

Composite rod and production method therefor and arc welding contact tip and resistance welding electrode comprising the composite rod Download PDF

Info

Publication number
WO2004096468A1
WO2004096468A1 PCT/JP2003/005496 JP0305496W WO2004096468A1 WO 2004096468 A1 WO2004096468 A1 WO 2004096468A1 JP 0305496 W JP0305496 W JP 0305496W WO 2004096468 A1 WO2004096468 A1 WO 2004096468A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
copper alloy
composite rod
dispersion
rod
Prior art date
Application number
PCT/JP2003/005496
Other languages
French (fr)
Japanese (ja)
Inventor
Tsuyoshi Isejima
Original Assignee
Kansai Pipe Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Pipe Industries, Ltd. filed Critical Kansai Pipe Industries, Ltd.
Priority to JP2004571302A priority Critical patent/JPWO2004096468A1/en
Priority to PCT/JP2003/005496 priority patent/WO2004096468A1/en
Priority to AU2003235977A priority patent/AU2003235977A1/en
Publication of WO2004096468A1 publication Critical patent/WO2004096468A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0205Non-consumable electrodes; C-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools

Definitions

  • the present invention relates to a composite rod, a method for producing the same, a contact tip for arc welding comprising the composite rod, and an electrode for resistance welding.
  • the present invention relates to a composite rod having excellent conductivity, heat resistance, abrasion resistance and welding resistance, and particularly suitably used as a conductive material such as a contact tip for arc welding and an electrode for resistance welding.
  • Contact tip materials used in arc welding such as MIG welding and MAG welding are required to have electrical conductivity and heat resistance, and copper alloys such as chromium copper, zirconium copper, and zirconium chromium copper are generally used to meet these requirements. I have been. Also, as for the material of the electrode used for resistance welding such as spot welding, since conductivity and heat resistance are required, chromium copper, diconium copper, zirconium chromium copper, etc., as in the case of the contact tip, are also used. Has been used.
  • alumina dispersion strengthened copper has been used as a material for contact chips and electrodes.
  • Alumina dispersion strengthened copper is obtained by dispersing fine particles of alumina in a copper matrix, and is usually formed by an internal oxidation method.
  • a contact chip or an electrode it is generally manufactured by first forming an alumina dispersion strengthened copper rod and subjecting it to the required processing.
  • the diffusion rate of oxygen in the copper matrix is low. If copper, which is a matrix, is formed into a rod and then subjected to internal oxidation treatment, the entire rod becomes internal acid. It will take a very long time to convert.
  • an aluminum-containing copper powder having a large surface area is internally oxidized to produce an alumina-dispersed copper powder, which is then converted from oxygen-free copper. It is common practice to produce an aluminum-dispersed copper alloy rod by encapsulating it in a container and performing hot extrusion.
  • An object of the present invention is to provide a rod which is suitably used as a material for an arc welding contact tip, a resistance welding electrode, or the like at a lower cost. Disclosure of the invention
  • the contact tip electrode usually needs to be made of an alumina-dispersed copper alloy having excellent wear resistance, welding resistance, etc., only at the inner central portion.
  • the proportion occupied by the alumina-dispersed copper alloy part cannot be reduced so much due to its manufacturing method, and the ratio of the diameter of the alumina-dispersed copper alloy part to the diameter of the entire rod is 0. In fact, it is about 4 or slightly larger.
  • the present inventors have focused on research and development of a composite rod that can minimize the proportion occupied by the dispersion-strengthened copper alloy portion, and have reached the present invention.
  • a core material having a dispersive copper alloy part at least on the inner part excluding the outer skin part is inserted into an outer pipe material made of copper or a copper alloy, and these are drawn.
  • the ratio of the diameter of the dispersion-strengthened copper alloy portion to the diameter of the entire rod is 0.1 to 0.49.
  • the ratio of the diameter of the copper oxide alloy portion is less than 0.1, the intended performance may not be exhibited when it is processed into a contact tip for arc welding and an electrode for resistance welding.
  • the ratio of the dispersion-strengthened copper alloy part occupies the same area even if the performance when processed into a contact tip for arc welding or an electrode for resistance welding does not change. Increases the cost.
  • the ratio is more preferably between 0.15 and 0.4.
  • the proportion occupied by the dispersion-strengthened copper alloy portion is within a range capable of maintaining the performance required when processed into an arc welding contact tip or a resistance welding electrode. Since it has been minimized, the cost can be greatly reduced compared to conventional alumina-dispersed copper alloy rods.
  • the dispersion-strengthened copper alloy portion is, for example, at least one oxide selected from the group consisting of alumina, zirconia, thoria, yttria, beryllia, and polonia dispersed in a copper matrix. . These oxides are harder than the matrix copper and have lower oxide formation energy. It is possible to obtain a dispersion-strengthened copper alloy having similar properties by dispersing boride and carbide in addition to oxides in a copper matrix. .
  • the amount of the oxide in the dispersion strengthened copper alloy part is preferably 0.15 to 1% by mass. If the amount of the oxide is less than 0.15% by mass, the strength is insufficient. If the amount of the oxide is more than 1% by mass, machining such as cutting and forging becomes difficult.
  • the core material is usually formed by encapsulating the dispersion-strengthened copper alloy powder obtained by the internal oxidation method in a container made of copper or a copper alloy and subjecting them to hot extrusion.
  • the dispersion-strengthened copper alloy portion is formed on the inner portion of the core material excluding the outer skin portion made of copper or a copper alloy.
  • the copper or copper alloy constituting the container for example, oxygen-free copper, copper oxide, chromium copper, zirconium copper, zirconium chromium copper, or the like is used, and this is used as the outer shell of the core material.
  • the outer tube material is usually one of pure copper (oxygen-free copper, phosphorous deoxidized copper, etc.), chromium copper, zirconium copper, and zirconium chromium copper. Of ingots.
  • the present invention also includes a method for producing the composite rod.
  • This manufacturing method is based on a method in which a dispersion-strengthened copper alloy powder obtained by an internal oxidation method is sealed in a container made of copper or a copper alloy, and the core material formed by hot-extrusion of the powder is converted into a copper or copper alloy. Injecting into the outer tube material made of the ingot material and drawing them out. According to the above manufacturing method, a composite rod in which the proportion occupied by the dispersion-strengthened copper alloy portion is minimized can be easily obtained.
  • annealing is preferably performed in a vacuum or a weak reducing atmosphere at 400 to 700 ° C. for 0.25 to 24 hours. Further, it is preferable to start annealing when the degree of drawing becomes 20% or more.
  • the material of the container and the outer pipe material may be the same.
  • the bonding strength at the interface between the drawn core material and the outer tube material increases, and the properties of the parts other than the dispersion strengthened copper alloy after annealing become uniform, which is advantageous for processing such as forging. It is.
  • the present invention includes a contact tip for arc welding formed from the composite rod.
  • a contact tip is usually formed by cutting a rod, which is a material, into a desired external shape and opening a hole in the center. Since a welding wire is passed through these pores and energized, there is a possibility that the surroundings of the pores may be changed due to wear and spatter.
  • the contact tip according to the present invention only the periphery of the pores is formed from the dispersion-strengthened copper alloy portion that is unlikely to undergo the above-mentioned deterioration. Therefore, according to the contact tip of the present invention, despite having the same conductivity, heat resistance and wear resistance as the conventional contact tip formed from the alumina-dispersed copper alloy rod, , Can significantly reduce costs.
