JP3846960B2 - Welding torch member and manufacturing method thereof - Google Patents
Welding torch member and manufacturing method thereof Download PDFInfo
- Publication number
- JP3846960B2 JP3846960B2 JP05388997A JP5388997A JP3846960B2 JP 3846960 B2 JP3846960 B2 JP 3846960B2 JP 05388997 A JP05388997 A JP 05388997A JP 5388997 A JP5388997 A JP 5388997A JP 3846960 B2 JP3846960 B2 JP 3846960B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- copper alloy
- welding torch
- welding
- alumina
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Arc Welding In General (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、溶接用トーチ部材、詳しくは、コンタクトチップ、ノズルなど、ガスシールドアーク溶接、特にMAG(Metal Active Gas) およびMIG(Metal Inert Gas)アーク溶接用のトーチ部材、およびその製造方法に関する。
【0002】
【従来の技術】
ガスシールドアーク溶接用トーチの先端部には、コンタクトチップが取り付けられ、該コンタクトチップを囲撓するようにコンタクトチップと同心にノズルが配設され、電極ワイヤがコンタクトチップへ供給され、シールドガスがノズルとコンタクトチップとの間に供給されるよう構成されている。
【0003】
従来、コンタクトチップやノズルの構成材料としては、純銅やクロム銅、ジルコニウム銅などの耐熱、高導電性銅合金基材が使用されているが、これらの材料は550℃程度の比較的低温度で軟化するため、溶接時の高温加熱で軟化し易く、コンタクトチップの場合、軟化による摩耗、変形が激しくなると、ワイヤが繰り出される孔が変形してワイヤとコンタクトチップとの接触が断続的となり、アークが不安定となって溶接が困難になるという難点がある。
【0004】
また、トーチ部材には、溶接時に1000℃以上の高温で飛散する被溶接材のスパッタが付着し、スパッタがノズル内面やコンタクトチップ外面に付着した場合にはシールドガスの正常な流れを妨げ、コンタクトチップの先端に付着した場合にはコンタクトチップのワイヤ供給孔を塞いでワイヤの供給を停止するという問題がある。
【0005】
スパッタの付着を防止できるカーボンノズルの使用も試みられているが、カーボンノズルは高価であるとともに割れ易いという欠点がある。ノズルにセラッミックをライニングする手段もあるが、製作が面倒でコスト的にも不利であり、スパッタ除去の際にセラミック層を破損するおそれもある。近年、とくにロボットを用いた溶接機が増加しており、無人で、出来るだけ長期にわたり高品位な溶接を行えるようにすることが要求されており、このような観点から、耐熱性がさらに優れ、溶接時に軟化することなく、スパッタも付着し難い溶接用トーチ部材の開発が強く望まれている。
【0006】
上記の要求を満たすものとして、コンタクトチップ、ノズルなどのガスシールドアーク溶接用トーチ部材を、銅または銅合金のマトリックス中にアルミニウム酸化物の粒子を分散させてなるアルミナ分散強化銅により形成することが提案されている。(実開平5−72962号明細書)アルミナ分散強化銅は、1000℃近い高温に曝されても殆ど軟化しない特性を有しており、スパッタの付着防止効果もある。
【0007】
しかしながら、アルミナ分散強化銅は、例えばアトマイズ法によりCu−Al合金粉末をつくり、合金粉末の一部を高温酸化し、Cu−Al合金粉末と高温酸化したCu−Al合金粉末とを混合、圧縮して銅容器内に封入し、熱間で加工することにより所定形状にするという粉末冶金法(PM法)による複雑な工程を経て製造されるため、製造コストが高く、溶接用トーチ部材のような頻繁に交換する消耗材に適用するには困難性がある。
【0008】
