WO2004090969A1 - Silicon carbide semiconductor device and method for manufacturing same - Google Patents

Silicon carbide semiconductor device and method for manufacturing same Download PDF

Info

Publication number
WO2004090969A1
WO2004090969A1 PCT/JP2004/004023 JP2004004023W WO2004090969A1 WO 2004090969 A1 WO2004090969 A1 WO 2004090969A1 JP 2004004023 W JP2004004023 W JP 2004004023W WO 2004090969 A1 WO2004090969 A1 WO 2004090969A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
semiconductor device
silicon
film
carbide semiconductor
Prior art date
Application number
PCT/JP2004/004023
Other languages
French (fr)
Japanese (ja)
Inventor
Junji Senzaki
Kenji Fukuda
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to JP2005505190A priority Critical patent/JPWO2004090969A1/en
Publication of WO2004090969A1 publication Critical patent/WO2004090969A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/049Conductor-insulator-semiconductor electrodes, e.g. MIS contacts

Definitions

  • the present invention relates to a silicon carbide semiconductor device fabricated on a silicon carbide (SiC) semiconductor substrate, and more particularly to a silicon carbide semiconductor device having a metal-insulating film-semiconductor (MIS) structure (field effect transistor (MI SFET)). And its manufacturing method.
  • MIS metal-insulating film-semiconductor
  • silicon carbide (SiC) Compared to silicon (Si), silicon carbide (SiC) has excellent physical properties such as (1) wide band gap, (2) high dielectric breakdown strength, and (3) high electron saturation drift velocity. You. Therefore, by using silicon carbide (SiC) as a substrate material, a power semiconductor element having a high withstand voltage and a low resistance exceeding the limit of silicon (Si) can be manufactured.
  • silicon carbide As well as silicon (Si), a feature that can be formed of silicon oxide (Si0 2) which is an insulator by thermal oxidation.
  • the realization of the MISFET silicon carbide substrate material high long-term reliability of silicon oxide to be used as the gate oxide film (Si0 2) must be guaranteed.
  • the total breakdown charge (Q BD ) is widely used. This value indicates the total amount of electric charge flowing through the silicon oxide film until the silicon oxide film reaches dielectric breakdown.
  • Non-Patent Document 1 J, Anthony et al. "Materials Science and Engineering B61-62, 460 (1999)] Disclosure of the invention
  • the present invention improves the dielectric breakdown of a silicon oxide film formed on a silicon carbide substrate, and provides a metal-insulating film-semiconductor (MIS) comprising a silicon carbide (SiC) semiconductor substrate having excellent characteristics. It is an object to obtain a silicon carbide semiconductor device having a structure.
  • the present invention provides a method for forming a silicon oxide film by a thermal oxidation method on a silicon carbide substrate having a low concentration of an impurity element inevitably contained in the substrate, in other words, an impurity element which is not an intentionally doped impurity. It has been found that the formation of a gate insulating film is effective in improving the withstand voltage and long-term reliability of the silicon oxide film.
  • the silicon carbide semiconductor device according to the present invention has an n-type carbide having a p-type impurity element and a metal element having a concentration of 3xl0 14 cm- 3 or less, respectively. It has a silicon region.
  • the silicon carbide semiconductor device has a metal-insulating-film-semiconductor (MIS) structure, and the p-type impurity element and the metal element have a concentration of 3 ⁇ 10 14 cm ⁇ 3 or less under the gate insulating film.
  • the p-type impurity element and the metal element are at least one or two or more of I of Al, B, Ti, Cr, Fe, and Ni, and the total concentration is 5.OxlO 15 cm “ 3 or less.
  • the silicon carbide semiconductor device of the present invention has a DM0SFET, Lateral Resurf M0SFET or UMOSFET.
  • the MIS structure of a silicon carbide semiconductor device is usually formed on a silicon carbide layer that is epitaxially grown on a silicon carbide substrate.
  • a method of manufacturing a silicon carbide semiconductor device according to the present invention is a method of manufacturing a silicon carbide semiconductor device using a silicon carbide substrate having a silicon carbide layer epitaxially grown on an uppermost layer, wherein the method is intentionally performed during epitaxial growth.
  • the silicon carbide layer is epitaxially grown so that the concentration of each of the impurities other than the doped impurity is 3 ⁇ 10 14 cm ⁇ 3 or less.
  • a method of manufacturing a silicon carbide semiconductor device according to the invention using a carbonization silicon substrate having n-type silicon carbide region each concentration is less than 3xlO w cm_ 3 of p-type impurity element and the metal element, a metal - insulator
  • a method for manufacturing a silicon carbide semiconductor device for forming a gate insulating film having a film-semiconductor (MIS) structure comprising: forming an oxide film in a portion of the gate insulating film that is in contact with a silicon carbide substrate in the air It is formed by heating in an oxygen atmosphere or a steam atmosphere.
  • MIS film-semiconductor
  • a silicon oxide film formed by chemical vapor deposition a silicon nitride film formed by chemical vapor deposition, or a silicon oxynitride film formed by thermally oxidizing a silicon nitride film formed by chemical vapor deposition. Any one or more of them may be formed.
  • FIG. 1 is a schematic cross-sectional view of the MIS structure used for TDDB measurement.
  • FIG. 2 is a diagram showing the QBD dependence of the Weibull plate as a function of the cumulative defect rate P of the silicon oxide film measured by TDDB.
  • a silicon carbide semiconductor device having a metal-insulating film-semiconductor (MIS) structure has a structure in which each of the impurity elements that are unintentionally mixed into the silicon carbide (SiC) substrate under the gate insulating film, by setting the concentration and 3xlO l cin- 3 below, or by using a silicon carbide substrate concentration of each of the p-type non-pure product elements and metal elements having an n-type silicon carbide region is 3xl0 14 cm- 3 or less This significantly improves the dielectric strength and long-term reliability of the silicon oxide film, which is a major feature of the present invention.
  • MIS metal-insulating film-semiconductor
  • the impurity element Al, B, Ti, Cr , Fe 5 Ni and the like, which easily mixed into the silicon carbide (SiC) substrate, and they are contained in excess of 3X10 14 CBT 3 withstand voltage ⁇ And long-term reliability. That is, when the above-described impurity element, particularly a metal element, is taken into the silicon oxide film, it acts as a charge trap center, so that electrons injected into the silicon oxide film when stress is applied, or This is because holes generated by impact ionization are trapped, the local electric field in the silicon oxide film is rapidly changed, and the dielectric breakdown life is deteriorated. Therefore, it is extremely important to reduce the impurity element concentration. Such knowledge was first recognized by the present inventors. In particular, the total concentration of these impurity elements is desirably 5.0xl0 15 cm- 3 or less.
  • the present invention uses a silicon carbide (SiC) substrate containing a small amount of impurity elements that are inevitably mixed as a starting material, and forms an oxide film serving as a gate insulating film in a portion in contact with the silicon carbide substrate in the air,
  • the semiconductor device is formed by heating in an atmosphere or a steam atmosphere to constitute a semiconductor device.
  • any one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film, or two or more of them can be formed thereon.
  • These single-layer or multiple-layer films can be obtained by chemical vapor deposition and / or thermal oxidation of a silicon nitride film by chemical vapor deposition.
  • a silicon carbide (SiC) substrate having excellent characteristics can be used, and a silicon carbide semiconductor device having a gate insulating film having a high withstand voltage and long-term reliability can be manufactured.
  • These silicon carbide semiconductor devices having the MIS structure can be used as silicon carbide semiconductor devices for DM0SFET, Lateral Resurf MOSFET, and UM0SFET. Examples and comparative examples
  • SiC silicon carbide
  • two types of silicon carbide (SiC) having different impurity concentrations as described below were used.
  • SIMS secondary ion mass spectrometry
  • this substrate has the lower impurity concentration in the silicon carbide (SiC) substrate, the A substrate (Example) and the higher impurity concentration in the B substrate Plate (Comparative Example).
  • a thick insulating film 2 is formed on each silicon carbide (SiC) substrate 1, a window is opened in this, a normal RCA cleaning is performed, then a sacrificial oxide film is formed and removed with hydrofluoric acid. did. Then, in an oxygen atmosphere at 1000 ° C or more at atmospheric pressure was formed in 50 dishes silicon oxide (Si0 2) film 3 of silicon carbide (SiC) substrates.
  • the sample was heat treated at 1100 ° C. for 30 minutes in a nitrogen gas flow rate of 1 liter / min.
  • an A1 electrode 4 and an ohmic electrode 5 for forming an ohmic contact with the substrate were formed on the silicon oxide film 3, thereby producing an M0S structure sample.
  • This sample was connected to a TDDB measurement device 6, and a time-dependent dielectric breakdown (TDDB) measurement was performed in a vacuum-evacuated metal measurement chamber while light was cut off.
  • TDDB time-dependent dielectric breakdown
  • the horizontal axis represents D that has passed through the silicon oxide film by the time the dielectric breakdown of the silicon oxide film occurred, and the vertical axis represents a Weibull distribution plot as a function of the cumulative defect rate p.
  • dielectric breakdown of the silicon oxide film starts to occur at the same level in both types of silicon carbide substrates.
  • the subsequent dielectric breakdown of the silicon oxide film showed a better value for Q B1) on the A substrate than on the B substrate.
  • the B substrate of the comparative example is 0.03 C / cm 2 , whereas The substrate is 0.16 C / cm 2, which is about an order of magnitude higher. .
  • an impurity element when taken into a silicon oxide film, it acts as a charge trapping center, and thus is generated by electrons injected into the silicon oxide film when a stress is applied or by impact ionization.
  • the trapping holes are trapped, locally accelerating the change in the internal electric field of the silicon oxide film, and causing a deterioration in the dielectric breakdown life.
  • Table 1 shows the secondary ions Shows the concentrations of Ti, Al and B impurity elements in silicon carbide (SiC) substrates (A substrate, B substrate) measured by mass spectrometry (SIMS).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A silicon carbide semiconductor device is disclosed which has a metal-insulating film-semiconductor (MIS) structure composed of a silicon carbide (SiC) semiconductor substrate with excellent characteristics wherein the dielectric breakdown of a silicon oxide film formed on a silicon carbide substrate is improved. The silicon carbide semiconductor device is characterized by having a metal-insulating film-semiconductor (MIS) structure and by comprising an n-type silicon carbide region under a gate insulating film in which region the concentrations of a p-type impurity element and a metal element are respectively not more than 3 × 1014 cm-3. A method for manufacturing a silicon carbide semiconductor device is characterized in that a silicon carbide substrate comprising an n-type silicon carbide region wherein the concentrations of a p-type impurity element and a metal element are respectively not more than 3 × 1014 cm-3 is used and in that an oxide film which is in contact with the silicon carbide substrate is formed through heating in the atmosphere, an oxygen atmosphere or a water vapor atmosphere.

Description

^  ^
明細書 炭化珪素半導体装置およびその製造方法 技術分野 Description Silicon carbide semiconductor device and method for manufacturing the same
この発明は、炭化珪素(SiC)半導体基板上に作製した炭化珪素半導体装置に関 し、特に金属-絶縁膜-半導体 (MIS)構造を有する炭化珪素半導体装置(電界効果 型トランジスタ(MI SFET ) ) およびその製造方法に関するものである。  The present invention relates to a silicon carbide semiconductor device fabricated on a silicon carbide (SiC) semiconductor substrate, and more particularly to a silicon carbide semiconductor device having a metal-insulating film-semiconductor (MIS) structure (field effect transistor (MI SFET)). And its manufacturing method.
炭化珪素 (SiC) は珪素 (Si) と比較して、 (1 )バンドギャップが広い、 (2)絶縁 破壊強度が大きい、(3 )電子の飽和ドリフト速度が大きいなどの優れた物性を有す る。 したがって、炭化珪素 (SiC)を基板材料として用いることにより、珪素 (Si ) の限界を超えた高耐圧で低抵抗の電力用半導体素子が作製できる。 Compared to silicon (Si), silicon carbide (SiC) has excellent physical properties such as (1) wide band gap, (2) high dielectric breakdown strength, and (3) high electron saturation drift velocity. You. Therefore, by using silicon carbide (SiC) as a substrate material, a power semiconductor element having a high withstand voltage and a low resistance exceeding the limit of silicon (Si) can be manufactured.
また、 炭化珪素 (SiC) には、 珪素 (Si) と同様に、 熱酸化法によって絶縁体で ある酸化珪素 (Si02 ) を形成できるという特徴がある。 これらの理由から、 炭化 珪素 (SiC) を基板材料とした高耐圧で低いオン抵抗の MISFETが実現できると考 えられ、 数多くの研究開発が行われている。 Further, the silicon carbide (SiC), as well as silicon (Si), a feature that can be formed of silicon oxide (Si0 2) which is an insulator by thermal oxidation. For these reasons, it is thought that a high-breakdown-voltage, low-on-resistance MISFET using silicon carbide (SiC) as a substrate material can be realized, and much research and development has been conducted.
しかし、炭化珪素を基板材料とした MISFETの実現化には、ゲート酸化膜として 用いられる酸化珪素 (Si02 ) の高い長期信頼性が保障されなければならない。 酸ィ匕珪素膜の長期信頼性の指標として、 絶縁破壊電荷総量 (QBD) が広く利用さ れている。 この値は、 酸化珪素膜が絶縁破壊に至るまでに酸化珪素膜中を流れた 電荷の総量を示すものである。 However, the realization of the MISFET silicon carbide substrate material, high long-term reliability of silicon oxide to be used as the gate oxide film (Si0 2) must be guaranteed. As a measure of the long-term reliability of silicon oxide films, the total breakdown charge (Q BD ) is widely used. This value indicates the total amount of electric charge flowing through the silicon oxide film until the silicon oxide film reaches dielectric breakdown.
ところが、 炭化珪素基板上に熱酸化法により形成された酸化珪素膜の 5割が絶 縁破壊するときの Dは、 室温において数〜数十 mC/cm2であり、 この値は Si基板 上に熱酸化法により形成された酸化珪素膜に比べて、 1ノ1 0〜1 Z 1 0 0小さ いという報告がなされており (例えば、非特許文献 1参照)、大きな問題を有して いる。 However, D when 50% of the formed by thermal oxidation of silicon carbide on a substrate a silicon oxide film is insulation breakdown is several to several tens mC / cm 2 at room temperature, this value is on the Si substrate It has been reported that the thickness is smaller by 10 to 100 than that of a silicon oxide film formed by a thermal oxidation method (for example, see Non-Patent Document 1), which has a serious problem.
【非特許文献 1】 J, Anthony外著 「Materials Science and Engineering B61-62, 460 (1999)] 発明の開示 [Non-Patent Document 1] J, Anthony et al. "Materials Science and Engineering B61-62, 460 (1999)] Disclosure of the invention
本発明は、 従来の問題に鑑み、 炭化珪素基板上に形成された酸化珪素膜の絶縁 破壊を改善し、 優れた特性を持つ炭化珪素 (SiC) 半導体基板からなる金属-絶縁 膜-半導体 (MIS) 構造を有する炭化珪素半導体装置を得ることを課題とする。 本発明は、 基板内に不可避的に含まれる不純物元素、 換言すれば意図的にドー ビングされた不純物ではない不純物元素の濃度の低い炭化珪素基板上に、 熱酸ィ匕 法により酸化珪素膜からなるゲ一ト絶縁膜を形成することによって、 酸化珪素膜 の絶縁耐圧および長期信頼性の向上に効果があるとの知見を得た。  In view of the conventional problems, the present invention improves the dielectric breakdown of a silicon oxide film formed on a silicon carbide substrate, and provides a metal-insulating film-semiconductor (MIS) comprising a silicon carbide (SiC) semiconductor substrate having excellent characteristics. It is an object to obtain a silicon carbide semiconductor device having a structure. The present invention provides a method for forming a silicon oxide film by a thermal oxidation method on a silicon carbide substrate having a low concentration of an impurity element inevitably contained in the substrate, in other words, an impurity element which is not an intentionally doped impurity. It has been found that the formation of a gate insulating film is effective in improving the withstand voltage and long-term reliability of the silicon oxide film.
本発明は、 この知見に基づいてなされたものであって、 本発明による炭化珪素 半導体装置は、 p型不純物元素および金属元素のそれそれの濃度が 3xl014cm—3以 下である n型炭化珪素領域を有することを特徴とする。 The present invention has been made based on this finding, and the silicon carbide semiconductor device according to the present invention has an n-type carbide having a p-type impurity element and a metal element having a concentration of 3xl0 14 cm- 3 or less, respectively. It has a silicon region.
また、 本発明による炭化珪素半導体装置は、金属一絶縁膜一半導体 (MIS)構造 を有し、 ゲート絶縁膜下に、 p型不純物元素および金属元素のそれぞれの濃度が 3xl014cm- 3以下である n型炭化珪素領域を有することを特徴とする金属一絶縁膜 —半導体(MIS)構造を有し、 ゲート絶縁膜下に、 p型不純物元素および金属元素 のそれぞれの濃度が 3xlOMcm-3以下である n型炭化珪素領域を有することを特徴 とする。 Further, the silicon carbide semiconductor device according to the present invention has a metal-insulating-film-semiconductor (MIS) structure, and the p-type impurity element and the metal element have a concentration of 3 × 10 14 cm −3 or less under the gate insulating film. Metal-insulating film characterized by having a certain n-type silicon carbide region—has a semiconductor (MIS) structure, and the concentration of each of the p-type impurity element and the metal element is 3xlO M cm− 3 under the gate insulating film. It has the following n-type silicon carbide region.
そして、 上記の p型不純物元素および金属元素は、 Al, B, Ti, Cr, Fe, Ni の I、ずれか 1つまたは 2以上であり、その濃度合計は 5. OxlO15 cm"3以下になされる。 また、 本発明の炭化珪素半導体装置は、 DM0SFET, Lateral Resurf M0SFETまたは UMOSFETを有している。 The p-type impurity element and the metal element are at least one or two or more of I of Al, B, Ti, Cr, Fe, and Ni, and the total concentration is 5.OxlO 15 cm " 3 or less. The silicon carbide semiconductor device of the present invention has a DM0SFET, Lateral Resurf M0SFET or UMOSFET.
炭化珪素半導体装置の MI S構造は、 通常炭化珪素基板上にェピ夕キシャル成長 される炭化珪素層上に形成される。 本発明による炭化珪素半導体装置の製造方法 は、 最上層にェピタキシャル成長された炭化珪素層を有する炭化珪素基板を用い る炭化珪素半導体装置の製造方法であって、 ェピ夕キシャル成長時に故意にドー ビングされた不純物以外の不純物のそれぞれの濃度が 3xl014cm—3以下であるよう に炭化珪素層をェピタキシャル成長させることを特徴とする。 また、 本発明による炭化珪素半導体装置の製造方法は、 p型不純物元素および 金属元素のそれぞれの濃度が 3xlOwcm_3以下である n型炭化珪素領域を有する炭 化珪素基板を用い、金属—絶縁膜一半導体 (MIS)構造のゲ一ト絶縁膜を形成する 炭化珪素半導体装置の製造方法であって、 ゲ一ト絶縁膜のうち炭化珪素基板と接 する部分の酸ィ匕膜を、 大気中、 酸素雰囲気中または水蒸気雰囲気中で加熱するこ とにより形成することを特徴とする。 The MIS structure of a silicon carbide semiconductor device is usually formed on a silicon carbide layer that is epitaxially grown on a silicon carbide substrate. A method of manufacturing a silicon carbide semiconductor device according to the present invention is a method of manufacturing a silicon carbide semiconductor device using a silicon carbide substrate having a silicon carbide layer epitaxially grown on an uppermost layer, wherein the method is intentionally performed during epitaxial growth. The silicon carbide layer is epitaxially grown so that the concentration of each of the impurities other than the doped impurity is 3 × 10 14 cm− 3 or less. A method of manufacturing a silicon carbide semiconductor device according to the invention, using a carbonization silicon substrate having n-type silicon carbide region each concentration is less than 3xlO w cm_ 3 of p-type impurity element and the metal element, a metal - insulator A method for manufacturing a silicon carbide semiconductor device for forming a gate insulating film having a film-semiconductor (MIS) structure, comprising: forming an oxide film in a portion of the gate insulating film that is in contact with a silicon carbide substrate in the air It is formed by heating in an oxygen atmosphere or a steam atmosphere.
また、 上記の酸化膜を形成した後、 化学気相法によるシリコン酸化膜、 化学気 相法によるシリコン窒化膜、 または、 化学気相法によるシリコン窒化膜を熱酸化 してなるシリコン酸窒化膜の中のいずれか 1つまたは複数を形成するようにして もよい。  After the oxide film is formed, a silicon oxide film formed by chemical vapor deposition, a silicon nitride film formed by chemical vapor deposition, or a silicon oxynitride film formed by thermally oxidizing a silicon nitride film formed by chemical vapor deposition. Any one or more of them may be formed.
上記のように構成された本発明によれば、 従来の欠点を改善し、 絶縁耐圧およ び長期信頼性を有するゲ一ト絶縁膜を有する炭化珪素半導体装置を提供すること が可能となる。 図面の簡単な説明  ADVANTAGE OF THE INVENTION According to this invention comprised as mentioned above, it becomes possible to improve the conventional defect and to provide the silicon carbide semiconductor device which has the gate insulating film which has a withstand voltage and long-term reliability. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 TDDB測定に使用した MIS構造の断面模式図である。  FIG. 1 is a schematic cross-sectional view of the MIS structure used for TDDB measurement.
第 2図は、 TDDB測定による酸化珪素膜の累積不良率 Pを関数とした Weibullプ 口ヅトの QBD依存性を示す図である。 発明を実施するための最良の形態 FIG. 2 is a diagram showing the QBD dependence of the Weibull plate as a function of the cumulative defect rate P of the silicon oxide film measured by TDDB. BEST MODE FOR CARRYING OUT THE INVENTION
金属—絶縁膜—半導体 (MIS)構造を有する炭化珪素半導体装置は、上記の通り、 ゲート絶縁膜下の炭化珪素(SiC)基板中に意図的にではなく混入される不純物元 素の、 それぞれの濃度を 3xlOl cin-3以下とすることによって、 あるいは、 p型不 純物元素および金属元素のそれぞれの濃度が 3xl014cm- 3以下である n型炭化珪素 領域を有する炭化珪素基板を用いることによって、 酸化珪素膜の絶縁耐圧及び長 期信頼性を著しく向上させるものであり、 これが本発明の大きな特徴である。 不純物元素としては、 Al, B, Ti, Cr, Fe5 Ni が挙げられ、 これらは炭化珪素 (SiC)基板中に混入し易く、 これらが 3X1014CBT3を超えて含有されると絶縁耐圧及 び長期信頼性を損ねる大きな原因となっていることが分った。 すなわち、 上記のような不純物元素、 特に金属元素は、 酸化珪素膜中に取り込 まれると、 電荷捕獲中心となって作用することから、 ストレス印加時に酸化珪素 膜中に注入される電子、 あるいはインパクトイオン化で発生するホールが捕獲さ れて、 酸化珪素膜の内部電界の変ィ匕を局所的に速め、 絶縁破壊寿命の劣化を生じ させることが原因である。 このことから、 不純物元素濃度の低減が極めて重要で ある。 このような知見は、 本発明者らによって始めて認識されたものである。 特 に、 これらの不純物元素の濃度の合計は、 5.0xl015 cm— 3以下であることが望まし い。 As described above, a silicon carbide semiconductor device having a metal-insulating film-semiconductor (MIS) structure has a structure in which each of the impurity elements that are unintentionally mixed into the silicon carbide (SiC) substrate under the gate insulating film, by setting the concentration and 3xlO l cin- 3 below, or by using a silicon carbide substrate concentration of each of the p-type non-pure product elements and metal elements having an n-type silicon carbide region is 3xl0 14 cm- 3 or less This significantly improves the dielectric strength and long-term reliability of the silicon oxide film, which is a major feature of the present invention. As the impurity element, Al, B, Ti, Cr , Fe 5 Ni and the like, which easily mixed into the silicon carbide (SiC) substrate, and they are contained in excess of 3X10 14 CBT 3 withstand voltage及And long-term reliability. That is, when the above-described impurity element, particularly a metal element, is taken into the silicon oxide film, it acts as a charge trap center, so that electrons injected into the silicon oxide film when stress is applied, or This is because holes generated by impact ionization are trapped, the local electric field in the silicon oxide film is rapidly changed, and the dielectric breakdown life is deteriorated. Therefore, it is extremely important to reduce the impurity element concentration. Such knowledge was first recognized by the present inventors. In particular, the total concentration of these impurity elements is desirably 5.0xl0 15 cm- 3 or less.
本発明は、このような不可避的に混入される不純物元素の少ない炭化珪素 (SiC) 基板を出発材料として、 炭化珪素基板と接する部分にゲート絶縁膜となる酸ィ匕膜 を、 大気中、 酸素雰囲気中又は水蒸気雰囲気中で加熱することにより形成し、 半 導体装置を構成する。  The present invention uses a silicon carbide (SiC) substrate containing a small amount of impurity elements that are inevitably mixed as a starting material, and forms an oxide film serving as a gate insulating film in a portion in contact with the silicon carbide substrate in the air, The semiconductor device is formed by heating in an atmosphere or a steam atmosphere to constitute a semiconductor device.
また、 この上に、 シリコン酸ィ匕膜、 シリコン窒化膜、 シリコン酸窒化膜のいず れか 1又はこれらの 2以上の膜を形成することもできる。 これらの単層又は複数 層の膜は化学気相法、および/又は、化学気相法によるシリコン窒化膜の熱酸化に より得ることができる。  Further, any one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film, or two or more of them can be formed thereon. These single-layer or multiple-layer films can be obtained by chemical vapor deposition and / or thermal oxidation of a silicon nitride film by chemical vapor deposition.
本発明によれば、特性に優れた炭化珪素(SiC)基板が使用できると共に、絶縁耐 圧および長期信頼性を有するゲート絶縁膜を有する炭化珪素半導体装置を製造す ることが可能となる。これらの MIS構造を有する炭化珪素半導体装置は、 DM0SFET , Lateral Resurf MOSFET, UM0SFETの炭化珪素半導体装置として使用できる。 実施例および比較例  According to the present invention, a silicon carbide (SiC) substrate having excellent characteristics can be used, and a silicon carbide semiconductor device having a gate insulating film having a high withstand voltage and long-term reliability can be manufactured. These silicon carbide semiconductor devices having the MIS structure can be used as silicon carbide semiconductor devices for DM0SFET, Lateral Resurf MOSFET, and UM0SFET. Examples and comparative examples
以下に、 この発明の実施例と比較例を、 図等を使用して説明する。  Hereinafter, examples and comparative examples of the present invention will be described with reference to the drawings and the like.
まず、 基板として、 シリコン(0001)面から 8 ° オフした表面を持つバルク基板 上に 4H- SiCをホモェピ夕キシアル成長させた炭化珪素 (SiC) 基板 (n型、 つま り、 ドナー密度(Nd) —ァクセプ夕密度(Na) =5 x l015/cm3である) を使用した。 また、 比較のために、 後述する通りの不純物濃度の異なる 2種類の炭化珪素 (SiC)を使用した。この基板は、 2次イオン質量分析法(SIMS)の測定結果より、 炭化珪素 (SiC) 基板中の不純物濃度が低い方を A基板 (実施例)、 高い方を B基 板 (比較例) とする。 First, as a substrate, a silicon carbide (SiC) substrate (n-type, that is, donor density (Nd)) obtained by homoepitaxially growing 4H-SiC on a bulk substrate with a surface 8 ° off the silicon (0001) plane —Axep's density (Na) = 5 × 10 15 / cm 3 ). For comparison, two types of silicon carbide (SiC) having different impurity concentrations as described below were used. According to the results of the secondary ion mass spectrometry (SIMS), this substrate has the lower impurity concentration in the silicon carbide (SiC) substrate, the A substrate (Example) and the higher impurity concentration in the B substrate Plate (Comparative Example).
第 1図に示すように、 それぞれの炭化珪素 (SiC)基板 1に厚い絶縁膜 2を形成 しこれに窓開けし、 通常の R C A洗浄をした後、 犠牲酸化膜を形成しフッ酸で除 去した。次いで、 1000° C以上の大気圧の酸素雰囲気中で、 50皿酸化珪素(Si02) 膜 3を炭化珪素 (SiC) 基板上に形成した。 As shown in Fig. 1, a thick insulating film 2 is formed on each silicon carbide (SiC) substrate 1, a window is opened in this, a normal RCA cleaning is performed, then a sacrificial oxide film is formed and removed with hydrofluoric acid. did. Then, in an oxygen atmosphere at 1000 ° C or more at atmospheric pressure was formed in 50 dishes silicon oxide (Si0 2) film 3 of silicon carbide (SiC) substrates.
その後、 試料を流量 1 リヅトル/分の窒素ガス中で、 1100° Cで 30分間熱処理 した。 最終的に A1を用い、 酸ィ匕珪素膜 3上に A1電極 4及び基板とォーミヅクコ ン夕クトするォ一ミック電極 5を形成して M0S構造サンプルを作製した。 このサ ンプルを、 TDDB測定装置 6に接続し、 真空引きされた金属製測定チャンバ一で、 光を遮断した状態で経時絶縁膜破壊 (TDDB : time dependent dielectric breakdown) 測定を行った。  Thereafter, the sample was heat treated at 1100 ° C. for 30 minutes in a nitrogen gas flow rate of 1 liter / min. Finally, using A1, an A1 electrode 4 and an ohmic electrode 5 for forming an ohmic contact with the substrate were formed on the silicon oxide film 3, thereby producing an M0S structure sample. This sample was connected to a TDDB measurement device 6, and a time-dependent dielectric breakdown (TDDB) measurement was performed in a vacuum-evacuated metal measurement chamber while light was cut off.
TDDB測定は、 第 1図に示すように M0S構造の A1電極 4—ォ一ミヅク電極 5間 に電界を印加し、 ゲート絶縁膜 (酸化珪素膜 3 ) が破壊に至るまでに絶縁膜中を 流れるリーク電流を観測した。 また、 Dは、 絶縁破壊に至るまでのリーク電流と ストレス印加時間の積から算出した。 In the TDDB measurement, as shown in Fig. 1, an electric field is applied between the A1 electrode 4 and the phantom electrode 5 of the M0S structure, and the gate insulating film (silicon oxide film 3) flows through the insulating film until the breakdown occurs. Leak current was observed. D was calculated from the product of the leakage current up to the dielectric breakdown and the stress application time.
第 2図に、 TDDB測定 (ストレス電界 E、 stress=9 MV/cm) 結果を示す。 横軸は 酸ィ匕珪素膜の絶縁破壊が生じた時までに酸ィ匕珪素膜中を通過した D、縦軸には累 積不良率 pを関数とした Weibull分布プロットを示す。 Figure 2 shows the results of TDDB measurement (stress electric field E, stress = 9 MV / cm). The horizontal axis represents D that has passed through the silicon oxide film by the time the dielectric breakdown of the silicon oxide film occurred, and the vertical axis represents a Weibull distribution plot as a function of the cumulative defect rate p.
図より、 2種類の炭化珪素基板とも酸化珪素膜の絶縁破壊は同程度で生じ始め ている。 しかしながら、 その後の酸化珪素膜の絶縁破壊は B基板上に比較して A 基板上の方が QB1)が大きく良好な値を示している。 As shown in the figure, dielectric breakdown of the silicon oxide film starts to occur at the same level in both types of silicon carbide substrates. However, the subsequent dielectric breakdown of the silicon oxide film showed a better value for Q B1) on the A substrate than on the B substrate.
累積不良率 pが 6 3 %になる点でそれそれの炭化珪素基板を用いた場合の QBD を比較すると、 比較例である B基板が 0 · 03C/cm2であるのに対し、 実施例である 基板は 0.16C/cm2と約 1桁高い。 . Comparing the QBDs using the respective silicon carbide substrates at the point where the cumulative failure rate p is 63%, the B substrate of the comparative example is 0.03 C / cm 2 , whereas The substrate is 0.16 C / cm 2, which is about an order of magnitude higher. .
上記の通り、 不純物元素は、 酸化珪素膜中に取り込まれると、 電荷捕獲中心と なって作用することから、 ストレス印加時に酸ィ匕珪素膜中に注入される電子、 あ るいはインパクトイオン化で発生するホールが捕獲されて、 酸化珪素膜の内部電 界の変ィヒを局所的に速め、 絶縁破壊寿命の劣化を生じさせる。  As described above, when an impurity element is taken into a silicon oxide film, it acts as a charge trapping center, and thus is generated by electrons injected into the silicon oxide film when a stress is applied or by impact ionization. The trapping holes are trapped, locally accelerating the change in the internal electric field of the silicon oxide film, and causing a deterioration in the dielectric breakdown life.
そのため、 不純物元素濃度の低減が重要となるのである。 表 1に、 二次イオン 質量分析法(SIMS) により測定された炭化珪素 (SiC)基板(A基板、 B基板) 中 の Ti、 Al及び B不純物元素濃度を示す。 Therefore, it is important to reduce the concentration of impurity elements. Table 1 shows the secondary ions Shows the concentrations of Ti, Al and B impurity elements in silicon carbide (SiC) substrates (A substrate, B substrate) measured by mass spectrometry (SIMS).
' 表 1
Figure imgf000008_0001
' table 1
Figure imgf000008_0001
A基板では、 Ti: lxl014cm— 3、 Al: 3xl014cm_3、 B: 3X1014CDT3、 B基板では、 Ti: 5xl014cm—3、 Al: lxl015cm一3、 B: 3xl015cm—3、 だった。 不純物元素の Alおよ び Bがそれそれ 3xlOwcm—3で酸化珪素膜の長期信頼性が向上しているが、 この結 果からも不純物元素濃度の上限は 3 X 1014cm— 3になることが理解できる。 On the A board, Ti: lxl0 14 cm— 3 , Al: 3xl0 14 cm_ 3 , B: 3X10 14 CDT 3 , on the B board, Ti: 5xl0 14 cm— 3 , Al: lxl0 15 cm 1-3 , B: 3xl0 15 cm— 3 . Although long-term reliability of Al and B it it 3xlO w cm- 3 in the silicon oxide film of the impurity element is improved, the upper limit of the impurity element concentration from the results in 3 X 10 14 cm- 3 I understand that it will be.
以上については、 Tiと Alと Bを例に説明したが、他の不純物すなわち Cr, Fe, Niでも同様の傾向が認められた。  In the above, Ti, Al, and B have been described as examples, but the same tendency was observed for other impurities, namely, Cr, Fe, and Ni.
また、本実施例においては、炭化珪素 (SiC)基板上に熱酸化により酸化珪素(SiO 2) 膜を形成した場合について説明したが、 炭化珪素基板と接する部分に熱酸化 法により酸化膜を形成し、 さらにその上にシリコン酸化膜、 シリコン窒化膜、 シ リコン酸窒化膜のなかのいずれか又は複数膜を形成した場合も、 上記例と同様な 傾向が認められた。  Further, in this embodiment, the case where a silicon oxide (SiO 2) film is formed on a silicon carbide (SiC) substrate by thermal oxidation has been described, but an oxide film is formed on a portion in contact with the silicon carbide substrate by a thermal oxidation method. However, when any one or more of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film were formed thereon, the same tendency as in the above example was observed.

Claims

' 請 求 の 範 囲 ' The scope of the claims
1 . p型不純物元素および金属元素のそれそれの濃度が 3xl014cm—3以下である n 型炭化珪素領域を有することを特徴とする炭化珪素半導体装置。 1. A silicon carbide semiconductor device having an n-type silicon carbide region in which the concentration of each of a p-type impurity element and a metal element is 3xl0 14 cm- 3 or less.
5 2 .金属—絶縁膜一半導体 (MIS)構造を有し、 ゲート絶縁膜下に、 p型不純物元 素および金属元素のそれそれの濃度が 3xl014cnf3以下である n型炭化珪素領域を 有することを特徴とする炭化珪素半導体装置。 5 2.Metal-insulating film-semiconductor (MIS) structure, n-type silicon carbide region with p-type impurity element and metal element concentration of 3xl0 14 cnf 3 or less under gate insulating film A silicon carbide semiconductor device, comprising:
3 . 請求の範囲第 1項または第 2項に記載された炭化珪素半導体装置において、 前記 P型不純物元素および金属元素が Al, B, Ti, Cr, Fe, Ni のいずれか 1つま 3. The silicon carbide semiconductor device according to claim 1, wherein the P-type impurity element and the metal element are any one of Al, B, Ti, Cr, Fe, and Ni.
10 たは 2以上であることを特徴とする炭化珪素半導体装置。 A silicon carbide semiconductor device, wherein the number is 10 or more.
4 . 請求の範囲第 1項または第 2項に記載された炭ィヒ珪素半導体装置において、 前記 P型不純物元素および金属元素の合計の濃度が 5.0x1ο15 cm—3以下であること を特徴とする炭化珪素半導体装置。 4. In coal I arsenide silicon semiconductor device according to paragraph 1 or claim 2, and wherein the total concentration of the P-type impurity element and the metal element is 5.0x1ο 15 cm- 3 or less Silicon carbide semiconductor device.
5 . 請求の範囲第 2項から第 4項のいずれかに記載された炭化珪素半導体装置に 15 おいて、 ゲ一ト絶縁膜のうち炭化珪素基板と接する部分が熱酸ィヒ法で形成された 酸化膜を備え、 ゲート絶縁膜が前記熱酸化法で形成された酸化膜であるか、 また は、 その上にシリコン酸化膜、 シリコン窒化膜、 シリコン酸窒化膜のいずれか 1 つまたは 2以上を有する複合膜であることを特徴とする炭化珪素半導体装置。 5. The silicon carbide semiconductor device according to any one of claims 2 to 4, wherein a portion of the gate insulating film that contacts the silicon carbide substrate is formed by a thermal oxidation method. Whether the gate insulating film is an oxide film formed by the thermal oxidation method, or one or more of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film A silicon carbide semiconductor device characterized by being a composite film having:
6 . ゲ一ト絶縁膜のうち炭化珪素基板と接する部分が熱酸ィヒ法で形成された酸化 20 膜を備え、 ゲ一ト絶縁膜が前記熱酸化法で形成された酸化膜であるか、 または、 その上にシリコン酸化膜、 シリコン窒化膜、 シリコン酸窒化膜のいずれか 1つ若 しくは 2以上を有する複合膜である、 請求の範囲第 2項から第 4項のいずれかに 記載された炭化珪素半導体装置において、 DMOSFET , Lateral Resurf MOSFET また は UM0SFETを有していることを特徴とする炭化珪素半導体装置。 6. A portion of the gate insulating film which is in contact with the silicon carbide substrate is provided with an oxide 20 film formed by a thermal oxidation method, and whether the gate insulating film is an oxide film formed by the thermal oxidation method 5. The composite film according to claim 2, wherein the composite film has at least one of silicon oxide film, silicon nitride film, and silicon oxynitride film or two or more thereof. A silicon carbide semiconductor device, comprising: a DMOSFET, a Lateral Resurf MOSFET, or a UM0SFET.
25 7 . 最上層にェピタキシャル成長された炭化珪素層を有する炭化珪素基板を用い る炭化珪素半導体装置の製造方法であって、 ェピタキシャル成長時に故意にドー ビングされた不純物以外の不純物のそれぞれの濃度が 3xl014cnf3以下であるよう に炭化珪素層をェピ夕キシャル成長させることを特徴とする炭化珪素半導体装置 の製造方法。 25 7. A method for manufacturing a silicon carbide semiconductor device using a silicon carbide substrate having an epitaxially grown silicon carbide layer as an uppermost layer, wherein each of impurities other than impurities intentionally doped during epitaxial growth is used. A method for manufacturing a silicon carbide semiconductor device, comprising epitaxially growing a silicon carbide layer so that the concentration is 3xl0 14 cnf 3 or less.
8 . p型不純物元素および金属元素のそれぞれの濃度が 3xl014cm—3以下である n 型炭化珪素領域を有する炭化珪素基板を用い、金属—絶縁膜一半導体(MIS)構造 のゲ一ト絶縁膜を形成する炭化珪素半導体装置の製造方法であって、 ゲート絶縁 膜のうち炭化珪素基板と接する部分の酸ィ匕膜を、 大気中、 酸素雰囲気中または水 蒸気雰囲気中で加熱することにより形成することを特徴とする炭化珪素半導体装 置の製造方法。 8. Gate insulation of metal-insulator-semiconductor (MIS) structure using a silicon carbide substrate with an n-type silicon carbide region where the respective concentrations of p-type impurity element and metal element are 3xl0 14 cm- 3 or less A method for manufacturing a silicon carbide semiconductor device for forming a film, comprising forming an oxidized film in a portion of a gate insulating film in contact with a silicon carbide substrate by heating the air in an air atmosphere, an oxygen atmosphere, or a water vapor atmosphere. A method for manufacturing a silicon carbide semiconductor device.
9 . 請求の範囲第 8項に記載された炭化珪素半導体装置の製造方法において、 前 記酸化膜を形成した後、 化学気相法によるシリコン酸化膜、 化学気相法によるシ リコン窒ィ匕膜、 または、 化学気相法によるシリコン窒化膜を熱酸化してなるシリ コン酸窒化膜の中のいずれか 1つまたは複数を形成することを特徴とする炭化珪 素半導体装置の製造方法。  9. The method for manufacturing a silicon carbide semiconductor device according to claim 8, wherein after forming the oxide film, a silicon oxide film is formed by a chemical vapor deposition method, and a silicon nitride film is formed by a chemical vapor deposition method. A method for manufacturing a silicon carbide semiconductor device, wherein one or more of silicon oxynitride films formed by thermally oxidizing a silicon nitride film by a chemical vapor deposition method are formed.
PCT/JP2004/004023 2003-03-24 2004-03-24 Silicon carbide semiconductor device and method for manufacturing same WO2004090969A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005505190A JPWO2004090969A1 (en) 2003-03-24 2004-03-24 Silicon carbide semiconductor device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-080052 2003-03-24
JP2003080052 2003-03-24

Publications (1)

Publication Number Publication Date
WO2004090969A1 true WO2004090969A1 (en) 2004-10-21

Family

ID=33156606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004023 WO2004090969A1 (en) 2003-03-24 2004-03-24 Silicon carbide semiconductor device and method for manufacturing same

Country Status (2)

Country Link
JP (1) JPWO2004090969A1 (en)
WO (1) WO2004090969A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123794A (en) * 2008-11-20 2010-06-03 Toyota Motor Corp P-type sic semiconductor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167757A (en) * 1997-08-13 1999-03-09 Agency Of Ind Science & Technol Formation of thin oxide film
JP2001291869A (en) * 2000-04-06 2001-10-19 Mitsubishi Electric Corp Semiconductor device and method for manufacturing the same
JP2003086518A (en) * 2001-09-10 2003-03-20 Toshiba Corp Cvd method of silicon carbide film, cvd unit and susceptor for cvd unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167757A (en) * 1997-08-13 1999-03-09 Agency Of Ind Science & Technol Formation of thin oxide film
JP2001291869A (en) * 2000-04-06 2001-10-19 Mitsubishi Electric Corp Semiconductor device and method for manufacturing the same
JP2003086518A (en) * 2001-09-10 2003-03-20 Toshiba Corp Cvd method of silicon carbide film, cvd unit and susceptor for cvd unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NISHIO J, ET AL: "Investigation of residual impurities in 4H-SiC epitaxial layers grown by hot-wall chemical vapor deposition", MATERIALS SCIENCE FORUM VOLS., vol. 389-393, 2002, pages 215 - 218, XP002981719 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123794A (en) * 2008-11-20 2010-06-03 Toyota Motor Corp P-type sic semiconductor
DE112009003685T5 (en) 2008-11-20 2012-10-18 Toyota Jidosha Kabushiki Kaisha P-SiC semiconductor
US8399888B2 (en) 2008-11-20 2013-03-19 Toyota Jidosha Kabushiki Kaisha P-type SiC semiconductor

Also Published As

Publication number Publication date
JPWO2004090969A1 (en) 2006-07-06

Similar Documents

Publication Publication Date Title
EP1463121B1 (en) Semiconductor device and production method therefor
TW457627B (en) Layered dielectric on silicon carbide semiconductor structures
JP5229845B2 (en) Method for manufacturing silicon carbide MOSFET and silicon carbide MOSFET
US7598576B2 (en) Environmentally robust passivation structures for high-voltage silicon carbide semiconductor devices
JP5212833B2 (en) Semiconductor device
US9812529B2 (en) Semiconductor device and method for manufacturing the same
JP5584823B2 (en) Silicon carbide semiconductor device
US9755064B2 (en) Semiconductor device and method for manufacturing the same
US7256082B2 (en) Production method for semiconductor device
JP2016063111A (en) Semiconductor device and manufacturing method of the same
JP2002261275A (en) Mos device
KR20140085595A (en) Wet chemistry processes for fabricating a semiconductor device with increased channel mobility
JP2011165941A (en) Semiconductor device and method of fabricating the same
JP6432232B2 (en) Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
US20220115529A1 (en) Semiconductor device and method for manufacturing the same
JP2013201308A (en) Semiconductor device and method of manufacturing the same
WO2004025735A1 (en) Semiconductor device
JP2003243653A (en) Method for manufacturing silicon carbide semiconductor device
US8524585B2 (en) Method of manufacturing semiconductor device
JP2015060905A (en) Semiconductor device and manufacturing method of the same
JP2012151400A (en) SiC SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SiC SEMICONDUCTOR DEVICE
US20120231618A1 (en) Method of manufacturing semiconductor device
JP5072482B2 (en) Method for manufacturing silicon carbide semiconductor device
WO2004090969A1 (en) Silicon carbide semiconductor device and method for manufacturing same
JP2004311815A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005505190

Country of ref document: JP

122 Ep: pct application non-entry in european phase