WO2006004073A1 - Electrode for spot welding - Google Patents

Electrode for spot welding Download PDF

Info

Publication number
WO2006004073A1
WO2006004073A1 PCT/JP2005/012281 JP2005012281W WO2006004073A1 WO 2006004073 A1 WO2006004073 A1 WO 2006004073A1 JP 2005012281 W JP2005012281 W JP 2005012281W WO 2006004073 A1 WO2006004073 A1 WO 2006004073A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
alloy
spot welding
core material
welding
Prior art date
Application number
PCT/JP2005/012281
Other languages
French (fr)
Japanese (ja)
Inventor
Jun Kurobe
Hiroshi Asada
Shigeo Matsubara
Shuichi Teramoto
Shingo Mukae
Shigeya Sakaguchi
Shigeru Matsuo
Original Assignee
Nisshin Steel Co., Ltd.
Nippon Tungsten Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004192694A external-priority patent/JP5083930B2/en
Priority claimed from JP2004282463A external-priority patent/JP4683890B2/en
Priority claimed from JP2004292990A external-priority patent/JP4683896B2/en
Application filed by Nisshin Steel Co., Ltd., Nippon Tungsten Co., Ltd. filed Critical Nisshin Steel Co., Ltd.
Publication of WO2006004073A1 publication Critical patent/WO2006004073A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/30Features relating to electrodes
    • B23K11/3009Pressure electrodes

Definitions

  • the present invention relates to an electrode suitable for spot welding of difficult-to-weld materials such as plated steel sheets and aluminum materials.
  • spot welding electrodes are made of copper alloys such as Cu-Cr and Cu-Cr-Zr, and steel materials in which hard particles such as A1203 are dispersed.
  • Cu-Cr alloys are often used with comprehensive consideration of strength and cost.
  • zinc-plated steel plates such as zinc plating and zinc alloy plating are increasingly used as materials for automobiles and home appliances to improve durability. Compared with spot welding of cold-rolled steel sheets, a higher current flows in spot welding of zinc-based plated steel sheets, so that the electrode tip is exposed to more severe conditions.
  • the plating layer components such as Zn and A1 as well as the base metal component such as Fe alloy with the main component Cu of the electrode to form an alloy reaction with Cu-Zn and Cu-Zn-Al- Intermetallic compounds such as Fe are formed.
  • the produced intermetallic compound is very brittle and peels off by the pressure applied during welding, resulting in an increase in the electrode tip diameter and a decrease in current density.
  • the disadvantage of welding plated steel sheets is that the electrode life is shorter than when welding cold-rolled steel sheets such as plain steel and stainless steel.
  • Aluminum material is sometimes used to reduce weight, but in this case assembling
  • the welding line enters the welding line.
  • Aluminum material is a difficult-to-weld material with high thermal conductivity, and it is difficult to maintain the molten state necessary for joining. Therefore, it is necessary to make the molten state with a rapid temperature rise, pressurize at once, and perform spot welding. For rapid temperature rise, it is necessary to increase the welding current. If the temperature rises excessively as the welding current increases, oxides and intermetallic compounds are generated as a result of the chemical reaction between the electrode material Z and the workpiece. In addition, A1 is easily welded to the electrode. Similar welding can be seen in spot welding of A1 plated steel sheets.
  • W-Mo alloys and W-Mo alloy electrodes added with various doping materials, and double-structured electrodes with a core material embedded in the center of the electrode tip have been proposed. Yes.
  • a welding electrode made of a W-Mo alloy containing 10 to 10 ppm of K in the form of oxide, nitride, simple metal, carbide, boride, etc. is disclosed in Japanese Patent Application Laid-Open No. 10-291078.
  • Nitrides, simple metals, carbides, borides, etc., rare earth elements such as La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Y, etc.
  • a welding electrode produced from a W-Mo alloy containing 10.0% by mass is introduced in JP-A-10-314957.
  • the electrode body is made of a high-strength, high-conductivity copper alloy, and alloyed with the welded material at 20 to 70% by area on the contact surface where the welded material hits.
  • a composite material such as A1 2 0 3 dispersed copper alloy that is difficult to weld is embedded.
  • the ratio of the core material to the contact surface is small, Cu or Cu alloy around the core material is easily diffused and alloyed with the plated metal, and the electrode tip diameter is easily increased. Since the core material is also made of a copper alloy, it is difficult to avoid alloying with plated metal even if the core material occupies a large proportion of the contact surface.
  • the welding electrode disclosed in Japanese Patent Laid-Open No. 4-4984 is a welded body of an electrode body made of Cu or Cu alloy.
  • the core material made of W or Mo which has excellent electrical and thermal conductivity and higher strength than the electrode body, is embedded in the surface where the material comes into contact at 5 to 20 area%.
  • W and Mo are materials that are difficult to wet with the plated metal.
  • the tip diameter of the electrode as a whole tends to increase.
  • Japanese Unexamined Patent Publication No. 64-62287 discloses a welding electrode having a double structure comprising an outer peripheral portion made of highly conductive Cu or Cu_Cr alloy and a central portion made of non-conductive material such as ceramics. Has proposed. However, if the ceramic used for the core material is brittle, the nugget formation becomes unstable due to easy peeling due to cracking when the electrode is pressed.
  • Japanese Examined Patent Publication No. 59-41838 introduces an electrode in which a chip composed of a sintered body of W, W alloy, Mo, Mo alloy is fitted to a retaining ring, but has high strength and toughness precipitation hardening.
  • Type stainless steel is used for the retaining ring, and the electrical conductivity of the retaining ring is poor. Moreover, the manufacturing cost of the electrodes themselves is increasing. Disclosure of the invention
  • the present inventors investigated and examined various effects of W and Mo embedded in the contact surface of the welding electrode in contact with the material to be welded having a large effect on the diffusion reaction and alloying reaction during spot welding. As a result, we found that diffusion and alloying reactions can be effectively suppressed when a W or Mo core material is embedded in the contact surface of the welding electrode with a large area ratio.
  • the present invention has been completed based on such knowledge, and zinc-plated steel sheets such as Zn-Al and Zn-Al-Mg, aluminum-based plated steel sheets, and aluminum materials are spot-welded at a high current.
  • an object of the present invention is to provide a spot welding electrode capable of spot welding under stable conditions over a long period of time.
  • the present invention is an electrode for spot welding in which a core material made of W, W alloy, Mo or Mo alloy is embedded in a contact surface that contacts a workpiece of an electrode body made of Cu or Cu alloy,
  • the area ratio of the core material to the area is set in the range of 0.7 to 3.0.
  • a dispersion strengthened material in which at least one kind of fine particles selected from oxides, nitrides, carbides and borides of group elements, group 6A elements or rare earth elements are dispersed can be used. Specifically, one or more fine particles selected from oxides of Be, Mg, Ca, Sr, Ti, Zr, Y, and Ce were dispersed in W, W alloy, Mo, or Mo alloy.
  • a core material is made of a composite material. The dispersion ratio of the fine particles is selected in the range of 0.5 to 10% by volume, and further, fine particles having an average particle diameter of 2 ⁇ or less are preferably dispersed.
  • the electrode body is made of Cu or a Cu alloy, and a core material made of W, W alloy, Mo or Mo alloy is provided on the contact surface of the electrode body that contacts the material to be welded. Embedded. By setting the area ratio of the core material to the contact surface to 0.7 to 3.0, the contact area between the electrode body made of Cu or Cu alloy, which is easily alloyed with the plating metal, and the material to be welded is reduced.
  • FIG. 1 is a diagram schematically illustrating the structure of the spot welding electrode of the present invention.
  • Fig. 2 is a graph showing the relationship between the area ratio of the contact surface and electrode life of the electrode for spot welding used in Example 1.
  • the inventors of the present invention have repeatedly studied various kinds of experiments regarding the material shape of the electrode when spot welding a zinc-based steel sheet. .
  • the electrode life was investigated by spot-welding zinc-based steel sheets using welding electrodes with various changes in the size of the electrode constituent material and the core and surrounding materials.
  • the material of the core material is preferably a hard material such as W or Mo that is difficult to alloy with the plating metal.
  • the diameter of the core material is changed variously, and the contact status of the pure Cu surrounding material to the welded material.
  • the difference that is, the relationship between the area ratio of the core Z contact surface and the electrode life was investigated. Since Mo is a metal that behaves almost the same as W, the results obtained with W can be applied to Mo, W alloys, and Mo alloys.
  • the welding conditions were such that the initial nugget diameter for continuous spot welding, that is, the nugget diameter at the first spot was the same for all electrodes.
  • the area of the contact surface So a 2 4
  • Si JTB 2 4
  • the tip of the electrode including the core material 3 is ground, and only the core material 3 is present on the contact surface 2a. This means that the tip shape is adjusted.
  • W, W alloy, Mo or Mo alloy has a lower alloying reactivity to the plating metal than Cu. Therefore, when the diameter b of the core 3 is larger than the diameter a of the contact surface 2a, the Cu surrounding material 2 An alloying reaction occurs between Cu and the metal with no contact with the metal. I don't know. Area of SiZSo ⁇ 0.7 If Si core material 3 is used, the surrounding material 2 makes little contact with the metal, but due to the small contact area, deformation due to alloying of the surrounding material 2 with the metal causes an increase in diameter. The tip shape of the electrode as a whole is not deformed.
  • the area ratio SiZ So is preferably in the range of 1.0 to 2.0.
  • the double structure in which the core material made of W, W alloy, Mo or Mo alloy is surrounded by the electrode body made of Cu or Cu alloy also prevents cracking and peeling that tends to occur on the contact surface of the welding electrode. It is valid.
  • the contact surface of the welding electrode generates heat at the time of spot welding and thermally expands around the contact surface, but the thermal expansion is in the vicinity of the contact surface because the temperature change is rapid and the thermal conductivity of W and Mo is low.
  • the thermal expansion does not occur in the vicinity of the outer periphery where heat is not easily transmitted.
  • Thermal expansion that differs between the contact surface and the outer periphery is the cause of the generation of thermal stress, and as a result, it induces cracks and separation near the contact surface. Defects caused by this difference in thermal expansion are prevented by making the contact body and its surroundings W or Mo, which are high melting point materials, and making the electrode body with Cu or Cu alloy with good thermal conductivity. it can.