所定のアルミニウムを含有するCu−Al合金を酸素含有雰囲気中で高温加熱処理して内部酸化し、銅マトリックス中に酸化アルミニウム(アルミナ)を分散したアルミナ分散強化銅を得る方法もあるが、内部酸化の進行が遅いため、実生産において、トーチ部材全体を内部酸化してアルミナ分散強化銅とするためには長時間を要することとなりコスト上の問題は解決されていない。さらに、アルミナ分散強化銅は電気伝導率が十分でないという難点がある。
【0009】
【発明が解決しようとする課題】
本発明は、上記の問題点を解消するために、ガスシールドアーク溶接用トーチ部材にアルミナ分散強化銅を適用した場合の効果と量産コストとのバランスについて実験、検討を行うとともに、アルミナと同等の効果を有する他の分散材についても検討した結果としてなされたものであり、その目的は、優れた耐熱性、耐摩耗性、耐スパッタ付着性をそなえ、さらに十分な導電性も兼備し、コスト的にも満足すべき溶接用トーチ部材を提供することにある。また、素材が、PM法によらず従来のIM法により製造でき、特定の表面層のみを内部酸化することにより耐熱性など前記の特性をそなえた溶接用トーチを製造する方法を提供することにある。
【0010】
【課題を解決するための手段】
上記の目的を達成するための請求項1による溶接トーチ用部材は、Al:0.025〜1.0%を含有し、残部Cuおよび不純物からなる銅合金基材を高温加熱処理することにより該銅合金基材の表面を内部酸化して、銅合金基材の表面に平均厚さ5〜500μmで、アルミナ0.05〜1.7%を含有する耐火物分散強化銅の層を形成したことを特徴とする。
【0011】
請求項2による溶接トーチ用部材は、請求項1において、銅合金基材がさらにAg、Sn、Sb、P、Ni、Znのうちの1種または2種以上を合計量で0.001〜1.0%含有することを特徴とする
【0012】
請求項3による溶接トーチ用部材の製造方法は、Al:0.025〜1.0%を含有し、残部Cuおよび不純物からなる銅合金基材を、酸素分圧が0.1〜100Paの雰囲気中で750〜950℃の温度に高温加熱処理して、銅合金基材の表面を内部酸化し、銅合金基材の表面に平均厚さ5〜500μmで、アルミナ0.05〜1.7%を含有する耐火物分散強化銅の層を形成することを特徴とする。
【0013】
請求項4による溶接トーチ用部材の製造方法は、請求項3において、銅合金基材がさらにAg、Sn、Sb、P、Ni、Znのうちの1種または2種以上を合計量で0.001〜1.0%含有することを特徴とする。
【0015】
本発明の溶接トーチ用部材においては、銅合金の表面に内部酸化による平均厚さ5〜500μmの耐火物粒子分散強化銅の層を形成する。耐火物粒子分散強化銅としては、0.05〜1.7%のアルミナを含有するアルミナ分散強化銅が好適である。
【0016】
内部酸化による耐火物粒子分散強化銅の層厚は平均5〜500μmの範囲が好ましく、5μm未満では耐熱性、耐摩耗性およびスパッタとの反応防止性が十分でなく、500μmを越えると、内部酸化に要する時間が長くなり、それ以上の耐摩耗性も期待できなくなる。
【0017】
溶接トーチ用部材の表面層のアルミナ分散強化銅中のアルミナ含有量は0.05〜1.7%の範囲が好ましく、0.05%未満では耐熱性、耐摩耗性およびスパッタとの反応防止性が十分でなく、1.7%を越えると、内部酸化に要する時間が長くなるとともに、トーチ部材の中央部のCu−Al合金部の電気伝導率および熱伝導率が低下する。
【0018】
銅合金基材には、またAg、Sn、Sb、P、Ni、Znのうちの1種または2種以上を合計量で0.001〜1.0%含有させることにより耐熱性(軟化温度の向上)および強度を改善することができる。0.001%未満ではその効果が十分でなく、1.0%を越えて含有すると、耐熱性向上効果が飽和するとともに、トーチ部材の中央部の銅合金基材の導電性が低下する。
【0019】
【発明の実施の形態】
本発明による溶接用トーチ部材の製造方法は、Al:0.025〜1.0%含有し、残部Cuおよび不純物からなる銅合金、または上記の銅合金にさらにAg、Sn、Sb、P、Ni、Znのうちの1種または2種以上を合計量で0.001〜1.0%添加した銅合金の鋳塊を、熱間押出、圧延、抽伸など通常の低合金銅の加工工程に従って加工し、コンタクトチップ、ノズルなど溶接用トーチ部材に切削、切削−鍛造などの方法で成形する。
【0020】
成形された溶接用トーチ部材を、好ましくは、酸素分圧が0.1〜100Paの雰囲気中で750〜950℃の温度に加熱保持することにより高温加熱処理して、部材の表面を内部酸化し、銅合金基材の表面に前記元素の酸化物が分散した耐火物粒子分散強化銅の層を形成する。
【0021】