  • the present invention includes an electrode for resistance welding formed from the composite rod.
  • the electrodes are usually formed by subjecting the material rod to the required forging and Z or cutting.
  • the electrodes used in automobile assembly lines, etc. are tapered at the tip in order to improve current strength and pressure, and this tip is most likely to be worn during welding.
  • the contact tip according to the present invention only the tip portion is formed from the dispersion-strengthened copper alloy portion that is unlikely to cause the above-described wear. Therefore, according to the electrode for resistance welding of the present invention, both weldability and cost can be achieved.
  • FIG. 1 is a cross-sectional view of a core material and an outer pipe material used as a material of a composite rod according to the present invention.
  • FIG. 2 is a cross-sectional view of a composite rod according to the present invention.
  • a Cu 0.3 mass% A1 alloy powder having an average particle size of 50 m was produced by a water atomizing method.
  • a cuprous oxide powder having an average particle size of 5 m was mixed so as to correspond to a stoichiometric amount for oxidizing the aluminum.
  • the obtained mixed powder was heated and maintained at 850 ⁇ for 8 hours in an argon gas atmosphere, and further heated and maintained at 50,000 for 3 hours in a hydrogen gas atmosphere.
  • an alumina dispersion-strengthened copper powder in which alumina was dispersed in a copper matrix was produced.
  • the alumina dispersion-strengthened copper powder was sealed in a cylindrical container with a lid made of oxygen-free copper having an outer diameter of 25 O mm and an inner diameter of 25 mm, and was subjected to underwater extrusion at 800 to a diameter of 3 O mm. This was further drawn to obtain a rod-shaped core material having a diameter of 6.5 mm.
  • the core material (1) has an oxygen-free body (2) on its outer surface, and the remaining inner portion is made of an alumina dispersion strengthened copper alloy (3).
  • the alumina content in the alumina dispersion strengthened copper alloy part (3) was about 0.5 mass%.
  • a zirconium chromium copper alloy was melted and formed, and the resulting ingot was subjected to hot extrusion, rolling, and drawing to produce an outer tube material (4) having an outer diameter of 25 mm and an inner diameter of 7 mm. (See Figure 1 (b)). After inserting the core material (1) into the outer pipe material (4) and drawing them out to a diameter of 12 mm, they are placed in a weak reducing gas atmosphere (inert gas containing 4% H + CO) at 500 ° C. Annealed for 1 hour. Thus, a composite rod (5) as shown in FIG. 2 was obtained.
  • a weak reducing gas atmosphere inert gas containing 4% H + CO
  • the alumina dispersion strengthened copper alloy part (20) has a diameter (B) of 3 mm, and is 25% of the entire outer diameter (A) (12 mm) of the rod (5).
  • Account for the percentage of A zirconium chromium copper part (40) is formed around the alumina dispersed high strength copper alloy part (20) via an oxygen-free copper part (30) with a thickness of 2 mm.
  • Example 2 The same alumina-dispersed strong copper powder produced in the process of Example 1 was sealed in a cylindrical container with a lid made of oxygen-free copper having an outer diameter of 25 Omm and an inner diameter of 235 mm, and was extruded underwater to a diameter of 3 Omm at 800. This was further processed and drawn to obtain an alumina dispersion strengthened copper rod having a diameter of 12 mm.
  • the diameter of the alumina dispersion strengthened copper alloy part is 11.3 mm, which accounts for 94% of the outer diameter (12 mm) of the entire rod.
  • Example 1 When the manufacturing costs of the composite rod (5) of Example 1 and the alumina dispersion-strengthened copper rod of Comparative Example 1 were calculated and compared, the cost of Example 1 was only about half that of Comparative Example 1. Did not.
  • the electrical conductivity of the composite rod (5) of Example 1 was 80% ACS in the alumina dispersion strengthened copper alloy part.
  • the hardness of the composite rod (5) was 165 HV in the alumina dispersion strengthened copper alloy part (20) and 17 OHV in the zirconium chromium copper part (40).
  • the conductivity of the alumina dispersion strengthened copper rod of Comparative Example 1 was 80% ACS in the alumina dispersion strengthened copper alloy part.
  • the hardness of the rod was 165 HV in the alumina dispersion strengthened copper alloy part and 90 HV in the oxygen-free copper part of the outer skin.
  • the composite rod (5) according to the present invention (Example 1) is a Despite having the same excellent electrical conductivity and abrasion resistance as the luminous dispersion strengthened copper rod (Comparative Example 1), it can be manufactured at about one-half the cost.
  • the composite rod (5) produced in Example 1 was subjected to required cutting, and a hole having a diameter of 1.2 mm was drilled at the center thereof to produce a contact tip for MIG welding.
  • the alumina dispersion strengthened copper rod produced in Comparative Example 1 was subjected to the same cutting and drilling as in Example 2 to produce a contact tip for MIG welding.
  • a 12 mm diameter rod made of ingot material of zirconium chromium copper was subjected to the same cutting and drilling processes as in Example 2 to produce a contact tip for MIG welding.
  • Contacts of Example 2 and Comparative Examples 2 and 3 We measured the welding life (time allowed for continuous welding) when MIG welding mild steel sheets using the tip. The evaluation was performed by rotating a drum made of a mild steel plate (thickness: 5 mm) and placing a bead while moving the torch little by little in the length direction of the drum, until the excess was not continuously formed. Time.
  • the welding life when the contact tip of Example 2 was used was almost the same as that when the contact tip of Comparative Example 2 was used, and was about 4 times the welding life when the contact tip of Comparative Example 3 was used. It was twice.
  • a composite rod (5) having a diameter of 16 mm (diameter of the alumina dispersion strengthened alloy part: 7 mm) produced in the same manner as in Example 1 was forged and cut into a required shape to produce an electrode for resistance spot welding.
  • the electrode shape was a CR (dom) shape, and the diameter of the flat part at the tip was 5 mm.
  • a rod having a diameter of 16 mm made of ingot material of zirconium chromium copper was subjected to the same cutting processing as in Example 3 to produce an electrode for resistance spot welding.
  • the electrode life when the electrode of Example 3 was used was almost the same as that when the electrode of Comparative Example 4 was used, and was about 2.5 times the electrode life when the electrode of Comparative Example 5 was used. Was.
  • a composite rod was produced in the same manner as in Example 1, except that the material of the container was the same zirconium chromium copper alloy as the outer tube material. Then, the composite rod was subjected to forging and cutting in the same manner as in Example 3 to produce an electrode for resistance spot welding.
  • the present invention provides a composite rod having a minimum required dispersion-strengthened copper alloy part.
  • the present invention provides a conventional rod as a conductive material such as a contact tip for arc welding and an electrode for resistance welding.
  • alumina-dispersed copper rod it is useful in that it can be supplied at low cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Arc Welding In General (AREA)
  • Metal Extraction Processes (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

A composite rod which is suitably used as an arc welding contact tip and a resistance welding electrode material, and is formed by inserting a core material having a dispersion-strengthened copper alloy section at at least the inner side portion thereof excluding a outer skin portion into an outer tube material consisting of copper or copper alloy and drawing them together, a ratio between the diameter of the whole rod and that of the dispersion-strengthened copper alloy section being 0.1-0.49. In this composite rod, a proportion accounted for by the dispersion-strengthened copper alloy section can be minimized while still retaining a performance required when the rod is worked into an arc welding contact tip or a resistance welding electrode, thereby enabling a significant cost reduction compared to a conventional aluminum dispersed copper rod.

