WO2004095563A1 - Surface modification method and surface modification apparatus for interlayer insulating film - Google Patents

Surface modification method and surface modification apparatus for interlayer insulating film Download PDF

Info

Publication number
WO2004095563A1
WO2004095563A1 PCT/JP2004/005641 JP2004005641W WO2004095563A1 WO 2004095563 A1 WO2004095563 A1 WO 2004095563A1 JP 2004005641 W JP2004005641 W JP 2004005641W WO 2004095563 A1 WO2004095563 A1 WO 2004095563A1
Authority
WO
WIPO (PCT)
Prior art keywords
interlayer insulating
insulating film
modifying
oxygen
oxidizing
Prior art date
Application number
PCT/JP2004/005641
Other languages
French (fr)
Japanese (ja)
Inventor
Shingo Hishiya
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to KR1020057016680A priority Critical patent/KR101048949B1/en
Priority to US10/554,086 priority patent/US20070026642A1/en
Publication of WO2004095563A1 publication Critical patent/WO2004095563A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating

Definitions

  • the present invention relates to a method and a device for modifying the surface of an interlayer insulating film, and more particularly to a method and a device for modifying the surface of an interlayer insulating film having a low dielectric constant.
  • an interlayer insulating film having a low dielectric constant for example, a coating liquid made of a material having a low dielectric constant is spin-coated on a semiconductor wafer as a substrate, and a coating film (SOD (Spin On Dielectrics)) is formed. Film) and baking the coating film.
  • SOD Spin On Dielectrics
  • the CVD (Chemical Vapor Deposition) film required for building multilayer wiring called a hard mask
  • Adhesion with a film formed on the interlayer insulating film is required.
  • the contact area between the two films becomes smaller and the aspect ratio increases, so that good adhesion cannot be obtained with an interlayer insulating film that is simply baked on a coating film. This is because there are cases.
  • CMP Chemical Mechanical Polishing
  • the surface of the formed interlayer insulating film is modified, for example, by irradiating the surface of the formed interlayer insulating film with plasma, and the adhesion between the interlayer insulating film and the film formed thereon is improved.
  • the film characteristics of the interlayer insulating film may be deteriorated.
  • the dielectric constant of the interlayer insulating film increases or the surface of the interlayer insulating film becomes rough.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a method and apparatus for modifying the surface of an interlayer insulating film, which can prevent deterioration of film properties and improve adhesion. Aim.
  • Another object of the present invention is to provide a method and apparatus for modifying the surface of an interlayer insulating film that can improve the adhesion while maintaining the dielectric constant.
  • the present invention relates to a method for modifying the surface of an interlayer insulating film formed by baking a coating film formed by applying a coating solution on a substrate at a predetermined temperature, wherein the reaction chamber accommodating the substrate is provided with a predetermined pressure.
  • the adhesion can be improved while maintaining the dielectric constant of the interlayer insulating film. . Further, deterioration of the film characteristics of the interlayer insulating film is also prevented.
  • the oxidizing active gas is any one of ozone, water vapor, oxygen, and a mixed gas of hydrogen and oxygen.
  • the predetermined temperature is 250 ° C. to 600 ° C.
  • the oxidizing active gas is ozone.
  • the predetermined temperature is 250 ° C. to 600 ° C.
  • the oxidizing active gas is a mixed gas of hydrogen and oxygen.
  • the surface of the interlayer insulating film is modified so that the surface energy of the interlayer insulating film is at least 8 Om NZm. Is preferred.
  • the surface of the interlayer insulating film is modified so that the surface contact angle of water on the surface of the interlayer insulating film becomes smaller than 40 °. It is preferred that it is so.
  • the interlayer insulating film is a low dielectric constant interlayer insulating film.
  • the low dielectric constant interlayer insulating film is formed from a coating solution containing polysiloxane having an organic functional group. Can be done.
  • the present invention is a device for modifying the surface of an interlayer insulating film formed by baking a coating film formed by applying a coating liquid on a substrate at a predetermined temperature, wherein the reaction device for accommodating the substrate is provided. Chamber; heating means for heating the reaction chamber to a predetermined temperature; oxidizing gas supply means for supplying an oxidizing gas into the reaction chamber; and control means for controlling the heating means and the oxidizing gas supply means.
  • a surface reforming apparatus for an interlayer insulating film comprising: .
  • the adhesion can be improved while maintaining the dielectric constant of the interlayer insulating film. . Further, deterioration of the film characteristics of the interlayer insulating film is also prevented.
  • the oxidizing active gas is any one of ozone, water vapor, oxygen, and a mixed gas of hydrogen and oxygen.
  • the predetermined temperature is 250 ° C. to 600 ° C.
  • the oxidizing active gas is ozone.
  • the predetermined temperature is 250 ° C. ( ⁇ 600 ° C.)
  • the oxidizing active gas is a mixed gas of hydrogen and oxygen.
  • control unit controls the heating unit and the oxidizing gas supply unit so that the surface energy of the interlayer insulating film is at least 8 OmN / m.
  • control means may control the heating means and the oxidizing active gas supply means such that a surface contact angle of water on the surface of the interlayer insulating film becomes smaller than 40 °. preferable.
  • the interlayer insulating film is a low dielectric constant interlayer insulating film.
  • the low dielectric constant interlayer insulating film can be formed from a coating solution containing polysiloxane having an organic functional group.
  • FIG. 1 is a diagram showing a thin film forming apparatus according to one embodiment of the present invention.
  • Figure 2A shows the relationship between the contact angle of pure water and the surface energy of the interlayer insulating film. It is rough.
  • FIG. 2B is a graph showing the relationship between the contact angle of pure water and the energy of the polar component in the surface energy of the interlayer insulating film.
  • FIG. 3A is a table showing conditions for surface modification of an interlayer insulating film by ozone.
  • FIG. 3B is a graph showing the contact angle of the surface-modified interlayer insulating film with pure water according to the table of FIG. 3A.
  • FIG. 4A is a table showing conditions for modifying the surface of the interlayer insulating film with water vapor.
  • FIG. 4B is a graph showing the contact angle of the surface-modified interlayer insulating film with pure water according to the table of FIG. 4A.
  • FIG. 5A is a table showing conditions for surface modification of an interlayer insulating film by hydrogen and oxygen.
  • FIG. 5B is a graph showing the contact angle of the surface-modified interlayer insulating film with pure water according to the table of FIG. 5A.
  • FIG. 6A is a table showing conditions for surface modification of an interlayer insulating film by oxygen.
  • FIG. 6B shows the contact angle of the surface-modified interlayer insulating film with pure water according to the table of FIG. 6A.
  • FIG. 7A is a table showing conditions for surface modification of an interlayer insulating film by ultraviolet rays.
  • FIG. 7B shows the contact angle of the surface-modified interlayer insulating film with pure water according to the table of FIG. 7A.
  • FIG. 8 is a graph showing the measurement results of the dielectric constant of an interlayer insulating film surface-modified according to the present invention and an interlayer insulating film not surface-modified.
  • FIG. 9 is a diagram showing a heat treatment apparatus for modifying the surface of an interlayer insulating film by irradiation with ultraviolet rays.
  • FIG. 1 shows a heat treatment apparatus for modifying the surface of an interlayer insulating film with an oxidizing active gas.
  • the heat treatment apparatus 1 includes a substantially cylindrical reaction tube 2 whose longitudinal direction is directed vertically.
  • the reaction tube 2 includes the inner tube 3 and the inner tube 3 while covering the inner tube 3.
  • an outer pipe 4 having a ceiling formed to have a certain interval.
  • the inner tube 3 and the outer tube 4 are made of a heat-resistant material, for example, quartz o
  • a manifold 5 made of stainless steel (SUS) formed in a cylindrical shape is arranged below the outer tube 4.
  • the manifold 5 is air-tightly connected to the lower end of the outer tube 4.
  • the inner pipe 3 is supported by a support ring 6 formed so as to protrude from the inner wall of the manifold 5.
  • a lid 7 is disposed below the manifold 5.
  • the lid 7 is configured to be able to move up and down by the boat elevator 8. When the lid 7 is raised by the boat elevator 8, the lower side of the manifold 5 is closed.
  • a wafer boat 9 made of, for example, quartz is placed on the lid 7.
  • the wafer boat 9 is provided with a semiconductor wafer 10 (substrate) on which a low dielectric constant insulating film such as an insulating film made of, for example, polysiloxane having an organic functional group is formed as an interlayer insulating film.
  • a low dielectric constant insulating film such as an insulating film made of, for example, polysiloxane having an organic functional group
  • a plurality of sheets can be stored at intervals.
  • the interlayer color film is formed, for example, by spin-coating a coating solution containing polysiloxane having an organic functional group to form a coating film on the semiconductor wafer 10 and firing the coating film to form a semiconductor. It is formed on the wafer 10.
  • a heat insulator 11 is provided around the reaction tube 2 so as to surround the reaction tube 2.
  • a heating heater 12 made of a resistance heating element is provided on the inner wall surface of the heat insulator 11.
  • the inside of the reaction tube 2 is heated to a predetermined temperature by the heater 12 for heating, and as a result, the semiconductor wafer 10 is heated to the predetermined temperature.
  • An oxidizing gas introduction pipe 13 for introducing an oxidizing gas is passed through a side surface of the manifold 5.
  • only one oxidation active gas introduction pipe 13 is drawn.
  • the oxidation active gas introduction pipe 13 is inserted below the support ring 6 so as to face the inside of the inner pipe 3.
  • the oxidizing gas introduction pipe 13 is connected to a predetermined oxidizing gas supply source (not shown) via a mask opening controller (not shown) or the like.
  • the oxidizing gas include ozone, water vapor, oxygen, and a mixed gas of hydrogen and oxygen.
  • the oxidation active gas is a mixed gas of hydrogen and oxygen
  • the mixed gas of hydrogen and oxygen is a common gas. It is supplied from the oxidation active gas introduction pipe 13.
  • hydrogen and oxygen may be separately supplied from separate oxidation active gas introduction tubes 13 and mixed in the reaction tube 2.
  • the oxidizing gas introduction pipe 13 is not provided.
  • a plurality of ultraviolet lamps are provided on the inner wall of the heat insulator 11.
  • Ultraviolet irradiation device is provided.
  • the interlayer insulating film of the semiconductor wafer 10 is irradiated with the ultraviolet light from the ultraviolet lamp.
  • a discharge port 14 is provided on the side of the manifold 5.
  • the discharge port 14 is provided above the support ring 6 and communicates with a space formed between the inner tube 3 and the outer tube 4 in the reaction tube 2. Then, exhaust gas and the like generated in the inner pipe 3 pass through the space between the inner pipe 3 and the outer pipe 4 and are exhausted to the exhaust port 14.
  • a purge gas supply pipe 15 for supplying nitrogen gas as a purge gas is inserted below the exhaust port 14 on the side surface of the manifold 5.
  • An exhaust pipe 16 is hermetically connected to the outlet 14.
  • a valve 17 and a vacuum pump 18 are interposed in the exhaust pipe 16 from the upstream side.
  • the valve 1 # controls the pressure in the reaction tube 2 to a predetermined pressure by adjusting the opening of the exhaust pipe 16.
  • the vacuum pump 18 exhausts the gas in the reaction tube 2 via the exhaust tube 16 and adjusts the pressure in the reaction tube 2.
  • the exhaust pipe 16 is provided with a trap, a scrubber and the like (not shown), and the exhaust gas exhausted from the reaction pipe 2 is detoxified and then exhausted outside the heat treatment apparatus 1. ing.
  • a control unit 19 is connected to the boat elevator 8, the heating heater 12, the oxidation active gas introduction pipe 13, the source gas supply pipe 15, the valve 17, and the vacuum pump 18. ing.
  • the control unit 19 is composed of a microprocessor, a process controller, etc., measures the temperature, pressure, etc. of each part of the heat treatment apparatus 1, outputs a control signal or the like to each of the above parts based on the measured data, and Each part of 1 is controlled according to a prescribed recipe (time sequence).
  • the semiconductor wafer 10 on which the interlayer insulating film is formed is housed, while the inside of the reaction tube 2 is heated to a predetermined temperature and the oxidizing gas is supplied into the reaction tube 2. Yes (or By irradiating the interlayer insulating film of the semiconductor wafer 10 with ultraviolet rays, the surface of the interlayer insulating film is modified.
  • a method of modifying the surface of the interlayer insulating film using the heat treatment apparatus 1 configured as described above will be described. In the following description, the operation of each unit constituting the heat treatment apparatus 1 is controlled by the control unit 19.
  • the inside of the reaction tube 2 is heated to a predetermined temperature by the heating heater 12.
  • the preferable range of the temperature depends on the type of the oxidizing gas used, as described later.
  • the inside of the reaction tube 2 is heated to an optimum temperature according to the type of the oxidizing active gas used.
  • a wafer boat 9 containing the semiconductor wafer 10 on which the interlayer insulating film has been formed is placed on the lid 7. Then, the lid 7 is raised by the boat elevator 8. Thereby, the semiconductor wafer 10 is accommodated in the reaction chamber.
  • the coating film is baked in the heat treatment apparatus 1 (when the calcination of the coating film and the surface modification are continuously performed in one heat treatment apparatus 1), the loading step is unnecessary.
  • the interlayer insulating film is formed, for example, by spin-coating a coating solution containing polysiloxane having an organic functional group to form a coating film on the semiconductor wafer 10 and baking the coating film. Formed as 0.
  • the coating solution containing a polysiloxane having an organic functional group is, for example, a solution in which a polysiloxane having an organic functional group is dissolved in an organic solvent.
  • Optional components such as a surfactant can be added to this solution.
  • As an interlayer insulating film formed in this way there is porous-methylsilsesquioxane (Porous-Methyl Silsesquioxane). For example, pores having a molecular or atomic size of 20 nm or less are formed in the interlayer insulating film.
  • the inside of the reaction tube 2 is maintained at a predetermined pressure according to the type of the oxidizing active gas used. Then, a predetermined amount of an oxidizing gas is supplied into the inner tube 3 from the oxidizing gas introducing pipe 13.
  • the oxidizing gas is supplied into the inner tube 3
  • the polar component energy in the surface energy of the interlayer insulating film increases.
  • the surface energy of the interlayer insulating film increases.
  • the reason why the polar component energy in the surface energy of the interlayer insulating film is increased is that a part of (S i — CH 3 ) of the porous MSQ that constitutes the interlayer insulating film is (S i — CH 3 ) by the oxidizing active gas.
  • ultraviolet light is applied to the interlayer insulating film of the semiconductor wafer 10 from an ultraviolet lamp (not shown) provided inside the heat treatment apparatus 1. You. This increases the surface energy of the interlayer insulating film.
  • the vacuum pump 18 is driven while controlling the opening of the valve 17, and the gas in the reaction tube 2 is exhausted to the exhaust tube 16. Further, the pressure in the reaction tube 2 is returned to normal pressure, and the semiconductor wafer 10 is unloaded by lowering the lid 7 by the boat elevator 8.
  • the semiconductor wafer 10 on which the interlayer insulating film made of porous MSQ was formed was heated to a predetermined temperature by the heat treatment apparatus 1 (reaction tube 2).
  • the heat treatment apparatus 1 (reaction tube 2).
  • ozone, water vapor, oxygen, or hydrogen and oxygen as an oxidizing active gas were supplied to modify the surface of the interlayer insulating film.
  • the same semiconductor wafer 10 was irradiated with ultraviolet rays to modify the surface of the interlayer insulating film. And the measurement about the adhesiveness and surface energy of each interlayer insulating film was performed.
  • the surface energy of the interlayer insulating film after the modification treatment was measured using a contact angle method.
  • the contact angle method is a method in which a liquid is dropped on an interlayer insulating film and the contact angle between a ball (drop) of the liquid and the surface of the interlayer insulating film is measured.
  • Figure 2A shows the relationship between the contact angle of pure water and the surface energy of the interlayer insulating film.
  • FIG. 2B shows the relationship between the contact angle of pure water and the polar component energy in the surface energy of the interlayer insulating film.
  • the surface energy of the interlayer insulating film was calculated by referring to the solid surface free energy (surface energy) calculation method by the Owens-Wendt method.
  • the contact angle of each liquid is measured using liquids with different surface tensions
  • the dispersion component, the polar component, and the hydrogen bond component are calculated from the Dupre-Young equation
  • the extended Fowkes equation is calculated.
  • the surface energy (surface tension) is derived from the dispersion component, the polar component, and the hydrogen bond component. This time, pure water and ethylene glycol were used as liquids with different surface tensions. Recall and jode methane were used.
  • the correlation between the contact angle of pure water and the surface energy of the interlayer insulating film As shown in FIG. 2A, as for the correlation between the contact angle of pure water and the surface energy of the interlayer insulating film, as the surface energy increases, the contact angle of pure water decreases. As shown in Fig. 2B, the correlation between the contact angle due to pure water and the energy of the polar component in the surface energy of the interlayer insulating film-the greater the polar component energy, the smaller the contact angle due to pure water. . The correlation in FIG. 2B leads to the correlation in FIG. 2A. In addition, a hard mask was formed on the interlayer insulating film, and a CMP (Chemical Mechanical Polishing) test was performed. The surface energy of the interlayer insulating film, which would prevent film peeling, was determined.
  • CMP Chemical Mechanical Polishing
  • the surface energy was preferably 80 mNZm or more, and more preferably 10 OmNZm or more. Therefore, in order to improve the adhesion performance of the interlayer insulating film, that is, the adhesiveness with a film formed thereon, for example, a hard mask, it is necessary to modify the contact angle with pure water to be 40 ° or less. It is more preferable to carry out the modification so as to be 20 ° or less.
  • the following describes the surface modification of the interlayer insulating film with ozone, the surface modification of the interlayer insulating film with water vapor, the surface modification of the interlayer insulating film with hydrogen and oxygen, the surface modification of the interlayer insulating film with oxygen, and the surface modification with ultraviolet light. It will be described in order.
  • the ozone supply time of 1 minute from the oxidation activity gas introduction pipe 13 the pressure is 133 Pa in the reaction tube 2 (l T orr), the amount of ozone is a 25 g / Nm 3, in the reaction tube 2 Temperatures of 200 ° C (Comparative Example 2), 250 ° C (Example 1), and 300 ° C
  • FIG. 3A shows conditions for surface modification of the interlayer insulating film by ozone.
  • FIG. 3B shows the contact angle of the surface-modified interlayer insulating film with pure water.
  • a hard mask was formed on each interlayer insulating film after the surface modification, and a CMP test was performed.
  • the results are shown in FIG. 3A (“ ⁇ ” when film peeling does not occur and has adhesiveness, and “x” when film peeling occurs and there is no adhesiveness) in FIG. 3A.
  • the contact angle of the interlayer insulating film with pure water was measured and a CMP test was performed. And in Figure 3B.
  • the contact angle of the interlayer insulating film with pure water is 40 ° or less
  • the results of the CMP test were also good.
  • the temperature in the reaction tube 2 was 300 ° C. (Example 2)
  • the contact angle of the interlayer insulating film with pure water was reduced to 20 ° or less, and the result of the CMP test was good. For this reason, it was confirmed that the adhesion property of the interlayer insulating film was improved by the surface modification of the interlayer insulating film with ozone, and the adhesiveness with the hard mask was improved.
  • the ozone concentration is set to 25 gZNm 3 or more, or the treatment time is set to 1 minute or more. It is considered that it is possible to obtain sufficient surface modification (improve surface energy).
  • the temperature in the reaction tube 2 is preferably 600 ° C. or lower, more preferably 400 ° C. or lower.
  • the Phoenix degree in the reaction tube 2 in the surface modification of the interlayer insulating film with ozone is also preferably 60 CTC or less, more preferably 200 ° C. to 400 ° C.
  • the pressure in the reaction tube 2 during the surface modification treatment of the interlayer insulating film with ozone is preferably 0.3 Pa (0.003 To rr) to: LO lkPa (normal pressure). , 0.3 Pa (0.003 Torr) to 6.65 kPa (50 Torr).
  • LO lkPa normal pressure
  • 0.3 Pa 0.003 Torr
  • 6.65 kPa 50 Torr
  • the minimum pressure of the heat treatment apparatus 1 is 0.3 Pa, while ozone tends to be deactivated on the high pressure side. This tendency becomes more pronounced at higher processing temperatures.
  • the temperature inside the reaction tube 2 is 300 ° C
  • it is preferably at most 6.65 kPa (50 Torr).
  • the ozone supply time during the surface modification treatment of the interlayer insulating film with ozone is preferably 60 minutes or less, more preferably 30 minutes or less, and most preferably 10 minutes or less.
  • the general baking time of the film in the device generation using the porous MSQ is 30 minutes to 60 minutes, taking into account the actual productivity.
  • O Zon amount of surface modification of the interlayer insulating film by ozone is preferably 2 0 0 g / N m 3 or less, and more preferably l OO gZN m 3 or less.
  • the pressure in the reaction tube 2 is set to normal pressure
  • the temperature in the reaction tube 2 is set to 500 ° C.
  • the steam supply time from the oxidation active gas introduction tube 13 is set to 30 minutes.
  • Example 3 and the case where the temperature in the reaction tube 2 was set at 400 ° C. and the steam supply time from the oxidation active gas introduction tube .13 was set to 15 minutes
  • FIG. 4A shows the conditions for modifying the surface of the interlayer insulating film with water vapor.
  • FIG. 4B shows the contact angle of the surface-modified interlayer insulating film with pure water.
  • the pressure in the reaction tube 2 is set to 13 3 Pa (1 Torr)
  • the supply time of hydrogen and oxygen from the oxidizing active gas introduction pipe 13, and the ratio of hydrogen (hydrogen mixture ratio) were changed as shown in FIG. 5A (Examples 4 to 10)
  • the surface of the interlayer insulating film was modified with hydrogen and oxygen.
  • the contact angle of each interlayer insulating film with pure water was measured.
  • oxygen and hydrogen were separately supplied into the reaction tube 2 through separate oxidation active gas introduction tubes 13 and mixed in the reaction tube 2.
  • FIG. 5A shows the conditions for the surface modification of the interlayer insulating film by hydrogen and oxygen.
  • the temperature in the reaction tube 2 is 360 ° C. to 400 ° C.
  • the supply time of hydrogen and oxygen from the oxidation active gas introduction tube 13 is 1 minute to 10 minutes
  • the contact angle of the interlayer insulating film with pure water became sufficiently small. Therefore, it is considered that the surface modification of the interlayer insulating film with hydrogen and oxygen improves the adhesion performance of the interlayer insulating film and improves the adhesion with the hard mask.
  • the same surface modification was performed when the temperature in the reaction tube 2 was set to 250 ° C. Also in this case, the contact angle of the interlayer insulating film with pure water was sufficiently small. For this reason, the temperature in the reaction tube 2 in the surface modification of the interlayer insulating film with hydrogen and oxygen is preferably 600 ° C. or less, more preferably 250 ° C. to 400 ° C.
  • the pressure in the reaction tube 2 during the surface modification treatment of the interlayer insulating film with hydrogen and oxygen is preferably ⁇ 0.3 Pa (0.003 Torr) to: LO lkPa (normal pressure).
  • the pressure is more preferably 0.3 Pa (0.003 Torr) to 0.3 kPa (3 Torr). This is because the minimum pressure of the heat treatment apparatus 1 is about 0.3 Pa, while the oxidizing power of hydrogen and oxygen becomes weak at a high pressure of 0.3 kPa or more.
  • the gas supply time during the surface modification treatment of the interlayer insulating film with hydrogen and oxygen is preferably 60 minutes or less, more preferably 30 minutes or less, and most preferably 10 minutes or less.
  • the typical baking time for the film in the device generation using the porous MSQ is 30 minutes to 60 minutes, considering the actual productivity.
  • the mixing ratio of hydrogen is preferably 0.001% to 99%, and more preferably 5% to 66%. For adding trace amounts of hydrogen This is because radicals are generated during the treatment, and the radicals enable the surface modification treatment.
  • the pressure in the reaction tube 2 was set to normal pressure
  • the oxygen supply time from the oxidizing active gas introduction tube 13 was set to 30 minutes
  • the temperature in the reaction tube 2 was set to 300 ° C (Comparative Example 4).
  • C. Comparative Example 5
  • 500.degree. C. Example 11
  • 600.degree. C. Example 12
  • the surface of the interlayer insulating film was modified with oxygen.
  • the contact angle of each interlayer insulating film with pure water was measured.
  • FIG. 6A shows the conditions for modifying the surface of the interlayer insulating film with oxygen.
  • FIG. 6B shows the contact angle of the surface-modified interlayer insulating film with pure water.
  • the irradiation time of the ultraviolet light on the interlayer insulating film is set to 10 seconds (Example 13) and 30 seconds (Example 14) at room temperature (about 25 ° C.) in an air atmosphere.
  • Surface modification of the interlayer insulating film was performed.
  • the contact angle of each interlayer insulating film with pure water was measured.
  • FIG. 7A shows the conditions for surface modification of the interlayer insulating film by ultraviolet rays.
  • FIG. 7B shows the contact angle of the surface-modified interlayer insulating film with pure water. As shown in FIGS.
  • the ultraviolet irradiation time is 10 seconds or more (Examples 13 and 14)
  • the contact angle of the interlayer insulating film with pure water became 40 ° or less.
  • the contact angle of the interlayer insulating film with pure water was reduced to 20 ° or less. Therefore, the surface of the interlayer insulating film due to ultraviolet rays It is thought that the modification improves the adhesion performance of the interlayer insulating film and improves the adhesion with the hard mask.
  • the ultraviolet irradiation time is preferably at least 10 seconds, more preferably at least 30 seconds.
  • the treatment atmosphere in the surface modification treatment of the interlayer insulating film with ultraviolet rays is preferably air or an atmosphere containing oxygen. This is because in such a processing atmosphere, oxygen radicals or ozone can be generated by ultraviolet irradiation.
  • the temperature in the reaction tube 2 when the surface of the interlayer insulating film is modified by ultraviolet rays is preferably 60 CTC or less, more preferably 400 C or less.
  • the pressure in the reaction tube 2 in the surface modification of the interlayer insulating film by ultraviolet rays should be 0.3 Pa (0.003 Torr) to: L 0 1 kPa (normal pressure). Is preferred.
  • FIG. 8 shows the measurement results of the dielectric constant of the interlayer insulating film of which the surface was modified in Example 1 and the interlayer insulating film of Comparative Example 1 in which the surface was not modified.
  • the dielectric constant of the interlayer insulating film hardly changes. Therefore, it was confirmed that the surface modification of the interlayer insulating film according to the present invention can improve the adhesion while maintaining the dielectric constant of the interlayer insulating film.
  • the surface modification of the present invention can prevent the deterioration of the film characteristics and improve the adhesion.
  • Adhesion can be improved while maintaining the dielectric constant of the interlayer insulating film. Further, the adhesion can be improved while preventing the deterioration of the film characteristics.
  • an interlayer insulating film formed by spin-coating a coating solution containing polysiloxane having an organic functional group to form a coating film on a semiconductor wafer 10 and baking the coating film is used.
  • a membrane has been described.
  • the book The present invention is not limited to this, but can be applied to various interlayer insulating films.
  • the film formed on the upper surface is liable to peel off, and therefore the present invention is particularly effective for a low-dielectric-constant interlayer insulating film.
  • the low dielectric constant interlayer insulating film is not limited to the porous-MSQ, but includes other various low dielectric constant interlayer insulating films.
  • the coating liquid containing the polysiloxane having an organic functional group is spin-coated to form a coating film on the semiconductor wafer 10, and the interlayer formed by firing the coating film is formed.
  • An insulating film has been described.
  • the batch vertical heat treatment apparatus 1 having a double-tube structure in which the reaction tube 2 is composed of the inner tube 3 and the outer tube 4 has been described, but the present invention is not limited to this. Not something.
  • the present invention can be applied to a batch heat treatment apparatus having a single pipe structure without the inner pipe 3.
  • the surface reforming apparatus of the present invention is not limited to a batch-type heat treatment apparatus, and may be, for example, a single-wafer heat treatment apparatus as shown in FIG.
  • FIG. 9 shows a heat treatment apparatus 51 for modifying the surface of an interlayer insulating film by ultraviolet irradiation.
  • a semiconductor wafer 53 on which an interlayer insulating film ′ is formed is placed on a placement section 52 in the heat treatment apparatus 51.
  • the semiconductor wafer 53 is maintained at a predetermined temperature by the heater 54 disposed in the receiver 52.
  • An ultraviolet irradiation unit 55 including a plurality of ultraviolet lamps is provided at an upper part of the heat treatment apparatus 51, and the semiconductor wafer 53 is irradiated with ultraviolet light from the ultraviolet irradiation unit 55.
  • the surface of the interlayer insulating film formed on the semiconductor wafer 53 is modified by the ultraviolet rays, and the adhesion is improved while maintaining the dielectric constant.
  • the oxidizing active gas may be any gas that can increase the polar component energy in the surface energy of the interlayer insulating film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Ceramic Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A surface modification method and a surface modification apparatus for interlayer insulating films are disclosed which enable to improve adhesion properties of an interlayer insulating film without changing the dielectric constant. An interlayer insulating film is formed on a semiconductor wafer (10) by firing a coating film. The surface of the interlayer insulating film is modified by heating the inside of a reaction tube (2), where the semiconductor wafer (10) is housed, to a certain temperature while supplying a gas with oxidizing activity into the reaction tube (2). The gas with oxidizing activity is ozone, water vapor, oxygen or a mixed gas of hydrogen and oxygen.

Description

明 細 書 層間絶縁膜の表面改質方法及び表面改質装置 技 術 分 野  Description Surface modification method and surface modification device for interlayer insulating film
本発明は、 層間絶縁膜の表面改質方法及び表面改質装置に関し、 特に、 低誘電 率の層間絶縁膜の表面改質方法及び表面改質装置に関する。 背 景 技 術  The present invention relates to a method and a device for modifying the surface of an interlayer insulating film, and more particularly to a method and a device for modifying the surface of an interlayer insulating film having a low dielectric constant. Background technology
L S Iの高速化に伴い、 層間絶縁膜には、 その比誘電率を低くすることが求め られている。 低誘電率の層間絶縁膜を得るには、 例えば、 基板としての半導体ゥ ェハ上に、 低誘電率の材料からなる塗布液をスピンコーティ ングして塗布膜 ( S O D ( Spin On Die lectri cs ) 膜) を形成し、 当該塗布膜を焼成するという 方法がある。  As the speed of LSI increases, the relative dielectric constant of interlayer insulating films is required to be lower. In order to obtain an interlayer insulating film having a low dielectric constant, for example, a coating liquid made of a material having a low dielectric constant is spin-coated on a semiconductor wafer as a substrate, and a coating film (SOD (Spin On Dielectrics)) is formed. Film) and baking the coating film.
また、 L S Iの多層配線化 ·微細化に伴い、 層間絶縁膜には、 低誘電率の他に、 例えば、 ハードマスクと呼ばれる多層配線を構築する上で必要な C V D (Chemic al Vapor Deposition ) 膜のような、 当該層間絶縁膜の上部に成膜される膜との 密着性が求められている。 微細化が進むと、 2つの膜の接触面積が小さくなつた りァスぺクト比が増大したりするため、 塗布膜を単に焼成しただけの層間絶縁膜 では、 良好な密着性が得られない場合があるためである。 このような場合、 C M P (Chemical Mechanical Polishing ) 工程などにおいて、 層間絶縁 J3莫とその上 部に成膜される膜とに膜剥がれが発生してしまうという問題があった。  In addition to the low dielectric constant, with the increase in multilayer wiring and miniaturization of LSI, in addition to the low dielectric constant, for example, the CVD (Chemical Vapor Deposition) film required for building multilayer wiring called a hard mask Adhesion with a film formed on the interlayer insulating film is required. As miniaturization progresses, the contact area between the two films becomes smaller and the aspect ratio increases, so that good adhesion cannot be obtained with an interlayer insulating film that is simply baked on a coating film. This is because there are cases. In such a case, in a CMP (Chemical Mechanical Polishing) process or the like, there is a problem that the interlayer insulation J3 is peeled off from the film formed thereon.
かかる問題を解決するため、 形成された層間絶縁膜の表面に例えばプラズマを 照射することによって当該層間絶縁膜の表面を改質し、 層間絶縁膜とその上部に 成膜される膜との密着性を向上させることが提案されている (例えば、 特開平 8 - 7 8 5 2 1号公報参照) 。  In order to solve this problem, the surface of the formed interlayer insulating film is modified, for example, by irradiating the surface of the formed interlayer insulating film with plasma, and the adhesion between the interlayer insulating film and the film formed thereon is improved. (See, for example, Japanese Patent Application Laid-Open No. 8-87521).
しかし、 層間絶縁膜の表面にプラズマを照射すると、 層間絶縁膜の膜特性が劣 化するおそれがある。 例えば、 層間絶縁膜の誘電率が上昇したり、 層間絶縁膜の 表面が荒れてしまう。 発 明 の 要 旨 However, when the surface of the interlayer insulating film is irradiated with plasma, the film characteristics of the interlayer insulating film may be deteriorated. For example, the dielectric constant of the interlayer insulating film increases or the surface of the interlayer insulating film becomes rough. Summary of the invention
本発明は、 上記問題に鑑みてなされたものであり、 膜特性の劣化を防止すると ともに密着性を向上することができる層間絶縁膜の表面改質方法及び表面改質装 置を提供することを目的とする。  The present invention has been made in view of the above problems, and an object of the present invention is to provide a method and apparatus for modifying the surface of an interlayer insulating film, which can prevent deterioration of film properties and improve adhesion. Aim.
また、 本発明は、 誘電率を維持しつつ密着性を向上することができる層間絶縁 膜の表面改質方法及び表面改質装置を提供することを目的とする。  Another object of the present invention is to provide a method and apparatus for modifying the surface of an interlayer insulating film that can improve the adhesion while maintaining the dielectric constant.
本発明は、 基板上に塗布液を塗布して形成された塗布膜を所定の温度で焼成し て形成された層間絶縁膜の表面改質方法であって、 前記基板を収容する反応室内 を所定の温度に加熱する工程と、 前記反応室内に酸化活性ガスを供給することに よって、 前記層間絶縁膜の表面を改質する工程と、 を備えたことを特徴とする層 間絶縁膜の表面改質方法である。  The present invention relates to a method for modifying the surface of an interlayer insulating film formed by baking a coating film formed by applying a coating solution on a substrate at a predetermined temperature, wherein the reaction chamber accommodating the substrate is provided with a predetermined pressure. A step of heating the surface of the inter-layer insulating film by supplying an oxidizing gas into the reaction chamber, thereby modifying the surface of the inter-layer insulating film. Quality way.
本発明によれば、 基板上に形成された層間絶縁膜の表面が酸化活性ガスによつ て改質されるため、 層間絶縁膜の誘電率を維持しつつ密着性を向上することがで きる。 また、 層間絶縁膜の膜特性の劣化も防止される。  According to the present invention, since the surface of the interlayer insulating film formed on the substrate is modified by the oxidizing gas, the adhesion can be improved while maintaining the dielectric constant of the interlayer insulating film. . Further, deterioration of the film characteristics of the interlayer insulating film is also prevented.
好ましくは、 前記酸化活性ガスは、 オゾン、 水蒸気、 酸素、 水素及び酸素の混 合ガス、 のいずれかである。  Preferably, the oxidizing active gas is any one of ozone, water vapor, oxygen, and a mixed gas of hydrogen and oxygen.
また、 好ましくは、 前記所定の温度は、 2 5 0 °C〜6 0 0 °Cであり、 前記酸化 活性ガスは、 オゾンである。  Preferably, the predetermined temperature is 250 ° C. to 600 ° C., and the oxidizing active gas is ozone.
あるいは、 好ましくは、 前記所定の温度は、 2 5 0 °C〜6 0 0 °Cであり、 前記 酸化活性ガスは、 水素及び酸素の混合ガスである。  Alternatively, preferably, the predetermined temperature is 250 ° C. to 600 ° C., and the oxidizing active gas is a mixed gas of hydrogen and oxygen.
また、 前記層間絶縁膜の表面を改質する工程では、 前記層間絶縁膜の表面エネ ルギ一が少なくとも 8 O m NZmとなるように、 前記層間絶縁膜の表面が改質さ れるようになっていることが好ましい。  In the step of modifying the surface of the interlayer insulating film, the surface of the interlayer insulating film is modified so that the surface energy of the interlayer insulating film is at least 8 Om NZm. Is preferred.
また、 前記層間絶縁膜の表面を改質する工程では、 前記層間絶縁膜の表面にお ける水の表面接触角が 4 0 ° よりも小さくなるように、 前記層間絶縁膜の表面が 改質されるようになつていることが好ましい。  In the step of modifying the surface of the interlayer insulating film, the surface of the interlayer insulating film is modified so that the surface contact angle of water on the surface of the interlayer insulating film becomes smaller than 40 °. It is preferred that it is so.
例えば、 前記層間絶縁膜は、 低誘電率の層間絶縁膜である。 例えば、 前記低誘 電率の層間絶縁膜は、 有機官能基を有するポリシロキサンを含む塗布液から形成 され得る。 For example, the interlayer insulating film is a low dielectric constant interlayer insulating film. For example, the low dielectric constant interlayer insulating film is formed from a coating solution containing polysiloxane having an organic functional group. Can be done.
また、 本発明は、 基板上に塗布液を塗布して形成された塗布膜を所定の温度で 焼成して形成された層間絶縁膜の表面改質装置であって、 前記基板を収容する反 応室と、 前記反応室内を所定の温度に加熱する加熱手段と、 前記反応室内に酸化 活性ガスを供給する酸化活性ガス供給手段と、 前記加熱手段及び前記酸化活性ガ ス供給手段を制御する制御手段と、 を備えたことを特徴とする層間絶縁膜の表面 改質装置である。 .  Further, the present invention is a device for modifying the surface of an interlayer insulating film formed by baking a coating film formed by applying a coating liquid on a substrate at a predetermined temperature, wherein the reaction device for accommodating the substrate is provided. Chamber; heating means for heating the reaction chamber to a predetermined temperature; oxidizing gas supply means for supplying an oxidizing gas into the reaction chamber; and control means for controlling the heating means and the oxidizing gas supply means. A surface reforming apparatus for an interlayer insulating film, comprising: .
本発明によれば、 基板上に形成された層間絶縁膜の表面が酸化活性ガスによつ て改質されるため、 層間絶縁膜の誘電率を維持しつつ密着性を向上することがで きる。 また、 層間絶縁膜の膜特性の劣化も防止される。  According to the present invention, since the surface of the interlayer insulating film formed on the substrate is modified by the oxidizing gas, the adhesion can be improved while maintaining the dielectric constant of the interlayer insulating film. . Further, deterioration of the film characteristics of the interlayer insulating film is also prevented.
好ましくは、 前記酸化活性ガスは、 オゾン、 水蒸気、 酸素、 水素及び酸素の混 合ガス、 のいずれかである。  Preferably, the oxidizing active gas is any one of ozone, water vapor, oxygen, and a mixed gas of hydrogen and oxygen.
また、 好ましくは、 前記所定の温度は、 2 5 0 °C〜6 0 0 °Cであり、 前記酸化 活性ガスは、 オゾンである。  Preferably, the predetermined temperature is 250 ° C. to 600 ° C., and the oxidizing active gas is ozone.
あるいは、 好ましくは、 前記所定の温度は、 2 5 0 ° (〜 6 0 0 °Cであり、 前記 酸化活性ガスは、 水素及び酸素の混合ガスである。  Alternatively, preferably, the predetermined temperature is 250 ° C. (〜600 ° C.), and the oxidizing active gas is a mixed gas of hydrogen and oxygen.
また、 前記制御手段は、 前記層間絶縁膜の表面エネルギーが少なくとも 8 O m N /mとなるように、 前記加熱手段及び前記酸化活性ガス供給手段を制御するよ うになっていることが好ましい。  Further, it is preferable that the control unit controls the heating unit and the oxidizing gas supply unit so that the surface energy of the interlayer insulating film is at least 8 OmN / m.
また、 前記制御手段は、 前記層間絶縁膜の表面における水の表面接触角が 4 0 ° よりも小さくなるように、 前記加熱手段及び前記酸化活性ガス供給手段を制御 するようになつていることが好ましい。  Further, the control means may control the heating means and the oxidizing active gas supply means such that a surface contact angle of water on the surface of the interlayer insulating film becomes smaller than 40 °. preferable.
例えば、 前記層間絶縁膜は、 低誘電率の層間絶縁膜である。 例えば、 前記低誘 電率の層間絶縁膜は、 有機官能基を有するポリシロキサンを含む塗布液から形成 され得る。 図面の簡単な説明  For example, the interlayer insulating film is a low dielectric constant interlayer insulating film. For example, the low dielectric constant interlayer insulating film can be formed from a coating solution containing polysiloxane having an organic functional group. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の一実施の形態の薄膜形成装置を示す図である。  FIG. 1 is a diagram showing a thin film forming apparatus according to one embodiment of the present invention.
図 2 Aは、 純水による接触角と層間絶縁膜の表面エネルギーとの関係を示すグ ラフである。 Figure 2A shows the relationship between the contact angle of pure water and the surface energy of the interlayer insulating film. It is rough.
図 2 Bは、 純水による接触角と層間絶縁膜の表面エネルギー中の極性成分エネ ルギ一との関係を示すグラフである。  FIG. 2B is a graph showing the relationship between the contact angle of pure water and the energy of the polar component in the surface energy of the interlayer insulating film.
図 3 Aは、 オゾンによる層間絶縁膜の表面改質の条件を示す表である。  FIG. 3A is a table showing conditions for surface modification of an interlayer insulating film by ozone.
図 3 Bは、 図 3 Aの表に従って表面改質された層間絶縁膜の純水による接触角 を示すグラフである。  FIG. 3B is a graph showing the contact angle of the surface-modified interlayer insulating film with pure water according to the table of FIG. 3A.
図 4 Aは、 水蒸気による層間絶縁膜の表面改質の条件を示す表である。  FIG. 4A is a table showing conditions for modifying the surface of the interlayer insulating film with water vapor.
図 4 Bは、 図 4 Aの表に従って表面改質された層間絶縁膜の純水による接触角 を示すグラフである。  FIG. 4B is a graph showing the contact angle of the surface-modified interlayer insulating film with pure water according to the table of FIG. 4A.
図 5 Aは、 水素及び酸素による層間絶縁膜の表面改質の条件を示す表である。 図 5 Bは、 図 5 Aの表に従って表面改質された層間絶縁膜の純水による接触角 を示すグラフである。  FIG. 5A is a table showing conditions for surface modification of an interlayer insulating film by hydrogen and oxygen. FIG. 5B is a graph showing the contact angle of the surface-modified interlayer insulating film with pure water according to the table of FIG. 5A.
図 6 Aは、 酸素による層間絶縁膜の表面改質の条件を示す表である。  FIG. 6A is a table showing conditions for surface modification of an interlayer insulating film by oxygen.
図 6 Bは、 図 6 Aの表に従って表面改質された層間絶縁膜の純水による接触角 を示す。  FIG. 6B shows the contact angle of the surface-modified interlayer insulating film with pure water according to the table of FIG. 6A.
図 7 Aは、 紫外線による層間絶縁膜の表面改質の条件を示す表である。  FIG. 7A is a table showing conditions for surface modification of an interlayer insulating film by ultraviolet rays.
図 7 Bは、 図 7 Aの表に従って表面改質された層間絶縁膜の純水による接触角 を示す。  FIG. 7B shows the contact angle of the surface-modified interlayer insulating film with pure water according to the table of FIG. 7A.
図 8は、 本発明に従って表面改質された層間絶縁膜と、 表面改質されていない 層間絶縁膜とについて、 誘電率の測定結果を示すグラフである。  FIG. 8 is a graph showing the measurement results of the dielectric constant of an interlayer insulating film surface-modified according to the present invention and an interlayer insulating film not surface-modified.
図 9は、 紫外線照射により層間絶縁膜の表面を改質する熱処理装置を示す図で ある。 発明を実施するための最良の形態  FIG. 9 is a diagram showing a heat treatment apparatus for modifying the surface of an interlayer insulating film by irradiation with ultraviolet rays. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態にかかる層間絶縁膜の表面改質方法及び表面改質装 置について、 図 1に示すバッチ式縦型熱処理装置 1を用いて説明する。 図 1は、 酸化活性ガスにより層間絶縁膜の表面を改質する熱処理装置を示している。  Hereinafter, a method and apparatus for modifying the surface of an interlayer insulating film according to an embodiment of the present invention will be described using a batch-type vertical heat treatment apparatus 1 shown in FIG. FIG. 1 shows a heat treatment apparatus for modifying the surface of an interlayer insulating film with an oxidizing active gas.
図 1に示すように、 熱処理装置 1は、 長手方向が鉛直方向に向けられた略円筒 状の反応管 2を備えている。 反応管 2は、 内管 3と、 内管 3を覆うと共に内管 3 と一定の間隔を有するように形成された有天井の外管 4とから構成された二重管 ' 構造を有する。 内管 3及び外管 4は、 耐熱材料、 例えば石英により形成されてい る o As shown in FIG. 1, the heat treatment apparatus 1 includes a substantially cylindrical reaction tube 2 whose longitudinal direction is directed vertically. The reaction tube 2 includes the inner tube 3 and the inner tube 3 while covering the inner tube 3. And an outer pipe 4 having a ceiling formed to have a certain interval. The inner tube 3 and the outer tube 4 are made of a heat-resistant material, for example, quartz o
外管 4の下方には、 筒状に形成されたステンレス鋼 (S U S ) からなるマニホ —ルド 5が配置されている。 マニホ一ルド 5は、 外管 4の下端と気密に接続され ている。 また、 内管 3は、 マニホ一ルド 5の内壁から突出して形成された支持リ' ング 6に支持されている。  Below the outer tube 4, a manifold 5 made of stainless steel (SUS) formed in a cylindrical shape is arranged. The manifold 5 is air-tightly connected to the lower end of the outer tube 4. Further, the inner pipe 3 is supported by a support ring 6 formed so as to protrude from the inner wall of the manifold 5.
マニホ一ルド 5の下方には、 蓋体 7が配置されている。 蓋体 7はボートエレべ —夕 8により上下動可能に構成されている。 ボートエレべ一夕 8により蓋体 7が 上昇すると、 マ二ホールド 5の下方側が閉鎖される。  Below the manifold 5, a lid 7 is disposed. The lid 7 is configured to be able to move up and down by the boat elevator 8. When the lid 7 is raised by the boat elevator 8, the lower side of the manifold 5 is closed.
蓋体 7には、 例えば石英からなるウェハボート 9が載置される。 ウェハボート 9には、 層間絶縁膜として例えば有機官能基を有するポリシロキサンからなる絶 縁膜のような低誘電率の絶縁膜が形成された半導体ウェハ 1 0 (基板) が、 鉛直 方向に所定の間隔をおいて複数枚収容可能である。 前記層間色縁膜は、 例えば、 有機官能基を有するポリシロキサンを含む塗布液をスピンコ一ティングして半導 体ウェハ 1 0上に塗布膜を形成して、 当該塗布膜を焼成することにより半導体ゥ ェハ 1 0に形成される。  A wafer boat 9 made of, for example, quartz is placed on the lid 7. The wafer boat 9 is provided with a semiconductor wafer 10 (substrate) on which a low dielectric constant insulating film such as an insulating film made of, for example, polysiloxane having an organic functional group is formed as an interlayer insulating film. A plurality of sheets can be stored at intervals. The interlayer color film is formed, for example, by spin-coating a coating solution containing polysiloxane having an organic functional group to form a coating film on the semiconductor wafer 10 and firing the coating film to form a semiconductor. It is formed on the wafer 10.
反応管 2の周囲には、 反応管 2を取り囲むように、 断熱体 1 1が設けられてい る。 断熱体 1 1の内壁面には、 例えば抵抗発熱体からなる昇温用ヒー夕 1 2が設 けられている。 昇温用ヒータ 1 2により、 反応管 2の内部が所定の温度に昇温さ れ、 この結果、 半導体ゥヱハ 1 0が所定の温度に加熱されるようになっている。 マ二ホールド 5の側面には、 酸化活性ガスを導入する酸化活性ガス導入管 1 3 が揷通されている。 なお、 図 1では、 酸化活性ガス導入管 1 3を一つだけ描いて いる。 酸化活性ガス導入管 1 3は、 内管 3内を臨むように、 支持リング 6より下 方で挿通されている。  A heat insulator 11 is provided around the reaction tube 2 so as to surround the reaction tube 2. On the inner wall surface of the heat insulator 11, for example, a heating heater 12 made of a resistance heating element is provided. The inside of the reaction tube 2 is heated to a predetermined temperature by the heater 12 for heating, and as a result, the semiconductor wafer 10 is heated to the predetermined temperature. An oxidizing gas introduction pipe 13 for introducing an oxidizing gas is passed through a side surface of the manifold 5. In addition, in FIG. 1, only one oxidation active gas introduction pipe 13 is drawn. The oxidation active gas introduction pipe 13 is inserted below the support ring 6 so as to face the inside of the inner pipe 3.
酸化活性ガス導入管 1 3は、 図示しないマスフ口一コントロ一ラ等を介して、 図示しない所定の酸化活性ガス供給源に接続されている。 酸化活性ガスとしては、 例えば、 オゾン、 水蒸気、 酸素、 水素及び酸素の混合ガス、 がある。 酸化活性ガ スが水素及び酸素の混合ガスである場合には、 水素及び酸素の混合ガスが共通の 酸化活性ガス導入管 1 3から供給される。 あるいは、 別々の酸化活性ガス導入管 1 3から水素と酸素とが別々に供給されて、 反応管 2内で混合されてもよい。 The oxidizing gas introduction pipe 13 is connected to a predetermined oxidizing gas supply source (not shown) via a mask opening controller (not shown) or the like. Examples of the oxidizing gas include ozone, water vapor, oxygen, and a mixed gas of hydrogen and oxygen. When the oxidation active gas is a mixed gas of hydrogen and oxygen, the mixed gas of hydrogen and oxygen is a common gas. It is supplied from the oxidation active gas introduction pipe 13. Alternatively, hydrogen and oxygen may be separately supplied from separate oxidation active gas introduction tubes 13 and mixed in the reaction tube 2.
ここで、 紫外線を照射することにより層間絶縁膜の表面を改質する場合には、 酸化活性ガス導入管 1 3が設けられずに、 例えば、 断熱体 1 1の内壁面に複数の 紫外線ランプからなる紫外線照射装置が設けられる。 この場合、 紫外線ランプか らの紫外線により、 半導体ウェハ 1 0の層間絶縁膜に紫外線が照射される。  Here, when the surface of the interlayer insulating film is modified by irradiating ultraviolet rays, the oxidizing gas introduction pipe 13 is not provided. For example, a plurality of ultraviolet lamps are provided on the inner wall of the heat insulator 11. Ultraviolet irradiation device is provided. In this case, the interlayer insulating film of the semiconductor wafer 10 is irradiated with the ultraviolet light from the ultraviolet lamp.
マ二ホールド 5の側面には、 排出口 1 4が設けられている。 排出口 1 4は、 支 持リング 6より上方に設けられており、 反応管 2内の内管 3と外管 4との間に形 成された空間に連通している。 そして、 内管 3内で発生した排ガス等が、 内管 3 と外管 4との間の空間を通って、 排気口 1 4に排気される。 また、 マ二ホールド 5の側面の排気口 1 4の下方には、 パージガスとしての窒素ガスを供給するパ一 ジガス供給管 1 5が挿通されている。  A discharge port 14 is provided on the side of the manifold 5. The discharge port 14 is provided above the support ring 6 and communicates with a space formed between the inner tube 3 and the outer tube 4 in the reaction tube 2. Then, exhaust gas and the like generated in the inner pipe 3 pass through the space between the inner pipe 3 and the outer pipe 4 and are exhausted to the exhaust port 14. A purge gas supply pipe 15 for supplying nitrogen gas as a purge gas is inserted below the exhaust port 14 on the side surface of the manifold 5.
排出口 1 4には、 排気管 1 6が気密に接続されている。 排気管 1 6には、 その 上流側から、 バルブ 1 7と、 真空ポンプ 1 8と、 が介設されている。 バルブ 1 Ί は、 排気管 1 6の開度を調整して、 反応管 2内の圧力を所定の圧力に制御する。 真空ポンプ 1 8は、 排気管 1 6を介して反応管 2内のガスを排気すると共に反応 管 2内の圧力を調整する。  An exhaust pipe 16 is hermetically connected to the outlet 14. A valve 17 and a vacuum pump 18 are interposed in the exhaust pipe 16 from the upstream side. The valve 1 # controls the pressure in the reaction tube 2 to a predetermined pressure by adjusting the opening of the exhaust pipe 16. The vacuum pump 18 exhausts the gas in the reaction tube 2 via the exhaust tube 16 and adjusts the pressure in the reaction tube 2.
なお、 排気管 1 6には、 図示しないトラップ、 スクラバ一等が介設されており、 反応管 2から排気される排ガスは、 無害化された後で熱処理装置 1外に排気され るようになっている。  The exhaust pipe 16 is provided with a trap, a scrubber and the like (not shown), and the exhaust gas exhausted from the reaction pipe 2 is detoxified and then exhausted outside the heat treatment apparatus 1. ing.
また、 ボートエレべ一夕 8、 昇温用ヒー夕 1 2、 酸化活性ガス導入管 1 3、 ノ —ジガス供給管 1 5、 バルブ 1 7、 真空ポンプ 1 8には、 制御部 1 9が接続され ている。 制御部 1 9は、 マイクロプロセッサ、 プロセスコントローラ等から構成 され、 熱処理装置 1の各部の温度、 圧力等を測定し、 測定データに基づいて、 上 記各部に制御信号等を出力して、 熱処理装置 1の各部を所定のレシピ (タイムシ —ケンス) に従って制御する。  A control unit 19 is connected to the boat elevator 8, the heating heater 12, the oxidation active gas introduction pipe 13, the source gas supply pipe 15, the valve 17, and the vacuum pump 18. ing. The control unit 19 is composed of a microprocessor, a process controller, etc., measures the temperature, pressure, etc. of each part of the heat treatment apparatus 1, outputs a control signal or the like to each of the above parts based on the measured data, and Each part of 1 is controlled according to a prescribed recipe (time sequence).
次に、 層間絶縁膜の表面改質方法について説明する。 層間絶縁膜の表面改質方 法は、 層間絶縁膜が形成された半導体ウェハ 1 0を収容する.反応管 2内を所定の 温度に加熱するとともに、 当該反応管 2内に酸化活性ガスを供給する (または、 半導体ウェハ 1 0の層間絶縁膜に紫外線を照射する) ことにより、 層間絶縁膜の 表面を改質するものである。 以下、 前述のように構成された熱処理装置 1を用い た層間絶縁膜の表面改質方法について説明する。 また、 以下の説明において、 熱 処理装置 1を構成する各部の動作は、 制御部 1 9によりコントロールされている。 Next, a method for modifying the surface of the interlayer insulating film will be described. In the surface modification method of the interlayer insulating film, the semiconductor wafer 10 on which the interlayer insulating film is formed is housed, while the inside of the reaction tube 2 is heated to a predetermined temperature and the oxidizing gas is supplied into the reaction tube 2. Yes (or By irradiating the interlayer insulating film of the semiconductor wafer 10 with ultraviolet rays, the surface of the interlayer insulating film is modified. Hereinafter, a method of modifying the surface of the interlayer insulating film using the heat treatment apparatus 1 configured as described above will be described. In the following description, the operation of each unit constituting the heat treatment apparatus 1 is controlled by the control unit 19.
まず、 昇温用ヒ一夕 1 2により、 反応管 2内が所定の温度に加熱される。 この 温度の好適な範囲は、 後述するように、 使用される酸化活性ガスの種類によって 異なる。 反応管 2内は、 使用される酸化活性ガスの種類に応じた最適な温度に加 熱される。  First, the inside of the reaction tube 2 is heated to a predetermined temperature by the heating heater 12. The preferable range of the temperature depends on the type of the oxidizing gas used, as described later. The inside of the reaction tube 2 is heated to an optimum temperature according to the type of the oxidizing active gas used.
次に、 層間絶縁膜が形成された半導体ウェハ 1 0を収容するウェハボート 9が、 蓋体 7上に載置される。 そして、 ボートエレべ一夕 8により蓋体 7が上昇される。 これにより、 半導体ウェハ 1 0が反応室内に収容される。 なお、 熱処理装置 1で 塗布膜の焼成が行われる場合 (一つの熱処理装置 1で塗布膜の焼成と表面改質と が連続処理される場合) には、 このロード工程は不要である。  Next, a wafer boat 9 containing the semiconductor wafer 10 on which the interlayer insulating film has been formed is placed on the lid 7. Then, the lid 7 is raised by the boat elevator 8. Thereby, the semiconductor wafer 10 is accommodated in the reaction chamber. In the case where the coating film is baked in the heat treatment apparatus 1 (when the calcination of the coating film and the surface modification are continuously performed in one heat treatment apparatus 1), the loading step is unnecessary.
層間絶縁膜は、 例えば、 有機官能基を有するポリシロキサンを含む塗布液をス ビンコ一ティングして半導体ウェハ 1 0上に塗布膜を形成して、 当該塗布膜を焼 成することにより半導体ウェハ 1 0に形成される。 有機官能基を有するポリシロ キサンを含む塗布液は、 例えば、 有機官能基を有するポリシロキサンが有機溶媒 に溶解された溶液である。 この溶液中には、 界面活性剤等の任意成分が添加され 得る。 このにように形成された層間絶縁膜としては、 ポ一ラス一メチルシルセス キォキサン (ポ一ラス一 M S Q : Porous -Methyl Silsesquioxane ) がある。 層間 絶縁膜には、 例えば、 2 0 n m以下の分子もしくは原子サイズの空孔が形成され The interlayer insulating film is formed, for example, by spin-coating a coating solution containing polysiloxane having an organic functional group to form a coating film on the semiconductor wafer 10 and baking the coating film. Formed as 0. The coating solution containing a polysiloxane having an organic functional group is, for example, a solution in which a polysiloxane having an organic functional group is dissolved in an organic solvent. Optional components such as a surfactant can be added to this solution. As an interlayer insulating film formed in this way, there is porous-methylsilsesquioxane (Porous-Methyl Silsesquioxane). For example, pores having a molecular or atomic size of 20 nm or less are formed in the interlayer insulating film.
Ίザる ο ΊThe ru ο
続いて、 反応管 2内は、 使用される酸化活性ガスの種類に応じた所定の圧力に 維持される。 そして、 酸化活性ガス導入管 1 3から、 所定の酸化活性ガスが内管 3内に所定量供給される。 内管 3内に酸化活性ガスが供給されると、 層間絶縁膜 の表面エネルギー中の極性成分エネルギーが大きくなる。 この結果、 層間絶縁膜 の表面エネルギーが大きくなる。 層間絶縁膜の表面エネルギー中の極性成分エネ ルギ一が大きくなるのは、 層間絶縁膜を構成するポ一ラス一 M S Qの (S i— C H 3 ) の一部が、 酸化活性ガスにより (S i— C O ) 、 (S i— C 0 H ) 、 ( S i一 0 ) 、 (S i— O H ) 等の極性成分に置換されるためと考えられる。 層間絶 縁膜の表面エネルギーが大きくなると、 層間絶縁膜の密着性能が向上する。 すな わち、 その上部に形成される膜、 例えばハードマスク、 との密着性が向上する。 Subsequently, the inside of the reaction tube 2 is maintained at a predetermined pressure according to the type of the oxidizing active gas used. Then, a predetermined amount of an oxidizing gas is supplied into the inner tube 3 from the oxidizing gas introducing pipe 13. When the oxidizing gas is supplied into the inner tube 3, the polar component energy in the surface energy of the interlayer insulating film increases. As a result, the surface energy of the interlayer insulating film increases. The reason why the polar component energy in the surface energy of the interlayer insulating film is increased is that a part of (S i — CH 3 ) of the porous MSQ that constitutes the interlayer insulating film is (S i — CH 3 ) by the oxidizing active gas. — CO), (S i— C 0 H), (S This is considered to be due to substitution with polar components such as i-1 0) and (S i- OH). As the surface energy of the interlayer insulating film increases, the adhesion performance of the interlayer insulating film improves. That is, the adhesion to a film formed on the upper surface, for example, a hard mask is improved.
また、 紫外線を照射することによって層間絶縁膜の表面を改質する場合には、 熱処理装置 1の内部に設けられた図示しない紫外線ランプから紫外線が半導体ゥ ェハ 1 0の層間絶縁膜に照射される。 これにより、 層間絶縁膜の表面エネルギー が大きくなる。  In the case where the surface of the interlayer insulating film is modified by irradiating ultraviolet light, ultraviolet light is applied to the interlayer insulating film of the semiconductor wafer 10 from an ultraviolet lamp (not shown) provided inside the heat treatment apparatus 1. You. This increases the surface energy of the interlayer insulating film.
層間絶縁膜の表面改質終了後、 バルブ 1 7の開度が制御されつつ、 真空ポンプ 1 8が駆動されて、 反応管 2内のガスが排気管 1 6に排出される。 また、 反応管 2内の圧力が常圧に戻され、 ボートエレべ一夕 8により蓋体 7を下降させること により、 半導体ウェハ 1 0がアンロードされる。  After the surface modification of the interlayer insulating film is completed, the vacuum pump 18 is driven while controlling the opening of the valve 17, and the gas in the reaction tube 2 is exhausted to the exhaust tube 16. Further, the pressure in the reaction tube 2 is returned to normal pressure, and the semiconductor wafer 10 is unloaded by lowering the lid 7 by the boat elevator 8.
次に、 本実施の形態の効果を確認するため、 ポ一ラス— M S Qからなる層間絶 縁膜が形成された半導体ウェハ 1 0が、 所定の温度に加熱された熱処理装置 1 (反応管 2 ) 内に収容された。 その後、 酸化活性ガスとしてのオゾン、 水蒸気、 酸素、 または、 水素及び酸素が供給されて、 当該層間絶縁膜の表面が改質された。 また、 同様の半導体ウェハ 1 0に対して紫外線を照射して、 層間絶縁膜の表面が 改質された。 そして、 各層間絶縁膜の密着性及び表面エネルギーに関する測定が 行われた。  Next, in order to confirm the effect of the present embodiment, in order to confirm the effect of the present embodiment, the semiconductor wafer 10 on which the interlayer insulating film made of porous MSQ was formed was heated to a predetermined temperature by the heat treatment apparatus 1 (reaction tube 2). Was housed within. Thereafter, ozone, water vapor, oxygen, or hydrogen and oxygen as an oxidizing active gas were supplied to modify the surface of the interlayer insulating film. Further, the same semiconductor wafer 10 was irradiated with ultraviolet rays to modify the surface of the interlayer insulating film. And the measurement about the adhesiveness and surface energy of each interlayer insulating film was performed.
改質処理された後の層間絶縁膜の表面エネルギーは、 接触角法を用いて測定さ れた。 接触角法とは、 層間絶縁膜上に液体を滴下し、 この液体の玉 (滴) と層間 絶縁膜表面との接触角を測定する方法である。 図 2 Aは、 純水による接触角と層 間絶縁膜の表面エネルギーとの関係を示す。 図 2 Bは、 純水による接触角と層間 絶縁膜の表面エネルギー中の極性成分エネルギーとの関係を示す。  The surface energy of the interlayer insulating film after the modification treatment was measured using a contact angle method. The contact angle method is a method in which a liquid is dropped on an interlayer insulating film and the contact angle between a ball (drop) of the liquid and the surface of the interlayer insulating film is measured. Figure 2A shows the relationship between the contact angle of pure water and the surface energy of the interlayer insulating film. FIG. 2B shows the relationship between the contact angle of pure water and the polar component energy in the surface energy of the interlayer insulating film.
層間絶縁膜の表面エネルギーは、 Owens- Wendt の方法による固体表面自由エネ ルギ一 (表面エネルギー) 算出方法を参考にして算出された。 この方法では、 表 面張力の異なる液体を用いて、 各液体での接触角が測定され、 Dupre- Young の式 から分散成分、 極性成分、 及び水素結合成分が算出され、 さらに、 拡張 Fowkes式 を用いて、 分散成分と極性成分と水素結合成分とから表面エネルギー (表面張 力) が導き出される。 今回は、 表面張力の異なる液体として、 純水とエチレング リコールとジョ一ドメタンとが用いられた。 The surface energy of the interlayer insulating film was calculated by referring to the solid surface free energy (surface energy) calculation method by the Owens-Wendt method. In this method, the contact angle of each liquid is measured using liquids with different surface tensions, the dispersion component, the polar component, and the hydrogen bond component are calculated from the Dupre-Young equation, and the extended Fowkes equation is calculated. Using this, the surface energy (surface tension) is derived from the dispersion component, the polar component, and the hydrogen bond component. This time, pure water and ethylene glycol were used as liquids with different surface tensions. Recall and jode methane were used.
図 2 Aに示すように、 純水による接触角と層間絶縁膜の表面エネルギーとの相 関関係については、 表面エネルギーが大きくなると純水による接触角が小さくな る。 また、 図 2 Bに示すように、 純水による接触角と層間絶縁膜の表面エネルギ —中の極性成分エネルギーとの相関関係については、 極性成分エネルギーが大き くなると純水による接触角が小さくなる。 図 2Bの相関関係が、 図 2Aの相関関 係を導く。 また、 層間絶縁膜上にハードマスクが成膜されて CMP (Chemical Mechanical Polishing ) テストが行われ、 膜剥がれが発生し難くなる層間絶縁 膜の表面エネルギーが求められた。 この結果、 表面エネルギーが 80 mNZm以 上であることが好ましく、 10 OmNZm以上であることがさらに好ましいこと が確認された。 従って、 層間絶縁膜の密着性能、 すなわち、 その上部に形成され る膜、 例えばハードマスク、 との密着性を向上させるには、 純水による接触角が 40° 以下となるように改質することが好ましく、 20° 以下となるように改質 することがさらに好ましい。  As shown in FIG. 2A, as for the correlation between the contact angle of pure water and the surface energy of the interlayer insulating film, as the surface energy increases, the contact angle of pure water decreases. As shown in Fig. 2B, the correlation between the contact angle due to pure water and the energy of the polar component in the surface energy of the interlayer insulating film-the greater the polar component energy, the smaller the contact angle due to pure water. . The correlation in FIG. 2B leads to the correlation in FIG. 2A. In addition, a hard mask was formed on the interlayer insulating film, and a CMP (Chemical Mechanical Polishing) test was performed. The surface energy of the interlayer insulating film, which would prevent film peeling, was determined. As a result, it was confirmed that the surface energy was preferably 80 mNZm or more, and more preferably 10 OmNZm or more. Therefore, in order to improve the adhesion performance of the interlayer insulating film, that is, the adhesiveness with a film formed thereon, for example, a hard mask, it is necessary to modify the contact angle with pure water to be 40 ° or less. It is more preferable to carry out the modification so as to be 20 ° or less.
以下、 オゾンによる層間絶縁膜の表面改質、 水蒸気による層間絶縁膜の表面改 質、 水素及び酸素による層間絶縁膜の表面改質、 酸素による層間絶縁膜の表面改 質、 紫外線による表面改質の順に説明する。  The following describes the surface modification of the interlayer insulating film with ozone, the surface modification of the interlayer insulating film with water vapor, the surface modification of the interlayer insulating film with hydrogen and oxygen, the surface modification of the interlayer insulating film with oxygen, and the surface modification with ultraviolet light. It will be described in order.
(オゾンによる層間絶縁膜の表面改質)  (Surface modification of interlayer insulating film by ozone)
ここでは、 酸化活性ガス導入管 13からのオゾン供給時間が 1分、 反応管 2内 の圧力が 133 Pa ( l T o r r) 、 オゾン量が 25 g/Nm3 とされて、 反応 管 2内の温度が 200 °C (比較例 2 ) 、 250°C (実施例 1 ) 、 及び、 300 °CHere, the ozone supply time of 1 minute from the oxidation activity gas introduction pipe 13, the pressure is 133 Pa in the reaction tube 2 (l T orr), the amount of ozone is a 25 g / Nm 3, in the reaction tube 2 Temperatures of 200 ° C (Comparative Example 2), 250 ° C (Example 1), and 300 ° C
(実施例 2) に設定されて、 オゾンによる層間絶縁膜の表面改質が行われた。 そ して、 各層間絶縁膜について純水による接触角が測定された。 図 3 Aは、 オゾン による層間絶縁膜の表面改質の条件を示す。 図 3Bは、 表面改質された層間絶縁 膜の純水による接触角を示す。 また、 表面改質後の各層間絶縁膜上にハードマス クが成膜されて、 CMPテストが行われた。 この結果 (膜剥がれが発生せず密着 性を有する場合を 「〇」 、 膜剥がれが発生し密着性を有しない場合を 「x」 ) を 図 3 Aに示す。 さらに、 表面改質されない場合 (比較例 1) についても、 層間絶 縁膜の純水による接触角の測定及び C M Pテストが行われ、 この結果を図 3 A及 び図 3 B中に示す。 With the setting of (Example 2), the surface modification of the interlayer insulating film with ozone was performed. Then, the contact angle of each interlayer insulating film with pure water was measured. FIG. 3A shows conditions for surface modification of the interlayer insulating film by ozone. FIG. 3B shows the contact angle of the surface-modified interlayer insulating film with pure water. In addition, a hard mask was formed on each interlayer insulating film after the surface modification, and a CMP test was performed. The results are shown in FIG. 3A (“を” when film peeling does not occur and has adhesiveness, and “x” when film peeling occurs and there is no adhesiveness) in FIG. 3A. Furthermore, even when the surface was not modified (Comparative Example 1), the contact angle of the interlayer insulating film with pure water was measured and a CMP test was performed. And in Figure 3B.
図 3 A及び図 3 Bに示すように、 反応管 2内の温度が 250°C以上の場合 (実 施例 1) には、 層間絶縁膜の純水による接触角は 40° 以下であり、 CMPテス トの結果も良好であった。 また、 反応管 2内の温度が 300°Cの場合 (実施例 2) には、 層間絶縁膜の純水による接触角は 20° 以下まで小さくなり、 CMP テストの結果も良好であった。 このため、 オゾンによる層間絶縁膜の表面改質に より、 層間絶縁膜の密着性能が向上し、 ハードマスクとの密着性が向上すること が確認できた。  As shown in FIGS. 3A and 3B, when the temperature inside the reaction tube 2 is 250 ° C. or more (Example 1), the contact angle of the interlayer insulating film with pure water is 40 ° or less, The results of the CMP test were also good. When the temperature in the reaction tube 2 was 300 ° C. (Example 2), the contact angle of the interlayer insulating film with pure water was reduced to 20 ° or less, and the result of the CMP test was good. For this reason, it was confirmed that the adhesion property of the interlayer insulating film was improved by the surface modification of the interlayer insulating film with ozone, and the adhesiveness with the hard mask was improved.
一方、 反応管 2内の温度が 200°Cの場合 (比較例 2) には、 層間絶縁膜の純 水による接触角は 40° 以下にならず、 CMPテス卜の結果も満足するものでは なかった。 これは、 反応管 2内の温度が低いため、 反応管 2内に供給されたォゾ ンが改質対象となる層間絶縁膜との反応において十分に活性化されず、 層間絶縁 膜を構成するポ一ラス一 MS Qの一部を極性成分に置換することが十分にできな かったためであると考えられる。 しかしながら、 反応管 2の温度が 200°Cの場 合においても、 オゾンによる改質処理の条件を変更すれば (例えば、 オゾン濃度 を 25 gZNm3 以上にする、 あるいは処理時間を 1分以上にする) 、 十分な表 面改質を得ること (表面エネルギーを向上させること) は十分可能であると考え られる。 On the other hand, when the temperature in the reaction tube 2 was 200 ° C (Comparative Example 2), the contact angle of the interlayer insulating film with pure water was not less than 40 °, and the results of the CMP test were not satisfactory. Was. This is because the temperature inside the reaction tube 2 is low, so that the ozone supplied into the reaction tube 2 is not sufficiently activated in the reaction with the interlayer insulating film to be reformed, forming an interlayer insulating film. It is considered that this was because it was not possible to sufficiently replace a part of the porous MSQ with a polar component. However, even when the temperature of the reaction tube 2 is 200 ° C, if the conditions for the reforming treatment with ozone are changed (for example, the ozone concentration is set to 25 gZNm 3 or more, or the treatment time is set to 1 minute or more) It is considered that it is possible to obtain sufficient surface modification (improve surface energy).
'ところで、 ポーラス一 MSQを用いるデバイス世代では、 高温熱処理は好まれ ない。 従って、 反応管 2内の温度は 600°C以下であることが好ましく、 400 °C以下であることがさらに好ましい。 このため、 オゾンによる層間絶縁膜の表面 改質における反応管 2内の瘟度も、 60 CTC以下、 さらには 200°C〜400°C が好ましい。  'By the way, high-temperature heat treatment is not preferred in the device generation using porous-MSQ. Therefore, the temperature in the reaction tube 2 is preferably 600 ° C. or lower, more preferably 400 ° C. or lower. For this reason, the Phoenix degree in the reaction tube 2 in the surface modification of the interlayer insulating film with ozone is also preferably 60 CTC or less, more preferably 200 ° C. to 400 ° C.
一方、 オゾンによる層間絶縁膜の表面改質処理時における反応管 2内の圧力は、 0. 3 P a ( 0. 003 To r r) 〜: L O l kPa (常圧) であることが好まし く、 0. 3 Pa (0. 003 To r r) 〜6. 65 k P a ( 50 T o r r ) であ ることがさらに好ましい。 熱処理装置 1の最小圧力が 0. 3Paである一方、 ォ ゾンは高圧力側では失活してゆく傾向にあるからである。 処理温度が高温になる ほど、 この傾向は顕著になる。 例えば、 反応管 2内の温度が 300°Cの場合、 ォ ゾンの酸化力を十分に得るには、 6 . 6 5 k P a ( 5 0 T o r r ) 以下であるこ とが好ましい。 On the other hand, the pressure in the reaction tube 2 during the surface modification treatment of the interlayer insulating film with ozone is preferably 0.3 Pa (0.003 To rr) to: LO lkPa (normal pressure). , 0.3 Pa (0.003 Torr) to 6.65 kPa (50 Torr). This is because the minimum pressure of the heat treatment apparatus 1 is 0.3 Pa, while ozone tends to be deactivated on the high pressure side. This tendency becomes more pronounced at higher processing temperatures. For example, if the temperature inside the reaction tube 2 is 300 ° C, In order to obtain the oxidizing power of the zone sufficiently, it is preferably at most 6.65 kPa (50 Torr).
また、 オゾンによる層間絶縁膜の表面改質処理時におけるオゾン供給時間は、 6 0分以下であることが好ましく、 3 0分以下であることがさらに好ましく、 1 0分以下であることが最も好ましい。 ポ一ラス一 M S Qを用いるデバイス世代 における一般的な膜の焼成処理時間は、 3 0分〜 6 0分であり、 実際の生産性を 考慮したものである。 また、 オゾンによる層間絶縁膜の表面改質処理におけるォ ゾン量は、 2 0 0 g/N m3 以下であることが好ましく、 l O O gZN m3 以下 であることがさらに好ましい。 The ozone supply time during the surface modification treatment of the interlayer insulating film with ozone is preferably 60 minutes or less, more preferably 30 minutes or less, and most preferably 10 minutes or less. . The general baking time of the film in the device generation using the porous MSQ is 30 minutes to 60 minutes, taking into account the actual productivity. Also, O Zon amount of surface modification of the interlayer insulating film by ozone, is preferably 2 0 0 g / N m 3 or less, and more preferably l OO gZN m 3 or less.
(水蒸気による層間絶縁膜の表面改質)  (Surface modification of interlayer insulating film with water vapor)
ここでは、 反応管 2内の圧力が常圧とされて、 反応管 2内の温度が 5 0 0 °C、 酸化活性ガス導入管 1 3からの水蒸気供給時間が 3 0分に設定された場合 (実施 例 3 ) と、 反応管 2内の温度が 4 Ό 0 °C、 酸化活性ガス導入管.1 3からの水蒸気 供給時間が 1 5分に設定された場合 (比較例 3 ) とについて、 水蒸気による層間 絶縁膜の表面改質が行われた。 そして、 各層間絶縁膜について純水による接触角 が測定された。 図 4 Aは、 水蒸気による層間絶縁膜の表面改質の条件を示す。 図 4 Bは、 表面改質された層間絶縁膜の純水による接触角を示す。  Here, the pressure in the reaction tube 2 is set to normal pressure, the temperature in the reaction tube 2 is set to 500 ° C., and the steam supply time from the oxidation active gas introduction tube 13 is set to 30 minutes. (Example 3) and the case where the temperature in the reaction tube 2 was set at 400 ° C. and the steam supply time from the oxidation active gas introduction tube .13 was set to 15 minutes (Comparative Example 3) The surface of the interlayer insulating film was modified with water vapor. Then, the contact angle of each interlayer insulating film with pure water was measured. FIG. 4A shows the conditions for modifying the surface of the interlayer insulating film with water vapor. FIG. 4B shows the contact angle of the surface-modified interlayer insulating film with pure water.
図 4 A及び図 4 Bに示すように、 反応管 2内の温度が 5 0 0 C、 酸化活性ガス 導入管 1 3からの水蒸気供給時間が 3 0分の場合 (実施例 3 ) には、 層間絶縁膜 の純水による接触角は十分に小さかった。 このため、 水蒸気による層間絶縁膜の 表面改質により、 層間絶縁膜の密着性能が向上し、 ハードマスクとの密着性が向 上すると考えられる。  As shown in FIGS. 4A and 4B, when the temperature in the reaction tube 2 is 500 ° C. and the steam supply time from the oxidizing active gas introduction tube 13 is 30 minutes (Example 3), The contact angle of the interlayer insulating film with pure water was sufficiently small. For this reason, it is considered that the adhesion property of the interlayer insulating film is improved by the surface modification of the interlayer insulating film by the water vapor, and the adhesiveness with the hard mask is improved.
一方、 反応管 2内の温度が 4 0 0 °C、 酸化活性ガス導入管 1 3からの水蒸気供 給時間が 1 5分の場合 (比較例 3 ) には、 層間絶縁膜の純水による接触角は 4 0 ° 以下にならなかった。 すなわち、 この場合、 ハードマスクとの密着性は向上し ないと考えられる。 従って、 水蒸気による層間絶縁膜の表面改質処理では、 反応 管 2内の温度を 5 0 0 °C付近まで上昇させる必要があることが確認できた。  On the other hand, when the temperature in the reaction tube 2 was 400 ° C. and the steam supply time from the oxidation active gas introduction tube 13 was 15 minutes (Comparative Example 3), the contact of the interlayer insulating film with pure water was performed. The angle did not fall below 40 °. That is, in this case, it is considered that the adhesion to the hard mask is not improved. Therefore, it was confirmed that in the surface modification treatment of the interlayer insulating film with water vapor, it was necessary to raise the temperature in the reaction tube 2 to around 500 ° C.
(水素及び酸素 (の混合ガス) による層間絶縁膜の表面改質)  (Surface modification of interlayer insulating film with hydrogen and oxygen (mixed gas))
ここでは、 反応管 2内の圧力が 1 3 3 P a ( 1 T o r r ) とされ、 反応管 2内 の温度、 酸化活性ガス導入管 13からの水素及び酸素の供給時間、 及び、 水素の 割合 (水素混合比) が図 5 Aに示すように変化された各場合 (実施例 4〜実施例 10) について、 水素及び酸素による層間絶縁膜の表面改質が行われた。 そして、 各層間絶縁膜について純水による接触角が測定された。 なお、 本例では、 別々の 酸化活性ガス導入管 13を介して酸素と水素とが別々に反応管 2内に供給され、 反応管 2内で混合された。 図 5 Aは、 水素及び酸素による層間絶縁膜の表面改質 の'条件を示す。 図 5 Bは、 表面改質された層間絶縁膜の純水による接触角を示ず。 図 5 A及び図 5 Bに示すように、 反応管 2内の温度が 360°C〜400°C、 酸 化活性ガス導入管 13からの水素及び酸素の供給時間が 1分〜 10分、 水素混合 比が 5%〜66%で変化された場合 (実施例 4〜実施例 10) 、 層間絶縁膜の純 水による接触角は十分に小さくなつた。 このため、 水素及び酸素による層間絶縁 膜の表面改質により、 層間絶縁膜の密着性能が向上し、 ハードマスクとの密着性 が向上すると考えられる。 Here, the pressure in the reaction tube 2 is set to 13 3 Pa (1 Torr), In each case where the temperature of hydrogen, the supply time of hydrogen and oxygen from the oxidizing active gas introduction pipe 13, and the ratio of hydrogen (hydrogen mixture ratio) were changed as shown in FIG. 5A (Examples 4 to 10) The surface of the interlayer insulating film was modified with hydrogen and oxygen. Then, the contact angle of each interlayer insulating film with pure water was measured. In this example, oxygen and hydrogen were separately supplied into the reaction tube 2 through separate oxidation active gas introduction tubes 13 and mixed in the reaction tube 2. FIG. 5A shows the conditions for the surface modification of the interlayer insulating film by hydrogen and oxygen. FIG. 5B does not show the contact angle of the surface-modified interlayer insulating film with pure water. As shown in FIGS.5A and 5B, the temperature in the reaction tube 2 is 360 ° C. to 400 ° C., the supply time of hydrogen and oxygen from the oxidation active gas introduction tube 13 is 1 minute to 10 minutes, When the mixing ratio was changed from 5% to 66% (Examples 4 to 10), the contact angle of the interlayer insulating film with pure water became sufficiently small. Therefore, it is considered that the surface modification of the interlayer insulating film with hydrogen and oxygen improves the adhesion performance of the interlayer insulating film and improves the adhesion with the hard mask.
また、 好ましい温度範囲を確認するため、 反応管 2内の温度を 250°Cとした 場合について同様の表面改質が行われた。 この場合も、 層間絶縁膜の純水による 接触角は十分に小さくなつた。 このため、 水素及び酸素による層間絶縁膜の表面 改質における反応管 2内の温度は、 600°C以下、 さらには、 250°C〜400 °Cであることが好ましい。  Further, in order to confirm a preferable temperature range, the same surface modification was performed when the temperature in the reaction tube 2 was set to 250 ° C. Also in this case, the contact angle of the interlayer insulating film with pure water was sufficiently small. For this reason, the temperature in the reaction tube 2 in the surface modification of the interlayer insulating film with hydrogen and oxygen is preferably 600 ° C. or less, more preferably 250 ° C. to 400 ° C.
また、 水素及び酸素による層間絶縁膜の表面改質処理時における反応管 2内の 圧力は、 ◦ . 3 Pa (0. 003 T o r r) 〜: L O l kPa (常圧) であること が好ましく、 0. 3 Pa (0. 003 To r r) 〜0. 3 kPa ( 3 T o r r ) であることがさらに好ましい。 熱処理装置 1の最小圧力が 0. 3Pa程度である 一方、 水素及び酸素の酸化力は 0. 3 kP a以上の高圧では弱くなるためである。  Further, the pressure in the reaction tube 2 during the surface modification treatment of the interlayer insulating film with hydrogen and oxygen is preferably ◦0.3 Pa (0.003 Torr) to: LO lkPa (normal pressure). The pressure is more preferably 0.3 Pa (0.003 Torr) to 0.3 kPa (3 Torr). This is because the minimum pressure of the heat treatment apparatus 1 is about 0.3 Pa, while the oxidizing power of hydrogen and oxygen becomes weak at a high pressure of 0.3 kPa or more.
また、 水素及び酸素による層間絶縁膜の表面改質処理時におけるガス供給時間 は、 60分以下であることが好ましく、 30分以下であることがさらに好ましく、 10分以下であることが最も好ましい。 ポーラス一 MSQを用いるデバイス世代 における一般的な膜の焼成処理時間は、 30分〜 60分であり、 実際の生産性を 考慮したものである。 また、 水素の混合比は、 0. 00 1%〜99%であること が好ましく、 5%〜66%であることがさらに好ましい。 極微量の水素の添加に より、 処理中にラジカルが発生し、 このラジカルにより表面改質処理が可能にな るためである。 The gas supply time during the surface modification treatment of the interlayer insulating film with hydrogen and oxygen is preferably 60 minutes or less, more preferably 30 minutes or less, and most preferably 10 minutes or less. The typical baking time for the film in the device generation using the porous MSQ is 30 minutes to 60 minutes, considering the actual productivity. Further, the mixing ratio of hydrogen is preferably 0.001% to 99%, and more preferably 5% to 66%. For adding trace amounts of hydrogen This is because radicals are generated during the treatment, and the radicals enable the surface modification treatment.
(酸素による層間絶縁膜の表面改質)  (Surface modification of interlayer insulating film by oxygen)
ここでは、 反応管 2内の圧力が常圧とされ、 酸化活性ガス導入管 13からの酸 素供給時間が 30分とされ、 反応管 2内の温度が 300°C (比較例 4) 、 400 °C (比較例 5 ) 、 500 °C (実施例 1 1) 、 及び、 600 °C (実施例 12) に設 定されて、 酸素による層間絶縁膜の表面改質が行われた。 そして、 各層間絶縁膜 について純水による接触角が測定された。 図 6 Aは、 酸素による層間絶縁膜の表 面改質の条件を示す。 図 6Bは、 表面改質された層間絶縁膜の純水による接触角 を示す。  Here, the pressure in the reaction tube 2 was set to normal pressure, the oxygen supply time from the oxidizing active gas introduction tube 13 was set to 30 minutes, and the temperature in the reaction tube 2 was set to 300 ° C (Comparative Example 4). C. (Comparative Example 5), 500.degree. C. (Example 11), and 600.degree. C. (Example 12), the surface of the interlayer insulating film was modified with oxygen. Then, the contact angle of each interlayer insulating film with pure water was measured. FIG. 6A shows the conditions for modifying the surface of the interlayer insulating film with oxygen. FIG. 6B shows the contact angle of the surface-modified interlayer insulating film with pure water.
図 6 A及び図 6 Bに示すように、 反応管 2内の温度が 500 °C以上の場合 (実 施例 1 1、 12) には、 層間絶縁膜の純水による接触角は十分に小さかった。 こ のため、 酸素による層間絶縁膜の表面改質により、 層間絶縁膜の密着性が向上し、 ハードマスクとの密着性が向上すると考えられる。  As shown in FIGS. 6A and 6B, when the temperature inside the reaction tube 2 is 500 ° C. or higher (Examples 11 and 12), the contact angle of the interlayer insulating film with pure water is not sufficiently small. Was. Therefore, it is considered that the adhesion of the interlayer insulating film to the hard mask is improved by the surface modification of the interlayer insulating film by oxygen.
一方、 反応管 2内の温度が 400°C以下の場合 (比較例 4、 5) には、 層間絶 縁膜の純水による接触角は 40° 以下にならなかった。 すなわち、 この場合、 ノヽ —ドマスクとの密着性は向上しないと考えられる。 従って、 酸素による層間絶縁 膜の表面改質処理では、 反応管 2内の温度を 500°C付近まで上昇させる必要が あることが確認できた。  On the other hand, when the temperature in the reaction tube 2 was 400 ° C. or less (Comparative Examples 4 and 5), the contact angle of the interlayer insulating film with pure water did not become 40 ° or less. That is, in this case, it is considered that the adhesion to the node mask is not improved. Accordingly, it was confirmed that in the surface modification treatment of the interlayer insulating film with oxygen, it was necessary to raise the temperature in the reaction tube 2 to around 500 ° C.
(紫外線による層間絶縁膜の表面改質)  (Surface modification of interlayer insulating film by ultraviolet rays)
ここでは、 層間絶縁膜への紫外線照射時間が、 大気雰囲気中、 室温 (約 25 °C) 下で、 10秒 (実施例 13) 、 及び、 30秒 (実施例 14) に設定されて、 紫外線による層間絶縁膜の表面改質が行われた。 そして、 各層間絶縁膜について 純水による接触角が測定された。 図 7 Aは、 紫外線による層間絶縁膜の表面改質 の条件を示す。 図 7Bは、 表面改質された層間絶縁膜の純水による接触角を示す。 図 7 A及び図 7Bに示すように、 紫外線照射時間が 10秒以上である場合 (実 施例 13、 14) 、 層間絶縁膜の純水による接触角は 40° 以下になった。 特に、 紫外線照射時間が 30秒の場合 (実施例 14) には、 層間絶縁膜の純水による接 触角は 20° 以下まで小さくなつた。 このため、 紫外線による層間絶縁膜の表面 改質により、 層間絶縁膜の密着性能が向上し、 ハードマスクとの密着性が向上す ると考えられる。 また、 紫外線照射時間は、 1 0秒以上であることが好ましく、 3 0秒以上であることがさらに好ましい。 Here, the irradiation time of the ultraviolet light on the interlayer insulating film is set to 10 seconds (Example 13) and 30 seconds (Example 14) at room temperature (about 25 ° C.) in an air atmosphere. Surface modification of the interlayer insulating film was performed. Then, the contact angle of each interlayer insulating film with pure water was measured. FIG. 7A shows the conditions for surface modification of the interlayer insulating film by ultraviolet rays. FIG. 7B shows the contact angle of the surface-modified interlayer insulating film with pure water. As shown in FIGS. 7A and 7B, when the ultraviolet irradiation time was 10 seconds or more (Examples 13 and 14), the contact angle of the interlayer insulating film with pure water became 40 ° or less. In particular, when the UV irradiation time was 30 seconds (Example 14), the contact angle of the interlayer insulating film with pure water was reduced to 20 ° or less. Therefore, the surface of the interlayer insulating film due to ultraviolet rays It is thought that the modification improves the adhesion performance of the interlayer insulating film and improves the adhesion with the hard mask. Further, the ultraviolet irradiation time is preferably at least 10 seconds, more preferably at least 30 seconds.
紫外線による層間絶縁膜の表面改質処理時における処理雰囲気は、 大気もしく は酸素を含んだ雰囲気であることが好ましい。 このような処理雰囲気であれば、 紫外線照射により酸素ラジカルあるいはオゾンが発生可能であるためである。 な お、 紫外線による層間絶縁膜の表面改質における反応管 2内の温度は、 6 0 CTC 以下、 さらには 4 0 0 °C以下であることが好ましい。 また、 紫外線による層間絶 縁膜の表面改質における反応管 2内の圧力は、 0 . 3 P a ( 0 . 0 0 3 T o r r ) 〜: L 0 1 k P a (常圧) であることが好ましい。  The treatment atmosphere in the surface modification treatment of the interlayer insulating film with ultraviolet rays is preferably air or an atmosphere containing oxygen. This is because in such a processing atmosphere, oxygen radicals or ozone can be generated by ultraviolet irradiation. The temperature in the reaction tube 2 when the surface of the interlayer insulating film is modified by ultraviolet rays is preferably 60 CTC or less, more preferably 400 C or less. Further, the pressure in the reaction tube 2 in the surface modification of the interlayer insulating film by ultraviolet rays should be 0.3 Pa (0.003 Torr) to: L 0 1 kPa (normal pressure). Is preferred.
次に、 本発明に従う表面改質処理により層間絶縁膜の膜特性が劣化するか否か を確認するため、 表面改質された層間絶縁膜の誘電率が測定された。 図 8は、 実 施例 1により表面改質された層間絶縁膜と、 表面改質されていない比較例 1の層 間絶縁膜とについて、 誘電率の測定結果を示す。 図 8に示すように、 実施例 1に 従う表面改質が行われても、 層間絶縁膜の誘電率はほとんど変化しない。 このた め、 本発明による層間絶縁膜の表面改質は、 当該層間絶縁膜の誘電率を維持しつ つ密着性を向上することができる、 ということが確認できた。 また、 層間絶縁膜 の表面を観察したところ、 層間絶縁膜の表面に問題を生じるような荒れは発生し ていなかった。 このため、 本発明の表面改質は、 膜特性の劣化を防止するととも に密着性を向上することができる、 ということが確認できた。  Next, the dielectric constant of the surface-modified interlayer insulating film was measured in order to confirm whether or not the film properties of the interlayer insulating film were degraded by the surface modification treatment according to the present invention. FIG. 8 shows the measurement results of the dielectric constant of the interlayer insulating film of which the surface was modified in Example 1 and the interlayer insulating film of Comparative Example 1 in which the surface was not modified. As shown in FIG. 8, even if the surface modification according to Example 1 is performed, the dielectric constant of the interlayer insulating film hardly changes. Therefore, it was confirmed that the surface modification of the interlayer insulating film according to the present invention can improve the adhesion while maintaining the dielectric constant of the interlayer insulating film. In addition, when the surface of the interlayer insulating film was observed, no roughening that would cause a problem occurred on the surface of the interlayer insulating film. For this reason, it was confirmed that the surface modification of the present invention can prevent the deterioration of the film characteristics and improve the adhesion.
以上説明したように、 本発明の各実施の形態によれば、 所定の温度に加熱され た反応管 2内の酸化活性ガスを供給する、 または、 層間絶縁膜に紫外線を照射す ることにより、 層間絶縁膜の誘電率を維持しつつ密着性を向上することができる。 また、 膜特性の劣化を防止しながら、 密着性を向上することができる。  As described above, according to each embodiment of the present invention, by supplying an oxidizing gas in the reaction tube 2 heated to a predetermined temperature, or by irradiating the interlayer insulating film with ultraviolet light, Adhesion can be improved while maintaining the dielectric constant of the interlayer insulating film. Further, the adhesion can be improved while preventing the deterioration of the film characteristics.
なお、 本発明は、 上記の実施の形態に限られず、 種々の変形、 応用が可能であ る。  Note that the present invention is not limited to the above embodiment, and various modifications and applications are possible.
上記各実施の形態は、 有機官能基を有するポリシロキサンを含む塗布液をスピ ンコーティングして半導体ウェハ 1 0上に塗布膜を形成し、 当該塗布膜を焼成す ることにより形成された層間絶縁膜について説明されている。 しかしながら、 本 発明はこれに限定されるものではなく、 各種の層間絶縁膜に適用することが可能 である。 もっとも、 低誘電率の層間絶縁膜の場合に、 その上面に形成される膜の 膜剥がれが発生しやすいことから、 本発明は、 低誘電率の層間絶縁膜に対して特 に有効である。 なお、 低誘電率の層間絶縁膜とは、 ポ一ラス— M S Qに限定され るものではなく、 他の各種の低誘電率の層間絶縁膜を含む。 In each of the above embodiments, an interlayer insulating film formed by spin-coating a coating solution containing polysiloxane having an organic functional group to form a coating film on a semiconductor wafer 10 and baking the coating film is used. A membrane has been described. However, the book The present invention is not limited to this, but can be applied to various interlayer insulating films. However, in the case of a low-dielectric-constant interlayer insulating film, the film formed on the upper surface is liable to peel off, and therefore the present invention is particularly effective for a low-dielectric-constant interlayer insulating film. Note that the low dielectric constant interlayer insulating film is not limited to the porous-MSQ, but includes other various low dielectric constant interlayer insulating films.
また、 上記各実施の形態は、 有機官能基を有するポリシロキサンを含む塗布液 をスピンコ一ティングして半導体ウェハ 1 0上に塗布膜を形成し、 当該塗布膜を 焼成することにより形成された層間絶縁膜について説明されている。 ここで、 例 えば、 バッチ式縦型熱処理装置 1を用いて、 塗布膜の焼成を実施した後に連続し て改質処理を実施することも可能である。  In each of the above embodiments, the coating liquid containing the polysiloxane having an organic functional group is spin-coated to form a coating film on the semiconductor wafer 10, and the interlayer formed by firing the coating film is formed. An insulating film has been described. Here, for example, using the batch-type vertical heat treatment apparatus 1, it is also possible to continuously perform the reforming treatment after the firing of the coating film.
また、 上記各実施の形態では、 反応管 2が内管 3と外管 4とから構成された二 熏管構造のバッチ式縦型熱処理装置 1を説明したが、 本発明はこれに限定される ものではない。 例えば、 内管 3を有しない単管構造のバッチ式熱処理装置に適用 することも可能である。  Further, in each of the above embodiments, the batch vertical heat treatment apparatus 1 having a double-tube structure in which the reaction tube 2 is composed of the inner tube 3 and the outer tube 4 has been described, but the present invention is not limited to this. Not something. For example, the present invention can be applied to a batch heat treatment apparatus having a single pipe structure without the inner pipe 3.
また、 本発明の表面改質装置は、 バッチ式熱処理装置に限定されるものではな く、 例えば、 図 9に示すような枚葉式の熱処理装置であってもよい。 図 9は、 紫 外線照射により層間絶縁膜の表面を改質する熱処理装置 5 1を示している。 図 9 に示す熱処理装置においては、 熱処理装置 5 1内の載置部 5 2上に、 層間絶縁膜 'が形成された半導体ウェハ 5 3が載置される。 半導体ウェハ 5 3は、 載置部 5 2 内に配設されたヒー夕 5 4により、 所定の温度に維持される。 熱処理装置 5 1の 上部には、 複数の紫外線ランプを備える紫外線照射部 5 5が設けられ、 当該紫外 線照射部 5 5から半導体ウェハ 5 3に紫外線が照射される。 この紫外線により、 半導体ウェハ 5 3に形成された層間絶縁膜が表面改質され、 誘電率を維持しつつ 密着性が向上される。  Further, the surface reforming apparatus of the present invention is not limited to a batch-type heat treatment apparatus, and may be, for example, a single-wafer heat treatment apparatus as shown in FIG. FIG. 9 shows a heat treatment apparatus 51 for modifying the surface of an interlayer insulating film by ultraviolet irradiation. In the heat treatment apparatus shown in FIG. 9, a semiconductor wafer 53 on which an interlayer insulating film ′ is formed is placed on a placement section 52 in the heat treatment apparatus 51. The semiconductor wafer 53 is maintained at a predetermined temperature by the heater 54 disposed in the receiver 52. An ultraviolet irradiation unit 55 including a plurality of ultraviolet lamps is provided at an upper part of the heat treatment apparatus 51, and the semiconductor wafer 53 is irradiated with ultraviolet light from the ultraviolet irradiation unit 55. The surface of the interlayer insulating film formed on the semiconductor wafer 53 is modified by the ultraviolet rays, and the adhesion is improved while maintaining the dielectric constant.
また、 上記各実施の形態では、 酸化活性ガスとして、 オゾン、 水蒸気、 酸素、 水素及び酸素が用いられている。 しかしながら、 酸化活性ガスは、 層間絶縁膜の 表面エネルギー中の極性成分エネルギーを大きくすることができるガスであれば よレ、。  Further, in each of the above embodiments, ozone, steam, oxygen, hydrogen, and oxygen are used as the oxidizing active gas. However, the oxidizing active gas may be any gas that can increase the polar component energy in the surface energy of the interlayer insulating film.

Claims

請 求 の 範 囲 The scope of the claims
1 . 基板上に塗布液を塗布して形成された塗布膜を所定の温度で焼成して形 成された層間絶縁膜の表面改質方法であって、 1. A method for modifying the surface of an interlayer insulating film formed by firing a coating film formed by applying a coating liquid on a substrate at a predetermined temperature,
前記基板を収容する反応室内を所定の温度に加熱する工程と、  Heating the reaction chamber containing the substrate to a predetermined temperature,
前記反応室内に酸化活性ガスを供給することによって、 前記層間絶縁膜の表面 を改質する工程と、  Modifying the surface of the interlayer insulating film by supplying an oxidizing gas into the reaction chamber;
を備えたことを特徴とする層間絶縁膜の表面改質方法。 A method for modifying the surface of an interlayer insulating film, comprising:
2 . 前記酸化活性ガスは、 オゾン、 水蒸気、 酸素、 水素及び酸素の混合ガス、 のいずれかである 2. The oxidizing active gas is one of ozone, water vapor, oxygen, and a mixed gas of hydrogen and oxygen.
ことを特徴とする請求項 1に記載の層間絶縁膜の表面改質方法。 2. The method for modifying the surface of an interlayer insulating film according to claim 1, wherein:
3 . 前記所定の温度は、 2 5 0 °C〜6 0 0 °Cであり、 3. The predetermined temperature is 250 ° C. to 600 ° C.,
前記酸化活性ガスは、 オゾンである。  The oxidizing active gas is ozone.
ことを特徴とする請求項 2に記載の層間絶縁膜の表面改質方法。 3. The method for modifying the surface of an interlayer insulating film according to claim 2, wherein:
4 . 前記所定の温度は、 2 5 0 °C〜6 0 0 °Cであり、 4. The predetermined temperature is 250 ° C. to 600 ° C.,
前記酸化活性ガスは、 水素及び酸素の混合ガスである。  The oxidizing active gas is a mixed gas of hydrogen and oxygen.
ことを特徴とする請求項 2に記載の層間絶 膜の表面改質方法。 3. The method for modifying a surface of an interlayer insulating film according to claim 2, wherein the surface is modified.
5 . 前記層間絶縁膜の表面を改質する工程では、 前記層間絶縁膜の表面エネ ルギ一が少なくとも 8 O m N/mとなるように、 前記層間絶縁膜の表面が改質さ れるようになっている。 5. In the step of modifying the surface of the interlayer insulating film, the surface of the interlayer insulating film is modified so that the surface energy of the interlayer insulating film is at least 8 OmN / m. Has become.
ことを特徴とする請求項 1乃至 4のいずれかに記載の層間絶縁膜の表面改質方法。 5. The method for modifying the surface of an interlayer insulating film according to claim 1, wherein:
6 . 前記層間絶縁膜の表面を改質する工程では、 前記層間絶縁膜の表面にお ける水の表面接触角が 4 0 ° よりも小さくなるように、 前記層間絶縁膜の表面が 改質されるようになつている ことを特徴とする請求項 1乃至 5のいずれかに記載の層間絶縁膜の表面改質方法。 6. In the step of modifying the surface of the interlayer insulating film, the surface of the interlayer insulating film is modified so that the surface contact angle of water on the surface of the interlayer insulating film becomes smaller than 40 °. I'm like 6. The method for modifying the surface of an interlayer insulating film according to claim 1, wherein:
7 . 前記層間絶縁膜は、 低誘電率の層間絶縁膜である 7. The interlayer insulating film is a low dielectric constant interlayer insulating film.
ことを特徴とする請求項 1乃至 6のいずれかに記載の層間絶縁膜の表面改質方法。 7. The method for modifying the surface of an interlayer insulating film according to claim 1, wherein:
8 . 前記低誘電率の層間絶縁膜は、 有機官能基を有するポリシロキサンを含 む塗布液から形成されている 8. The low dielectric constant interlayer insulating film is formed from a coating solution containing polysiloxane having an organic functional group.
ことを特徴とする請求項 7に記載の層間絶縁膜の表面改質方法。 8. The method for modifying the surface of an interlayer insulating film according to claim 7, wherein:
9 . 基板上に塗布液を塗布して形成された塗布膜を所定の温度で焼成して形 成された層間絶縁膜の表面改質装置であって、 9. An apparatus for modifying the surface of an interlayer insulating film formed by baking a coating film formed by applying a coating liquid on a substrate at a predetermined temperature,
前記基板を収容する反応室と、  A reaction chamber containing the substrate;
前記反応室内を所定の温度に加熱する加熱手段と、  Heating means for heating the reaction chamber to a predetermined temperature;
前記反応室内に酸化活性ガスを供給する酸化活性ガス供給手段と、  Oxidizing gas supply means for supplying an oxidizing gas into the reaction chamber,
前記加熱手段及び前記酸化活性ガス供給手段を制御する制御手段と、  Control means for controlling the heating means and the oxidizing gas supply means,
を備えたことを特徴とする層間絶縁膜の表面改質装置。 A device for modifying the surface of an interlayer insulating film, comprising:
1 0 . 前記酸化活性ガスは、 オゾン、 水蒸気、 酸素、 水素及び酸素の混合ガ ス、 のいずれかである 10. The oxidizing active gas is any one of ozone, water vapor, oxygen, and a mixed gas of hydrogen and oxygen.
ことを特徴とする請求項 9に記載の層間絶縁膜の表面改質装置。 ' 10. The apparatus for modifying a surface of an interlayer insulating film according to claim 9, wherein: '
1 1 . 前記所定の温度は、 2 5 0 ° (〜 6 0 0 °Cであり、 1 1. The predetermined temperature is 250 ° C. (~ 600 ° C.,
前記酸化活性ガスは、 オゾンである。  The oxidizing active gas is ozone.
ことを特徴とする請求項 1 0に記載の層間絶縁膜の表面改質装置。 10. The apparatus for modifying the surface of an interlayer insulating film according to claim 10, wherein:
1 2 . 前記所定の温度は、 2 5 0 °C〜6◦ 0 °Cであり、 1 2. The predetermined temperature is 250 ° C. to 6 ° 0 ° C.,
前記酸化活性ガスは、 水素及び酸素の混合ガスである。  The oxidizing active gas is a mixed gas of hydrogen and oxygen.
ことを特徴とする請求項 1 0に記載の層間絶縁膜の表面改質装置。 10. The apparatus for modifying the surface of an interlayer insulating film according to claim 10, wherein:
1 3 . 前記制御手段は、 前記層間絶縁膜の表面エネルギーが少なくとも 8 0 mNZmとなるように、 前記加熱手段及び前記酸化活性ガス供給手段を制御する ようになつている 13. The control unit is configured to control the heating unit and the oxidizing gas supply unit such that the surface energy of the interlayer insulating film is at least 80 mNZm.
ことを特徴とする請求項 9乃至 1 2のいずれかに記載の層間絶縁膜の表面改質装 置。 13. The apparatus for modifying a surface of an interlayer insulating film according to claim 9, wherein
1 4 . 前記制御手段は、 前記層間絶縁膜の表面における水の表面接触角が 4 0 ° よりも小さくなるように、 前記加熱手段及び前記酸化活性ガス供給手段を 制御するようになっている 14. The control unit is configured to control the heating unit and the oxidizing gas supply unit such that a surface contact angle of water on the surface of the interlayer insulating film is smaller than 40 °.
ことを特^とする請求項 9乃至 1 3のいずれかに記載の層間絶縁膜の表面改質装 置。 14. The apparatus for modifying a surface of an interlayer insulating film according to claim 9, wherein the apparatus is characterized in that:
1 5 . 前記層間絶縁膜は、 低誘電率の層間絶縁膜である 15. The interlayer insulating film is a low dielectric constant interlayer insulating film.
ことを特徴とする請求項 9乃至 1 4のいずれかに記載の層間絶縁膜の表面改質装 o A surface modification device for an interlayer insulating film according to any one of claims 9 to 14, wherein
1 6 . 前記低誘電率の層間絶縁膜は、 有機官能基を有するポリシロキサンを 含む塗布液から形成されている 16. The low dielectric constant interlayer insulating film is formed from a coating solution containing polysiloxane having an organic functional group.
ことを特徴とする請求項 1 5に記載の層間絶縁膜の表面改質装置。 16. The apparatus for modifying a surface of an interlayer insulating film according to claim 15, wherein:
PCT/JP2004/005641 2003-04-23 2004-04-20 Surface modification method and surface modification apparatus for interlayer insulating film WO2004095563A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020057016680A KR101048949B1 (en) 2003-04-23 2004-04-20 Surface modification method and surface modification apparatus of interlayer insulating film
US10/554,086 US20070026642A1 (en) 2004-04-20 2004-04-20 Surface modification method and surface modification apparatus for interlayer insulating film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003118860 2003-04-23
JP2003-118860 2003-04-23
JP2004112761A JP4538259B2 (en) 2003-04-23 2004-04-07 Interlayer insulating film surface modification method and surface modification apparatus
JP2004-112761 2004-04-07

Publications (1)

Publication Number Publication Date
WO2004095563A1 true WO2004095563A1 (en) 2004-11-04

Family

ID=33312633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005641 WO2004095563A1 (en) 2003-04-23 2004-04-20 Surface modification method and surface modification apparatus for interlayer insulating film

Country Status (4)

Country Link
JP (1) JP4538259B2 (en)
KR (1) KR101048949B1 (en)
TW (1) TW200504865A (en)
WO (1) WO2004095563A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4607613B2 (en) 2005-02-09 2011-01-05 株式会社東芝 Manufacturing method of semiconductor device
JP5200436B2 (en) * 2007-07-18 2013-06-05 富士通セミコンダクター株式会社 Manufacturing method of semiconductor device
JP2009232241A (en) * 2008-03-24 2009-10-08 Fujitsu Ltd Elastic wave element, filter, communications device, and manufacturing method of the acoustic wave element
JP5522979B2 (en) * 2009-06-16 2014-06-18 国立大学法人東北大学 Film forming method and processing system
CN108701587B (en) * 2016-01-28 2023-04-21 东京毅力科创株式会社 Method for spin-on deposition of metal oxides

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201843A (en) * 1993-12-28 1995-08-04 Tokyo Electron Ltd Method for forming sog film
JPH08213383A (en) * 1995-02-08 1996-08-20 Nec Corp Forming method of spin-on-glass film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03225331A (en) * 1990-01-31 1991-10-04 Canon Inc Autofocusing camera provided with interval photographing function
JPH10135327A (en) * 1996-10-29 1998-05-22 Hitachi Ltd Semiconductor integrated circuit device and its manufacturing method
JPH10163206A (en) * 1996-12-02 1998-06-19 Yamaha Corp Formation of wiring
KR100239731B1 (en) * 1997-05-17 2000-01-15 김영환 Method of forming inorganic layer during semiconductor manufacturing process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201843A (en) * 1993-12-28 1995-08-04 Tokyo Electron Ltd Method for forming sog film
JPH08213383A (en) * 1995-02-08 1996-08-20 Nec Corp Forming method of spin-on-glass film

Also Published As

Publication number Publication date
JP4538259B2 (en) 2010-09-08
KR20060004654A (en) 2006-01-12
KR101048949B1 (en) 2011-07-12
TW200504865A (en) 2005-02-01
TWI339859B (en) 2011-04-01
JP2004343087A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
JP4449226B2 (en) Metal oxide film modification method, metal oxide film formation method, and heat treatment apparatus
US8357619B2 (en) Film formation method for forming silicon-containing insulating film
US7906168B2 (en) Film formation method and apparatus for forming silicon oxide film
JP4659856B2 (en) Method for forming fine pattern
KR100558768B1 (en) Film modifying apparatus and method
JP3746968B2 (en) Insulating film forming method and forming system
US20140235068A1 (en) Method of manufacturing semiconductor device, apparatus for manufacturing semiconductor device, and non-transitory computer-readable recording medium
WO2003060978A1 (en) Cvd method and device for forming silicon-containing insulation film
US9018689B1 (en) Substrate processing apparatus and method of manufacturing semiconductor device
WO2006030895A1 (en) Plasma processing apparatus and plasma processing method
KR101124869B1 (en) Method and apparatus for forming silicon oxide film
WO2007102333A1 (en) Methods of depositing ruthenium film and memory medium readable by computer
TW201110231A (en) Substrate processing method and substrate processing apparatus
WO2004021425A1 (en) Method of etching and etching apparatus
US20220139696A1 (en) Method of manufacturing semiconductor device, substrate processing method, substrate processing apparatus, and recording medium
JP3578155B2 (en) Oxidation method of the object
WO2004095563A1 (en) Surface modification method and surface modification apparatus for interlayer insulating film
JP3062116B2 (en) Film forming and reforming assembly equipment
WO2004070079A1 (en) Semiconductor processing method for processing substrate to be processed and its apparatus
US20070026642A1 (en) Surface modification method and surface modification apparatus for interlayer insulating film
US11183382B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US7125811B2 (en) Oxidation method for semiconductor process
JP2010004081A (en) Method of improving surface property of interlayer insulation film and apparatus for improving surface property
US7465682B2 (en) Method and apparatus for processing organosiloxane film
KR100537679B1 (en) Film deposition apparatus and film formation method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057016680

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007026642

Country of ref document: US

Ref document number: 10554086

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057016680

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10554086

Country of ref document: US