  • an electrode made of an electric current sintered body of W an electrode made of W in which about 10 to 200 ppm of K (power lium) is doped in the form of oxide, nitride, metal K, carbide or boride is often used. Yes.
  • the W core material is also used in the sense of including a K-type electric current sintered body.
  • W and Mo used as the core material also have a low alloying reactivity with metal plating compared to Cu alloys, but it is not completely absent.
  • W and Mo are hard, there are also disadvantages such as cracking due to impact during pressurization, and so on. Therefore, IW alloy, Mo or Mo improved so as to have low alloying reactivity with plating metal and excellent impact resistance.
  • IW alloy, Mo or Mo improved so as to have low alloying reactivity with plating metal and excellent impact resistance.
  • Improvement measures include: Group 2A elements such as Be, Mg, Ca and Sr; Group 4A elements such as Ti, Zr and Hf; Group 5A elements such as V, Nb and Ta; Group 6A elements such as Cr, Mo and W Alternatively, it is preferable to disperse at least one kind of fine particles selected from oxides, nitrides, carbides and borides of rare earth elements containing Y in a ratio of 0.5 to 10% by volume.
  • the fine particle dispersion is also effective in suppressing fine cracks that tend to occur on the contact surface and in the vicinity of the contact surface. Since these fine particles have poor reactivity with A1 and Zn, the metal attached to the core W or Mo is difficult to wet during spot welding, and the alloying reaction between W or Mo and the metal attached is suppressed. .
  • MgO produced during spot welding accumulates at the electrode tip, increasing the resistance between the electrode and the plated steel sheet.
  • W or Mo electrodes in which fine particles are dispersed MgO adhesion and deposition can be suppressed, so that welding conditions are stabilized over a long period of time.
  • oxides such as Be, Mg, Ca, Sr, Ti, Zr, Y, and Ce have a standard free energy of formation lower than or equal to that of MgO, so spot the Zn-Al-Mg alloy steel plate.
  • Mg contained in the molten or semi-molten plating layer is not oxidized by the reduction reaction of the metal oxide.
  • the formation and deposition of MgO is suppressed, and the core material made of W, W alloy, Mo or Mo alloy is hardly wetted by the molten plated metal, and the welding of the plated metal is surely suppressed.
  • La203, BeO, SrO, Ce02, Ce203, Zr02, MgO, CaO, Y2O3, TiC, WC, TaC, ZrC, HfC, ZrB2, ZrN, TiN, etc. have a high melting point and react with the plating metal. Due to its particularly low property, the strength of the sintered body can be maintained even when dispersed in W or Mo, and it is suitable for extending the life of the electrode. Furthermore, the fine particles dispersed in W, W alloy, Mo or Mo alloy exert the effect of pinning the propagation of dislocations when the core material is impacted, resulting in excellent impact resistance and cracking. Control the occurrence of In particular, fine particles with a melting point of over 2400 ° C do not melt or segregate during the sintering of the core material, thus improving the quality stability of the core material. It is also effective in
  • the fine particles are disperse by 0.5% by volume or more.
  • excessive dispersion exceeding 10% by volume greatly reduces the electrical conductivity of W, W alloy, Mo or Mo alloy, and during resistance welding.
  • the temperature at the tip of the electrode becomes too high, and on the contrary, an alloying reaction is likely to occur.
  • the fine particles are dispersed in the range of 0.8 to 3.0% by volume.
  • the non-metallic fine particles such as CeC> 2 contained in W or Mo preferably have a particle size of ⁇ or less. If particles larger than ⁇ ⁇ ⁇ are dispersed, they tend to break down due to the difference in thermal expansion coefficient. Considering the action of fine particles that stop the propagation of cracks, the larger the number of fine particles, the more effective even with the same amount of dispersion. When the average particle size exceeds ⁇ or the amount of dispersion is less than 0.5% by volume, the property improvement by fine particle dispersion is not sufficient. In particular, in order to improve the electrode life, a fine particle dispersion having an average particle diameter of 2 ⁇ or less is suitable.
  • W or Mo for the core material is used as each metal alone or as an alloy of 5 to 95 mass%.
  • W, W alloy, Mo or Mo alloy is manufactured by sintering method.
  • the W, W alloy, Mo or Mo alloy used as the core material in the present invention is also manufactured by a sintering method as usual.
  • the sintering raw material is not limited to pure W that does not contain impurities, but can also be doped tungsten containing about 10 to 200 ppm K, which is used for filament electrodes, etc., and a small amount of metal such as Re is alloyed.
  • a W-based alloy may be used.
  • oxide powder of W and / or Mo with addition of fine particles of 2A group element, 4A group element, 5A group element, 6A group element, rare earth element oxide, nitride, carbide, boride as required
  • the obtained powder is formed into an appropriate shape, pre-sintered and electro-sintered, and then subjected to swaging and centerless polishing to obtain a rod having a desired diameter.
  • metal W and / or metal Mo powder may be used as a raw material, and if necessary, fine particles may be added and molded as it is.
  • a powder raw material having a predetermined composition is cold isostatically pressed into a cylindrical shape, and then subjected to current sintering in a hydrogen atmosphere.
  • the obtained sintered body is hot-rotated forged, then cut and processed.
  • a method of forming a core material having a predetermined shape may be used.
  • the powder raw material filled in the sealed container can be cold isostatically pressed, sintered in a hydrogen atmosphere, and further sintered into a sintered body by hot isostatic pressing.
  • the surrounding material is made of ordinary Cu or Cu alloy such as commercially available pure Cu, Cu-Cr alloy, Cu-Cr-Zr alloy. Furthermore, a dispersion strengthened Cu alloy in which fine particles such as AI2O3 are dispersed can be used as the surrounding material.
  • the core material may be press-fitted into the hole formed in the surrounding material, or may be inserted through the brazing material.
  • shrink fitting may be used, or cold forging may be performed after the core material is wrapped with steel.
  • An adhesion amount per side 30 gZm 2 and a Zn-Al-Mg alloy-plated steel sheet with a thickness of 0.7 mm provided with a Zn-6% Al-3% Mg alloy-plated layer was used as the material to be welded.
  • the two welded materials were overlapped, and the Zn-Al-Mg alloy-plated steel sheet was welded by spot welding, which was sandwiched between the upper and lower electrodes under the conditions shown in Table 1 and continuously dotted.
  • the spot welding electrode we used a double-structured electrode in which a core material that had been swept and centerless polished after being sintered with current of 99.95% pure W powder was embedded in pure Cu surrounding material.
  • the welding electrode is a DR type with an abutment surface diameter of 6 mm and an overall diameter of 16 mm.
  • An arc with a radius of curvature of 40 mm is placed on the abutment surface diameter of 6 mm, and an arc with a radius of curvature of 8 mm on the other side. It is attached to the part.
  • Table 1 Continuous dot test
  • the nugget diameter formed by spot welding was measured, and the life of the electrode was determined by assuming that the nugget diameter was less than 4 ⁇ 3.35 (t: plate thickness) as poor welding.
  • the area ratio between the core material and the contact surface SiZSo is 0.7 to 3.0, and the W core material is embedded in the electrode body made of Cu or Cu alloy.
  • the shape of the electrode tip shape did not change even after spot welding, and the electrode life was longer than that of the integrated 1% Cr-Cu alloy electrode.
  • Ce0 2 0.5 area a W-based composite material-made core material of less than% by volume ratio SiZSo: 1.0 Test buried in the Cu electrode body at No.23, in 24 of the electrode, the core material effect of embedding effectively work Itatame The electrode life exceeded 10000 striking points.
  • the amount of deposited metal a larger amount of plated metal was deposited than in Test Nos. 13 to 17 and 17 to 20.
  • the area ratio SiZSo falls outside the range of 0.7 to 3.0 No.ll -12 and 18 to: in 19 of the electrode, but was shorter electrode life than l% Cr-Cu alloy electrode, youth electrodes life than the CeO 2 the embedded W-made core material not dispersed electrode (example 1) There was a tendency to extend a thousand.
  • Example 2 For spot welding of the same Zn—Al—Mg alloy-plated steel plate as in Example 1, a welding electrode in which a TaC-dispersed W sintered body was embedded in a pure Cu electrode body was used.
  • the core material we prepared mixed powders in which TaC powder with a particle size of 0.05-3 ⁇ was dispersed in various proportions of W powder with a purity of 99.95%. Diameter produced by centerless polishing: 6mm TaC dispersion W sintered body It was used. Pure Cu melted in a reducing atmosphere and TaC dispersion W sintered body are integrated into a DR type with an abutment surface diameter of 6mm and an overall diameter of 16mni. An arc with a radius of curvature of 40mm is a contact surface diameter of 6mm. In this part, a welding electrode with a radius of curvature of 8mm was attached to the other part.
  • the deposition of MgO is small, the increase in resistance between the electrode and the plated steel sheet due to MgO can be suppressed, and it seems that welding with the plated metal is difficult to occur.
  • the significant increase in electrode life is due to the synergistic effect of the TaC fine particles dispersed in the W material, which suppresses wetting with the plated metal, and the suppression of crack generation and propagation near the contact surface. Inferred.
  • the fine particles dispersed in the W material have a suitable size and amount of dispersion, It can be understood that the intended purpose cannot be achieved unless the size and amount of dispersion are appropriate.
  • Table 4 Effects of TaC fine particle dispersion and particle size on electrode life
  • a W-based sintered material in which various fine particles are dispersed is used as a welding electrode embedded in a pure Cu electrode body in the same manner as in Example 3, and two Zn-Al-Mg alloy-plated steel sheets are continuously used. Spot welding was performed and the electrode life was investigated.
  • Table 5 Relationship between fine particle type, dispersion, particle size and electrode life
  • A1 plated steel sheet with a thickness of 0.8mm and adhesion per one side of 30gZm 2 was used as the material to be welded. Except for the conditions shown in Table 6, continuous spot welding was performed using the same electrode as that used in Example 3, and the electrode life was investigated.
  • TaC fine particles with an average particle size of 2 ⁇ or less
  • a significantly longer electrode life is obtained even with the A1 plated steel sheet, which is considered difficult to weld, and the effect of dispersing TaC fine particles can be confirmed.
  • Table 7 Effects of TaC fine particle dispersion and particle size on electrode life

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Resistance Welding (AREA)

Abstract

An electrode for spot welding which has a double structure where a core material (3) made of W or Mo is imbedded in a an electrode body (2) wherein the area (S1) of the core material (3) is set to be (0.7 to 3.0) × S0 where S0 is the area of a contacting face (2a) contacting with a material to be welded. Optionally, fine particles are dispersed in the core material (3) made of W or Mo in an amount of 0.5 to 10 volume %. The fine particle comprises an oxide, a nitride, a carbide, a boride or the like of a 2A Group element, a 4A Group element, a 5A Group element, a 6A Group element or a rare earth element. The above electrode for spot welding has the core material made of W or Mo imbedded in the body, which results in the inhibition of the welding or alloying with a plating metal even in the case of the spot welding of a steel plate plated with a zinc-based metal under a high electric current. Consequently, the above electrode can be used as an electrode for spot welding being suitable to the welding of a material being difficult to weld, such as a plated steel plate and an aluminum material, and having a long life.

Description

明 細 書  Specification
スポット溶接用電極 技術分野 Spot welding electrode technology
本発明は、 めっき鋼板やアルミニウム材料等、 難溶接材料のスポット溶接に適 した電極に関する。 背景技術  The present invention relates to an electrode suitable for spot welding of difficult-to-weld materials such as plated steel sheets and aluminum materials. Background art
自動車, 家電製品等の組立てラインでは抵抗溶接の中でも作業効率の高いスポ ット溶接が多用されており、 大量生産ラインでは連続的なスポット溶接が実施さ れている。 このため、 スポット溶接用の電極は、 高熱, 高負荷を繰り返し受ける 状況下にあり変形しやすいので、 変形抵抗の大きな素材が必要とされる。 しかも、 抵抗溶接用電極本来の要求特性である電気伝導性, 熱伝導性, 強度, 耐摩耗性に 優れていることも必要である。  Spot welding with high work efficiency is frequently used in assembly lines for automobiles, home appliances, etc., and continuous spot welding is performed in mass production lines. For this reason, the electrode for spot welding is subject to repeated high heat and high load and is easily deformed, so a material with high deformation resistance is required. In addition, it is necessary to have excellent electrical conductivity, thermal conductivity, strength, and wear resistance, which are inherent characteristics of resistance welding electrodes.
このような背景のもと、 スポット溶接用電極には Cu-Cr, Cu-Cr-Zr等の銅合 金や、 A1203等の硬質粒子を分散させた鋼材が用いられており、 熱伝導特性, 強 度, コスト等を総合的に勘案して Cu-Cr合金を使用する場合が多い。 他方、 耐久性向上のために自動車や家電製品等の素材として、 Zn めっき, Zn 合金めつき等の亜鉛系めつき鋼板が多用されるようになっている。 亜鉛系めつき 鋼板のスポット溶接では、 冷延鋼板のスポット溶接と比較して、 大電流を流すこ とになるため、 電極先端部が更に過酷な条件に曝される。 溶接中の電極先端では、 めっき層の成分である Zn, A1等のめっき層成分や Fe等の母材成分が電極の主 成分 Cu と合金化反応し、 Cu-Znや Cu-Zn- Al-Fe等の金属間化合物が生成する。 生成した金属間化合物は非常に脆く、 溶接時の加圧で剥離してしまい、 結果と して電極先端径が拡大して電流密度が低下する。 このように、 めっき鋼板の溶接 では、 普通鋼やステンレス鋼等の冷延鋼板を溶接する場合と比較して電極寿命が 短いことが欠点である。  Against this background, spot welding electrodes are made of copper alloys such as Cu-Cr and Cu-Cr-Zr, and steel materials in which hard particles such as A1203 are dispersed. Cu-Cr alloys are often used with comprehensive consideration of strength and cost. On the other hand, zinc-plated steel plates such as zinc plating and zinc alloy plating are increasingly used as materials for automobiles and home appliances to improve durability. Compared with spot welding of cold-rolled steel sheets, a higher current flows in spot welding of zinc-based plated steel sheets, so that the electrode tip is exposed to more severe conditions. At the tip of the electrode during welding, the plating layer components such as Zn and A1 as well as the base metal component such as Fe alloy with the main component Cu of the electrode to form an alloy reaction with Cu-Zn and Cu-Zn-Al- Intermetallic compounds such as Fe are formed. The produced intermetallic compound is very brittle and peels off by the pressure applied during welding, resulting in an increase in the electrode tip diameter and a decrease in current density. Thus, the disadvantage of welding plated steel sheets is that the electrode life is shorter than when welding cold-rolled steel sheets such as plain steel and stainless steel.
軽量化のためにアルミニウム材料を使用することもあるが、 この場合にも組立 てラインでは溶接工程が入る。 アルミニウム材料は、 熱伝導性が高い難溶接材料 であり、 接合に必要な溶融状態を維持し難い。 そのため、 急激な昇温で溶融状態 とし、 一気に加圧してスポット溶接することが必要になる。 急激な昇温には溶接 電流を大きくする必要があり、 溶接電流の増加に伴って温度が過度に上昇すると、 結果として電極材料 Z被溶接材間の化学反応で酸化物や金属間化合物が生成し、 電極に A1が溶着し易くなる。 同様な溶着は、 A1めっき鋼板のスポット溶接でも みられる。 Aluminum material is sometimes used to reduce weight, but in this case assembling The welding line enters the welding line. Aluminum material is a difficult-to-weld material with high thermal conductivity, and it is difficult to maintain the molten state necessary for joining. Therefore, it is necessary to make the molten state with a rapid temperature rise, pressurize at once, and perform spot welding. For rapid temperature rise, it is necessary to increase the welding current. If the temperature rises excessively as the welding current increases, oxides and intermetallic compounds are generated as a result of the chemical reaction between the electrode material Z and the workpiece. In addition, A1 is easily welded to the electrode. Similar welding can be seen in spot welding of A1 plated steel sheets.
そこで、 電極の高寿命化を狙って、 W-Mo合金や各種ドープ材を添加した W- Mo合金製の電極や電極先端中央部に芯材を埋め込んだ二重構造の電極等が提案 されている。  Therefore, with the aim of prolonging the life of the electrodes, W-Mo alloys and W-Mo alloy electrodes added with various doping materials, and double-structured electrodes with a core material embedded in the center of the electrode tip have been proposed. Yes.
たとえば、 酸化物, 窒化物, 金属単体, 炭化物, 硼化物等の形態で Kを 10〜 lOOppm含ませた W-Mo合金から作製された溶接用電極が特開平 10-291078号 公報に、 酸化物, 窒化物, 金属単体, 炭化物, 硼化物等の形態で La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Y等の希土類元素を 0.05〜: 10.0質量%含ませた W-Mo合金から作製された溶接用電極が特開平 10- 314957号公報に紹介されている。 しかし、 Kや希土類元素を添加した W-Mo合 金製の溶接用電極でも、 亜鋭系めつき鋼板, 特に Zn-Al-Mg合金めつき鋼板のス ポット溶接に使用すると、 めっき金属との合金化反応を十分に抑制できず電極寿 命の延長には限界がある。 また、 当接面が Wや Moの単体で構成された電極で は、 繰返し使用時の熱や衝撃によるクラックが発生しやすいので、 アルミナ分散 型 Cu合金製の電極に比較して大きな寿命延長を期待できない。  For example, a welding electrode made of a W-Mo alloy containing 10 to 10 ppm of K in the form of oxide, nitride, simple metal, carbide, boride, etc. is disclosed in Japanese Patent Application Laid-Open No. 10-291078. , Nitrides, simple metals, carbides, borides, etc., rare earth elements such as La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Y, etc. ~: A welding electrode produced from a W-Mo alloy containing 10.0% by mass is introduced in JP-A-10-314957. However, even when welding electrodes made of W-Mo alloy containing K or rare earth elements are used for spot welding of sub-sharp steel plates, especially Zn-Al-Mg alloy steel plates, The alloying reaction cannot be sufficiently suppressed, and there is a limit to the extension of electrode life. In addition, an electrode with a single contact surface made of W or Mo is prone to cracking due to heat and impact during repeated use, so the life is greatly extended compared to an electrode made of alumina-dispersed Cu alloy. I can't expect it.
特公昭 63-33949 号公報記載の溶接用電極では、 高強度, 高導電性の銅合金 で電極本体を作り、 被溶接材が当る当接面に 20~70面積%で被溶接材と合金化 や溶着し難い A1203分散銅合金等の複合材料を埋め込んでいる。 しかし、 当接 面に占める芯材の割合が小さいと、 芯材周囲の Cu又は Cu合金がめっき金属と 拡散'合金化しやすく、 電極先端径が拡大しやすくなる。 芯材も銅合金製である ので、 当接面に占める芯材の割合を大きくしょうとしても、 めっき金属との合金 化は避け難い。 In the welding electrode described in Japanese Patent Publication No. 63-33949, the electrode body is made of a high-strength, high-conductivity copper alloy, and alloyed with the welded material at 20 to 70% by area on the contact surface where the welded material hits. A composite material such as A1 2 0 3 dispersed copper alloy that is difficult to weld is embedded. However, if the ratio of the core material to the contact surface is small, Cu or Cu alloy around the core material is easily diffused and alloyed with the plated metal, and the electrode tip diameter is easily increased. Since the core material is also made of a copper alloy, it is difficult to avoid alloying with plated metal even if the core material occupies a large proportion of the contact surface.
特開平 4-4984号公報の溶接用電極は、 Cu又は Cu合金製電極本体の被溶接 材が接触する面に、 電気伝導性, 熱伝導性に優れ、 電極本体より強度が高い W や Moからなる芯材を 5〜20面積%で埋め込んでいる。 この場合にも、 当接面 に占める芯材の割合が比較的小さいと、 芯材周囲の Cu又は Cu合金がめっき金 属と拡散 ·合金化しやすく、 電極先端径が拡大しやすくなる。 また、 Wや Moは めっき金属に対して濡れにくい材料であるが、 芯材周囲の銅合金の当接面が広い と、 電極全体としては、 先端径は広くなりやすくなる。 The welding electrode disclosed in Japanese Patent Laid-Open No. 4-4984 is a welded body of an electrode body made of Cu or Cu alloy. The core material made of W or Mo, which has excellent electrical and thermal conductivity and higher strength than the electrode body, is embedded in the surface where the material comes into contact at 5 to 20 area%. In this case as well, if the ratio of the core material to the contact surface is relatively small, the Cu or Cu alloy around the core material is likely to diffuse and alloy with the plating metal, and the electrode tip diameter tends to increase. W and Mo are materials that are difficult to wet with the plated metal. However, if the contact surface of the copper alloy around the core is wide, the tip diameter of the electrode as a whole tends to increase.
特開昭 64-62287号公報は、 高導電性の Cu又は Cu_Cr合金で形成された外 周部と、 セラミックス等の非導電材で形成された中央部とからなる二重構造の溶 接用電極を提案している。 しかし、 芯材に使用するセラミックスが脆いと、 電極 加圧時の割れにより剥離しやすくなり、 ナゲット形成が不安定となる。  Japanese Unexamined Patent Publication No. 64-62287 discloses a welding electrode having a double structure comprising an outer peripheral portion made of highly conductive Cu or Cu_Cr alloy and a central portion made of non-conductive material such as ceramics. Has proposed. However, if the ceramic used for the core material is brittle, the nugget formation becomes unstable due to easy peeling due to cracking when the electrode is pressed.