Description

明細書  Specification
複合棒およびその製造方法ならびに該複合棒よりなるアーク溶接用コンタクト チップおよび抵抗溶接用電極 技術分野 TECHNICAL FIELD The present invention relates to a composite rod, a method for producing the same, a contact tip for arc welding comprising the composite rod, and an electrode for resistance welding.
本発明は、 導電性、 耐熱性、 耐摩耗性および耐溶着性に優れ、 特にアーク溶接 用コンタクトチップゃ抵抗溶接用電極といつた導電用の材料として好適に用いら れる複合棒に関する。 背景技術  The present invention relates to a composite rod having excellent conductivity, heat resistance, abrasion resistance and welding resistance, and particularly suitably used as a conductive material such as a contact tip for arc welding and an electrode for resistance welding. Background art
M I G溶接、 MAG溶接等のアーク溶接に用いられるコンタクトチップの材料 には、 導電性および耐熱性が要求され、 これらに適合するものとしてクロム銅、 ジルコニウム銅、 ジルコニウムクロム銅等の銅合金が一般に用いられてきた。 また、 スポット溶接等の抵抗溶接に用いられる電極の材料も、 導電性および耐 熱性が必要とされることから、 コンタクトチップの場合と同様に、 クロム銅、 ジ 'ルコニゥム銅、 ジルコニウムクロム銅等が用いられてきた。  Contact tip materials used in arc welding such as MIG welding and MAG welding are required to have electrical conductivity and heat resistance, and copper alloys such as chromium copper, zirconium copper, and zirconium chromium copper are generally used to meet these requirements. I have been. Also, as for the material of the electrode used for resistance welding such as spot welding, since conductivity and heat resistance are required, chromium copper, diconium copper, zirconium chromium copper, etc., as in the case of the contact tip, are also used. Has been used.
しかしながら、 生産性の向上や被溶接材の多様化に伴い、 コンタクトチップや 電極の使用条件がより過酷なものとなり、 上記銅合金よりなる従来のものでは、 耐摩耗性や耐溶着性等の点において、 満足する結果を得られない状況になってき た。  However, with the improvement of productivity and diversification of materials to be welded, the use conditions of contact tips and electrodes have become more severe, and the conventional ones made of the above-mentioned copper alloy have problems such as wear resistance and welding resistance. , It has become impossible to obtain satisfactory results.
そこで、 近年、 コンタクトチップや電極の材料として、 アルミナ分散強化銅が 用いられるようになった。 アルミナ分散強化銅は、 銅マトリックス中にアルミナ の微細な粒子を分散させたものであって、 通常、 内部酸化法 よって形成される 。 コンタクトチップや電極の場合、 まず、 アルミナ分散強化銅棒を形成し、 これ に所要の加工を施すことによって製造されるのが一般的である。 アルミナ分散強 化銅をつくる場合、 銅マトリックス中における酸素の拡散速度が遅いため、 マト リックスである銅を棒状に成形してから内部酸化処理を行うと、 棒全体を内部酸 化させるのに非常に長い時間がかかってしまうことになる。 Thus, in recent years, alumina dispersion strengthened copper has been used as a material for contact chips and electrodes. Alumina dispersion strengthened copper is obtained by dispersing fine particles of alumina in a copper matrix, and is usually formed by an internal oxidation method. In the case of a contact chip or an electrode, it is generally manufactured by first forming an alumina dispersion strengthened copper rod and subjecting it to the required processing. When producing alumina-dispersed copper, the diffusion rate of oxygen in the copper matrix is low.If copper, which is a matrix, is formed into a rod and then subjected to internal oxidation treatment, the entire rod becomes internal acid. It will take a very long time to convert.
そこで、 例えば特開平 1— 2 6 3 2 0 3号公報に開示されているように、 表面 積の大きいアルミニウム含有銅粉末を内部酸化させてアルミナ分散銅粉末を作製 し、 これを無酸素銅よりなる容器に封入して、 熱間押出加工することにより、 ァ ルミナ分散銅合金棒を製造することが通常行われている。  Thus, for example, as disclosed in Japanese Patent Application Laid-Open No. 1-263203, an aluminum-containing copper powder having a large surface area is internally oxidized to produce an alumina-dispersed copper powder, which is then converted from oxygen-free copper. It is common practice to produce an aluminum-dispersed copper alloy rod by encapsulating it in a container and performing hot extrusion.
しかしながら、 上記のアルミナ分散銅合金棒の場合、 生産性が低く、 製造コス トが高くなつてしまうという問題があつた。  However, in the case of the above-mentioned alumina-dispersed copper alloy rod, there is a problem that productivity is low and manufacturing cost is high.
本発明の目的は、 アーク溶接用コンタクトチップや抵抗溶接用電極等の材料と して好適に用いられる棒を、 より低コストで提供できるようにすることにある。 発明の開示  An object of the present invention is to provide a rod which is suitably used as a material for an arc welding contact tip, a resistance welding electrode, or the like at a lower cost. Disclosure of the invention
従来のアルミナ分散銅棒の場合、 その外皮部に無酸素銅部が形成され、 残りの 内側部分にアルミナ分散銅合金部が形成される。 特開平 1一 2 6 3 2 0 3号公報 には、 棒全体の径に対するアルミナ分散銅合金部の径の比を 0 . 5〜 0 . 9 4と することが記載されている。  In the case of a conventional alumina-dispersed copper rod, an oxygen-free copper portion is formed on the outer skin portion, and an alumina-dispersed copper alloy portion is formed on the remaining inner portion. Japanese Patent Application Laid-Open No. Hei 1-263203 discloses that the ratio of the diameter of the alumina-dispersed copper alloy portion to the diameter of the entire rod is 0.5 to 0.94.
ところが、 コンタクトチップ 電極において、 耐摩耗性や耐溶着性等に優れた アルミナ分散銅合金によって構成される必要があるのは、 通常、 さらに内側の中 心部分のみである。  However, the contact tip electrode usually needs to be made of an alumina-dispersed copper alloy having excellent wear resistance, welding resistance, etc., only at the inner central portion.
また、 従来のアルミナ分散銅棒は、 その製法上、 アルミナ分散銅合金部の占め る割合をあまり小さくすることができず、 棒全体の径に対するアルミナ分散銅合 金部の径の比が 0 . 9 4程度かそれよりもやや大きいものとなされているのが実 情である。 '  Further, in the conventional alumina-dispersed copper rod, the proportion occupied by the alumina-dispersed copper alloy part cannot be reduced so much due to its manufacturing method, and the ratio of the diameter of the alumina-dispersed copper alloy part to the diameter of the entire rod is 0. In fact, it is about 4 or slightly larger. '
そこで、 本発明者は、 分散強化銅合金部が占める割合を必要最小限としうる複 合棒の研究開発に注力し、 本発明に至ったものである。  Therefore, the present inventors have focused on research and development of a composite rod that can minimize the proportion occupied by the dispersion-strengthened copper alloy portion, and have reached the present invention.
即ち、 本発明による複合棒は、 少なくとも外皮部を除いた内側部分に分散強ィ匕 銅合金部を有する芯材を、 銅または銅合金よりなる外管材に揷入して、 これらを 引抜き加工することにより形成されており、 棒全体の径に対する分散強化銅合金 部の径の比が 0 . 1〜0. 4 9となされているものである。  That is, in the composite rod according to the present invention, a core material having a dispersive copper alloy part at least on the inner part excluding the outer skin part is inserted into an outer pipe material made of copper or a copper alloy, and these are drawn. The ratio of the diameter of the dispersion-strengthened copper alloy portion to the diameter of the entire rod is 0.1 to 0.49.
上記の芯材および外管材よりなる複合棒において、 棒全体の径に対する分散強 化銅合金部の径の比が 0 . 1未満であると、 アーク溶接用コンタクトチップゃ抵 抗溶接用電極に加工された際に所期の性能を発揮できない恐れがある。 また、 上 記比が 0 . 4 9よりも大きくなると、 ァ一ク溶接用コンタクトチップや抵抗溶接 用電極に加工された際の性能は変わらないにもかかわらず、 分散強化銅合金部の 占める割合が多くなつて、 コストの増大を招いてしまう。 上記比は、 より好まし くは、 0 . 1 5〜0. 4となされる。 In the composite rod composed of the above-mentioned core material and outer tube material, If the ratio of the diameter of the copper oxide alloy portion is less than 0.1, the intended performance may not be exhibited when it is processed into a contact tip for arc welding and an electrode for resistance welding. When the above ratio is larger than 0.49, the ratio of the dispersion-strengthened copper alloy part occupies the same area even if the performance when processed into a contact tip for arc welding or an electrode for resistance welding does not change. Increases the cost. The ratio is more preferably between 0.15 and 0.4.
したがって、 本発明の複合棒によれば、 分散強化銅合金部の占める割合が、 ァ —ク溶接用コンタクトチップや抵抗溶接用電極に加工された場合に要求される性 能を維持しうる範囲において最小限のものとなされているので、 従来のアルミナ 分散銅合金棒と比べて大幅にコストを下げることができる。  Therefore, according to the composite rod of the present invention, the proportion occupied by the dispersion-strengthened copper alloy portion is within a range capable of maintaining the performance required when processed into an arc welding contact tip or a resistance welding electrode. Since it has been minimized, the cost can be greatly reduced compared to conventional alumina-dispersed copper alloy rods.
本発明による複合棒において、 分散強化銅合金部は、 銅マトリックス中に、 例 えば、. アルミナ、 ジルコニァ、 トリア、 イットリア、 ベリリアおよびポロニァの うち少なくともいずれか 1つの酸化物を分散させたものである。 これらの酸化物 は、 マトリックスである銅よりも硬く、 かつ酸化物生成エネルギーが低い酸化物 である。 なお、 酸化物以外に、 ホウ化物や炭化物を、 銅マトリックス中に分散さ せることによつても、 同様の性質を有する分散強化銅合金を得ることが可能であ る。 .  In the composite rod according to the present invention, the dispersion-strengthened copper alloy portion is, for example, at least one oxide selected from the group consisting of alumina, zirconia, thoria, yttria, beryllia, and polonia dispersed in a copper matrix. . These oxides are harder than the matrix copper and have lower oxide formation energy. It is possible to obtain a dispersion-strengthened copper alloy having similar properties by dispersing boride and carbide in addition to oxides in a copper matrix. .
上記の場合において、 分散強化銅合金部中の酸化物の量が 0 . 1 5〜1質量% であるのが好ましい。 酸化物の量が 0. 1 5質量%未満であると、 強度が不足す る。 また、 酸化物の量が 1質量%よりも大きくなると、 切削や鍛造等の加工が困 難になる。  In the above case, the amount of the oxide in the dispersion strengthened copper alloy part is preferably 0.15 to 1% by mass. If the amount of the oxide is less than 0.15% by mass, the strength is insufficient. If the amount of the oxide is more than 1% by mass, machining such as cutting and forging becomes difficult.
本発明による複合棒において、 芯材は、 通常、 内部酸化法によって得られた分 散強化銅合金粉末を銅または銅合金よりなる容器に封入してこれらを熱間押出加 ェすることにより形成されており、 分散強化銅合金部が、 芯材のうち銅または銅 合金よりなる外皮部を除いた内側部分に形成されている。 容器を構成する銅また は銅合金としては、 例えば、 無酸素銅、 憐脱酸銅、 クロム銅、 ジルコニウム銅、 ジルコニウムクロム銅等が用いられ、 これが芯材の外皮部となされる。  In the composite rod according to the present invention, the core material is usually formed by encapsulating the dispersion-strengthened copper alloy powder obtained by the internal oxidation method in a container made of copper or a copper alloy and subjecting them to hot extrusion. The dispersion-strengthened copper alloy portion is formed on the inner portion of the core material excluding the outer skin portion made of copper or a copper alloy. As the copper or copper alloy constituting the container, for example, oxygen-free copper, copper oxide, chromium copper, zirconium copper, zirconium chromium copper, or the like is used, and this is used as the outer shell of the core material.
本発明による複合棒において、 外管材は、 通常、 純銅 (無酸素銅、 燐脱酸銅等 ) 、 クロム銅、 ジルコニウム銅およびジルコニウムクロム銅のうちいずれか 1つ の溶製材よりなる。 In the composite rod according to the present invention, the outer tube material is usually one of pure copper (oxygen-free copper, phosphorous deoxidized copper, etc.), chromium copper, zirconium copper, and zirconium chromium copper. Of ingots.
また、 本発明には、 上記複合棒の製造方法が含まれる。 この製造方法は、 内部 酸化法によって得られた分散強化銅合金粉末を銅または銅合金よりなる容器に封 入してこれらを熱間押出加工することにより形成された芯材を、 銅または銅合金 の溶製材よりなる外管材に揷入して、 これらを引抜き加工するものである。 上記の製造方法によれば、 分散強化銅合金部の占める割合を必要最小限とした 複合棒を容易に得ることができる。  The present invention also includes a method for producing the composite rod. This manufacturing method is based on a method in which a dispersion-strengthened copper alloy powder obtained by an internal oxidation method is sealed in a container made of copper or a copper alloy, and the core material formed by hot-extrusion of the powder is converted into a copper or copper alloy. Injecting into the outer tube material made of the ingot material and drawing them out. According to the above manufacturing method, a composite rod in which the proportion occupied by the dispersion-strengthened copper alloy portion is minimized can be easily obtained.
本発明による複合棒の製造方法において、 引抜き加工された芯材と外管材との 界面を金属結合するために焼鈍を行うのが好ましい。  In the method for manufacturing a composite rod according to the present invention, it is preferable to perform annealing in order to metal-bond the interface between the drawn core material and the outer tube material.
上記の場合、 焼鈍を、 真空または弱い還元雰囲気中、 4 0 0〜7 0 0 °Cで、 0 . 2 5 ~ 2 4時間行うのが好ましい。 また、 焼鈍は、 引抜き加工度が 2 0 %以上 となった時点で開始するのが好ましい。  In the above case, annealing is preferably performed in a vacuum or a weak reducing atmosphere at 400 to 700 ° C. for 0.25 to 24 hours. Further, it is preferable to start annealing when the degree of drawing becomes 20% or more.
本発明による複合棒の製造方法において、 容器と外管材の材質を同じにする場 合がある。  In the method of manufacturing a composite rod according to the present invention, the material of the container and the outer pipe material may be the same.
上記の場合、 引抜き加工された芯材と外管材の界面の結合強度が高くなり、 ま た、 焼鈍後に分散強化銅合金部以外の部分の性質が均一になるので、 鍛造等の加 ェに有利である。  In the above case, the bonding strength at the interface between the drawn core material and the outer tube material increases, and the properties of the parts other than the dispersion strengthened copper alloy after annealing become uniform, which is advantageous for processing such as forging. It is.
本発明には、 上記複合棒から形成されているァ一ク溶接用コンタクトチップが 含まれる。  The present invention includes a contact tip for arc welding formed from the composite rod.
コンタクトチップは、 通常、 材料となる棒を所要の外観形状に切削加工し、 か つ中心部に細孔をあけることによって形成される。 この細孔の中に溶接ワイヤが 通されて、 通電されるため、 細孔の周囲に摩耗ゃスパッタによる変質が生じるこ とがある。 本発明によるコンタクトチップの場合、 細孔の周囲のみが、 上記のよ うな変質を生じ難い分散強化銅合金部から形成される。 したがって、 本発明のコ ンタクトチップによれば、 アルミナ分散銅合金棒から形成されている従来のコン タクトチップとほぼ同等の導電性、 耐熱性および耐摩耗性を備えているにもかか わらず、 大幅にコストを下げることができる。  A contact tip is usually formed by cutting a rod, which is a material, into a desired external shape and opening a hole in the center. Since a welding wire is passed through these pores and energized, there is a possibility that the surroundings of the pores may be changed due to wear and spatter. In the case of the contact tip according to the present invention, only the periphery of the pores is formed from the dispersion-strengthened copper alloy portion that is unlikely to undergo the above-mentioned deterioration. Therefore, according to the contact tip of the present invention, despite having the same conductivity, heat resistance and wear resistance as the conventional contact tip formed from the alumina-dispersed copper alloy rod, , Can significantly reduce costs.
さらに、 本発明には、 上記複合棒から形成されている抵抗溶接用電極が含まれ る。 電極は、 通常、 材料となる棒に所要の鍛造および Zまたは切削を施すことによ つて形成される。 特に、 自動車の組立ライン等で用いられる電極は、 電流強度と 加圧力を向上させるために、 先端部が細くなされており、 この先端部が溶接時に 最も損耗し易い。 本発明によるコンタクトチップの場合、 先端部のみが、 上記の ような損耗が生じ難い分散強化銅合金部から形成される。 したがって、 本発明の 抵抗溶接用電極によれば、 溶接性とコストを両立させることができる。 図面の簡単な説明 Further, the present invention includes an electrode for resistance welding formed from the composite rod. The electrodes are usually formed by subjecting the material rod to the required forging and Z or cutting. In particular, the electrodes used in automobile assembly lines, etc., are tapered at the tip in order to improve current strength and pressure, and this tip is most likely to be worn during welding. In the case of the contact tip according to the present invention, only the tip portion is formed from the dispersion-strengthened copper alloy portion that is unlikely to cause the above-described wear. Therefore, according to the electrode for resistance welding of the present invention, both weldability and cost can be achieved. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明による複合棒の材料として用いられれる芯材および外管材の横 断面図である。  FIG. 1 is a cross-sectional view of a core material and an outer pipe material used as a material of a composite rod according to the present invention.
図 2は、 本発明による複合棒の横断面図である。 発明を実施するための最良の形態  FIG. 2 is a cross-sectional view of a composite rod according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
(実施例 1 )  (Example 1)
平均粒径 5 0 mの C u 0 . 3 mass % A 1合金粉末を水アトマイズ法により 作製した。 この C u— A 1合金粉末に、 平均粒径 5 mの亜酸化銅粉末を、 アル ミニゥムが酸化する化学量論量に相当するように混合した。 そして、 得られた混 合粉末を、 アルゴンガス雰囲気中、 8 5 0 ^で 8時間加熱保持し、 さらに、 水素 ガス中、 5 0 0 で 3時間加熱保持した。 こうして、 銅マトリックス中にアルミ ナが分散したアルミナ分散強化銅粉末を作製した。  A Cu 0.3 mass% A1 alloy powder having an average particle size of 50 m was produced by a water atomizing method. To this Cu—A1 alloy powder, a cuprous oxide powder having an average particle size of 5 m was mixed so as to correspond to a stoichiometric amount for oxidizing the aluminum. Then, the obtained mixed powder was heated and maintained at 850 ^ for 8 hours in an argon gas atmosphere, and further heated and maintained at 50,000 for 3 hours in a hydrogen gas atmosphere. Thus, an alumina dispersion-strengthened copper powder in which alumina was dispersed in a copper matrix was produced.
次に、 アルミナ分散強化銅粉末を、 無酸素銅よりなる外径 2 5 O mmX内径 2 3 5 mmの蓋付き円筒容器に封入して、 8 0 0 で直径 3 O mmに水中押出加工 し、 さらにこれを引抜き加工して、 直径 6 . 5 mmの棒状芯材を得た。 図 1 ( a ) に示すように、 芯材 (1〉は、 その外皮部に無酸素胴部(2)を有し、 残りの内側部 分がアルミナ分散強化銅合金部 (3)となされている。 アルミナ分散強化銅合金部( 3)におけるアルミナの含有量は、 約 0 . 5 mass %であった。  Next, the alumina dispersion-strengthened copper powder was sealed in a cylindrical container with a lid made of oxygen-free copper having an outer diameter of 25 O mm and an inner diameter of 25 mm, and was subjected to underwater extrusion at 800 to a diameter of 3 O mm. This was further drawn to obtain a rod-shaped core material having a diameter of 6.5 mm. As shown in Fig. 1 (a), the core material (1) has an oxygen-free body (2) on its outer surface, and the remaining inner portion is made of an alumina dispersion strengthened copper alloy (3). The alumina content in the alumina dispersion strengthened copper alloy part (3) was about 0.5 mass%.
これとは別に、 ジルコニウムクロム銅合金を溶解 '铸造し、 得られた铸塊を熱 間押出、 圧延、 引抜き加工することにより、 外径 2 5 mmx内径 7 mmの外管材 (4)を作製した (図 1 ( b ) 参照) 。 そして、 外管材 (4)に芯材(1)を挿入して、 これらを直径 12mmに引抜き加工 した後、 弱い還元ガス雰囲気 (H+ COが 4%含まれる不活性ガス) 中、 500 °Cで 1時間焼鈍した。 こうして、 図 2に示すような複合棒 (5)を得た。 Separately, a zirconium chromium copper alloy was melted and formed, and the resulting ingot was subjected to hot extrusion, rolling, and drawing to produce an outer tube material (4) having an outer diameter of 25 mm and an inner diameter of 7 mm. (See Figure 1 (b)). After inserting the core material (1) into the outer pipe material (4) and drawing them out to a diameter of 12 mm, they are placed in a weak reducing gas atmosphere (inert gas containing 4% H + CO) at 500 ° C. Annealed for 1 hour. Thus, a composite rod (5) as shown in FIG. 2 was obtained.
上記の複合棒 (5)において、 アルミナ分散強化銅合金部 (20)は、 その直径 (B)が 3mmであって、 棒(5)全体の外径 (A) (12mm) に対して 25 %の割合を占め ている。 アルミナ分散強ィヒ銅合金部 (20)の周囲には、 厚さ 2mmの無酸素銅 部(30)を介して、 ジルコニウムクロム銅部(40)が形成されている。  In the above composite rod (5), the alumina dispersion strengthened copper alloy part (20) has a diameter (B) of 3 mm, and is 25% of the entire outer diameter (A) (12 mm) of the rod (5). Account for the percentage of A zirconium chromium copper part (40) is formed around the alumina dispersed high strength copper alloy part (20) via an oxygen-free copper part (30) with a thickness of 2 mm.
(比較例 1)  (Comparative Example 1)
実施例 1の工程中で作製したアルミナ分散強ィヒ銅粉末と同じものを、 無酸素銅 よりなる外径 25 OmmX内径 235mmの蓋付き円筒容器に封入して、 800 で直径 3 Ommに水中押出加工し、 さ にこれを引抜き加工して、 直径 12m mのアルミナ分散強化銅棒を得た。  The same alumina-dispersed strong copper powder produced in the process of Example 1 was sealed in a cylindrical container with a lid made of oxygen-free copper having an outer diameter of 25 Omm and an inner diameter of 235 mm, and was extruded underwater to a diameter of 3 Omm at 800. This was further processed and drawn to obtain an alumina dispersion strengthened copper rod having a diameter of 12 mm.
上記のアルミナ分散強化銅棒にあっては、 アルミナ分散強化銅合金部の直径が 11. 3mmであり、 これは、 棒全体の外径 (12mm) に対して 94%の割合 を占めている。  In the above alumina dispersion strengthened copper rod, the diameter of the alumina dispersion strengthened copper alloy part is 11.3 mm, which accounts for 94% of the outer diameter (12 mm) of the entire rod.
実施例 1の複合棒 (5)および比較例 1のアルミナ分散強化銅棒の製造コストを 算出してこれらを比較したところ、 実施例 1では比較例 1の約 2分の 1のコスト しかかかっていなかった。  When the manufacturing costs of the composite rod (5) of Example 1 and the alumina dispersion-strengthened copper rod of Comparative Example 1 were calculated and compared, the cost of Example 1 was only about half that of Comparative Example 1. Did not.
また、 実施例 1の複合棒 (5)および比較例 1のアルミナ分散強化銅棒について 、 導電率および硬さを測定した。  The electrical conductivity and the hardness of the composite rod (5) of Example 1 and the alumina dispersion-strengthened copper rod of Comparative Example 1 were measured.
実施例 1の複合棒 (5)の導電率は、 アルミナ分散強化銅合金部において 80 % I ACSであった。 また、 複合棒 (5〉の硬さは、 アルミナ分散強化銅合金部 (20) において 165HVであり、 ジルコニウムクロム銅部(40)において 17 OHVで あった。  The electrical conductivity of the composite rod (5) of Example 1 was 80% ACS in the alumina dispersion strengthened copper alloy part. The hardness of the composite rod (5) was 165 HV in the alumina dispersion strengthened copper alloy part (20) and 17 OHV in the zirconium chromium copper part (40).
一方、 比較例 1のアルミナ分散強化銅棒の導電率は、 アルミナ分散強化銅合金 部において 80% I ACSであった。 また、 上記棒の硬さは、 アルミナ分散強化 銅合金部において 165HVであり、 外皮部の無酸素銅部において 90HVであ つた。  On the other hand, the conductivity of the alumina dispersion strengthened copper rod of Comparative Example 1 was 80% ACS in the alumina dispersion strengthened copper alloy part. The hardness of the rod was 165 HV in the alumina dispersion strengthened copper alloy part and 90 HV in the oxygen-free copper part of the outer skin.
以上から明らかなように、 本発明による複合棒(5) (実施例 1) は、 従来のァ ルミナ分散強化銅棒 (比較例 1 ) とほぼ同等の優れた導電率および耐摩耗性を有 するにもかかわらず、 約 2分の 1のコストで製造することができる。 As is clear from the above, the composite rod (5) according to the present invention (Example 1) is a Despite having the same excellent electrical conductivity and abrasion resistance as the luminous dispersion strengthened copper rod (Comparative Example 1), it can be manufactured at about one-half the cost.
(実施例 2 )  (Example 2)
実施例 1で作製した複合棒 (5)に所要の切削加工を施し、 さらに中心部にドリ ルで直径 1 . 2 mmの孔をあけて、 M I G溶接用コンタクトチップを作製した。  The composite rod (5) produced in Example 1 was subjected to required cutting, and a hole having a diameter of 1.2 mm was drilled at the center thereof to produce a contact tip for MIG welding.
(比較例 2 )  (Comparative Example 2)
比較例 1で作製したアルミナ分散強化銅棒に、 実施例 2と同様の切削加工およ び孔あけ加工を施し、 M I G溶接用コンタクトチップを作製した。  The alumina dispersion strengthened copper rod produced in Comparative Example 1 was subjected to the same cutting and drilling as in Example 2 to produce a contact tip for MIG welding.
(比較例 3 )  (Comparative Example 3)
ジルコニウムクロム銅の溶製材よりなる直径 1 2 mmの棒に、 実施例 2と同様 の切削加工および孔あけ加工を施し、 M I G溶接用コンタクトチップを作製した 実施例 2ならびに比較例 2および 3のコンタクトチップを使用して軟鋼板の M I G溶接を行った場合の溶接寿命 (連続して溶接できる時間) を測定した。 評価 は、 軟鋼板 (板厚 5 mm) のドラムを回転させ、 トーチをドラムの長さ方向に少 しずつ移動させながらビ一ドを置いていき、 余盛が連続して形成されなくなるま での時間によって行った。  A 12 mm diameter rod made of ingot material of zirconium chromium copper was subjected to the same cutting and drilling processes as in Example 2 to produce a contact tip for MIG welding. Contacts of Example 2 and Comparative Examples 2 and 3 We measured the welding life (time allowed for continuous welding) when MIG welding mild steel sheets using the tip. The evaluation was performed by rotating a drum made of a mild steel plate (thickness: 5 mm) and placing a bead while moving the torch little by little in the length direction of the drum, until the excess was not continuously formed. Time.
実施例 2のコンタクトチップを使用した場合の溶接寿命は、 比較例 2のコン夕 クトチップを使用した場合のそれとほぼ同等であり、 比較例 3のコンタクトチッ プを使用した場合の溶接寿命の約 4倍であった。  The welding life when the contact tip of Example 2 was used was almost the same as that when the contact tip of Comparative Example 2 was used, and was about 4 times the welding life when the contact tip of Comparative Example 3 was used. It was twice.
(実施例 3 )  (Example 3)
実施例 1と同じ要領で作製した直径 1 6 mm (アルミナ分散強化合金部の直径 7 mm) の複合棒 (5)を所要の形状に鍛造、 切削して、 抵抗スポット溶接用電極 を作製した。 電極の形状は C R (ド一ム) 形とし、 先端の平坦部の直径を 5 mm とした。  A composite rod (5) having a diameter of 16 mm (diameter of the alumina dispersion strengthened alloy part: 7 mm) produced in the same manner as in Example 1 was forged and cut into a required shape to produce an electrode for resistance spot welding. The electrode shape was a CR (dom) shape, and the diameter of the flat part at the tip was 5 mm.
(比較例 4 )  (Comparative Example 4)
比較例 1と同じ要領で作製した直径 1 6 mm (アルミナ分散強化合金部の直径 1 5 mm) のアルミナ分散強化銅棒に、 実施例 3と同様の加工を施し、 抵抗スポ ット溶接用電極を作製した。 (比較例 5 ) An alumina dispersion strengthened copper rod having a diameter of 16 mm (diameter of the alumina dispersion strengthened alloy part: 15 mm) manufactured in the same manner as in Comparative Example 1 was processed in the same manner as in Example 3 to form an electrode for resistance spot welding. Was prepared. (Comparative Example 5)
ジルコニウムクロム銅の溶製材よりなる直径 1 6 mmの棒に、 実施例 3と同様 の切削加工を施し、 抵抗スポット溶接用電極を作製した。  A rod having a diameter of 16 mm made of ingot material of zirconium chromium copper was subjected to the same cutting processing as in Example 3 to produce an electrode for resistance spot welding.
実施例 3ならびに比較例 4および 5の電極を使用して、 亜鉛メツキ鋼板のスポ ット溶接を行った場合の電極寿命 (打点数) を測定した。 評価は、 ナゲット (溶 融部) 径が 4 t ( t =板厚) を初めて下回った打点数にて行った。  Using the electrodes of Example 3 and Comparative Examples 4 and 5, the electrode life (number of spots) when spot welding of a zinc plated steel sheet was performed was measured. The evaluation was performed with the number of spots for which the nugget (melted part) diameter was less than 4 t (t = plate thickness) for the first time.
実施例 3の電極を使用した場合の電極寿命は、 比較例 4の電極を使用した場合 のそれとほぼ同等であり、 比較例 5の電極を使用した場合の電極寿命の約 2 . 5 倍であった。  The electrode life when the electrode of Example 3 was used was almost the same as that when the electrode of Comparative Example 4 was used, and was about 2.5 times the electrode life when the electrode of Comparative Example 5 was used. Was.
(実施例 4 )  (Example 4)
容器の材質を外管材と同じジルコニウムクロム銅合金とした点を除いて、 実施 例 1と同じ要領で複合棒を作製した。 そして、 この複合棒に実施例 3と同様の鍛 造、 切削加工を施して、 抵抗スポット溶接用電極を作製した。  A composite rod was produced in the same manner as in Example 1, except that the material of the container was the same zirconium chromium copper alloy as the outer tube material. Then, the composite rod was subjected to forging and cutting in the same manner as in Example 3 to produce an electrode for resistance spot welding.
実施例 4における複合棒の加工性を実施例 3と比較すると、 実施例 4の方が複 合棒の加工、 特に鍛造を容易に行うことができた。 産業上の利用可能性  Comparing the workability of the composite rod in Example 4 with that of Example 3, the processing of the composite rod, particularly forging, was easier in Example 4. Industrial applicability
以上の通り、 本発明は、 必要最小限の分散強化銅合金部を有する複合棒を提供 するものであり、 特に、 アーク溶接用コンタクトチップ、 抵抗溶接用電極等の導 電用材料として、 従来のアルミナ分散銅棒と同等の高性能を持つにもかかわらず 、 低コストで供給できる点において有用である。  As described above, the present invention provides a composite rod having a minimum required dispersion-strengthened copper alloy part. In particular, the present invention provides a conventional rod as a conductive material such as a contact tip for arc welding and an electrode for resistance welding. Despite having the same high performance as alumina-dispersed copper rod, it is useful in that it can be supplied at low cost.

Claims

請求の範囲 The scope of the claims
1 . 少なくとも外皮部を除いた内側部分に分散強化銅合金部を有する芯材を、 銅 または銅合金よりなる外管材に揷入して、 これらを引抜き加工することにより 形成されており、 棒全体の径に対する分散強化銅合金部の径の比が 0 . 1〜0 . 4 9となされている、 複合棒。 1. A core material having a dispersion-strengthened copper alloy part at least on the inner part excluding the outer skin part is inserted into an outer pipe made of copper or a copper alloy, and these are formed by drawing. A composite rod, wherein the ratio of the diameter of the dispersion-strengthened copper alloy part to the diameter of the copper rod is 0.1 to 0.49.
2. 棒全体の径に対する分散強化銅合金部の径の比が 0 . 1 5〜0 . 4となされ ている、 請求項 1記載の複合棒。  2. The composite rod according to claim 1, wherein the ratio of the diameter of the dispersion-strengthened copper alloy part to the diameter of the entire rod is 0.15 to 0.4.
3 . 分散強化銅合金部が、 銅マトリックス中に、 アルミナ、 ジルコニァ、 トリァ 、 イットリア、 ベリリアおよびポロニァのうち少なくともいずれか 1つの酸化 物を分散させたものである、 請求項 1または 2記載の複合棒。  3. The composite according to claim 1, wherein the dispersion-strengthened copper alloy part is obtained by dispersing an oxide of at least one of alumina, zirconia, tria, yttria, beryllia, and polonia in a copper matrix. rod.
4. 分散強化銅合金部中の酸化物の量が 0 . 1 5〜1質量%である、 請求項 3記 載の複合棒。  4. The composite rod according to claim 3, wherein the amount of the oxide in the dispersion-strengthened copper alloy part is 0.15 to 1% by mass.
5 . 芯材が、 内部酸化法によって得られた分散強化銅合金粉末を銅または銅合金 よりなる容器に封入してこれらを熱間押出加工することにより形成されており 5. The core material is formed by encapsulating the dispersion-strengthened copper alloy powder obtained by the internal oxidation method in a container made of copper or copper alloy and subjecting them to hot extrusion.
、 分散強化銅合金部が、 芯材のうち銅または銅合金よりなる外皮部を除いた内 側部分に形成されている、 請求項 1〜4のいずれか 1つに記載の複合棒。The composite rod according to any one of claims 1 to 4, wherein the dispersion-strengthened copper alloy portion is formed on an inner portion of the core material excluding an outer skin portion made of copper or a copper alloy.
6. 外管材が、 純銅、 クロム銅、 ジルコニウム銅およびジルコニウムクロム銅の うちいずれか 1つの溶製材よりなる、 請求項 1〜 5のいずれか 1つに記載の複 合棒。 6. The composite rod according to any one of claims 1 to 5, wherein the outer pipe is made of a smelted material of any one of pure copper, chromium copper, zirconium copper, and zirconium chromium copper.
7 . 請求項 1記載の複合棒を製造する方法であって、 内部酸化法によって得られ た分散強ィ匕銅合金粉末を銅または銅合金よりなる容器に封入してこれらを熱間 押出加工することにより形成された芯材を、 銅または銅合金の溶製材よりなる 外管材に揷入して、 これらを引抜き加工する、 複合棒の製造方法。  7. The method for producing a composite rod according to claim 1, wherein the dispersion-hardened copper alloy powder obtained by the internal oxidation method is enclosed in a container made of copper or a copper alloy, and these are subjected to hot extrusion. A method of manufacturing a composite rod, wherein the core material formed as described above is introduced into an outer tube material made of ingot material of copper or a copper alloy, and is drawn.
8. 引抜き加工された芯材と外管材との界面を金属結合するために焼鈍を行う、 請求項 7記載の複合棒の製造方法。 8. The method for producing a composite rod according to claim 7, wherein annealing is performed to metal-bond the interface between the drawn core material and the outer tube material.
9. 焼鈍を、 真空または弱い還元雰囲気中、 4 0 0〜7 0 0 で、 0 . 2 5〜2 4時間行う、 請求項 8記載の複合棒の製造方法。  9. The method of manufacturing a composite rod according to claim 8, wherein the annealing is performed in a vacuum or a weak reducing atmosphere at a temperature of 400 to 700 for 0.25 to 24 hours.
1 0 . 焼鈍を、 弓 I抜き加工度が 2 0 %以上となった時点で開始する、 請求項 8ま たは 9記載の複合棒の製造方法。 10. The method according to claim 8, wherein the annealing is started when the bow I punching degree reaches 20% or more. Or the method for producing a composite rod according to item 9.
11. 容器と外管材の材質を同じにする、 請求項 8~10のいずれか 1つに記載 の複合棒の製造方法。  11. The method for producing a composite rod according to claim 8, wherein the material of the container and the outer pipe material are the same.
12. 請求項 1記載の複合棒から形成されている、 アーク溶接用コンタクトチッ プ。  12. A contact tip for arc welding, formed from the composite rod according to claim 1.
13. 請求項 1記載の複合棒から形成されている、 抵抗溶接用電極。  13. An electrode for resistance welding formed from the composite rod according to claim 1.
PCT/JP2003/005496 2003-04-30 2003-04-30 Composite rod and production method therefor and arc welding contact tip and resistance welding electrode comprising the composite rod WO2004096468A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004571302A JPWO2004096468A1 (en) 2003-04-30 2003-04-30 Composite rod, manufacturing method thereof, contact tip for arc welding and resistance welding electrode comprising the composite rod
PCT/JP2003/005496 WO2004096468A1 (en) 2003-04-30 2003-04-30 Composite rod and production method therefor and arc welding contact tip and resistance welding electrode comprising the composite rod
AU2003235977A AU2003235977A1 (en) 2003-04-30 2003-04-30 Composite rod and production method therefor and arc welding contact tip and resistance welding electrode comprising the composite rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/005496 WO2004096468A1 (en) 2003-04-30 2003-04-30 Composite rod and production method therefor and arc welding contact tip and resistance welding electrode comprising the composite rod

Publications (1)

Publication Number Publication Date
WO2004096468A1 true WO2004096468A1 (en) 2004-11-11

Family

ID=33398129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005496 WO2004096468A1 (en) 2003-04-30 2003-04-30 Composite rod and production method therefor and arc welding contact tip and resistance welding electrode comprising the composite rod

Country Status (3)

Country Link
JP (1) JPWO2004096468A1 (en)
AU (1) AU2003235977A1 (en)
WO (1) WO2004096468A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161929A (en) * 2007-01-05 2008-07-17 Tookin:Kk Composite material and method of manufacturing the same
CN110029246A (en) * 2019-05-13 2019-07-19 大连理工大学 A kind of preparation method of yttria dispersion strengthening copper alloy
CN111136400A (en) * 2020-02-26 2020-05-12 郑州大学 Stainless steel welding rod
WO2024068182A1 (en) * 2022-09-26 2024-04-04 Kjellberg-Stiftung Component such as a wearing part for an arc torch, in particular a plasma burner or plasma cutting torch, arc torch comprising same, and method of plasma cutting

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102282785B1 (en) * 2017-11-28 2021-07-29 엔지케이 인슐레이터 엘티디 Conductive tip member and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4478787A (en) * 1982-06-18 1984-10-23 Scm Corporation Method of making dispersion strengthened metal bodies and product
JPS60135503A (en) * 1983-12-17 1985-07-18 エスシ−エム・コ−ポレ−シヨン Manufacture of dispersion strengthened metal body and product
JPH01263203A (en) * 1988-04-13 1989-10-19 Sumitomo Light Metal Ind Ltd Electrode material for resistance welding and production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4478787A (en) * 1982-06-18 1984-10-23 Scm Corporation Method of making dispersion strengthened metal bodies and product
JPS60135503A (en) * 1983-12-17 1985-07-18 エスシ−エム・コ−ポレ−シヨン Manufacture of dispersion strengthened metal body and product
JPH01263203A (en) * 1988-04-13 1989-10-19 Sumitomo Light Metal Ind Ltd Electrode material for resistance welding and production thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161929A (en) * 2007-01-05 2008-07-17 Tookin:Kk Composite material and method of manufacturing the same
CN110029246A (en) * 2019-05-13 2019-07-19 大连理工大学 A kind of preparation method of yttria dispersion strengthening copper alloy
CN111136400A (en) * 2020-02-26 2020-05-12 郑州大学 Stainless steel welding rod
WO2024068182A1 (en) * 2022-09-26 2024-04-04 Kjellberg-Stiftung Component such as a wearing part for an arc torch, in particular a plasma burner or plasma cutting torch, arc torch comprising same, and method of plasma cutting

Also Published As

Publication number Publication date
AU2003235977A1 (en) 2004-11-23
JPWO2004096468A1 (en) 2006-07-13

Similar Documents

Publication Publication Date Title
EP1728578B1 (en) Steel sheet for dissimilar materials weldbonding to aluminum material and dissimilar materials bonded body
EP1738854A1 (en) Joined body of dissimilar materials comprising steel material and aluminum material, and joining method therefor
US5675209A (en) Electrode material for a spark plug
US5236523A (en) Silver- or silver-copper alloy-metal oxide composite material
US20050092728A1 (en) Resistance welding electrode and associated manufacturing method
JP4683896B2 (en) Spot welding electrode
WO2004096468A1 (en) Composite rod and production method therefor and arc welding contact tip and resistance welding electrode comprising the composite rod
JP5083930B2 (en) Spot welding electrode
WO2006004073A1 (en) Electrode for spot welding
JPH0976074A (en) Material for resistance welding electrode, composite electrode for resistance welding and its manufacture
US5334814A (en) Electrode for spot welding
JP2009090340A (en) Spot welding electrode of ferrous material, and its manufacturing method
JP3405069B2 (en) Electrode wire for electric discharge machining
JP3846960B2 (en) Welding torch member and manufacturing method thereof
RU2557378C2 (en) Method for manufacturing multi-layered wire
JP3748636B2 (en) Material for gas shielded arc welding nozzle and manufacturing method thereof
JPS6239217B2 (en)
JP4683890B2 (en) Mg component-containing Zn-based alloy plated steel plate spot welding electrode
JPH05185247A (en) Material for resistance welding electrode
JPS63295075A (en) Production of composite electrode tip for resistance welding
US6099915A (en) Method of coating materials
JP2007260718A (en) Electrode for seam welding
JPH01263203A (en) Electrode material for resistance welding and production thereof
JP2006159245A (en) Electrode for resistance welding
JPH05277755A (en) Alloy for spot welding electrode for al alloy sheets, manufacture thereof and spot welding using this

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004571302

Country of ref document: JP

122 Ep: pct application non-entry in european phase