銅合金材料を、通常の雰囲気で高温に加熱した場合、例えばCu−Al合金の場合には、表面にCuO、Al2 O3 を含む厚い酸化皮膜が形成されるが、酸素分圧が0.1〜100Paの雰囲気中で750〜950℃の温度域に加熱保持することにより、上記の厚い酸化皮膜を形成させることなく内部酸化し、アルミナなどの耐火物粒子が分散した内部酸化層を形成することができる。
【0022】
酸素分圧が0.1Pa未満の雰囲気では酸素の供給が不十分となって本発明の範囲の内部酸化層が形成し難く、酸素分圧が100Paを越えると前記の厚い酸化皮膜が形成され易くなる。加熱温度が750℃未満では内部酸化の進行が遅く、本発明の内部酸化層が形成し難く、950℃を越えると、酸化物粒子が粗大化して耐熱性向上に寄与しないサイズとなり易い。
【0026】
【実施例】
以下、本発明の実施例を比較例と対比して説明する。
実施例1
Al:0.2%を含有し、残部Cuと不純物からなる銅合金およびAl:0.2%、Ag:0.1%を含有し、残部Cuと不純物からなる銅合金を、溶解、鋳造し、得られた鋳塊を熱間押出、圧延、抽伸加工することにより、直径9mmの棒材および外径20mm、内径16mmの管材とした。
【0027】
上記の棒材および管材を、汎用MIG溶接用コンタクトチップおよびノズルの形状に切削により成形し、脱脂後、1Paの酸素分圧に調整した酸素とアルゴンガスとの混合ガス中で900℃の温度で1時間加熱、保持し、表面にアルミナ分散強化銅の層を形成させた。アルミナ分散強化銅の層厚を断面組織と硬さ試験により測定したところ100μmであった。
【0028】
得られたコンタクトチップおよびノズルを用いて、SPCC板(厚さ3mm)のMIG溶接(2時間連続のY型開先突き合わせ溶接)を行い、従来のクロム銅(Cu−1%Cr)と対比し、クロム銅のチップ摩耗量およびスパッタ付着量をそれぞれ1とした場合のチップ摩耗量、スパッタ付着量を相対評価した。結果を表1に示す。表1に示すように、本発明に従う試験材は、従来のクロム銅と比べ、チップ摩耗量は1/10、スパッタ付着量は1/5と大きく改善される。
【0029】
【表1】
【0030】
実施例2
Al:0.2%を含有し、残部Cuと不純物からなる銅合金およびAl:0.2%、P:0.005%、Ni:0.1%を含有し、残部Cuと不純物からなる銅合金を溶解、鋳造し、得られた鋳塊を、熱間押出、圧延、抽伸加工することにより、直径9mmの棒材の中心に直径1.0mmの孔を穿設した孔空き棒材を製造した。
【0031】
上記の孔空き棒材の孔部に、10Paの酸素分圧に調整した酸素と窒素との混合ガスを存在させ、棒材の外部は窒素ガス雰囲気として、800℃の温度に加熱し1時間保持した。その結果、孔空き棒材の孔内部に60μmの層厚を有するアルミナ分散強化銅の層が形成された。
【0032】
得られた孔空き棒材を切断し、汎用MIG溶接用コンタクトチップの形状に鍛造加工により成形した。成形されたコンタクトチップを用いて、実施例1と同じ条件で、SPCC板(3mm厚)のMIG溶接を行い、実施例1と同様、従来のクロム銅と対比して、連続2時間溶接後のチップ摩耗量およびスパッタ付着量の相対評価を行った。結果を表2に示す。表2にみられるように、本発明に従う試験材においては、チップ磨耗量およびスパッタ付着量がいずれも従来のクロム銅の1/5と大きく改善されている。
【0033】
【表2】
【0034】
比較例1
アルミニウムを含有するCu−Al合金のアルミニウム含有量を変えた銅合金の直径9mmの棒材を、実施例1と同じ工程により製造し。これらを汎用MIG溶接用コンタクトチップの形状に切削により成形した後、脱脂し、酸素分圧、加熱温度を変えて1時間の加熱処理を行い、チップ表面にアルミナ分散強化銅の層を形成した。銅合金の組成、酸素分圧、加熱温度、内部酸化層厚を表3に示す。なお、表3において、本発明の条件を外れるものには下線を付した。
【0035】
得られたコンタクトチップを用いて実施例1と同じ条件でMIG溶接を行い、連続2時間溶接後のチップ摩耗量およびスパッタ付着量を、従来のクロム銅と対比して相対評価した。評価結果を表3に示す。
【0036】
【表3】
【0037】
表3に示すように、試験材No.5は、基材中のアルミニウム含有量が少ないため生成されるアルミナ量が少なく、耐摩耗性およびスパッタとの反応防止性が劣る。試験材No.6は基材中のアルミニウム含有量が多過ぎるため、内部酸化に要する時間が長くなり、1時間の加熱処理では内部酸化層厚が不十分で、チップ摩耗量が大きい。また導電性の低下も生じた。
【0038】
試験材No.7は、加熱雰囲気中の酸素分圧が低いため、内部酸化層厚が十分でなく、チップ摩耗量、スパッタ付着量がともに大きい。試験材No.8は酸素分圧が大きいため、表面に厚い酸化皮膜が形成し、当該酸化皮膜除去後、寸法精度が出せず評価を中止した。試験材No.9は加熱温度が低いため、内部酸化の進行が遅く、内部酸化層厚が不十分となり、チップの摩耗量、スパッタ付着量ともに劣っている。試験材No.10は加熱温度が高過ぎるため、アルミナ粒子の粗大化が生じ、とくに耐摩耗性が劣化した。
【0039】
【発明の効果】
以上のとおり、本発明によれば、優れた耐摩耗性、耐スパッタ付着性をそなえ、高導電性を有するガスシールドアーク溶接用トーチ部材、とくにコンタクトチップ、ノズルが安価に供給でき、ロボットは多用される自動溶接において、安定した品質の溶接が高い生産性で実現可能となり、産業上きわめて有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a torch member for welding, and more particularly to a torch member for gas shielded arc welding, particularly MAG (Metal Active Gas) and MIG (Metal Inert Gas) arc welding, such as a contact tip and a nozzle, and a manufacturing method thereof.
[0002]
[Prior art]
A contact tip is attached to the tip of the gas shield arc welding torch, a nozzle is provided concentrically with the contact tip so as to surround and flex the contact tip, an electrode wire is supplied to the contact tip, and a shield gas is supplied. It is configured to be supplied between the nozzle and the contact tip.
[0003]
Conventionally, heat-resistant and highly conductive copper alloy base materials such as pure copper, chromium copper, and zirconium copper have been used as constituent materials for contact chips and nozzles, but these materials are at a relatively low temperature of about 550 ° C. Because it softens, it is easy to soften by high temperature heating during welding. In the case of contact tips, if wear and deformation due to softening become severe, the hole through which the wire is drawn out deforms and the contact between the wire and the contact tip becomes intermittent, and the arc Is unstable and welding is difficult.
[0004]
In addition, spatter of the material to be welded that scatters at a high temperature of 1000 ° C. or higher during welding adheres to the torch member, and when the spatter adheres to the inner surface of the nozzle or the outer surface of the contact tip, the normal flow of the shielding gas is prevented, and When it adheres to the tip of the chip, there is a problem that the wire supply hole of the contact chip is closed and the supply of the wire is stopped.
[0005]
Attempts have been made to use carbon nozzles that can prevent spatter adhesion, but carbon nozzles are expensive and have the disadvantage of being easily broken. There is also a means for lining the nozzle with ceramic, but the production is cumbersome and disadvantageous in terms of cost, and the ceramic layer may be damaged during spatter removal. In recent years, there has been an increase in welding machines using robots in particular, and there has been a demand for being able to perform high-quality welding for as long as possible, unattended. From this viewpoint, heat resistance is further improved, Development of a welding torch member that does not soften at the time of welding and hardly attaches spatter is strongly desired.
[0006]
In order to satisfy the above requirements, contact shields, nozzles and other gas shield arc welding torch members may be formed of alumina dispersion strengthened copper obtained by dispersing aluminum oxide particles in a copper or copper alloy matrix. Proposed. (Actual Utility Model Publication No. 5-72962) Alumina dispersion strengthened copper has the property of hardly softening even when exposed to a high temperature close to 1000 ° C., and has an effect of preventing adhesion of spatter.
[0007]
However, alumina dispersion strengthened copper, for example, forms a Cu-Al alloy powder by the atomizing method, and a part of the alloy powder is oxidized at a high temperature, and the Cu-Al alloy powder and the high-temperature oxidized Cu-Al alloy powder are mixed and compressed. Since it is manufactured through a complicated process by the powder metallurgy method (PM method) in which it is encapsulated in a copper container and processed into a hot shape, the manufacturing cost is high, such as a welding torch member. Difficult to apply to consumables that change frequently.
[0008]
There is also a method to obtain alumina dispersion-strengthened copper in which aluminum oxide (alumina) is dispersed in a copper matrix by internally oxidizing a Cu-Al alloy containing a predetermined aluminum in an oxygen-containing atmosphere at high temperature. Therefore, in actual production, it takes a long time to internally oxidize the entire torch member to obtain alumina dispersion strengthened copper, and the cost problem has not been solved. Furthermore, the alumina dispersion strengthened copper has a drawback that its electric conductivity is not sufficient.
[0009]
[Problems to be solved by the invention]
In order to solve the above-mentioned problems, the present invention conducts experiments and studies on the balance between the effect and mass production cost when alumina dispersion strengthened copper is applied to a gas shielded arc welding torch member, and is equivalent to alumina. It was made as a result of studying other dispersing materials having an effect, and its purpose is to provide excellent heat resistance, wear resistance, spatter resistance, and sufficient conductivity and cost. It is another object of the present invention to provide a welding torch member that is satisfactory. In addition, the present invention provides a method for manufacturing a welding torch having the above-mentioned characteristics such as heat resistance, which can be manufactured by a conventional IM method regardless of the PM method, and by oxidizing only a specific surface layer. is there.
[0010]
[Means for Solving the Problems]
The member for a welding torch according to claim 1 for achieving the above object comprises Al: 0.025 to 1.0%, and the copper alloy base material composed of the remaining Cu and impurities is subjected to high-temperature heat treatment. The surface of the copper alloy substrate was internally oxidized to form a refractory dispersion-strengthened copper layer having an average thickness of 5 to 500 μm and containing 0.05 to 1.7% alumina on the surface of the copper alloy substrate. It is characterized by.
[0011]
According to a second aspect of the present invention, there is provided a welding torch member according to the first aspect, wherein the copper alloy base material further contains one or more of Ag, Sn, Sb, P, Ni and Zn in a total amount of 0.001-1. 0.0% content [0012]
The method for manufacturing a member for a welding torch according to claim 3 includes a copper alloy base material containing Al: 0.025 to 1.0% and comprising the balance Cu and impurities in an atmosphere having an oxygen partial pressure of 0.1 to 100 Pa. Heat treatment at a temperature of 750 to 950 ° C. to internally oxidize the surface of the copper alloy base material, and an average thickness of 5 to 500 μm on the surface of the copper alloy base material and 0.05 to 1.7% of alumina A refractory dispersion strengthened copper layer containing is formed .
[0013]
According to a fourth aspect of the present invention, there is provided a method for manufacturing a member for a welding torch according to the third aspect, wherein the copper alloy base material further contains one or more of Ag, Sn, Sb, P, Ni and Zn in a total amount of 0.00. It is characterized by containing 001-1.0% .
[0015]
In the welding torch member of the present invention, a refractory particle dispersion strengthened copper layer having an average thickness of 5 to 500 μm is formed on the surface of the copper alloy by internal oxidation. As the refractory particle dispersion strengthened copper, alumina dispersion strengthened copper containing 0.05 to 1.7% alumina is suitable.
[0016]
The average thickness of the refractory particle dispersion-strengthened copper by internal oxidation is preferably in the range of 5 to 500 μm, and if it is less than 5 μm, the heat resistance, wear resistance and anti-spattering resistance are not sufficient. It takes a long time to complete the process, and further wear resistance cannot be expected.
[0017]
The alumina content in the alumina dispersion-strengthened copper of the surface layer of the welding torch member is preferably in the range of 0.05 to 1.7%, and if it is less than 0.05%, heat resistance, wear resistance, and reaction resistance with sputtering are prevented. However, if it exceeds 1.7%, the time required for internal oxidation becomes longer, and the electrical conductivity and thermal conductivity of the Cu—Al alloy part at the center of the torch member are lowered.
[0018]
In addition, the copper alloy base material contains 0.001 to 1.0% of Ag, Sn, Sb, P, Ni, or Zn in a total amount of 0.001 to 1.0%. Improvement) and strength can be improved. If the content is less than 0.001%, the effect is not sufficient. If the content exceeds 1.0%, the effect of improving the heat resistance is saturated and the conductivity of the copper alloy base material at the center of the torch member is lowered.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The method for producing a welding torch member according to the present invention includes Al: 0.025 to 1.0%, a copper alloy composed of the balance Cu and impurities, or the above copper alloy, Ag, Sn, Sb, P, Ni. A copper alloy ingot added with 0.001 to 1.0% of Zn or one or more of Zn in a total amount is processed according to normal low alloy copper processing steps such as hot extrusion, rolling and drawing. And it shape | molds by methods, such as cutting and cutting-forging, to the torch member for welding, such as a contact tip and a nozzle.
[0020]
The formed welding torch member is preferably heat-treated at a temperature of 750 to 950 ° C. in an atmosphere having an oxygen partial pressure of 0.1 to 100 Pa to internally oxidize the surface of the member. Then, a refractory particle dispersion-strengthened copper layer in which the oxide of the element is dispersed is formed on the surface of the copper alloy base material.
[0021]
When the copper alloy material is heated to a high temperature in a normal atmosphere, for example, in the case of a Cu—Al alloy, a thick oxide film containing CuO and Al 2 O 3 is formed on the surface, but the oxygen partial pressure is 0. By heating and maintaining in a temperature range of 750 to 950 ° C. in an atmosphere of 1 to 100 Pa, internal oxidation occurs without forming the thick oxide film, and an internal oxide layer in which refractory particles such as alumina are dispersed is formed. be able to.
[0022]
In an atmosphere where the oxygen partial pressure is less than 0.1 Pa, the supply of oxygen is insufficient and it is difficult to form an internal oxide layer within the scope of the present invention. When the oxygen partial pressure exceeds 100 Pa, the thick oxide film is likely to be formed. Become. When the heating temperature is less than 750 ° C., the progress of internal oxidation is slow, and the internal oxide layer of the present invention is difficult to form. When the heating temperature is higher than 950 ° C., the oxide particles are coarsened and do not contribute to improvement in heat resistance.
[0026]
【Example】
Examples of the present invention will be described below in comparison with comparative examples.
Example 1
A copper alloy containing Al: 0.2%, the balance Cu and impurities, and a copper alloy consisting of Al: 0.2%, Ag: 0.1%, and the balance Cu and impurities are melted and cast. The obtained ingot was hot-extruded, rolled, and drawn to obtain a 9 mm-diameter bar and an outer diameter of 20 mm and an inner diameter of 16 mm.
[0027]
The above rods and pipes were formed by cutting into the shape of general-purpose MIG welding contact tips and nozzles, and after degreasing, at a temperature of 900 ° C. in a mixed gas of oxygen and argon gas adjusted to an oxygen partial pressure of 1 Pa. It was heated and held for 1 hour to form an alumina dispersion strengthened copper layer on the surface. When the layer thickness of the alumina dispersion strengthened copper was measured by a cross-sectional structure and a hardness test, it was 100 μm.
[0028]
Using the obtained contact tips and nozzles, MIG welding of the SPCC plate (thickness 3 mm) (2-hour continuous Y-type groove butt welding) is performed and compared with conventional chromium copper (Cu-1% Cr). The tip wear amount and the sputter adhesion amount when the chromium copper tip wear amount and the spatter adhesion amount were set to 1 were evaluated relative to each other. The results are shown in Table 1. As shown in Table 1, the test material according to the present invention has a chip wear amount of 1/10 and a sputter adhesion amount of 1/5 which are greatly improved as compared with conventional chromium copper.
[0029]
[Table 1]
[0030]
Example 2
Copper containing Al: 0.2%, balance Cu and impurities, and copper containing Al: 0.2%, P: 0.005%, Ni: 0.1%, balance Cu and impurities The alloy is melted and cast, and the resulting ingot is hot-extruded, rolled, and drawn to produce a perforated bar with a 1.0 mm diameter hole in the center of a 9 mm diameter bar. did.
[0031]
A mixed gas of oxygen and nitrogen adjusted to an oxygen partial pressure of 10 Pa is present in the hole portion of the above-mentioned perforated bar, and the outside of the bar is heated to a temperature of 800 ° C. as a nitrogen gas atmosphere and held for 1 hour. did. As a result, an alumina dispersion-strengthened copper layer having a layer thickness of 60 μm was formed inside the hole of the perforated bar.
[0032]
The obtained perforated bar was cut and formed into a general-purpose MIG welding contact tip shape by forging. Using the molded contact tip, MIG welding of the SPCC plate (3 mm thickness) was performed under the same conditions as in Example 1. Similar to Example 1, in contrast to conventional chrome copper, after continuous 2-hour welding. Relative evaluation of chip wear and spatter deposition was performed. The results are shown in Table 2. As can be seen from Table 2, in the test material according to the present invention, both the chip wear amount and the spatter adhesion amount are greatly improved to 1/5 of the conventional chromium copper.
[0033]
[Table 2]
[0034]
Comparative Example 1
A bar material having a diameter of 9 mm of a copper alloy in which the aluminum content of a Cu-Al alloy containing aluminum was changed was manufactured by the same process as in Example 1. These were formed into a general-purpose MIG welding contact tip by cutting and then degreased and subjected to heat treatment for 1 hour while changing the oxygen partial pressure and heating temperature to form an alumina dispersion strengthened copper layer on the chip surface. Table 3 shows the composition, oxygen partial pressure, heating temperature, and internal oxide layer thickness of the copper alloy. In Table 3, those outside the conditions of the present invention are underlined.
[0035]
Using the obtained contact tip, MIG welding was performed under the same conditions as in Example 1, and the amount of tip wear and the amount of spatter adhesion after continuous 2-hour welding were evaluated relative to conventional chromium copper. The evaluation results are shown in Table 3.
[0036]
[Table 3]
[0037]
As shown in Table 3, the test material No. No. 5 has a small amount of alumina produced because the aluminum content in the substrate is small, and is inferior in wear resistance and anti-sputtering resistance. Test material No. In No. 6, since the aluminum content in the substrate is too large, the time required for the internal oxidation becomes long, and the heat treatment for 1 hour has an insufficient internal oxide layer thickness and a large amount of chip wear. Also, a decrease in conductivity occurred.
[0038]
Test material No. No. 7 has a low oxygen partial pressure in the heating atmosphere, so the internal oxide layer thickness is not sufficient, and both the chip wear amount and the sputter adhesion amount are large. Test material No. Since the oxygen partial pressure of No. 8 was large, a thick oxide film was formed on the surface, and after removing the oxide film, the dimensional accuracy could not be obtained and the evaluation was stopped. Test material No. In No. 9, since the heating temperature is low, the progress of internal oxidation is slow, the thickness of the internal oxide layer becomes insufficient, and the wear amount of the chip and the spatter adhesion amount are inferior. Test material No. Since the heating temperature of No. 10 was too high, the alumina particles were coarsened, and the wear resistance was particularly deteriorated.