特公昭 59-41838号公報は、 W, W合金, Mo, Mo合金の焼結体からなるチ ップ主体を保持リングに嵌着した電極を紹介しているが、 強度, 靭性の高い析出 硬化型のステンレス鋼を保持リングに用いており、 保持リング部の電気伝導性が 良くない。 しかも、 電極自体の製造コストが高くなつている。 発明の開示  Japanese Examined Patent Publication No. 59-41838 introduces an electrode in which a chip composed of a sintered body of W, W alloy, Mo, Mo alloy is fitted to a retaining ring, but has high strength and toughness precipitation hardening. Type stainless steel is used for the retaining ring, and the electrical conductivity of the retaining ring is poor. Moreover, the manufacturing cost of the electrodes themselves is increasing. Disclosure of the invention
本発明者等は、 被溶接材に接触する溶接用電極の当接面に埋め込んだ Wや Moがスポット溶接時の拡散反応, 合金化反応に大きな影響を及ぼす影響を種々 調査,検討した。 その結果、 大きな面積率で Wや Mo製芯材を溶接用電極の当接 面に埋め込むとき、 拡散反応, 合金化反応が効果的に抑えられることを見出した。 本発明は、 かかる知見をベースに完成されたものであり、 Zn-Al, Zn-Al-Mg 等の亜鉛系めつき鋼板やアルミニウム系めつき鋼板, アルミニウム材料等を大電 流でスポット溶接する際にも、 長期間にわたって安定した条件下でスポット溶接 できるスポット溶接用電極を提供することを目的とする。  The present inventors investigated and examined various effects of W and Mo embedded in the contact surface of the welding electrode in contact with the material to be welded having a large effect on the diffusion reaction and alloying reaction during spot welding. As a result, we found that diffusion and alloying reactions can be effectively suppressed when a W or Mo core material is embedded in the contact surface of the welding electrode with a large area ratio. The present invention has been completed based on such knowledge, and zinc-plated steel sheets such as Zn-Al and Zn-Al-Mg, aluminum-based plated steel sheets, and aluminum materials are spot-welded at a high current. In particular, an object of the present invention is to provide a spot welding electrode capable of spot welding under stable conditions over a long period of time.
本発明は、 Cu又は Cu合金からなる電極本体の被溶接材に当接する当接面に W, W合金, Mo又は Mo合金製の芯材を埋め込んだスポット溶接用電極であり、 当接面の面積に対する芯材の面積比率を 0.7〜3.0 の範囲に設定していることを 特徴とする。  The present invention is an electrode for spot welding in which a core material made of W, W alloy, Mo or Mo alloy is embedded in a contact surface that contacts a workpiece of an electrode body made of Cu or Cu alloy, The area ratio of the core material to the area is set in the range of 0.7 to 3.0.
芯材となる W, W合金, Mo又は Mo合金には、 2A族元素, 4A族元素, 5A 族元素, 6A族元素又は希土類元素の酸化物, 窒化物, 炭化物, 硼化物から選ば れる少なくとも一種以上の微粒子を分散させた分散強化材料を使用できる。 具体 的には、 Be, Mg, Ca, Sr, Ti, Zr, Y, Ce の酸化物から選ばれた一種以上又 は二種以上の微粒子を W, W合金, Mo又は Mo合金に分散させた複合材で芯 材を作製する。 微粒子の分散割合は 0.5~10体積%の範囲で選定し、 更には平 均粒径: 2μιη以下の微粒子を分散させることが好適である。 For the core material W, W alloy, Mo or Mo alloy, 2A group element, 4A group element, 5A A dispersion strengthened material in which at least one kind of fine particles selected from oxides, nitrides, carbides and borides of group elements, group 6A elements or rare earth elements are dispersed can be used. Specifically, one or more fine particles selected from oxides of Be, Mg, Ca, Sr, Ti, Zr, Y, and Ce were dispersed in W, W alloy, Mo, or Mo alloy. A core material is made of a composite material. The dispersion ratio of the fine particles is selected in the range of 0.5 to 10% by volume, and further, fine particles having an average particle diameter of 2 μιη or less are preferably dispersed.
この溶接用電極は、 一般的な鋼板のスポット溶接にも適用可能なことは勿論で あり、 難溶接材とされているアルミニウム系めつき鋼板, アルミニウム材料等の スポッ卜溶接にも使用できる。 本発明のスポット溶接用電極では、 電極本体を Cu又は Cu合金製とし、 被溶 接材に接触する電極本体の当接面に W, W合金, Mo又は Mo合金から作製さ れた芯材を埋め込んでいる。 そして、 当接面に対する芯材の面積比率を 0.7~ 3.0とすることにより、 めっき金属と合金化しやすい Cu又は Cu合金製電極本 体と被溶接材との接触面積を少なくしている。 これにより、 電極とめっき金属と の溶着'合金化が抑えられ、 溶接時の加圧 ·発熱による亀裂発生を抑制して電極の 長寿命化が図られ、 亜鉛系めつき鋼板を生産性良くスポット溶接することができ る。 なかでも、 平均粒径: 2μιη以下の微粒子を 0.5〜; 10体積%の割合で分散さ せることにより電極寿命を大幅に長くできる。 しかも、 本発明電極は、 構造が比 較的簡素なため製造コストも低い。 図面の簡単な説明  This welding electrode is of course applicable to spot welding of general steel plates, and can also be used for spot welding of aluminum-based steel plates and aluminum materials that are considered difficult to weld. In the spot welding electrode of the present invention, the electrode body is made of Cu or a Cu alloy, and a core material made of W, W alloy, Mo or Mo alloy is provided on the contact surface of the electrode body that contacts the material to be welded. Embedded. By setting the area ratio of the core material to the contact surface to 0.7 to 3.0, the contact area between the electrode body made of Cu or Cu alloy, which is easily alloyed with the plating metal, and the material to be welded is reduced. This suppresses welding and alloying of the electrode and plated metal, prevents cracking due to pressurization and heat generation during welding, extends the life of the electrode, and makes it possible to spot zinc-based plated steel sheets with high productivity. Can be welded. In particular, the life of the electrode can be greatly extended by dispersing fine particles having an average particle size of 2 μιη or less in a proportion of 0.5 to 10% by volume. In addition, the electrode of the present invention is relatively simple in structure, so that the manufacturing cost is low. Brief Description of Drawings
図 1は、 本発明のスポット溶接用電極の構造を模式的に説明する図  FIG. 1 is a diagram schematically illustrating the structure of the spot welding electrode of the present invention.
図 2は、 実施例 1で使用したスポット溶接用電極の芯材 当接面の面積比率と 電極寿命の関係を示すグラフ 発明を実施するための最良の形態  Fig. 2 is a graph showing the relationship between the area ratio of the contact surface and electrode life of the electrode for spot welding used in Example 1. BEST MODE FOR CARRYING OUT THE INVENTION
本発明者等は、 亜鉛系めつき鋼板をスポット溶接する際の電極の材質 '形状に ついて、 種々の実験'検討を重ねてきた。 . 先ず、 Cu又は Cu合金製電極本体が被溶接材に当接する面に、 電気伝導性, 熱伝導性に優れた高強度の Wや Moからなる芯材を埋設した二重構造の電極に 着目し、 電極構成材料及び芯材と周囲材との大小関係を種々に変更した溶接用電 極を用いて亜鉛系めつき鋼板をスポット溶接し、 電極寿命を調査した。 The inventors of the present invention have repeatedly studied various kinds of experiments regarding the material shape of the electrode when spot welding a zinc-based steel sheet. . First, we focused on a double-structured electrode in which a core made of high-strength W or Mo with excellent electrical and thermal conductivity is embedded in the surface of the electrode body made of Cu or Cu alloy that contacts the workpiece. The electrode life was investigated by spot-welding zinc-based steel sheets using welding electrodes with various changes in the size of the electrode constituent material and the core and surrounding materials.
その結果、 電極本体に Cu又は Cu合金を、 芯材に W, W合金, Mo又は Mo 合金を用いたスポット溶接用電極では、 被溶接材に接触する当接面の面積を So, 芯材の面積を Siとするとき、 SiZSo=0.7〜3.0の範囲に設定することが電極の 長寿命化に有効であることを確認した。  As a result, in the spot welding electrode using Cu or Cu alloy for the electrode body and W, W alloy, Mo or Mo alloy for the core material, the area of the contact surface contacting the material to be welded is So, and the core material When the area is Si, it was confirmed that setting SiZSo = 0.7 to 3.0 is effective for extending the life of the electrode.
二重構造の埋め込み型電極の電極寿命が長い理由は、 溶接打点を重ねても埋め 込んだ芯材により一定面積の通電路が確保され、 安定したナゲットの形成ができ る点にある。 そのため、 芯材の材質としては、 Wや Mo のように硬質でめっき 金属と合金化反応し難い材料が好適とされている。  The reason why the electrode life of the double-structured embedded electrode is long is that, even if welding points are stacked, the embedded core material secures a current path with a constant area, and a stable nugget can be formed. For this reason, the material of the core material is preferably a hard material such as W or Mo that is difficult to alloy with the plating metal.
そこで、 W を芯材に用い、 芯材を取り囲む電極本体を純 Cu製とした溶接用 電極において、 芯材の径を種々変更し、 純 Cu製周囲材の被溶接材への当接状況 の違い、 すなわち、 芯材 Z当接面の面積比率と電極寿命の関係を調査した。 Mo も W とほとんど同じ挙動を示す金属であるから、 Wで得られた結果は、 Mo, W合金、 Mo合金でも援用できる。  Therefore, in the welding electrode in which W is used as the core material and the electrode body surrounding the core material is made of pure Cu, the diameter of the core material is changed variously, and the contact status of the pure Cu surrounding material to the welded material The difference, that is, the relationship between the area ratio of the core Z contact surface and the electrode life was investigated. Since Mo is a metal that behaves almost the same as W, the results obtained with W can be applied to Mo, W alloys, and Mo alloys.
なお、 連続打点溶接する場合の初期ナゲット径、 すなわち 1 打点目のナゲッ ト径が何れの電極でも同一になるような溶接条件とした。  The welding conditions were such that the initial nugget diameter for continuous spot welding, that is, the nugget diameter at the first spot was the same for all electrodes.
詳細は後記の実施例に記載するが、 二重構造の電極 1(図 1 )にあって、 被溶接 材に接触する当接面 2aの直径を aとすると当接面の面積 Soは So= a2 4, 周 囲材 2に埋め込んだ芯材 3の直径を bとすると芯材の面積 Siは Si=Jtb2 4で 表されるが、 面積 Soに対する面積 Siの面積比率 SiZSo(=b2Za2)を 0.7~3.0 の範囲に設定する必要がある。 面積 Siが面積 Soより大きいことは、 当接面 2a の直径 aよりも芯材 3の直径 bが大きく、 芯材 3を含めて電極先端を研削し、 当接面 2aに芯材 3のみが位置する先端形状に整えることを意味している。 The details will be described in the examples described later. In the double-structured electrode 1 (Fig. 1), if the diameter of the contact surface 2a that contacts the material to be welded is a, the area of the contact surface So is So = a 2 4, although the area Si of the diameter of the core 3 embedded in the circumferential囲材2 and b core is represented by Si = JTB 2 4, the area of the area Si to the area So ratio SiZSo (= b 2 Za 2 ) needs to be set in the range of 0.7 ~ 3.0. When the area Si is larger than the area So, the diameter b of the core material 3 is larger than the diameter a of the contact surface 2a, the tip of the electrode including the core material 3 is ground, and only the core material 3 is present on the contact surface 2a. This means that the tip shape is adjusted.
W, W合金, Mo又は Mo合金は、 Cuと比較してめっき金属に対する合金化 反応性が低いので、 当接面 2aの直径 aより芯材 3の直径 bが大きい場合、 Cu 製周囲材 2がめつき金属と接触せず、 Cuとめつき金属との間で合金化反応が生 じない。 SiZSo≥0.7の面積 Siの芯材 3であれば、 周囲材 2がめつき金属と多 少接触するものの、 接触面積が少ないため周囲材 2 とめつき金属との合金化に よる変形が拡径を起こすまでに到らず、 電極全体として先端部形状を変形させる ことにはならない。 W, W alloy, Mo or Mo alloy has a lower alloying reactivity to the plating metal than Cu. Therefore, when the diameter b of the core 3 is larger than the diameter a of the contact surface 2a, the Cu surrounding material 2 An alloying reaction occurs between Cu and the metal with no contact with the metal. I don't know. Area of SiZSo≥0.7 If Si core material 3 is used, the surrounding material 2 makes little contact with the metal, but due to the small contact area, deformation due to alloying of the surrounding material 2 with the metal causes an increase in diameter. The tip shape of the electrode as a whole is not deformed.
しかも、 W, W合金, Moや Mo合金は、 酸化物等を分散させた銅材よりもめ つき金属と合金化反応しにくく、 常温'高温での強度が高い。 そのため、 SiZ So=0.7であっても、 電極寿命が延びるものと予測される。 ただし、 面積比 SiZ Soが 3.0を超えるようになると、 周囲材 2による芯材 3の冷却作用が非常に小 さくなり、 芯材 3 の表面に堆積するめつき金属が増量して電極 Z被溶接材間の 電気抵抗が高くなり過ぎ、 ナゲットが形成しにくくなる。 なお、 面積比率 SiZ Soは、 1.0〜2.0の範囲が好ましい。  Moreover, W, W alloys, Mo and Mo alloys are less susceptible to alloying reactions with metal plating than copper materials in which oxides are dispersed, and have high strength at room temperature and high temperature. Therefore, even if SiZ So = 0.7, the electrode life is expected to be extended. However, when the area ratio SiZ So exceeds 3.0, the cooling action of the core material 3 by the surrounding material 2 becomes very small, and the amount of metal deposited on the surface of the core material 3 increases, resulting in an electrode Z welded material. In the meantime, the electrical resistance becomes too high, making it difficult to form nuggets. The area ratio SiZ So is preferably in the range of 1.0 to 2.0.
W, W合金, Mo又は Mo合金製の芯材を Cu又は Cu合金製の電極本体で取 り囲んだ二重構造は、 溶接用電極の当接面に生じやすい割れや剥離を防止する上 でも有効である。  The double structure in which the core material made of W, W alloy, Mo or Mo alloy is surrounded by the electrode body made of Cu or Cu alloy also prevents cracking and peeling that tends to occur on the contact surface of the welding electrode. It is valid.
すなわち、 溶接用電極は、 スポット溶接時に当接面が発熱し、 当接面を中心に 熱膨張するが、 温度変化が急激で Wや Mo の熱伝導率が低いため熱膨張が当接 面近傍に留まり、 熱が伝わりにくい外周近傍では熱膨張しない。 当接面, 外周で 異なる熱膨張は熱応力の発生原因であり、 結果として当接面近傍に割れや剥離を 誘発させる。 かかる熱膨張差に起因する欠陥は、 当接面及びその周辺を高融点材 料である Wや Moとし、 電極本体を熱伝導性の良好な Cu又は Cu合金で電極 本体を作製することにより防止できる。  That is, the contact surface of the welding electrode generates heat at the time of spot welding and thermally expands around the contact surface, but the thermal expansion is in the vicinity of the contact surface because the temperature change is rapid and the thermal conductivity of W and Mo is low. The thermal expansion does not occur in the vicinity of the outer periphery where heat is not easily transmitted. Thermal expansion that differs between the contact surface and the outer periphery is the cause of the generation of thermal stress, and as a result, it induces cracks and separation near the contact surface. Defects caused by this difference in thermal expansion are prevented by making the contact body and its surroundings W or Mo, which are high melting point materials, and making the electrode body with Cu or Cu alloy with good thermal conductivity. it can.
Wの通電焼結体からなる電極にあっては、 10〜200ppm程度の K (力リウム)を 酸化物, 窒化物, 金属 K, 炭化物或いは硼化物の形態でドープした W製電極が 多用されている。 本明細書における W製芯材も、 K ド一プ通電焼結体を包含す る意味で使用している。  In the case of an electrode made of an electric current sintered body of W, an electrode made of W in which about 10 to 200 ppm of K (power lium) is doped in the form of oxide, nitride, metal K, carbide or boride is often used. Yes. In this specification, the W core material is also used in the sense of including a K-type electric current sintered body.
芯材として用いる Wや Moも、 Cu合金と比べるとめつき金属との合金化反応 性は低いが、 皆無ではない。 また、 Wや Mo は硬質であるため加圧時の衝撃で クラックの発生等、 破損しやすい欠点もある。 そこで、 めっき金属との合金化反 応性を低く、 かつ耐衝搫性に優れるように改良した I W合金, Mo又は Mo 合金を芯材に使用すると電極寿命の延びが予測される。 W and Mo used as the core material also have a low alloying reactivity with metal plating compared to Cu alloys, but it is not completely absent. In addition, since W and Mo are hard, there are also disadvantages such as cracking due to impact during pressurization, and so on. Therefore, IW alloy, Mo or Mo improved so as to have low alloying reactivity with plating metal and excellent impact resistance. When an alloy is used for the core material, the life of the electrode is expected to be extended.
改良手段としては、 Be, Mg, Ca, Sr等の 2A族元素, Ti, Zr, Hf 等の 4A 族元素, V, Nb, Ta等の 5A族元素, Cr, Mo, W等の 6A族元素又は Yを含 む希土類元素の酸化物, 窒化物, 炭化物及び硼化物から選ばれる少なくとも一種 以上の微粒子を 0.5〜: 10体積%の割合で分散させることが好ましい。 微粒子分 散は、 当接面及び当接面近傍に生じがちな微細クラックを抑制する上でも有効で ある。 これらの微粒子は、 A1や Zn との反応性に乏しいため、 スポット溶接時 に芯材である W又は Moにめつき金属が濡れ難くし、 W又は Moとめつき金属 との合金化反応を抑制する。  Improvement measures include: Group 2A elements such as Be, Mg, Ca and Sr; Group 4A elements such as Ti, Zr and Hf; Group 5A elements such as V, Nb and Ta; Group 6A elements such as Cr, Mo and W Alternatively, it is preferable to disperse at least one kind of fine particles selected from oxides, nitrides, carbides and borides of rare earth elements containing Y in a ratio of 0.5 to 10% by volume. The fine particle dispersion is also effective in suppressing fine cracks that tend to occur on the contact surface and in the vicinity of the contact surface. Since these fine particles have poor reactivity with A1 and Zn, the metal attached to the core W or Mo is difficult to wet during spot welding, and the alloying reaction between W or Mo and the metal attached is suppressed. .
特に、 酸化し易い Mgを含む Zn-Al-Mg合金めつき鋼板の溶接にあっては、 ス ポット溶接中に生成した MgOが電極先端に堆積し、 電極/めっき鋼板間の抵抗 を高くして被溶接部が過熱される結果、 更なる MgO の生成 '堆積が懸念される。 しかし、 微粒子を分散させた W又は Mo製電極では、 MgOの付着'堆積が抑え られるので、 長期にわたって溶接条件が安定化する。  In particular, in the welding of Zn-Al-Mg alloy-plated steel sheets containing Mg that easily oxidizes, MgO produced during spot welding accumulates at the electrode tip, increasing the resistance between the electrode and the plated steel sheet. As a result of overheating of the welded part, there is a concern about further MgO generation and deposition. However, with W or Mo electrodes in which fine particles are dispersed, MgO adhesion and deposition can be suppressed, so that welding conditions are stabilized over a long period of time.
めっき金属の溶着を確実に抑制するためには、 電極に分散させる微粒子, めつ き層に含まれる金属成分の双方の物性に着目する必要がある。 たとえば、 Be, Mg, Ca, Sr, Ti, Zr, Y, Ce等の酸化物は、 MgO より標準生成自由エネルギ 一が低い又は同レベルであるので、 Zn-Al-Mg合金めつき鋼板をスポット溶接す る際、 溶融又は半溶融状態のめっき層に含まれている Mgが金属酸化物の還元反 応で酸化することはない。 その結果、 MgO の生成'堆積が抑制され、 W, W合 金, Mo又は Mo合金製芯材が溶融状態のめっき金属に濡れ難くなり、 めっき金 属の溶着が確実に抑制される。  In order to reliably suppress plating metal welding, it is necessary to pay attention to the physical properties of both the fine particles dispersed in the electrode and the metal component contained in the plating layer. For example, oxides such as Be, Mg, Ca, Sr, Ti, Zr, Y, and Ce have a standard free energy of formation lower than or equal to that of MgO, so spot the Zn-Al-Mg alloy steel plate. During welding, Mg contained in the molten or semi-molten plating layer is not oxidized by the reduction reaction of the metal oxide. As a result, the formation and deposition of MgO is suppressed, and the core material made of W, W alloy, Mo or Mo alloy is hardly wetted by the molten plated metal, and the welding of the plated metal is surely suppressed.
また、 La2〇3, BeO, SrO, Ce〇2, Ce203, Zr02, MgO, CaO, Y2O3, TiC, WC, TaC, ZrC, HfC, ZrB2, ZrN、 TiN等は、 高融点でめっき金属との反応 性が特に低いため、 Wや Mo 中に分散させても焼結体の強度を維持でき、 電極 寿命の延長に好適である。 更に、 W, W合金, Mo又は Mo合金に分散させた微 粒子は、 芯材が衝撃を受けた際の転位の伝播をピン止めする作用を発揮し、 結果 的に耐衝撃性に優れ、 クラックの発生等を抑制する。 なかでも、 融点が 2400°C を超える微粒子は、 芯材焼結時に溶融又は偏析しないため芯材の品質安定性を高 める上でも有効である。 La203, BeO, SrO, Ce02, Ce203, Zr02, MgO, CaO, Y2O3, TiC, WC, TaC, ZrC, HfC, ZrB2, ZrN, TiN, etc. have a high melting point and react with the plating metal. Due to its particularly low property, the strength of the sintered body can be maintained even when dispersed in W or Mo, and it is suitable for extending the life of the electrode. Furthermore, the fine particles dispersed in W, W alloy, Mo or Mo alloy exert the effect of pinning the propagation of dislocations when the core material is impacted, resulting in excellent impact resistance and cracking. Control the occurrence of In particular, fine particles with a melting point of over 2400 ° C do not melt or segregate during the sintering of the core material, thus improving the quality stability of the core material. It is also effective in
微粒子は改良効果を得る上で 0.5体積%以上分散させることが好ましいが、 10体積%を超える過剰分散は W, W合金, Mo又は Mo合金の電気伝導性を大 きく低下させ、 抵抗溶接中に電極先端の温度が高くなりすぎ、 却って合金化反応 を起こしやすくなる。 非金属微粒子の多量含有は焼結体を脆化し、 スエージング 等で所望形状に加工することが困難になる。 好ましくは、 0.8〜3.0体積%の範 囲で微粒子を分散させる。  In order to obtain an improvement effect, it is preferable to disperse the fine particles by 0.5% by volume or more. However, excessive dispersion exceeding 10% by volume greatly reduces the electrical conductivity of W, W alloy, Mo or Mo alloy, and during resistance welding. The temperature at the tip of the electrode becomes too high, and on the contrary, an alloying reaction is likely to occur. When a large amount of non-metallic fine particles are contained, the sintered body becomes brittle and it becomes difficult to process into a desired shape by swaging or the like. Preferably, the fine particles are dispersed in the range of 0.8 to 3.0% by volume.
また、 Wや Moに含有させる CeC>2等の非金属微粒子は、 ΙΟμιη以下の粒径が 好ましい。 ΙΟμηι を超えるほどに大きな粒子を分散させると、 熱膨張率の差によ つて破壊の起点になりやすい。 クラックの伝播を止める微粒子の作用を考慮する と、 同じ分散量でも微粒子の個数が多いほど効果的である。 ΙΟμπι を超える平均 粒径や 0.5体積%未満の分散量では、 微粒子分散による性質改善が十分でない。 特に電極寿命を向上させる上では、 平均粒径: 2μπι 以下の微粒子分散が好適で ある。  Further, the non-metallic fine particles such as CeC> 2 contained in W or Mo preferably have a particle size of ΙΟμιη or less. If particles larger than ほ ど μηι are dispersed, they tend to break down due to the difference in thermal expansion coefficient. Considering the action of fine particles that stop the propagation of cracks, the larger the number of fine particles, the more effective even with the same amount of dispersion. When the average particle size exceeds ΙΟμπι or the amount of dispersion is less than 0.5% by volume, the property improvement by fine particle dispersion is not sufficient. In particular, in order to improve the electrode life, a fine particle dispersion having an average particle diameter of 2 μπι or less is suitable.
芯材用の Wや Moは、 それぞれの金属単独, 或いは含有量: 5〜95質量%の 合金として使用される。  W or Mo for the core material is used as each metal alone or as an alloy of 5 to 95 mass%.
一般に、 W, W合金, Mo又は Mo合金は、 焼結法で製造される。 本発明で芯 材として用いられる W, W合金, Mo又は Mo合金も、 通常通り焼結法で製造 される。 焼結原料には、 不純物を含まない純粋な W に限らず、 フィラメント電 極等に使用されている 10〜200ppm程度の Kを含むドープタングステンも使用 でき、 少量の Re等の金属を合金化した W基合金であっても良い。  In general, W, W alloy, Mo or Mo alloy is manufactured by sintering method. The W, W alloy, Mo or Mo alloy used as the core material in the present invention is also manufactured by a sintering method as usual. The sintering raw material is not limited to pure W that does not contain impurities, but can also be doped tungsten containing about 10 to 200 ppm K, which is used for filament electrodes, etc., and a small amount of metal such as Re is alloyed. A W-based alloy may be used.
必要に応じて 2A族元素, 4A族元素, 5A族元素, 6A族元素又は希土類元素 の酸化物, 窒化物, 炭化物, 硼化物からなる微粒子を加えた W及び 又は Mo の酸化物粉末を還元雰囲気で熱処理し、 得られた粉末を適宜形状に成形した後、 仮焼結, 通電焼結した後、 焼結体にスエージング加工とセンターレス研磨を施し て所望径の棒体を得る。 酸化物粉末に代えて金属 W及び/又は金属 Moの粉末 を原料に用い、 必要に応じて微粒子を加えてそのまま成形してもよい。  Reduced atmosphere of oxide powder of W and / or Mo with addition of fine particles of 2A group element, 4A group element, 5A group element, 6A group element, rare earth element oxide, nitride, carbide, boride as required After heat-treating, the obtained powder is formed into an appropriate shape, pre-sintered and electro-sintered, and then subjected to swaging and centerless polishing to obtain a rod having a desired diameter. Instead of the oxide powder, metal W and / or metal Mo powder may be used as a raw material, and if necessary, fine particles may be added and molded as it is.
或いは、 所定組成の粉末原料を円柱状に冷間静水圧プレスした後、 水素雰囲気 中で通電焼結し、 得られた焼結体を熱間回転鍛造し、 次いで切断、 加工によって 所定形状の芯材に成形する方法でも良い。 密封容器に充填した粉末原料を冷間静 水圧プレスし、 水素雰囲気中で焼結し、 更に熱間静水圧プレスで焼結体とする方 法も採用できる。 Alternatively, a powder raw material having a predetermined composition is cold isostatically pressed into a cylindrical shape, and then subjected to current sintering in a hydrogen atmosphere. The obtained sintered body is hot-rotated forged, then cut and processed. A method of forming a core material having a predetermined shape may be used. The powder raw material filled in the sealed container can be cold isostatically pressed, sintered in a hydrogen atmosphere, and further sintered into a sintered body by hot isostatic pressing.
周囲材 (電極本体)は、 市販純 Cu, Cu-Cr合金, Cu-Cr-Zr合金等、 通常の Cu 又は Cu合金で作製される。 更には、 AI2O3等の微粒子を分散させた分散強化型 Cu合金も周囲材に使用できる。  The surrounding material (electrode body) is made of ordinary Cu or Cu alloy such as commercially available pure Cu, Cu-Cr alloy, Cu-Cr-Zr alloy. Furthermore, a dispersion strengthened Cu alloy in which fine particles such as AI2O3 are dispersed can be used as the surrounding material.
Cu又は Cu合金製周囲材に対する芯材の埋込みには、 従来法を採用できる。 たとえば、 周囲材に穿った孔に芯材を圧入しても良いし、 ロウ材を介して挿し込 んでも良い。 或いは焼き嵌めでも良いし、 芯材を鋼材で铸包んだ後冷間鍛造を施 しても良い。 芯材と周囲材が密に接合されている限り電気伝導, 熱伝導の点で問 題になることはないが、 良好な熱伝導や接合強度を得る上では溶融法で一体化す ることが好ましい。 ,  Conventional methods can be used for embedding the core material in the surrounding material made of Cu or Cu alloy. For example, the core material may be press-fitted into the hole formed in the surrounding material, or may be inserted through the brazing material. Alternatively, shrink fitting may be used, or cold forging may be performed after the core material is wrapped with steel. As long as the core material and the surrounding material are closely joined, there will be no problem in terms of electrical conduction and heat conduction, but in order to obtain good heat conduction and joining strength, it is preferable to integrate them by the melting method. . ,
二重構造の電極構造体を形成した後、 先端に研削加工を施し、 R形, 形, CF形等、 所望の先端部形状に整える。 次いで、 実施例によって本発明を具体的に説明する。  After forming a double-structured electrode structure, grind the tip and adjust it to the desired tip shape such as R shape, shape, or CF shape. Next, the present invention will be described specifically by way of examples.
実施例 1 Example 1
片面当り付着量: 30gZm2で Zn-6%Al-3%Mg合金めつき層を設けた板厚: 0.7mm の Zn-Al-Mg合金めつき鋼板を被溶接材に用いた。 二枚の被溶接材を重 ね合わせ、 表 1の条件で上下電極間に挟み連続打点するスポット溶接により Zn- Al-Mg合金めつき鋼板を溶接した。 An adhesion amount per side: 30 gZm 2 and a Zn-Al-Mg alloy-plated steel sheet with a thickness of 0.7 mm provided with a Zn-6% Al-3% Mg alloy-plated layer was used as the material to be welded. The two welded materials were overlapped, and the Zn-Al-Mg alloy-plated steel sheet was welded by spot welding, which was sandwiched between the upper and lower electrodes under the conditions shown in Table 1 and continuously dotted.
スポット溶接用電極には、 純度: 99.95%の W粉末を通電焼結した後でスエー ジング加工, センタレス研磨した芯材を純 Cu製の周囲材に埋め込んだ二重構造 の電極を使用した。 該溶接用電極は、 当接面直径: 6mm, 全体直径: 16mm の DR型であり、 曲率半径: 40mmの円弧を当接面直径: 6mmの部分に、 曲率半 径: 8mmの円弧を他の部分につけている。 表 1 :連続打点試験 For the spot welding electrode, we used a double-structured electrode in which a core material that had been swept and centerless polished after being sintered with current of 99.95% pure W powder was embedded in pure Cu surrounding material. The welding electrode is a DR type with an abutment surface diameter of 6 mm and an overall diameter of 16 mm. An arc with a radius of curvature of 40 mm is placed on the abutment surface diameter of 6 mm, and an arc with a radius of curvature of 8 mm on the other side. It is attached to the part. Table 1: Continuous dot test
Figure imgf000012_0001
スポット溶接で形成されたナゲット径を測定し、 ナゲット径が 4^ 3.35 (t: 板厚)を下回るものを溶接不良として、 電極寿命を求めた。
Figure imgf000012_0001
The nugget diameter formed by spot welding was measured, and the life of the electrode was determined by assuming that the nugget diameter was less than 4 ^ 3.35 (t: plate thickness) as poor welding.
表 2の調査結果にみられるように、 芯材と当接面との面積比率 SiZSoが 0.7 〜3.0で W製芯材を Cu又は Cu合金製電極本体に埋設した試験番号 3~7の電 極では、 スポット溶接後にも電極先端形状の形状変化が少なく、 一体型の 1% Cr-Cu合金電極と比べて長い電極寿命であった。  As shown in the survey results in Table 2, the area ratio between the core material and the contact surface SiZSo is 0.7 to 3.0, and the W core material is embedded in the electrode body made of Cu or Cu alloy. In this case, the shape of the electrode tip shape did not change even after spot welding, and the electrode life was longer than that of the integrated 1% Cr-Cu alloy electrode.
これに対し、 面積比率 Si/Soが 0.7未満の試験番号 1, 2の電極では、 周囲 材の純 Cuがめつき金属と合金化反応して変形し、 先端面が拡大したため、 電極 寿命の延長がみられなかった。 スポット溶接後に電極先端面を観察すると、 周囲 材にめっき金属が付着しており、 周囲材の広い範囲でめっき金属との合金層が電 極先端の断面観察で検出された。  In contrast, in the electrodes of test numbers 1 and 2 with an area ratio Si / So of less than 0.7, the pure Cu of the surrounding material alloyed with the metal and deformed due to an alloying reaction, and the tip surface was enlarged. It was not seen. When the tip of the electrode was observed after spot welding, the plated metal was attached to the surrounding material, and an alloy layer with the plated metal was detected in the cross section of the electrode tip in a wide range of the surrounding material.
面積比率 SiZSoが 3.0を超えた試験番号 8, 9の電極でも、 電極寿命の延長 がみられなかった。 この場合、 周囲材による芯材の冷却能が小さく、 芯材部分が 高温になり過ぎたことが原因と思われる。 先端面の観察では、 めっき金属の多量 堆積が検出された。 表 2 :芯材径, 面積比率が電極寿命に及ぼす影響 Even with the electrodes of test numbers 8 and 9 where the area ratio SiZSo exceeded 3.0, the electrode life was not extended. In this case, the cooling ability of the core material by the surrounding material is small, and it seems that the core material part has become too hot. In the observation of the tip, a large amount of plated metal was detected. Table 2: Effects of core diameter and area ratio on electrode life
Figure imgf000013_0001
実施例 2
Figure imgf000013_0001
Example 2
種々の配合割合で粒径 0.5μηιの Ce02粉末を Wに分散させた焼結 ·鍛造品を 芯材に用い、 芯材径を種々変更した全体直径: 16mm の溶接用電極を使用する 以外、 実施例 1と同じ条件で Zn-Al-Mg合金めつき鋼板を連続打点溶接した。 実施例 1と同じ評価方法で電極寿命を求めた結果を表 3に示す。 Except using welding electrode 16 mm,: Various using CeO 2 powder having a particle diameter 0.5μηι in proportion to the core material a sintered-forging dispersed in W, the entire core diameter was variously changed diameter Under the same conditions as in Example 1, continuous spot welding was performed on a Zn-Al-Mg alloy-plated steel sheet. Table 3 shows the results of obtaining the electrode life by the same evaluation method as in Example 1.
表 3から明らかように、 Ce02を 0.5~10体積%分散させた W基複合材から 作製された芯材を面積比率 Si/So=0.7~3.0 で Cu製電極本体に埋設した試験 No.13〜: 17及び 20〜22の電極では、 l%Cr-Cu合金製電極と比べて、 スポット 溶接後に電極先端の形状変化が少なく、 電極断面を観察ではめつき金属の堆積が 非常に少ないことが判った。 電極寿命も、 10000打点以上と長寿命であった。  As is clear from Table 3, cores made from W-based composites with Ce02 dispersed in 0.5 to 10% by volume were embedded in Cu electrode bodies with an area ratio of Si / So = 0.7 to 3.0. : The electrode of 17 and 20-22 has less shape change at the electrode tip after spot welding compared to the electrode made of l% Cr-Cu alloy. It was. The electrode life was also as long as 10,000 points or more.
Ce02: 0.5体積%未満の W基複合材製芯材を面積比率 SiZSo: 1.0で Cu製 電極本体に埋設した試験 No.23, 24 の電極でも、 芯材埋込みの効果が有効に働 いたため 10000打点以上の電極寿命となったが、 電極断面を観察するとめつき 金属の堆積量は試験 No.13〜: 17及び 20〜22 よりも多量のめっき金属が堆積し ていた。 Ce0 2: 0.5 area a W-based composite material-made core material of less than% by volume ratio SiZSo: 1.0 Test buried in the Cu electrode body at No.23, in 24 of the electrode, the core material effect of embedding effectively work Itatame The electrode life exceeded 10000 striking points. As for the amount of deposited metal, a larger amount of plated metal was deposited than in Test Nos. 13 to 17 and 17 to 20.
面積比率 Si/So: 1.0であっても、 Ce02が過剰分散している W基複合材か ら作製された芯材を用いた試験 No.25 の電極では、 芯材埋込みの効果よりもArea ratio Si / So.: be 1.0, in the electrode of the test No.25 with W-based composite material or we fabricated core material CeO 2 is excessively distributed, than the effect of the core material embedded
Ce02の加工分散に起因する電気伝導度の低下作用がより大きく現れ、 電極先端 に堆積するめつき金属量が l%Cr-Cu合金電極よりも多くなり、 ナゲット形成が 十分に行われないために短い電極寿命となった。 Decreasing electric conductivity due to processing dispersion of Ce0 2 appears more, and the amount of metal deposited on the electrode tip is larger than that of l% Cr-Cu alloy electrode, and nugget formation is not performed sufficiently The electrode life was short.
更に、 Ce02を 1体積%分散させた W基複合材からなる芯材を Cu製電極本体 に埋め込んだ場合でも、 面積比率 SiZSoが 0.7〜3.0の範囲を外れる試験 No.ll 〜12及び 18〜: 19の電極では、 l% Cr-Cu合金電極よりも短い電極寿命であった が、 Ce02を分散させていない W製芯材を埋め込んだ電極 (実施例 1)と比べて電 極寿命が若千延びる傾向にあった。 Furthermore, even when a core material made of a W-based composite material with 1% by volume of Ce02 embedded in a Cu electrode body, the area ratio SiZSo falls outside the range of 0.7 to 3.0 No.ll -12 and 18 to: in 19 of the electrode, but was shorter electrode life than l% Cr-Cu alloy electrode, youth electrodes life than the CeO 2 the embedded W-made core material not dispersed electrode (example 1) There was a tendency to extend a thousand.
表 3 :芯材の材質, サイズ, 面積比率が電極寿命に及ぼす影響 Table 3: Effects of core material, size, and area ratio on electrode life
Figure imgf000015_0001
Figure imgf000015_0001
下線は、 請求項 4で規定した範囲を外れることを示す。 実施例 3  The underline indicates that it is outside the scope specified in claim 4. Example 3
実施例 1と同じ Zn-Al-Mg合金めつき鋼板のスポット溶接に、 TaC分散 W焼 結体を芯材として純 Cu製電極本体に埋め込んだ溶接用電極を使用した。  For spot welding of the same Zn—Al—Mg alloy-plated steel plate as in Example 1, a welding electrode in which a TaC-dispersed W sintered body was embedded in a pure Cu electrode body was used.
芯材には、 純度 99.95%の W粉末に粒径: 0.05~3μιηの TaC粉末を種々の配 合割合で分散させた混合粉末を用意し、 仮成形, 通電焼結を経てスエージング加 ェ, センターレス研磨することにより作製した径: 6mmの TaC分散 W焼結体 を使用した。 還元雰囲気中で溶融した純 Cuと TaC分散 W焼結体とを一体化し、 当接面直径: 6mm, 全体直径: 16mniの DR型で、 曲率半径: 40mmの円弧を 当接面直径: 6mm の部分に、 曲率半径: 8mm の円弧を他の部分につけた溶接 用電極に仕上げた。 For the core material, we prepared mixed powders in which TaC powder with a particle size of 0.05-3μιη was dispersed in various proportions of W powder with a purity of 99.95%. Diameter produced by centerless polishing: 6mm TaC dispersion W sintered body It was used. Pure Cu melted in a reducing atmosphere and TaC dispersion W sintered body are integrated into a DR type with an abutment surface diameter of 6mm and an overall diameter of 16mni. An arc with a radius of curvature of 40mm is a contact surface diameter of 6mm. In this part, a welding electrode with a radius of curvature of 8mm was attached to the other part.
上下に配置した溶接用電極に二枚の被溶接材を挟み、 表 1 の連続打点試験条 件下でスポット溶接した。 スポット溶接で形成されたナゲット径を測定し、 ナゲ ット径が 4 = 335 (t:板厚)を下回るものを溶接不良として電極寿命を求めた。 表 4の測定結果から明らかなように、 W材に平均粒子径: 2μηι以下の TaC微 粒子を 0.5~10 体積%の割合で分散させた電極を用いた場合、 大幅に長い電極 寿命が得られた。 電極断面を観察しても、 MgO の堆積が非常に少ない状態であ つた。 MgOの堆積が少ないため、 MgOによる電極とめっき鋼板との間の抵抗上 昇を抑制でき、 めっき金属との溶着が発生し難い状態であつたと思われる。 電極 寿命の大幅延長は、 他に W材中に分散させた TaC微粒子がめっき金属との濡れ を抑制する作用、 当接面近傍でのクラックの発生や進展を抑制する作用が相乗し た結果と推察される。  Two materials to be welded were sandwiched between welding electrodes placed one above the other and spot welded under the continuous spot test conditions shown in Table 1. The nugget diameter formed by spot welding was measured, and the electrode life was determined by assuming that the nugget diameter was less than 4 = 335 (t: plate thickness) as a poor weld. As is apparent from the measurement results in Table 4, when an electrode in which TaC fine particles with an average particle size of 2 μηι or less are dispersed in a proportion of 0.5 to 10% by volume is used, a significantly longer electrode life can be obtained. It was. Even when the electrode cross section was observed, the MgO deposition was very low. Since the deposition of MgO is small, the increase in resistance between the electrode and the plated steel sheet due to MgO can be suppressed, and it seems that welding with the plated metal is difficult to occur. The significant increase in electrode life is due to the synergistic effect of the TaC fine particles dispersed in the W material, which suppresses wetting with the plated metal, and the suppression of crack generation and propagation near the contact surface. Inferred.
一方、 TaC微粒子を 12体積%分散させた試験 No.34では、 電極寿命が低下し、 電極断面の観察では比較的多い MgO の堆積が検出された。 MgO の多量堆積は、 W材に微粒子を過剰分散させたため W材自体の電気抵抗が上昇して電極 めつ き鋼板間の発熱量が多くなり、 微粒子の分散による濡れ抑制作用が低減したため と考えられる。  On the other hand, in Test No. 34 in which 12% by volume of TaC fine particles were dispersed, the electrode life decreased, and a relatively large amount of MgO was detected in the observation of the electrode cross section. The large amount of MgO deposition is thought to be due to the excessive dispersion of fine particles in the W material, which increases the electrical resistance of the W material itself, increases the amount of heat generated between the electrode steel plates, and reduces the wetting suppression effect due to the dispersion of fine particles. It is done.
平均粒子径: 3μιηの TaC微粒子を分散させた試験 No.29では、 試験 No.26〜 28 と比べて電極寿命が比較的短かった。 短い電極寿命は、 分散させた微粒子が 数的に少ないために、 当接面近傍でのクラックの発生や進展を抑制する作用を充 分に発揮することができなかったものと思われる。  In Test No. 29 in which TaC fine particles having an average particle diameter of 3 μιη were dispersed, the electrode life was relatively short as compared with Test Nos. 26 to 28. The short electrode life seems to be because the dispersed fine particles are few in number, so that the effect of suppressing the generation and propagation of cracks in the vicinity of the contact surface could not be fully exhibited.
試験 No.30では、 電極寿命は延びたものの、 W材に分散させた微粒子量が少 ないため、 めっき成分と電極との濡れが大きく、 比較的多量の MgOが堆積した。 MgO の堆積により電極 Zめっき鋼板間の抵抗が上昇した結果が、 めっき金属と の溶着として現れていると考えられる。  In Test No. 30, although the electrode life was extended, the amount of fine particles dispersed in the W material was small, so the wetness between the plating component and the electrode was large, and a relatively large amount of MgO was deposited. It is thought that the result of the increase in resistance between the electrode Z-plated steel sheets due to the deposition of MgO appears as a weld with the plated metal.
このように、 W材に分散させる微粒子には好適な大きさ及び分散量があり、 大きさ及び分散量が適切でないと、 所期の目的が達成されないことが理解できる。 表 4: TaC微粒子の分散量, 粒径が電極寿命に及ぼす影響 Thus, the fine particles dispersed in the W material have a suitable size and amount of dispersion, It can be understood that the intended purpose cannot be achieved unless the size and amount of dispersion are appropriate. Table 4: Effects of TaC fine particle dispersion and particle size on electrode life
Figure imgf000017_0001
Figure imgf000017_0001
下線は、 請求項 5で規定した範囲を外れることを示す。 実施例 4  Underline indicates that it is outside the scope defined in claim 5. Example 4
TaCに代えて種々の微粒子を分散させた W基焼結材料を実施例 3と同様に純 Cu電極本体に埋め込んだ溶接用電極を用い、 二枚の Zn-Al-Mg合金めつき鋼板 を連続打点溶接し、 電極寿命を調査した。  Instead of TaC, a W-based sintered material in which various fine particles are dispersed is used as a welding electrode embedded in a pure Cu electrode body in the same manner as in Example 3, and two Zn-Al-Mg alloy-plated steel sheets are continuously used. Spot welding was performed and the electrode life was investigated.
表 5の調査結果にみられるように、 平均粒子径: 2μιη以下の微粒子を W材に 0.5〜10体積%分散させた電極を用いた場合、 電極寿命が大幅に延びた。 電極寿 命の延長は、 2Α族元素, 4Α族元素, 5Α族元素, 6Α族元素, 希土類元素の化 合物である限り、 微粒子の種類に拘わらず有効であつた。 As can be seen from the results of the investigation in Table 5, when an electrode in which 0.5 to 10% by volume of fine particles having an average particle diameter of 2 μιη or less were dispersed in W material was used, the electrode life was greatly extended. The extension of the electrode life was effective regardless of the type of fine particles, as long as it was a compound of a Group 2 element, a Group 4 element, a Group 5 element, a Group 6 element, or a rare earth element.
表 5 :微粒子の種類, 分散量, 粒径と電極寿命との関係 Table 5: Relationship between fine particle type, dispersion, particle size and electrode life
Figure imgf000018_0001
実施例 5
Figure imgf000018_0001
Example 5
板厚: 0.8mm, 片面当りめつき付着量: 30gZm2の A1めっき鋼板を被溶接材 に用いた。 表 6 に示す条件以外は実施例 3で使用した電極と同じ電極を用いて 連続打点溶接し、 電極寿命を調査した。 A1 plated steel sheet with a thickness of 0.8mm and adhesion per one side of 30gZm 2 was used as the material to be welded. Except for the conditions shown in Table 6, continuous spot welding was performed using the same electrode as that used in Example 3, and the electrode life was investigated.
表 6:連続打点試験 (被溶接材: A1めつき鋼板)  Table 6: Continuous spot test (Welded material: A1 steel plate)
Figure imgf000018_0002
表 7の調査結果にみられるように、 平均粒子径: 2μπι以下の TaC微粒子を W 材に 0.5~10体積%分散させた電極を用いた場合、 溶接し難いとされている A1 めっき鋼板であっても大幅に長い電極寿命が得られており、 TaC微粒子の分散 効果が確認できる。 表 7: TaC微粒子の分散量, 粒径が電極寿命に及ぼす影響
Figure imgf000018_0002
As seen in the survey results in Table 7, TaC fine particles with an average particle size of 2μπι or less When an electrode dispersed in 0.5 to 10% by volume in the material is used, a significantly longer electrode life is obtained even with the A1 plated steel sheet, which is considered difficult to weld, and the effect of dispersing TaC fine particles can be confirmed. Table 7: Effects of TaC fine particle dispersion and particle size on electrode life
(被溶接材: A1めっき鋼板)  (Welded material: A1 plated steel plate)
Figure imgf000019_0001
実施例 6
Figure imgf000019_0001
Example 6
実施例 3 と同じ溶接用電極を使用し、 板厚: 1.0mmの 5000系の自動車用ァ ルミ二ゥム板を表 8 の条件で連続打点溶接し、 同様に電極寿命を調査した。 ァ ルミニゥム材料をスポット溶接した場合でも、 平均粒径: 2μπι 以下の微粒子を 芯材の W材に分散させることにより、 表 9の調査結果にみられるように電極寿 命の大幅な改善が達成された。 表 8:連続打点試験 (被溶接材: A1板) Using the same welding electrode as in Example 3, a 5000 series automotive aluminum plate with a thickness of 1.0 mm was continuously spot-welded under the conditions shown in Table 8, and the electrode life was investigated in the same manner. Even when spot welding of aluminum material, a significant improvement in electrode life is achieved by dispersing fine particles with an average particle size of 2μπι or less in the W material of the core material, as shown in the survey results in Table 9. It was. Table 8: Continuous spot test (Material to be welded: A1 plate)
Figure imgf000020_0001
表 9: TaC微粒子の分散量, 粒径が電極寿命に及ぼす影響
Figure imgf000020_0001
Table 9: Effect of TaC fine particle dispersion and particle size on electrode life
(被溶接材: A1板)  (Welded material: A1 plate)
Figure imgf000020_0002
Figure imgf000020_0002
下線は、 請求項 5で規定した範囲を外れることを示す。  Underline indicates that it is outside the scope defined in claim 5.

Claims

請求の範囲 The scope of the claims
1. 銅又は銅合金からなる電極本体の被溶接材に当接する当接面に、 W, W合 金, Mo 又は Mo合金製の芯材を埋め込んだ二重構造をもち、 当接面の面積 を So, 芯材の面積を Siとするとき、 面積比率 Si/Soが 0.7〜3.0の範囲に あることを特徵とするスポット溶接用電極。 1. It has a double structure in which a core made of W, W alloy, Mo or Mo alloy is embedded in the contact surface of the electrode body made of copper or copper alloy that contacts the workpiece, and the area of the contact surface Is an electrode for spot welding, characterized in that the area ratio Si / So is in the range of 0.7 to 3.0, where is the core area and Si is the core area.
2. 2A族元素, 4A族元素, 5A族元素, 6A族元素又は希土類元素の酸化物, 窒化物, 炭化物及び硼化物から選ばれる少なくとも一種以上の微粒子を W, W合金, Mo又は Mo合金に分散させた複合材で芯材が作製されている請求 項 1記載のスポット溶接用電極。  2. At least one kind of fine particles selected from oxides, nitrides, carbides and borides of 2A group elements, 4A group elements, 5A group elements, 6A group elements or rare earth elements are added to W, W alloy, Mo or Mo alloy. 2. The spot welding electrode according to claim 1, wherein a core material is made of a dispersed composite material.
3. Be, Mg, Ca, Sr, ΊΪ, Zr, Y, Ce の酸化物から選ばれた一種又は二種以 上の微粒子を W, W合金, Mo又は Mo合金に分散させた複合材で芯材が作 製されている請求項 1記載のスポット溶接用電極。  3. Core with a composite material in which one or more fine particles selected from oxides of Be, Mg, Ca, Sr, ΊΪ, Zr, Y and Ce are dispersed in W, W alloy, Mo or Mo alloy. 2. The electrode for spot welding according to claim 1, wherein the material is made.
4. 微粒子が 0.5〜; 10体積%の割合で分散している請求項 2又は 3記載のスポ ット溶接用電極。  4. The electrode for spot welding according to claim 2 or 3, wherein the fine particles are dispersed at a ratio of 0.5 to 10% by volume.
5. 微粒子の平均粒径が 2μπι以下である請求項 4記載のスポット溶接用電極。  5. The spot welding electrode according to claim 4, wherein the average particle diameter of the fine particles is 2 μπι or less.
PCT/JP2005/012281 2004-06-30 2005-06-28 Electrode for spot welding WO2006004073A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004192694A JP5083930B2 (en) 2004-06-30 2004-06-30 Spot welding electrode
JP2004-192694 2004-06-30
JP2004282463A JP4683890B2 (en) 2004-09-28 2004-09-28 Mg component-containing Zn-based alloy plated steel plate spot welding electrode
JP2004-282463 2004-09-28
JP2004292990A JP4683896B2 (en) 2004-10-05 2004-10-05 Spot welding electrode
JP2004-292990 2004-10-05

Publications (1)

Publication Number Publication Date
WO2006004073A1 true WO2006004073A1 (en) 2006-01-12

Family

ID=35782877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012281 WO2006004073A1 (en) 2004-06-30 2005-06-28 Electrode for spot welding

Country Status (1)

Country Link
WO (1) WO2006004073A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142257A1 (en) * 2006-06-08 2007-12-13 Nippon Tungsten Co., Ltd. Electrode for spot welding
CN102039479A (en) * 2010-12-20 2011-05-04 福建海峡科化股份有限公司 Method for stored-energy welding of copper leg wire-nichrome wire
CN103350277A (en) * 2013-07-22 2013-10-16 哈尔滨凌云汽车零部件有限公司 Combination electrode for welding gun for welding vehicle door galvanized sheet
DE102014203160A1 (en) 2014-02-21 2015-08-27 Volkswagen Aktiengesellschaft welding electrode
CN107283036A (en) * 2016-04-13 2017-10-24 通用汽车环球科技运作有限责任公司 Point of resistance welding steel and aluminium workpiece with the electrode with insert
CN107350616A (en) * 2016-05-10 2017-11-17 大众汽车有限公司 Welding electrode, method and motor vehicle for impedance spot welding
WO2020122620A1 (en) * 2018-12-12 2020-06-18 주식회사 포스코 Electrode tip for spot welding, and method for manufacturing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5449944A (en) * 1977-09-29 1979-04-19 Yamato Puresu Kk Electrode for spot welding
JPH01113182A (en) * 1987-10-26 1989-05-01 Nippon Steel Corp Electrode for resistance welding
JPH02117780A (en) * 1988-10-27 1990-05-02 Asahi Glass Co Ltd Electrode covered with ceramic particle dispersed metal and its manufacture
JPH0324388U (en) * 1989-07-13 1991-03-13
JPH0439583U (en) * 1990-08-02 1992-04-03
JPH05220581A (en) * 1992-02-14 1993-08-31 Maekawa Seisakusho:Kk Composite electrode for spot welding machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5449944A (en) * 1977-09-29 1979-04-19 Yamato Puresu Kk Electrode for spot welding
JPH01113182A (en) * 1987-10-26 1989-05-01 Nippon Steel Corp Electrode for resistance welding
JPH02117780A (en) * 1988-10-27 1990-05-02 Asahi Glass Co Ltd Electrode covered with ceramic particle dispersed metal and its manufacture
JPH0324388U (en) * 1989-07-13 1991-03-13
JPH0439583U (en) * 1990-08-02 1992-04-03
JPH05220581A (en) * 1992-02-14 1993-08-31 Maekawa Seisakusho:Kk Composite electrode for spot welding machine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142257A1 (en) * 2006-06-08 2007-12-13 Nippon Tungsten Co., Ltd. Electrode for spot welding
EP2027964A1 (en) * 2006-06-08 2009-02-25 Nippon Tungsten Co., Ltd. Electrode for spot welding
EP2027964A4 (en) * 2006-06-08 2010-04-28 Nippon Tungsten Electrode for spot welding
US8471169B2 (en) 2006-06-08 2013-06-25 Nippon Tungsten Co., Ltd. Electrode for spot welding
KR101281267B1 (en) 2006-06-08 2013-07-03 닛신 세이코 가부시키가이샤 Electrode for spot welding
CN102039479A (en) * 2010-12-20 2011-05-04 福建海峡科化股份有限公司 Method for stored-energy welding of copper leg wire-nichrome wire
CN103350277A (en) * 2013-07-22 2013-10-16 哈尔滨凌云汽车零部件有限公司 Combination electrode for welding gun for welding vehicle door galvanized sheet
DE102014203160A1 (en) 2014-02-21 2015-08-27 Volkswagen Aktiengesellschaft welding electrode
CN107283036A (en) * 2016-04-13 2017-10-24 通用汽车环球科技运作有限责任公司 Point of resistance welding steel and aluminium workpiece with the electrode with insert
CN107350616A (en) * 2016-05-10 2017-11-17 大众汽车有限公司 Welding electrode, method and motor vehicle for impedance spot welding
WO2020122620A1 (en) * 2018-12-12 2020-06-18 주식회사 포스코 Electrode tip for spot welding, and method for manufacturing same

Similar Documents

Publication Publication Date Title
WO2006004073A1 (en) Electrode for spot welding
JP4683896B2 (en) Spot welding electrode
JP4916264B2 (en) Electrodes for fusing welding
KR101281267B1 (en) Electrode for spot welding
EP2197077A2 (en) Precious metal member
EP2656960A1 (en) Rotating tool
US8998062B2 (en) Rotary tool
US20050092728A1 (en) Resistance welding electrode and associated manufacturing method
JP5083930B2 (en) Spot welding electrode
US8833633B2 (en) Rotary tool
US20160101487A1 (en) Spot welding electrode
JP5301035B2 (en) Spark plug
JP4683890B2 (en) Mg component-containing Zn-based alloy plated steel plate spot welding electrode
JP2007237209A (en) Resistance welding method
JP5127299B2 (en) Spot welding electrode
JP6242616B2 (en) Resistance welding electrode
JP2007260718A (en) Electrode for seam welding
JP3328799B2 (en) Electrode for resistance welding and method of manufacturing the same
US20200316708A1 (en) Electrically conductive tip member and method for producing the same
JP6530267B2 (en) Electrode material for thermal fuse
JP6193651B2 (en) Resistance welding electrode
JP3891098B2 (en) Spot-welding method and spot-welded joint of hot-dip galvanized steel sheet
JP5708105B2 (en) Rotation tool
JP6166893B2 (en) Tip of solder handling equipment
JP4068486B2 (en) Electrode material for resistance welding and manufacturing method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase