JP4916264B2 - Electrodes for fusing welding - Google Patents

Electrodes for fusing welding Download PDF

Info

Publication number
JP4916264B2
JP4916264B2 JP2006254550A JP2006254550A JP4916264B2 JP 4916264 B2 JP4916264 B2 JP 4916264B2 JP 2006254550 A JP2006254550 A JP 2006254550A JP 2006254550 A JP2006254550 A JP 2006254550A JP 4916264 B2 JP4916264 B2 JP 4916264B2
Authority
JP
Japan
Prior art keywords
electrode
alloy
fusing welding
core material
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006254550A
Other languages
Japanese (ja)
Other versions
JP2008073712A (en
Inventor
信悟 向江
研二 岡村
修一 寺本
淳 黒部
博 朝田
正二 井上
茂雄 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd, Nippon Steel Nisshin Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP2006254550A priority Critical patent/JP4916264B2/en
Publication of JP2008073712A publication Critical patent/JP2008073712A/en
Application granted granted Critical
Publication of JP4916264B2 publication Critical patent/JP4916264B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、W又はMo若しくはそれらを基材とする合金を素材としたヒュージング溶接用の電極に関する。   The present invention relates to an electrode for fusing welding using W or Mo or an alloy based thereon as a raw material.

従来から、絶縁被覆導線と金属端子を結合する製造工程においては、ヒュージング溶接が用いられている(例えば、非特許文献1参照)。そして、大量生産ラインでは、連続的にヒュージング溶接が実施されている。このため、ヒュージング溶接用の電極は、高熱,高負荷を繰り返し受ける状況下にあり変形しやすいので、その素材としては変形に耐え得るものでなければならない。しかも、ヒュージング溶接用電極の本来の必要条件である、高電気伝導度、高熱伝導性及び高強度,高耐摩耗性を備えていることが要求される。   Conventionally, fusing welding has been used in a manufacturing process for joining an insulating coated conductor and a metal terminal (for example, see Non-Patent Document 1). In the mass production line, fusing welding is continuously performed. For this reason, the electrode for fusing welding is subject to repeated high heat and high load, and is easily deformed. Therefore, the material must be able to withstand deformation. In addition, it is required to have high electrical conductivity, high thermal conductivity, high strength, and high wear resistance, which are essential requirements for the fusing welding electrode.

このような背景のもと、ヒュージング溶接用電極としてはCu−Cr、Cu−Cr−Zr等のCu合金や、Al23等の硬質物質を分散させたCu材が用いられている。熱伝導特性や強度、コスト等の総合的な観点から、Cu−Cr合金が用いられる場合が多い。
昨近、耐変形性や耐熱性の観点から、W系やMo系の合金や、或いはそれらにCeの酸化物やThの酸化物を分散させた合金が使用されるようになっている。
また、特許文献1には、W電極を熱処理して表面に酸化物被膜を形成した抵抗溶接電極が提案されている。
セイワ製作所HP (http://www.seiwamfg.co.jp/manu/top_fus_a.html) 特開2001−9574号公報
Under such a background, a Cu alloy in which a hard alloy such as Al 2 O 3 is dispersed or a Cu alloy such as Cu—Cr or Cu—Cr—Zr is used as an electrode for fusing welding. Cu-Cr alloys are often used from a comprehensive viewpoint such as heat conduction characteristics, strength, and cost.
Recently, from the viewpoints of deformation resistance and heat resistance, W-based and Mo-based alloys, or alloys in which Ce oxide and Th oxide are dispersed have been used.
Patent Document 1 proposes a resistance welding electrode in which a W electrode is heat-treated to form an oxide film on the surface.
Seiwa Seisakusho HP (http://www.seiwamfg.co.jp/manu/top_fus_a.html) JP 2001-9574 A

ところで、特許文献1で紹介されている電極は、溶接電流や電圧などの溶接条件が変動することを防止して溶接品質を安定化できる、一般的な抵抗溶接用電極を提供しようとするものであって、W電極表面に酸化物被膜を形成することにより前記効果が期待できる。
しかしながら、同じ抵抗溶接用の電極であっても、先端に加熱・加圧が繰返し加えられる態様で用いられるW若しくはMo系のヒュージング溶接用電極にあっては、繰返し加えられる加熱・加圧によって先端部に脱粒損耗・欠損が生じ、当該電極が短時間で本来の用を果たさなくなるようになることがある。このため、交換頻度が高くなり、結果としてコスト高となってしまう問題があった。
本発明は、このような問題を解消すべく案出されたものであり、ヒュージング溶接に用いられる電極として、使用面での脱粒損耗・欠損を抑制し、耐久性を安定的に高めたW若しくはMo系のヒュージング溶接用電極を安価に提供することを目的とする。
By the way, the electrode introduced in Patent Document 1 is intended to provide a general resistance welding electrode capable of stabilizing welding quality by preventing welding conditions such as welding current and voltage from fluctuating. The above effect can be expected by forming an oxide film on the surface of the W electrode.
However, even with the same resistance welding electrode, the W or Mo fusing welding electrode used in a mode in which heating and pressurizing are repeatedly applied to the tip, the heating and pressurizing are repeated. There are cases where detachment wear and loss occur at the tip, and the electrode can no longer be used for a short time. For this reason, there has been a problem that the replacement frequency increases, resulting in an increase in cost.
The present invention has been devised to solve such a problem. As an electrode used for fusing welding, the present invention suppresses degranulation wear / deficiency on the use surface and stably improves the durability. Alternatively, an object is to provide an Mo-based fusing welding electrode at a low cost.

本発明のヒュージング溶接用電極は、その目的を達成するため、W又はMo若しくはそれらを基材とする合金からなり、横断面平均粒子径が50μm以上であり、かつアスペクト比が1.5以上になるように軸方向に伸びた組織を有することを特徴とする。特に、W又はMo若しくはそれらを基材とする合金が焼結とスエージング加工、並びにその後に焼きなましの熱処理が施され、繊維状組織を有しているものが好ましい。   In order to achieve the object, the fusing welding electrode of the present invention is made of W or Mo or an alloy based on them, has a cross-sectional average particle diameter of 50 μm or more, and an aspect ratio of 1.5 or more. It has the structure | tissue extended in the axial direction so that it may become. In particular, it is preferable that W or Mo or an alloy based on them is sintered and swaging processed, and then annealed to have a fibrous structure.

W若しくはWを基材とする合金にあっては、常温の硬度がHV300〜430であることが好ましい。また、Mo若しくはMoを基材とする合金にあっては、常温の硬度がHV180〜260であることが好ましい。
W又はMo若しくはそれらを基材とする合金には、2a族元素,4a族元素、5a族元素、6a族元素又は希土類元素の酸化物,窒化物,炭化物及びホウ化物から選ばれる少なくとも一種以上の微粒子を分散させたものであってもよい。これらの微粒子としては、平均粒子径が2μm以下のものを合計で0.5〜10質量%の割合で分散させたものが好ましい。
本発明のヒュージング溶接用電極は、さらに、Cu又はCu合金を電極本体とし、その先端部に、前記特徴を有するW又はMo若しくはそれらを基材とする合金を装着した二重構造とすることが好ましい。
In the case of W or an alloy based on W, the hardness at normal temperature is preferably HV300 to 430. Moreover, in the case of Mo or an alloy containing Mo as a base material, the hardness at normal temperature is preferably HV180 to 260.
W or Mo or an alloy based thereon includes at least one selected from oxides, nitrides, carbides and borides of Group 2a, 4a, 5a, 6a or rare earth elements Fine particles may be dispersed. These fine particles preferably have a mean particle diameter of 2 μm or less dispersed in a proportion of 0.5 to 10% by mass in total.
The electrode for fusing welding of the present invention further has a double structure in which Cu or a Cu alloy is used as an electrode body, and W or Mo having the above characteristics or an alloy based on them is attached to the tip thereof. Is preferred.

本発明のヒュージング溶接用電極においては、通電焼結とその後のスエージング加工を経て製造されたW又はMo若しくはそれらを基材とする合金に、その後さらに熱処理を施すことによって、スエージング加工時に導入されて残留している加工残留応力を開放するとともに、当該合金を構成する繊維状組織の結晶粒のアスペクト比を比較的小さく、かつ横断面平均粒子径を比較的大きくしている。このため、耐久性が安定的に高められたヒュージング溶接用電極を安価に提供することが可能となる。   In the fusing welding electrode of the present invention, by performing further heat treatment on W or Mo produced through current sintering and subsequent swaging, or an alloy based thereon, during swaging The residual processing residual stress introduced is released, the aspect ratio of the crystal grains of the fibrous structure constituting the alloy is relatively small, and the cross-sectional average particle diameter is relatively large. For this reason, it becomes possible to provide the electrode for fusing welding whose durability was stably improved at low cost.

本発明者等は、W電極を用いてヒュージング溶接する際に、電極先端に生じる損耗・欠損の発生原因とその対策について種々の検討を重ねた。Mo電極でも同様と推測する。
まず、溶接時の電極先端部の損耗状況を観察すると、図1に見られるように電極の先端では、先端から垂直方向に伸びたクラックが電極の径方向に伸展したクラックと連結することで、電極の先端表面の粒子が脱落し、欠損していくことがわかる。
ところで、ヒュージング溶接用の電極に用いられるWの棒材は、通常、通電焼結とその後のスエージング加工を経て製造されている。このため、微細な繊維状組織を有している。しかも、スエージング加工等、製造工程で強加工が施されているために、加工残留応力が存在し、非常に硬い状態となっている。
The inventors of the present invention have made various investigations on the causes of wear / defects occurring at the tip of the electrode and countermeasures when fusing welding using the W electrode. The same applies to the Mo electrode.
First, when observing the wear situation of the electrode tip during welding, as seen in FIG. 1, at the tip of the electrode, the crack extending in the vertical direction from the tip is connected to the crack extending in the radial direction of the electrode, It can be seen that particles on the tip surface of the electrode drop off and are lost.
By the way, W rods used for electrodes for fusing welding are usually manufactured through current sintering and subsequent swaging. For this reason, it has a fine fibrous structure. In addition, since strong processing such as swaging processing is performed in the manufacturing process, there is processing residual stress, which is very hard.

このような状態のままでW棒材を電極に用いると、溶接時に電極先端部に加熱・加圧による応力が繰返し加わって、前記残留応力との相乗作用で、溶接の初期の段階からクラックが発生し、徐々に伸展して行くものと推測される。
したがって、電極先端に生じる損耗・欠損の発生を抑制するためには、クラックの伸展及びクラックの連結を抑えることが有効であり、当初の残留応力を極力排除しておくことが有効であると推測される。
If the W bar is used for the electrode in this state, stress due to heating and pressurization is repeatedly applied to the tip of the electrode during welding, and a crack occurs from the initial stage of welding due to a synergistic effect with the residual stress. It is assumed that it will occur and gradually expand.
Therefore, in order to suppress the occurrence of wear and defects at the tip of the electrode, it is effective to suppress crack extension and crack connection, and it is effective to eliminate the initial residual stress as much as possible. Is done.

通常、金属材料における残留応力は焼きなましの熱処理を行うことによって除去される。そこで、ヒュージング溶接用の電極に用いられるWの棒材にあっても、スエージング加工等の強加工が施された棒材にさらに焼きなましの熱処理を施して加工残留応力を除去した棒材を素材とすれば、溶接の初期段階から生じるクラックの発生を抑制し得ることを見出したものである。実際に熱処理を施したW材を電極素材に用いたものでは図2に見られるようにクラックの発生が少ない。
ところで、ヒュージング溶接用の電極に用いられるW棒材の加工残留応力量は、常温での硬さを評価することにより大よそ推定することができる。スエージング加工等の強加工が施されたW棒材の断面硬さは通常HV450程度であるのに対して、十分な焼きなまし処理が施された後にあってはHV300弱程度となる。
Usually, the residual stress in the metal material is removed by performing an annealing heat treatment. Therefore, even in the case of a W bar used for an electrode for fusing welding, a bar that has been subjected to annealing heat treatment on a bar that has been subjected to strong processing such as swaging is removed to remove the processing residual stress. It has been found that if a material is used, it is possible to suppress the occurrence of cracks generated from the initial stage of welding. In the case where a W material that has been actually heat-treated is used as an electrode material, the occurrence of cracks is small as seen in FIG.
By the way, the processing residual stress amount of the W bar used for the electrode for fusing welding can be roughly estimated by evaluating the hardness at normal temperature. The cross-sectional hardness of a W bar that has been subjected to strong processing such as swaging is usually about HV450, but after a sufficient annealing treatment, it becomes about HV300 or less.

適正な焼きなまし状態を呈する硬さについての詳細な説明は後述の実施例に譲るが、溶接の初期段階から生じるクラックの発生を抑制し、かつ電極としてその先端形状を維持するには、W若しくはWを基とする合金を電極素材として用いる場合には、HV300〜430の範囲に調整しておくことが好ましい。
この値を超えると、残留応力の低減が不十分で、比較的初期段階からの電極先端にクラックが発生する虞がある。逆にHV300を下回るほどまで焼きなますと電極としての使用の際に先端径が拡大し、比較的短時間で電極寿命を迎えることになる。
なお、Mo若しくはMoを基とする合金を電極素材とした場合では、同様に、HV180〜260の範囲に調整しておくことが好ましい。
A detailed description of the hardness that exhibits the proper annealing state will be given in the examples below. To suppress the occurrence of cracks that occur from the initial stage of welding and maintain the tip shape as an electrode, W or W In the case of using an alloy based on HV as an electrode material, it is preferably adjusted in the range of HV300 to 430.
When this value is exceeded, the residual stress is not sufficiently reduced, and cracks may occur at the electrode tip from a relatively early stage. On the other hand, if the electrode is annealed to below HV300, the tip diameter increases when used as an electrode, and the electrode life is reached in a relatively short time.
In addition, when using Mo or the alloy based on Mo as an electrode raw material, it is preferable to adjust similarly to the range of HV180-260.

溶接時の電極先端部の損耗には、加工残留応力のみでなく、電極先端表面の結晶粒子の分布状況、すなわち金属組織も大きく影響している。
すなわち、スエージング加工により金属組織を繊維状組織とすることは、クラックの伸展方向をより垂直方向に向かわせるために、脱粒を抑制する意味では極めて有効である。しかしながら、前記したように、大きい加工残留応力に起因する弊害をもたらす。焼きなましの熱処理を施すと繊維状組織に変化が生じる。繊維状組織が完全に消滅し、粒状組織にまでなってしまうと、径方向のクラック伸展により脱粒が起こりやすくなって、電極先端部の損耗が大きくなってしまう。また、焼きなましの熱処理を施すと結晶粒も大きくなる。
The wear of the electrode tip during welding is greatly influenced not only by the processing residual stress but also by the distribution of crystal particles on the electrode tip surface, that is, by the metal structure.
That is, making the metal structure into a fibrous structure by swaging is extremely effective in terms of suppressing degranulation in order to make the extension direction of cracks more perpendicular. However, as described above, it causes a harmful effect due to a large processing residual stress. When the annealing heat treatment is applied, the fibrous structure is changed. When the fibrous structure disappears completely and becomes a granular structure, degranulation is likely to occur due to crack extension in the radial direction, and wear of the electrode tip portion increases. In addition, when annealing is performed, the crystal grains become larger.

焼きなましの熱処理後の適正な組織状態についての詳細な説明は後述の実施例に譲るが、芯材の損耗・欠損を抑制するためには、繊維状組織を維持した粒子の長径/短径比、いわゆるアスペクト比が1.5以上であって、それぞれの粒子の横断面平均径が50μm以上であることが必要である。
アスペクト比が1.5に満たないと電極先端で脱粒が起きやすくなる。また、横断面平均粒子径が50μmに満たないと、粒子が脱落しやすくなったり、電気抵抗が大きくなったりして電極損耗が激しくなる。
A detailed description of the appropriate structure state after the annealing heat treatment will be given in the examples below, but in order to suppress the wear and loss of the core material, the major axis / minor axis ratio of the particles maintaining the fibrous structure, It is necessary that the so-called aspect ratio is 1.5 or more, and the average cross-sectional diameter of each particle is 50 μm or more.
If the aspect ratio is less than 1.5, detachment tends to occur at the electrode tip. On the other hand, if the average particle diameter of the cross section is less than 50 μm, the particles easily fall off and the electric resistance increases, resulting in severe electrode wear.

粒界は、粒界を挟んで隣接する原子間の結合強度が弱い部分であるので、結晶粒子径が小さくなると、粒界面積が増加して粒子が脱落し易くなる。特に、W又はMo若しくはそれらを基材とする合金の場合、横断面平均粒子径が50μm未満であるとその影響が顕著で、衝撃により粒子が脱落しやすく、電気抵抗が大きくなる。したがって、横断面平均粒子径は50μm以上とすることが好ましい。そのため、理想的には、粒界がない単結晶が好ましい。   Since the grain boundary is a portion where the bond strength between adjacent atoms across the grain boundary is weak, when the crystal grain size becomes small, the grain boundary area increases and the particles easily fall off. In particular, in the case of W or Mo or an alloy based on them, the influence is remarkable when the average particle diameter of the cross section is less than 50 μm, the particles are easily dropped by impact, and the electric resistance increases. Therefore, the average cross-sectional particle diameter is preferably 50 μm or more. Therefore, ideally, a single crystal having no grain boundary is preferable.

加熱しながらスエージング加工することにより、本発明のヒュージング溶接用電極の芯材材料を製造する場合、加工温度を再結晶温度以上で焼結温度程度になるまで高くしてスエージング加工用治具の温度も再結晶温度以上で焼結温度程度になるようにできればW又はMoが粒成長し、W又はMo粒子の横断面平均粒子径を限りなく大きくすることができる。しかしながら、実際のところ上記のような焼結温度に近い高温での加工ができず、W又はMo粒子の横断面平均粒子径も3mmが限界である。なお、コスト的な側面をも考慮すると、加工温度を抑え、その横断面平均粒子径は300μm程度を上限とすることが現実的である。   When the core material of the fusing welding electrode of the present invention is manufactured by swaging while heating, the processing temperature is raised to the sintering temperature above the recrystallization temperature to increase the temperature for swaging. If the temperature of the tool can be equal to or higher than the recrystallization temperature and about the sintering temperature, W or Mo can grow and the average cross-sectional average particle diameter of the W or Mo particles can be increased without limit. However, in practice, processing at a high temperature close to the sintering temperature as described above cannot be performed, and the average cross-sectional particle diameter of W or Mo particles is limited to 3 mm. In consideration of the cost aspect, it is practical that the processing temperature is suppressed and the average cross-sectional particle diameter is about 300 μm.

また、加熱しながらスエージング加工することにより本発明のヒュージング溶接用電極の芯材材料を製造する場合は、W又はMoは体心立方格子の結晶構造を有し、もともと展性延性がある材料でなく脆性材料であり、塑性加工がし難く、脆性延性遷移温度(約400℃)を超える温度以上で加工してもW又はMo粒子が延びきれず、途中で切断されてしまいアスペクト比が50となるまでしか加工できない。なお、コスト的な側面をも考慮すると、加工温度を抑え、そのアスペクト比は20程度を上限とすることが現実的である。   When the core material of the fusing welding electrode of the present invention is produced by swaging while heating, W or Mo has a body-centered cubic lattice crystal structure and is originally malleable ductility. It is not a material but a brittle material, it is difficult to perform plastic working, and even if it is processed at a temperature exceeding the brittle ductile transition temperature (about 400 ° C.), W or Mo particles cannot be extended, and the aspect ratio is cut in the middle. It can be processed only until 50. In consideration of the cost aspect, it is practical to suppress the processing temperature and set the aspect ratio to about 20 as an upper limit.

さらに、本発明のようなW系又はMo系の金属・合金をヒュージング溶接用二重電極の芯材に用いると、当該W系又はMo系の金属・合金が端子金属と合金化反応を起こすことがある。端子金属との合金化反応が進行すると芯材の先端形状が変形し、結果的に電極寿命を短くすることにつながる。
端子金属との合金化反応を抑制させるためには、W系又はMo系の金属・合金中に2a族元素,4a族元素,5a族元素,6a族元素又は希土類元素の酸化物,窒化物,炭化物及びホウ化物から選ばれる少なくとも一種以上の微粒子を分散させることが好ましい。
これらの微粒子は、Sn、Ag、Ni、Cu、Zn、Fe、Co等の端子構成成分や端子めっき成分との反応性に乏しいため、ヒュージング溶接用二重電極の芯材であるW系又はMo系の金属・合金に対して端子金属と濡れ難くし、W系又はMo系の金属・合金と端子金属との合金化反応を抑制する。
Further, when a W-based or Mo-based metal / alloy as in the present invention is used as a core material for a double electrode for fusing welding, the W-based or Mo-based metal / alloy causes an alloying reaction with a terminal metal. Sometimes. As the alloying reaction with the terminal metal proceeds, the tip shape of the core material is deformed, resulting in shortening of the electrode life.
In order to suppress the alloying reaction with the terminal metal, oxides, nitrides of 2a group elements, 4a group elements, 5a group elements, 6a group elements or rare earth elements in W-based or Mo-based metals and alloys, It is preferable to disperse at least one kind of fine particles selected from carbides and borides.
These fine particles have poor reactivity with terminal constituent components and terminal plating components such as Sn, Ag, Ni, Cu, Zn, Fe, Co, etc. Therefore, the W-based core material of the double electrode for fusing welding or It prevents the terminal metal from getting wet with the Mo-based metal / alloy, and suppresses the alloying reaction between the W-based or Mo-based metal / alloy and the terminal metal.

本発明のヒュージング溶接用W系又はMo系の金属・合金中にも、2a族元素,4a族元素、5a族元素、6a族元素又は希土類元素の酸化物,窒化物,炭化物及びホウ化物から選ばれる少なくとも一種以上の微粒子を分散させると、当該電極の微細割れを抑制する上でも有効である。
W系又はMo系の金属・合金中に分散させた微粒子は、電極が衝撃を受けた際の割れの伝播をピン止めする作用を発揮し、結果的に耐衝撃性に優れ、割れ発生を抑制する。
The fusing welding W-based or Mo-based metal / alloy of the present invention also includes oxides, nitrides, carbides and borides of 2a group elements, 4a group elements, 5a group elements, 6a group elements or rare earth elements. Dispersing at least one or more selected fine particles is also effective in suppressing fine cracking of the electrode.
Fine particles dispersed in W-based or Mo-based metal / alloys have the effect of pinning the propagation of cracks when the electrode is impacted, resulting in excellent impact resistance and suppressing cracking. To do.

添加効果を得るには微粒子は0.5質量%以上分散させることが好ましいが、10質量%を超えると電気伝導性が大きく低下し、電極と被溶接材での電気抵抗が高くなって被溶接材間に十分な溶接電流が通電しにくくなるため、安定したヒュージング溶接を進め難くなる。
また、含有させる微粒子の粒子径は、2μm以下にすることが好ましい。2μmを超える微粒子を含有させると熱膨張率の差によって芯材の破壊の起点になりやすい。
In order to obtain the effect of addition, it is preferable to disperse the fine particles in an amount of 0.5% by mass or more. However, if it exceeds 10% by mass, the electrical conductivity is greatly reduced, and the electric resistance between the electrode and the material to be welded is increased, so Since it becomes difficult to pass a sufficient welding current between the materials, it becomes difficult to proceed with stable fusing welding.
Further, the particle diameter of the fine particles to be contained is preferably 2 μm or less. If fine particles exceeding 2 μm are contained, the core material tends to be broken due to the difference in thermal expansion coefficient.

次に、本発明のヒュージング溶接用電極の製造方法について説明する。
一般に、W系又はMo系の金属・合金は、焼結法で製造される。本発明のW系又はMo系の金属・合金も焼結法で製造される。通電焼結法を採用することが好ましい。
なお、通電焼結体からなるW系又はMo系の金属・合金にあっては、10〜200ppm程度のK(カリウム)を、酸化物、窒化物、金属K、炭化物或いは硼化物の形態でドープされたものが多用されている。本明細書中では、W系又はMo系の金属・合金としてはKドープのものも包含していることを付言しておく。
Next, the manufacturing method of the electrode for fusing welding of this invention is demonstrated.
In general, a W-based or Mo-based metal / alloy is manufactured by a sintering method. The W-based or Mo-based metal / alloy of the present invention is also produced by a sintering method. It is preferable to employ an electric current sintering method.
In the case of W-based or Mo-based metals / alloys made of an electric current sintered body, about 10 to 200 ppm of K (potassium) is doped in the form of oxide, nitride, metal K, carbide or boride. What was done is used a lot. In this specification, it is added that W- or Mo-based metals / alloys include K-doped metals and alloys.

必要に応じて微粒子を加えたW系又はMo系の金属・合金の酸化物粉末あるいは金属粉末を還元雰囲気で熱処理し、得られた粉末を適宜形状に成形して予備焼結、通電焼結した後、焼結体にスエージング加工を施して棒状のW系又はMo系の金属・合金を得る。
得られた棒状の金属・合金に焼きなましの熱処理を施す。
その条件としては、W系の金属・合金の場合、非酸化性雰囲気中、1400〜3000℃で1秒以上1時間以下の処理が好ましい。又、Mo系の金属・合金の場合、非酸化性雰囲気中、980〜2100℃で1秒以上1時間以下の処理が好ましい。処理温度が上記に満たないと、或いは処理時間が1秒に満たないと、スエージング加工時に導入された加工残留応力の開放が不十分で、使用時に先端面での脱粒が起こり、電極等として用いる際の寿命が短くなる。逆にW系の金属・合金、Mo系の金属・合金の処理温度が、それぞれ3000℃、2100℃を超えたり、或いは処理時間が1時間を超えるほどに長くしたりすると、スエージング加工時に導入された繊維状組織に再結晶が進行し、アスペクト比が小さくなって硬度が低下し、電極等として用いる際の寿命が短くなる。また、アスペクト比は1.5以上を維持するものの、組織の再結晶が比較的進みにくいため横断面平均粒子径を50μm以上にすることはできない。逆に処理温度が上記温度を超えたり、或いは処理時間が1時間を超えるほどに長くしたりすると、スエージング加工時に導入された繊維状組織に再結晶が進行し、アスペクト比が小さくなりすぎ、横断面平均粒子径も大きくなりすぎるため硬度が低下し、電極等として用いる際の寿命が短くなる。
If necessary, W- or Mo-based metal / alloy oxide powder or metal powder with fine particles added is heat-treated in a reducing atmosphere, and the resulting powder is shaped into an appropriate shape, pre-sintered, and electrically sintered. Thereafter, swaging is applied to the sintered body to obtain a rod-like W-based or Mo-based metal / alloy.
The obtained rod-like metal / alloy is subjected to annealing heat treatment.
As for the conditions, in the case of W-based metals and alloys, treatment in a non-oxidizing atmosphere at 1400 to 3000 ° C. for 1 second or more and 1 hour or less is preferable. In the case of Mo-based metals and alloys, treatment in a non-oxidizing atmosphere at 980 to 2100 ° C. for 1 second or more and 1 hour or less is preferable. If the processing temperature is less than the above, or if the processing time is less than 1 second, the release of the processing residual stress introduced at the time of swaging processing is insufficient, and degranulation occurs at the tip surface during use, as an electrode, etc. The service life when used is shortened. Conversely, if the processing temperatures of W-based metals / alloys and Mo-based metals / alloys exceed 3000 ° C, 2100 ° C, or increase the processing time to exceed 1 hour, they are introduced during swaging. Recrystallization proceeds to the formed fibrous structure, the aspect ratio becomes small, the hardness decreases, and the life when used as an electrode or the like is shortened. Further, although the aspect ratio is maintained at 1.5 or more, the average particle diameter of the cross section cannot be increased to 50 μm or more because the recrystallization of the structure is relatively difficult to proceed. Conversely, if the processing temperature exceeds the above temperature, or if the processing time is increased to exceed 1 hour, recrystallization proceeds to the fibrous structure introduced during swaging, the aspect ratio becomes too small, Since the average particle diameter of the cross section is too large, the hardness is lowered and the life when used as an electrode or the like is shortened.

上記に示したように、芯材のアスペクト比と横断面平均粒子径と規定値範囲内にするためには、熱処理における処理温度と処理時間のバランスを保つことが必要である。
加熱しながらスエージング加工することにより、本発明のヒュージング溶接用二重電極の芯材を製造する場合、横断面平均粒子径を50μm以上にするには、最初のスエージング加工の工程で粒成長させて横断面平均粒子径を50μm近傍まで成長させて、その後再結晶温度以上の熱処理により横断面平均粒子径を50μm以上にする方法と、スエージング加工では粒成長が十分でなくても、後工程の熱処理で粒成長させて横断面平均粒子径を50μm以上とするようにすればよい。効果的に粒成長をさせて必要な粒径にするには、HIP(熱間静水圧)処理をスエージング加工工程の前後に入れるとよい。粒成長には、再結晶化エネルギーを与えるための温度と圧力と時間のファクターが効いている。
また、アスペクト比を1.5以上にするには、スエージング加工工程で少なくとも延性脆性遷移温度(約400℃)以上にして、脆性破壊が起こらないように加工圧力を適切にかけ数回の加工を実施することが好ましい。
As described above, it is necessary to maintain a balance between the treatment temperature and the treatment time in the heat treatment in order to make the aspect ratio, the cross-sectional average particle diameter, and the prescribed value range of the core material.
When the core material of the double electrode for fusing welding of the present invention is produced by swaging while heating, in order to make the average particle diameter of the cross section to 50 μm or more, the grain is formed in the first swaging process. Growing to grow the cross-sectional average particle size to near 50 μm, and then the method of increasing the cross-sectional average particle size to 50 μm or more by heat treatment above the recrystallization temperature, even if the grain growth is not sufficient in swaging processing, The grains may be grown by a post-treatment heat treatment so that the average cross-sectional particle diameter is 50 μm or more. In order to effectively grow the grains to the required grain size, it is preferable to put a HIP (hot isostatic pressure) treatment before and after the swaging process. Factors of temperature, pressure, and time for giving recrystallization energy are effective for grain growth.
In addition, in order to increase the aspect ratio to 1.5 or more, the swaging process is performed at least at the ductile brittle transition temperature (about 400 ° C.), and the processing pressure is appropriately applied so that brittle fracture does not occur. It is preferable to implement.

上記で得たW系又はMo系の棒体を所定の長さに裁断し、Cu又はCu合金からなる電極本体の先端部に装着して二重電極を製造する。この場合、W系又はMo系棒体は、一端が一部電極本体に埋設され、電極本体から突起した構造となるように装着する。
電極本体に用いるCu又はCu合金には、通常の純銅、あるいはCu−Cr合金、Cu−Cr−Zr合金等が使用される。
電極本体に装着する態様としては、Cu又はCu合金からなる棒状態の電極本体の先端部に穿った孔に、上記で得たW系又はMo系の棒体の後端部を圧入しても良いし、ロウ材を介して挿し込んでも良い。或いは焼き嵌めを行っても良いし、W系又はMo系の棒体を銅材で鋳包んだ後冷間鍛造を施しても良い。W系又はMo系の棒体とCu系電極本体が密に接合されていれば、電気伝導,熱伝導の点で問題になることはない。
二重構造の電極構造体を形成した後、先端に研削加工を施して、適宜所要の形状に整えれば十分である。
The W- or Mo-based rod obtained above is cut into a predetermined length, and attached to the tip of an electrode body made of Cu or Cu alloy to produce a double electrode. In this case, the W-based or Mo-based rod is mounted so that one end is partially embedded in the electrode body and protrudes from the electrode body.
As the Cu or Cu alloy used for the electrode body, ordinary pure copper, Cu—Cr alloy, Cu—Cr—Zr alloy or the like is used.
As an aspect to be mounted on the electrode body, even if the rear end portion of the W-based or Mo-based rod body obtained above is press-fitted into the hole drilled in the tip portion of the electrode body in a rod state made of Cu or Cu alloy It may be good or may be inserted through a brazing material. Alternatively, shrink fitting may be performed, or cold forging may be performed after casting a W-based or Mo-based rod body with a copper material. If the W-based or Mo-based rod body and the Cu-based electrode main body are closely joined, there is no problem in terms of electrical conduction and thermal conduction.
After forming the double-structured electrode structure, it is sufficient to grind the tip and adjust it to the required shape as appropriate.

実施例1:
供試材として、φ1.5mmのポリウレタン被覆銅線とSnメッキ圧着端子を用いた。電極として、図3に示すような、φ4mm×13mmのタングステン芯材1の端部をφ8mm×22mmの銅材2中に埋め込んで接合した二重構造の電極3を用いた。タングステン芯材1としては、純度99.95%のW粉末を通電焼結した後にスエージング加工とセンターレス研磨を行って直径4mmとし、非酸化性雰囲気中、1400〜3000℃の温度範囲及び1秒以上1時間以下の範囲で種々変更した各種条件の熱処理を施して組織、硬度を変えたものを作製した。このタングステン芯材1の後端をCu2の先端に埋め込んでタングステン芯材1の先端が、Cu2より突起した形状の二重構造の電極3を作製した。なお、表2中、最下段に記載のものは、熱処理を施さず、センターレス研磨までを施した比較例である。
表1に示す条件で連続打点のヒュージング溶接を行った。そして、端子と導線の導通をチェックし導通がないものを溶接不良として電極寿命を求めた。
その結果を表2に示す。
Example 1:
As test materials, a polyurethane-coated copper wire having a diameter of 1.5 mm and an Sn-plated crimp terminal were used. As the electrode, as shown in FIG. 3, a double structure electrode 3 was used in which the end of a φ4 mm × 13 mm tungsten core material 1 was embedded in a copper material 2 of φ8 mm × 22 mm and joined. As the tungsten core material 1, a 99.95% purity W powder was subjected to current sintering, swaging and centerless polishing were performed to obtain a diameter of 4 mm, a non-oxidizing atmosphere having a temperature range of 1400 to 3000 ° C. and 1 Heat treatment under various conditions varied in the range from 1 second to 1 hour was made to change the structure and hardness. The rear end of this tungsten core material 1 was embedded in the tip of Cu2, and a double-structure electrode 3 having a shape in which the tip of the tungsten core material 1 protruded from Cu2 was produced. In Table 2, the one described at the bottom is a comparative example in which the heat treatment is not performed and the centerless polishing is performed.
Continuous fusing welding was performed under the conditions shown in Table 1. Then, the continuity between the terminal and the conductive wire was checked, and the life of the electrode was determined as a poor weld if there was no continuity.
The results are shown in Table 2.

Figure 0004916264
Figure 0004916264

表2の結果からもわかるように、熱処理条件が適切で、芯材のアスペクト比が1.5以上で、かつ横断面平均径が50μm以上となったものを芯材とした電極では、何の問題もなく5000打点を超えるヒュージング溶接が行えた。
これに対して、熱処理の温度が低すぎたり、或いは時間が短すぎたりすると、アスペクト比は1.5以上を維持するものの、横断面平均粒子径を50μm以上にすることはできず、このような芯材を用いると、先端面で脱粒が起こり、5000打点までのヒュージング溶接は行えなかった。また、処理温度が高すぎたり、或いは処理時間が長すぎたりすると、アスペクト比が小さくなりすぎたり、横断面平均粒子径が大きくなりすぎたりする傾向が見られ、このような芯材を用いると、硬度が低くなって芯材の変形が大きくなり、所望の電極寿命は得られなかった。
As can be seen from the results in Table 2, with an electrode having a core material in which the heat treatment conditions are appropriate, the core has an aspect ratio of 1.5 or more, and the average cross-sectional diameter is 50 μm or more, Fusing welding exceeding 5000 points could be performed without any problem.
On the other hand, if the heat treatment temperature is too low or the time is too short, the aspect ratio is maintained at 1.5 or higher, but the average cross-sectional particle diameter cannot be increased to 50 μm or more. When a core material was used, degranulation occurred at the tip surface, and fusing welding up to 5000 hit points could not be performed. In addition, if the processing temperature is too high or the processing time is too long, the aspect ratio tends to be too small or the average cross-sectional particle diameter tends to be too large, and using such a core material The hardness was lowered and the core material was greatly deformed, and the desired electrode life could not be obtained.

なお、本実施例では、芯材の形状として円柱状のものを用いたが、角柱状、多角柱状のものでも同様の結果となった。又、絶縁膜被覆銅線の絶縁被膜として本実施例では、ポリウレタンを使用したが、ポリイミドその他の絶縁膜を用いても同様の結果となった。圧着端子として、本実施例ではSnメッキ品を用いたが、Agメッキ品その他のメッキ品を用いてもよく、リン青銅、洋白、コバールその他の材質のものを用いても同様の結果となった。   In this example, a cylindrical shape was used as the shape of the core material, but the same result was obtained even in a prismatic shape or a polygonal shape. In this example, polyurethane was used as the insulating film of the insulating film-coated copper wire, but the same result was obtained even when polyimide or another insulating film was used. In this embodiment, Sn-plated products are used as the crimp terminals. However, Ag-plated products or other plated products may be used, and phosphor bronze, white, Kovar, or other materials may be used. It was.

Figure 0004916264
Figure 0004916264

実施例2:
実施例1と同様、供試材として、ポリウレタン被覆銅線とSnメッキ圧着端子を用いた。電極として、φ4mm×13mmのモリブデン芯材の端部をφ8mm×22mmの銅材中に埋め込んで接合した二重構造の電極を用いた。モリブデン芯材として、純度99.95%のMo粉末を通電燒結した後にスエージング加工とセンターレス研磨を行って直径6mmとし、非酸化性雰囲気中、980〜2100℃の温度範囲及び1秒以上1時間以下の範囲で種々変更した各種条件の熱処理を施して組織を変えたものを作製した。このモリブデン芯材の後端をCuの先端に埋め込んでモリブデン芯材1の先端が、Cu2より突起した形状の二重構造の電極を作製した。なお、表3中、最下段に記載のものは、熱処理を施さず、センターレス研磨までを施した比較例である。
実施例1と同じ条件で連続打点のヒュージング溶接を行い、実施例と同じ評価を行った。
その結果を表3に示す。
Example 2:
As in Example 1, polyurethane-coated copper wires and Sn-plated crimp terminals were used as test materials. As the electrode, a double-structured electrode in which the end of a φ4 mm × 13 mm molybdenum core material was embedded in a φ8 mm × 22 mm copper material and joined was used. As a molybdenum core material, 99.95% pure Mo powder was energized and sintered, and then swaging and centerless polishing were performed to obtain a diameter of 6 mm. In a non-oxidizing atmosphere, a temperature range of 980 to 2100 ° C. and 1 second or more 1 What changed the structure | tissue by giving the heat processing of various conditions changed variously in the range below time was produced. The rear end of this molybdenum core material was embedded in the front end of Cu, and a double-structure electrode having a shape in which the front end of the molybdenum core material 1 protruded from Cu 2 was produced. In Table 3, the one shown at the bottom is a comparative example in which the heat treatment is not performed and the centerless polishing is performed.
Continuous fusing welding was performed under the same conditions as in Example 1, and the same evaluation as in Example was performed.
The results are shown in Table 3.

表3の結果からわかるように、実施例1と全く同様に、熱処理条件が適切で、芯材のアスペクト比が1.5以上で、かつ横断面平均径が50μm以上となったものを芯材とした電極では、何の問題もなく5000打点を超えるヒュージング溶接が行えた。
これに対して、熱処理の温度が低すぎたり、或いは時間が短すぎたりすると、アスペクト比は1.5以上を維持するものの、横断面平均粒子径を50μm以上にすることはできず、このような芯材を用いると、先端面で脱粒が起こり、5000打点までのヒュージング溶接は行えなかった。また、処理温度が高すぎたり、或いは処理時間が長すぎたりすると、アスペクト比が小さくなりすぎたり、横断面平均粒子径が大きくなりすぎたりする傾向が見られ、このような芯材を用いると、硬度が低くなって芯材の変形が大きくなり、所望の電極寿命は得られなかった。
As can be seen from the results in Table 3, in the same manner as in Example 1, the heat treatment conditions were appropriate, the core had an aspect ratio of 1.5 or more, and the average cross-sectional diameter was 50 μm or more. With the electrode, fusing welding exceeding 5000 points could be performed without any problem.
On the other hand, if the heat treatment temperature is too low or the time is too short, the aspect ratio is maintained at 1.5 or higher, but the average cross-sectional particle diameter cannot be increased to 50 μm or more. When a core material was used, degranulation occurred at the tip surface, and fusing welding up to 5000 hit points could not be performed. In addition, if the processing temperature is too high or the processing time is too long, the aspect ratio tends to be too small or the average cross-sectional particle diameter tends to be too large, and using such a core material The hardness was lowered and the core material was greatly deformed, and the desired electrode life could not be obtained.

なお、本実施例では、芯材の形状として円柱状のものを用いたが、角柱状、多角柱状のものでも同様の結果となった。又、絶縁膜被覆銅線の絶縁被膜として本実施例では、ポリウレタンを使用したが、ポリイミドその他の絶縁膜を用いても同様の結果となった。圧着端子として、本実施例ではSnメッキ品を用いたが、Agメッキ品その他のメッキ品を用いてもよく、リン青銅、洋白、コバールその他の材質のものを用いても同様の結果となった。   In this example, a cylindrical shape was used as the shape of the core material, but the same result was obtained even in a prismatic shape or a polygonal shape. In this example, polyurethane was used as the insulating film of the insulating film-coated copper wire, but the same result was obtained even when polyimide or another insulating film was used. In this embodiment, Sn-plated products are used as the crimp terminals. However, Ag-plated products or other plated products may be used, and phosphor bronze, white, Kovar, or other materials may be used. It was.

Figure 0004916264
Figure 0004916264

実施例3:
粒子径0.5μmのCeO2粉末を種々の配合割合で分散させたWを芯材とし、電極寿命に及ぼすCeO2粉末の含有量と幅寸法比率の影響を調査した。
芯材にCeO2粉末を含有させた以外は、実施例1と同じであり、芯材の熱処理を1600℃×30分の条件として、アスペクト比が1.7,横断面平均径が100μm、常温硬度がHV380の芯材特性とした。
Example 3:
The core material was W in which CeO 2 powder having a particle diameter of 0.5 μm was dispersed at various blending ratios, and the influence of the CeO 2 powder content and the width dimension ratio on the electrode life was investigated.
Except for containing CeO 2 powder in the core material, the same as Example 1, with the heat treatment of the core material being 1600 ° C. × 30 minutes, the aspect ratio is 1.7, the average cross-sectional diameter is 100 μm, and the room temperature The core material characteristics were such that the hardness was HV380.

表4に示す結果からわかるように、CeO2粉末の含有量が0.5〜10質量%の条件では、5000打点以上の電極寿命で改善効果が見られた。
これに対して、CeO2粉末含有量が0.5質量%未満でもアスペクト比と横断面粒子径の効果で電極寿命は5000打点以上となったが、芯材先端には比較的多くのめっき金属が堆積していた。また、CeO2粉末含有量が10質量%を超えると寿命改善作用が消滅していた。これは、電極先端へのめっき金属の堆積量が多くなり、電極と被溶接材での電気抵抗が高くなって溶接が不十分になってしまうためと推測される。
As can be seen from the results shown in Table 4, under the condition that the content of CeO 2 powder was 0.5 to 10% by mass, an improvement effect was observed with an electrode life of 5000 or more striking points.
On the other hand, although the CeO 2 powder content was less than 0.5% by mass, the electrode life was more than 5000 points due to the effect of the aspect ratio and the cross-sectional particle diameter, but a relatively large amount of plated metal was present at the tip of the core material. Was deposited. Further, when the CeO 2 powder content exceeds 10% by mass, the life improvement action has disappeared. This is presumably because the amount of plating metal deposited on the tip of the electrode increases and the electrical resistance between the electrode and the material to be welded increases, resulting in insufficient welding.

なお、本実施例では、芯材の形状として円柱状のものを用いたが、角柱状、多角柱状のものでも同様の結果となった。又、絶縁膜被覆銅線の絶縁被膜として本実施例では、ポリウレタンを使用したが、ポリイミドその他の絶縁膜を用いても同様の結果となった。圧着端子として、本実施例ではSnメッキ品を用いたが、Agメッキ品その他のメッキ品を用いてもよく、リン青銅、洋白、コバールその他の材質のものを用いても同様の結果となった。   In this example, a cylindrical shape was used as the shape of the core material, but the same result was obtained even in a prismatic shape or a polygonal shape. In this example, polyurethane was used as the insulating film of the insulating film-coated copper wire, but the same result was obtained even when polyimide or another insulating film was used. In this embodiment, Sn-plated products are used as the crimp terminals. However, Ag-plated products or other plated products may be used, and phosphor bronze, white, Kovar, or other materials may be used. It was.

Figure 0004916264
Figure 0004916264

実施例4:
粒子径と材質を種々変更した微粒子を、1質量%分散させたWを芯材として電極寿命を調査した。
芯材の特性及び溶接条件は、実施例3と同じである。
表5に示す結果からわかるように、粒子径が2μm以下の微粒子をWに分散させた場合は、電極寿命が大幅に延びた。電極寿命の改善は、2a族元素,4a族元素,5a族元素,6a族元素又は希土類元素の化合物である限り、微粒子の種類に拘らず有効であった。
また、CeOの微粒子の粒子径を0.5〜3μmで変更した場合は、粒子径が2μm以下で電極寿命の改善効果が見られた。
Example 4:
The life of the electrode was investigated using W in which 1% by mass of fine particles having various particle diameters and different materials were dispersed as a core material.
The core material characteristics and welding conditions are the same as in Example 3.
As can be seen from the results shown in Table 5, when fine particles having a particle size of 2 μm or less were dispersed in W, the electrode life was greatly extended. Improvement of the electrode life was effective regardless of the type of fine particles as long as it was a compound of 2a group element, 4a group element, 5a group element, 6a group element or rare earth element.
Further, when the particle diameter of the CeO 2 fine particles was changed from 0.5 to 3 μm, the effect of improving the electrode life was observed when the particle diameter was 2 μm or less.

なお、本実施例では、芯材の形状として円柱状のものを用いたが、角柱状、多角柱状のものでも同様の結果となった。又、絶縁膜被覆銅線の絶縁被膜として本実施例では、ポリウレタンを使用したが、ポリイミドその他の絶縁膜を用いても同様の結果となった。圧着端子として、本実施例ではSnメッキ品を用いたが、Agメッキ品その他のメッキ品を用いてもよく、リン青銅、洋白、コバールその他の材質のものを用いても同様の結果となった。   In this example, a cylindrical shape was used as the shape of the core material, but the same result was obtained even in a prismatic shape or a polygonal shape. In this example, polyurethane was used as the insulating film of the insulating film-coated copper wire, but the same result was obtained even when polyimide or another insulating film was used. In this embodiment, Sn-plated products are used as the crimp terminals. However, Ag-plated products or other plated products may be used, and phosphor bronze, white, Kovar, or other materials may be used. It was.

Figure 0004916264
Figure 0004916264

従来のヒュージング溶接用電極における芯材先端部の損耗状況を模式的に説明する図The figure which illustrates typically the wear condition of the front-end | tip part of the core material in the electrode for conventional fusing welding 本発明のヒュージング溶接用電極における芯材先端部の損耗状況を模式的に説明する図The figure which illustrates typically the wear condition of the core material front-end | tip part in the electrode for fusing welding of this invention 二重構造の埋め込み型ヒュージング電極の構造(a)とヒュージング溶接状況(b)を説明する図The figure explaining the structure (a) and the fusing welding situation (b) of a double structure embedded type fusing electrode

Claims (7)

W又はMo若しくはそれらを基材とする合金からなり、横断面平均粒子径が50μm以上であり、かつアスペクト比が1.5以上になるように軸方向に伸びた組織を有することを特徴とするヒュージング溶接用電極。   It is made of W or Mo or an alloy based on them, and has a cross-sectional average particle diameter of 50 μm or more and a structure extending in the axial direction so that the aspect ratio is 1.5 or more. Electrode for fusing welding. 焼結とスエージング加工、並びにその後に焼きなましの熱処理が施され、繊維状組織を有する請求項1に記載のヒュージング溶接用電極。   The electrode for fusing welding according to claim 1, wherein the electrode has a fibrous structure that has been subjected to sintering and swaging, and thereafter annealing heat treatment. W若しくはWを基材とする合金からなり、常温の硬度がHV300〜430である請求項1又は2に記載のヒュージング溶接用電極。   The fusing welding electrode according to claim 1 or 2, comprising W or an alloy having W as a base material, and having a normal temperature hardness of HV300 to 430. Mo若しくはMoを基材とする合金からなり、常温の硬度がHV180〜260である請求項1又は2に記載のヒュージング溶接用電極。   3. The fusing welding electrode according to claim 1, wherein the electrode is made of Mo or an alloy having Mo as a base material, and the hardness at normal temperature is HV180 to 260. 4. 合金中に、2a族元素,4a族元素、5a族元素,6a族元素又は希土類元素の酸化物,窒化物,炭化物及びホウ化物から選ばれる少なくとも一種以上の微粒子が0.5〜10質量%の割合で分散されている請求項1〜4のいずれか1項に記載のヒュージング溶接用電極。   In the alloy, 0.5 to 10% by mass of at least one kind of fine particles selected from oxides, nitrides, carbides and borides of Group 2a, 4a, 5a, 6a or rare earth elements The fusing welding electrode according to any one of claims 1 to 4, wherein the fusing welding electrode is dispersed in a proportion. 分散された微粒子が、平均粒子径が2μm以下である請求項5に記載のヒュージング溶接用電極。   6. The fusing welding electrode according to claim 5, wherein the dispersed fine particles have an average particle diameter of 2 μm or less. Cu又はCu合金からなる電極本体の先端部に、請求項1〜6のいずれかに記載のW又はMo若しくはそれらを基材とする合金が芯材として装着されているヒュージング溶接用電極。   An electrode for fusing welding in which W or Mo according to any one of claims 1 to 6 or an alloy based on them is mounted as a core material at the tip of an electrode body made of Cu or a Cu alloy.
JP2006254550A 2006-09-20 2006-09-20 Electrodes for fusing welding Active JP4916264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006254550A JP4916264B2 (en) 2006-09-20 2006-09-20 Electrodes for fusing welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006254550A JP4916264B2 (en) 2006-09-20 2006-09-20 Electrodes for fusing welding

Publications (2)

Publication Number Publication Date
JP2008073712A JP2008073712A (en) 2008-04-03
JP4916264B2 true JP4916264B2 (en) 2012-04-11

Family

ID=39346312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006254550A Active JP4916264B2 (en) 2006-09-20 2006-09-20 Electrodes for fusing welding

Country Status (1)

Country Link
JP (1) JP4916264B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5923951A (en) * 1996-07-29 1999-07-13 Lucent Technologies Inc. Method of making a flip-chip bonded GaAs-based opto-electronic device
EP2476508A4 (en) 2009-10-19 2016-04-13 Nippon Tungsten Tungsten cathode material
JP5881740B2 (en) * 2011-12-20 2016-03-09 株式会社東芝 Tungsten alloy and tungsten alloy parts, discharge lamp, transmitter tube and magnetron using the same
JP5881741B2 (en) * 2011-12-20 2016-03-09 株式会社東芝 Tungsten alloy and tungsten alloy parts, discharge lamp, transmitter tube and magnetron using the same
JP5881742B2 (en) * 2012-01-07 2016-03-09 株式会社東芝 Tungsten alloy and tungsten alloy parts, discharge lamp, transmitter tube and magnetron using the same
EP2857534B1 (en) 2012-05-29 2020-10-28 Kabushiki Kaisha Toshiba Tungsten alloy part, and discharge lamp, transmitting tube and magnetron using same, and use of the tungsten alloy part
JP6193651B2 (en) * 2013-07-06 2017-09-06 日本タングステン株式会社 Resistance welding electrode
CN104107975B (en) * 2014-07-23 2016-05-11 深圳市威勒达科技开发有限公司 A kind of steel alloy-tungsten electrode
KR102373916B1 (en) 2015-03-23 2022-03-11 미쓰비시 마테리알 가부시키가이샤 Polycrystalline tungsten sintered compact, polycrystalline tungsten alloy sintered compact, and method for manufacturing same
CN108754272B (en) * 2018-03-20 2020-02-18 陕西中天火箭技术股份有限公司 Preparation method of fine-grain tungsten-copper bar with large length-diameter ratio
CN110964963B (en) * 2019-12-16 2021-04-06 广东省材料与加工研究所 Tungsten-copper alloy pipe and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182786A (en) * 1984-09-28 1986-04-26 ブラザー工業株式会社 Sewing machine
CN1005732B (en) * 1985-04-01 1989-11-08 上海灯泡厂 W-ce electrode material, preparation technology and uses thereof
JPS63260684A (en) * 1987-04-03 1988-10-27 Hitachi Ltd Electrode for spot welding
JPH02155576A (en) * 1988-12-06 1990-06-14 Nippondenso Co Ltd Plating electrode
JPH06297189A (en) * 1993-04-14 1994-10-25 Toho Kinzoku Kk Tungsten electrode material
JPH07178568A (en) * 1993-10-08 1995-07-18 Honda Motor Co Ltd Electrode for resistance welding and its manufacture
JPH09111388A (en) * 1995-10-12 1997-04-28 Toho Kinzoku Kk Tungsten electrode material and heat treatment therefor
JP5083930B2 (en) * 2004-06-30 2012-11-28 日新製鋼株式会社 Spot welding electrode
JP4683896B2 (en) * 2004-10-05 2011-05-18 日本タングステン株式会社 Spot welding electrode

Also Published As

Publication number Publication date
JP2008073712A (en) 2008-04-03

Similar Documents

Publication Publication Date Title
JP4916264B2 (en) Electrodes for fusing welding
EP2027964B1 (en) Electrode for spot welding
EP3666914B1 (en) High strength/highly conductive copper alloy plate material and method for producing same
JP5457018B2 (en) Platinum iridium alloy and method for producing the same
JP5766833B2 (en) Medical needle
JP6734486B2 (en) Pd alloy for electric/electronic equipment, Pd alloy material, probe pin and manufacturing method
JP2008266783A (en) Copper alloy for electrical/electronic device and method for manufacturing the same
JP6432619B2 (en) Aluminum alloy conductor, insulated wire using the conductor, and method for producing the insulated wire
EP1628375A1 (en) Spark plug
JP2004307905A (en) Cu ALLOY, AND ITS PRODUCTION METHOD
JP4683896B2 (en) Spot welding electrode
WO2006004073A1 (en) Electrode for spot welding
JP5301035B2 (en) Spark plug
JP5083930B2 (en) Spot welding electrode
JP5127299B2 (en) Spot welding electrode
JP4177221B2 (en) Copper alloy for electronic equipment
JP5567395B2 (en) Silver-oxide based electrical contact materials
JP5017719B2 (en) Copper-based alloy plate excellent in press workability and method for producing the same
JP4683890B2 (en) Mg component-containing Zn-based alloy plated steel plate spot welding electrode
JP2007237209A (en) Resistance welding method
JP4068486B2 (en) Electrode material for resistance welding and manufacturing method thereof
KR100462685B1 (en) Thermal Fuse
KR20200083609A (en) Precipitation hardening type Ag-Pd-Cu-In-B type alloy
JP6381860B1 (en) Contact material, manufacturing method thereof and vacuum valve
JP5476111B2 (en) Method for producing Cr-Cu alloy and Cr-Cu alloy for current-carrying member for electronic equipment, lead frame or bus bar using the Cr-Cu alloy, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4916264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250