[0039]
【The invention's effect】
As described above, according to the present invention, a gas shield arc welding torch member having excellent wear resistance and spatter adhesion resistance, and a highly conductive torch member, particularly a contact tip and a nozzle can be supplied at low cost, and a robot is widely used. In the automatic welding, stable quality welding can be realized with high productivity, which is extremely useful in the industry.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05388997A JP3846960B2 (en) | 1997-02-21 | 1997-02-21 | Welding torch member and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05388997A JP3846960B2 (en) | 1997-02-21 | 1997-02-21 | Welding torch member and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10230362A JPH10230362A (en) | 1998-09-02 |
JP3846960B2 true JP3846960B2 (en) | 2006-11-15 |
Family
ID=12955304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05388997A Expired - Fee Related JP3846960B2 (en) | 1997-02-21 | 1997-02-21 | Welding torch member and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3846960B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI114106B (en) * | 2001-12-13 | 2004-08-13 | Outokumpu Oy | Hitsausvirtasuutinmateriaali |
JP5041529B2 (en) * | 2007-10-11 | 2012-10-03 | 新光機器株式会社 | Contact tip |
KR101648645B1 (en) * | 2011-07-06 | 2016-08-16 | 가부시키가이샤 토쿠리키 혼텐 | Electrode material for thermal fuses, manufacturing process therefor and thermal fuses using said electrode material |
CN113621838B (en) * | 2021-06-29 | 2022-04-01 | 合肥烔创新材料科技合伙企业(有限合伙) | Preparation method of particle dispersion strengthened copper-based composite material |
-
1997
- 1997-02-21 JP JP05388997A patent/JP3846960B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10230362A (en) | 1998-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5236523A (en) | Silver- or silver-copper alloy-metal oxide composite material | |
JPH033557B2 (en) | ||
EP4048463A1 (en) | Printable powder material of fecral for additive manufacturing and an additive manufactured object and the uses thereof | |
JP3846960B2 (en) | Welding torch member and manufacturing method thereof | |
JPH1085950A (en) | Equipment for resistance spot welding of sheet or special shaped material made of material of good conductivity | |
US5334814A (en) | Electrode for spot welding | |
JP3405069B2 (en) | Electrode wire for electric discharge machining | |
JPH02117780A (en) | Electrode covered with ceramic particle dispersed metal and its manufacture | |
JPWO2004096468A1 (en) | Composite rod, manufacturing method thereof, contact tip for arc welding and resistance welding electrode comprising the composite rod | |
JPH0976074A (en) | Material for resistance welding electrode, composite electrode for resistance welding and its manufacture | |
JP2000345313A (en) | Production of roll used for continuous casting improved in heat resistance, corrosion resistance and wear resistance of surface of base material of roll barrel part applied with repeated thermal impact and sliding wear | |
JPS60227998A (en) | Electrode material for welding | |
JP3566735B2 (en) | Alloy for spot welding electrode of Al alloy plate | |
JPH10177821A (en) | Electric contact and its manufacture | |
JPH05148565A (en) | Production of particle dispersed magnesium alloy by using high energy density heat source | |
JPH04131364A (en) | Melt-spraying method for alumina-dispersed alloy | |
JPH02274849A (en) | Production of oxide dispersion-strengthened copper alloy stock | |
JP2786566B2 (en) | Method for producing tubular body for hot-dip galvanizing equipment | |
JPH0475298B2 (en) | ||
CN117206746A (en) | Flux-cored wire for WC ceramic particle reinforced titanium-based composite material and preparation method thereof | |
JP3176746B2 (en) | Power supply tip for welding | |
CN115837504A (en) | Welding electrode with functional coating | |
JPH10291078A (en) | Electrode for resistance welding, and its manufacture | |
JPH01263203A (en) | Electrode material for resistance welding and production thereof | |
JPS63242490A (en) | Composite filler metal for build-up welding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060329 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060821 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060822 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |