WO2004088366A1 - Process for producing wideband cholesteric liquid crystal film, circular polarization plate, linear polarizer, lighting apparatus and liquid crystal display - Google Patents

Process for producing wideband cholesteric liquid crystal film, circular polarization plate, linear polarizer, lighting apparatus and liquid crystal display Download PDF

Info

Publication number
WO2004088366A1
WO2004088366A1 PCT/JP2004/003718 JP2004003718W WO2004088366A1 WO 2004088366 A1 WO2004088366 A1 WO 2004088366A1 JP 2004003718 W JP2004003718 W JP 2004003718W WO 2004088366 A1 WO2004088366 A1 WO 2004088366A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
plate
film
polarizing element
cholesteric liquid
Prior art date
Application number
PCT/JP2004/003718
Other languages
French (fr)
Japanese (ja)
Inventor
Takahiro Fukuoka
Kazutaka Hara
Miki Shiraogawa
Naoki Takahashi
Kentarou Takeda
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Publication of WO2004088366A1 publication Critical patent/WO2004088366A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133541Circular polarisers

Definitions

  • the present invention relates to a method for producing a broadband cholesteric liquid crystal film.
  • the broadband cholesteric liquid crystal film of the present invention is useful as a circularly polarizing plate (reflective polarizer).
  • the present invention relates to a linearly polarizing element, an illuminating device and a liquid crystal display device using the circularly polarizing plate.
  • a liquid crystal display has a structure in which liquid crystal is injected between glass plates on which transparent electrodes are formed, and polarizers are arranged before and after the glass plates.
  • a polarizer used for such a liquid crystal display is manufactured by adsorbing iodine or a dichroic dye on a polyvinyl alcohol film and stretching it in a certain direction.
  • the polarizer thus manufactured itself absorbs light that oscillates in one direction, and passes only the light that oscillates in the other direction to produce linearly polarized light.
  • the efficiency of the polarizer cannot theoretically exceed 50%, which is the largest factor that lowers the efficiency of liquid crystal displays.
  • the liquid crystal display device destroys the polarizer due to the heat generated by the heat conversion of the absorbed light, or the thermal effect on the liquid crystal layer inside the cell. This has caused adverse effects such as deterioration of display quality.
  • Cholesteric liquid crystals with a function of separating circularly polarized light have a selective reflection characteristic that reflects only circularly polarized light whose wavelength is the helical pitch of the liquid crystal, with the direction of rotation of the liquid crystal helix and the direction of circular polarization. is there.
  • This selective reflection characteristic only specific circularly polarized light of natural light in a certain wavelength band is transmitted and separated, and the remaining is reflected and reused, so that a highly efficient polarizing film can be manufactured.
  • the transmitted circularly polarized light is converted into linearly polarized light by passing through a ⁇ ⁇ 4 wavelength plate, and the direction of the linearly polarized light is transmitted to the liquid crystal display.
  • a liquid crystal display device with high transmittance can be obtained by adjusting the transmission direction of the absorption polarizer used. That is, when a cholesteric liquid crystal film is used as a linear polarizing element in combination with an L / 4 wavelength plate, there is theoretically no loss of light, so that a conventional absorption type polarizing light absorbing 50% light is used. In theory, it is possible to obtain twice the brightness improvement compared to the case of using a single element.
  • the selective reflection characteristics of the cholesteric liquid crystal are limited to a specific wavelength band, and it has been difficult to cover the entire visible light range.
  • the selective reflection wavelength range width ⁇ of the cholesteric liquid crystal is
  • n o Refractive index of cholesteric liquid crystal molecules to normal light
  • n e refractive index of cholesteric liquid crystal molecules for extraordinary light
  • the selective reflection wavelength region width ⁇ ⁇ is widened, but ne- ⁇ ⁇ is usually 0.3 or less. If this value is increased, other functions (alignment characteristics, liquid crystal temperature, etc.) of the liquid crystal become insufficient, and practical use was difficult. Therefore, in practice, the selective reflection wavelength region width ⁇ ⁇ was at most about 150 nm. Most of the cholesteric liquid crystals that can be practically used are only about 30 to 100 nm. Also, the selective reflection center wavelength is
  • the pitch is constant, it depends on the average refractive index of the liquid crystal molecules and the pitch length. Therefore, in order to cover the entire visible light range, a plurality of layers having different selective reflection center wavelengths are laminated, or the pitch distribution is continuously changed in the thickness direction to form the existence distribution of the selective reflection center wavelength itself.
  • Japanese Unexamined Patent Application Publication No. 6-28184, Japanese Patent No. 3272686, Japanese Unexamined Patent Application Publication No. See Japanese Patent Publication No. 86953/86.
  • this method when the cholesteric liquid crystal composition is cured by exposure to ultraviolet light, the exposed surface and the exit surface are exposed. By making a difference in light intensity and making a difference in polymerization rate, the composition ratio of liquid crystal compositions having different reaction rates is changed in the thickness direction.
  • the method of continuously changing the pitch length as disclosed in Japanese Patent Application Laid-Open No. 6-281814 requires a liquid crystal layer thickness of about 15 to 20 Zm necessary for realizing the function.
  • cost was inevitable due to the need for expensive liquid crystals.
  • the exposure time required was about 1 to 60 minutes, and a long production line with an exposure line length of 10 to 60 Om was required to obtain a line speed of 10 mZ. If the line speed is reduced, the line length can be reduced, but a reduction in production speed is inevitable.
  • the mobility of the substance causing the pitch change is better than the material example used in Japanese Patent Application Laid-Open No.
  • a film can be formed with an exposure amount of about a minute. However, even in this case, a thickness of 15 m is required.
  • Patent No. 3 2 7 2 6 6 8 In the specification, the temperature conditions of the primary exposure and the secondary exposure are changed, and the time required for the composition ratio to change in the thickness direction is separately provided in a dark place, In order to cover substantially the entire visible light region by this method, it is necessary to wait about 120 minutes for mass transfer due to this temperature change.
  • the transmission is sufficiently flat for the three emission wavelengths of the backlight source, namely, 355 nm, 545 nm, and 615 nm. It is necessary to ensure the reflectance characteristics.
  • the bandwidth broadening range obtained by the methods of Examples 1 and 2 described in Japanese Patent Application Laid-Open No. 2002-2866935 is 43.5 nm and 615 nm in each case. It was not enough to cover the emission line spectrum. In such a case, the color tone of the transmitted light is difficult to obtain white and cannot be used for a liquid crystal display device or the like. Disclosure of the invention
  • the present applicant has filed a Japanese Patent Application No. 2001-339396.
  • the liquid crystal composition applied to the alignment substrate is irradiated with ultraviolet light from the alignment substrate.
  • polymerization is started from the surface that is not easily affected by polymerization inhibition due to oxygen in contact with the alignment substrate, and an ultraviolet irradiation intensity distribution is formed in the thickness direction by utilizing absorption by the molar absorption coefficient of the liquid crystal layer.
  • the liquid crystal reaction rate gradient and the composition concentration distribution gradient are larger than before by reducing the effective UV radiation on the air surface side, which is greatly affected by oxygen inhibition.
  • the wavelength band of about 400 to 700 nm is covered. These wavelength bands cover the light source spectrum. These provide good circularly polarized light reflection characteristics near normal incidence. On the other hand, at oblique incidence, the wavelength band was not sufficient.
  • the selective reflection wavelength at oblique incidence is
  • n average refractive index of liquid crystal
  • the selective reflection wavelength shifts to a shorter wavelength side when the light is obliquely incident than when it is perpendicularly incident. Therefore, in order to function effectively for oblique incident light, it is necessary to function in a long wavelength region.
  • An object of the present invention is to provide a method for manufacturing a broadband cholesteric liquid crystal film having a broadband reflection band even in a long wavelength region.
  • Another object of the present invention is to provide a circularly polarizing plate using a broadband cholesteric liquid crystal film obtained by the manufacturing method. It is another object of the present invention to provide a linear polarizing element, a lighting device, and a liquid crystal display using the circular polarizing plate.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, have found that a broadband cholesteric liquid crystal film that can achieve the above object can be obtained by the following manufacturing method, and have completed the present invention. . That is, the present invention is as follows.
  • the alignment is performed for 0.2 to 5 seconds. UV irradiation from the substrate side (1),
  • the pressure is higher than in step (1).
  • the heating rate is 2 ° C / second or more, and the UV irradiation intensity is lower than that in step (1), and the intensity is 10 seconds or more from the alignment substrate side.
  • a method for producing a broadband cholesteric liquid crystal film which comprises a step of irradiating ultraviolet rays in the absence of oxygen (3).
  • the polymerizable mesogen compound (A) has the following general formula (1):
  • R t to R 12 may be the same or different and represent 1 F, 1 H, 1 CH 3 , -C 2 H 5 or 1 CH 3 , and R 13 represents 1 H or _CH 3
  • R t to R 12 may be the same or different and represent 1 F, 1 H, 1 CH 3 , -C 2 H 5 or 1 CH 3
  • R 13 represents 1 H or _CH 3
  • X 2 represents one CN or one F.
  • a is an integer of 0 to 3
  • b is 0 to: an integer of L2
  • c is 0 or 1
  • when a l to 3
  • a phase difference layer (b) having a phase difference of L / 8 or more is provided for incident light whose front phase difference (normal direction) is almost zero and is incident at an angle of 30 ° or more with respect to the normal direction.
  • Polarizing element
  • Reflective polarizer (a) Power Polarizing element characterized by being a circularly polarizing plate as described in 6 above
  • a linearly polarized light characterized in that a / 4 plate is laminated on the circularly polarizing plate described in the above item 6 or the polarizing element described in any of the above items 7 to 9 so that linearly polarized light can be obtained by transmission. element.
  • the linear polarizing element according to 10 above obtained by laminating a cholesteric liquid crystal film, which is a circular polarizing plate, on a ⁇ 4 plate so that the pitch length is continuously narrowed.
  • / 4 plate has a principal refractive index in the plane of nx and ny and a principal refractive index in the thickness direction as nz, it is defined by the formula: (nx—nz) / (nx—ny) N z coefficient is 1 0
  • linear polarizing element according to any one of the above 10 to 13, which satisfies the following conditions: 5 to 2.5.
  • a linear polarizing element characterized in that a Z 2 plate is further laminated on the quarter plate of the linear polarizing element according to any one of the above 10 to 14.
  • An illumination device comprising a linear polarizing element.
  • a liquid crystal display device comprising a liquid crystal cell on the light emission side of the lighting device according to the above item 17.
  • the viewing angle widening liquid crystal display device according to the above item 19, characterized in that a spreading plate having substantially no backscattering or depolarization is used as the viewing angle widening film.
  • the irradiance and irradiation temperature of ultraviolet irradiation from the alignment substrate side are as follows. Different conditions are used in the first exposure step (1) and the second exposure step (2). This makes it possible to realize more precise control of the reaction behavior of the polymerizable liquid crystal mixture and to obtain a broadband cholesteric liquid crystal film with a higher production rate than before. That is, the ultraviolet irradiation condition is that the first irradiation intensity is greater than the second irradiation intensity, and that the first irradiation time is shorter than the second irradiation time.
  • the temperature rises rapidly to a predetermined set temperature (achieved temperature). Due to the difference in irradiation intensity, the amount of radicals generated by the UV reaction of the photoreaction initiator in the liquid crystal composition per unit time is greatly changed between the first UV irradiation and the second UV irradiation.
  • the first UV irradiation a large amount of radicals are instantaneously formed under monomer-rich conditions at the beginning of the reaction, and the radical distribution has a large gradient in the thickness direction due to oxygen inhibition and absorption of the liquid crystal composition. .
  • a polymer oligomer having an average molecular weight of about 1,000 to 5,000 is formed, and a concentration distribution is formed in the thickness direction.
  • the polymerization ratio differs in the thickness direction because the reaction rates of the polymerizable mesogen compound (A) and the polymerizable chiral agent (B) in the liquid crystal composition are different.
  • the cholesteric pitch is short on the surface where the polymerizable chiral agent (B) is rich, and long on the opposite surface.
  • a cholesteric liquid crystal film having a broadband reflection wavelength as a whole can be obtained.
  • the broadband cholesteric liquid crystal film obtained in this manner functions as a broadband circularly polarizing reflector, and has the same optical characteristics as those of Japanese Patent Application Laid-Open Nos.
  • the thickness can be reduced by reducing the number of layers compared to the conventional manufacturing method, and the manufacturing can be performed easily and in a short time. Conversion is possible.
  • the broadband cholesteric liquid crystal film obtained by the production method of the present invention has a wide reflection bandwidth of 200 nm or more in the selective reflection wavelength, and has a broadband reflection bandwidth.
  • the reflection bandwidth is preferably at least 300 nm, more preferably at least 400 nm, and further preferably at least 450 nm. Further, it is preferable that the reflection band width of 200 nm or more is provided in a visible light region, particularly in a wavelength region of 400 to 900 nm.
  • a circularly polarized light reflector has a broadband reflection band even in a long wavelength region is an important issue for obtaining good viewing angle characteristics of a liquid crystal display device.
  • the long wavelength end of the selective reflection must reach 800 to 900 nm in order to prevent the transmitted light from being colored in a practical viewing angle range.
  • a broadband cholesteric liquid crystal film having a reflection band even in such a long wavelength region can be obtained.
  • Such a broadband collection The Steric liquid crystal film is used not only as a reflective polarizer for obtaining high brightness, but also in the case of a polarizing element made in combination with other optical elements such as a retardation plate, except for the front. Stable optical characteristics are required for obliquely incident light
  • FIG. 1 is a conceptual diagram of a viewing angle widening liquid crystal display device using the polarizing plate integrated polarizing element of Examples 1, 3 and Comparative Examples 1 to 3.
  • FIG. 2 is a conceptual diagram of a viewing angle widening liquid crystal display device using the polarizing plate integrated polarizing element of the second embodiment.
  • FIG. 3 is a diagram illustrating an axis angle of each layer in the polarizing plate integrated polarizing element according to the second embodiment.
  • FIG. 4 is a reflection spectrum of the cholesteric liquid crystal film produced in Example 1.
  • FIG. 5 is a reflection spectrum of the cholesteric liquid crystal film produced in Example 2.
  • FIG. 6 shows the reflection spectrum of the cholesteric liquid crystal film produced in Example 3.
  • FIG. 7 is a reflection spectrum of the cholesteric liquid crystal film produced in Example 4.
  • FIG. 8 is a reflection spectrum of the cholesteric liquid crystal film produced in Comparative Example 1.
  • FIG. 9 is a reflection spectrum of the cholesteric liquid crystal film produced in Comparative Example 2.
  • FIG. 10 is a reflection spectrum of the cholesteric liquid crystal film produced in Comparative Example 3. BEST MODE FOR CARRYING OUT THE INVENTION
  • the broadband cholesteric liquid crystal film of the present invention comprises a polymerizable mesogen compound (A) And a liquid crystal mixture containing a polymerizable chiral agent (B).
  • a polymerizable mesogen compound (A) a compound having at least one polymerizable functional group and having a mesogen group composed of a cyclic unit or the like is preferably used.
  • the polymerizable functional group include an acryloyl group, a methacryloyl group, an epoxy group, and a butyl ether group. Of these, an acryloyl group and a methacryloyl group are preferable. .
  • a crosslinked structure can be introduced to improve the durability.
  • the cyclic unit to be a mesogen group include biphenyl-based, phenylbenzoate-based, phenylcyclohexane-based, azoxybenzene-based, azomethine-based, azobenzene-based, phenylpyrimidine-based, and diphenyl-based. Examples include acetylene, diphenylbenzoate, bicyclohexane, cyclohexylbenzene, and terphenyl.
  • the terminal of these cyclic units may have a substituent such as a cyano group, an alkyl group, an alkoxy group, and a halogen group.
  • the mesogen group may be bonded via a spacer that imparts flexibility.
  • the spacer include a polymethylene chain and a polymethylene chain. The number of repetitions of the structural unit forming the spacer portion is appropriately determined depending on the chemical structure of the mesogen portion, but the number of recurring units of the polymethylene chain is 0 to 20, preferably 2 to 12, The repeating unit of the methylene chain is 0 to 10; preferably 1 to 3.
  • the molar extinction coefficient of the polymerizable mesogen compound (A) is 0.1 to 500 dm 3 mo 1
  • Those having the molar extinction coefficient have an ultraviolet absorbing ability.
  • the molar extinction coefficient is 0.1 to 50 dm 3 mol — 1 c ni- 1 @ 365 nin, and 50 to: 100 000 dm 3 mo 1 — ic m- ⁇ SS nm and a, 1 0 0 0 0 ⁇ 5 0 0 0 0 dm 3 mo 1 -..
  • 1 cm “1 ® 3 1 4 nm Gayo Ri is suitable molar absorption coefficient, 0 1 ⁇ 1 0 dm 3 mo 1 _1 cm _1 @ 365 nm, 1 0 0 0 ⁇ 4 0 0 dm 3 mo 1 — 1 cm— L @ 3 3 4 nm, 3 0 0 0 0 ⁇ 4 0 0 0 dm 3 mo 1 _1 cm " 1 ® 3 14 nm is more preferable.
  • Molar extinction coefficient is 0.
  • the polymerizable mesogen compound (A) having one polymerizable functional group has, for example, the following general formula:
  • the polymerizable mesogen compound (A) is not limited to these exemplified compounds.
  • Examples of the polymerizable chiral agent (B) include LC756 manufactured by BASF.
  • the amount of the polymerizable chiral agent (B) to be mixed with the polymerizable mesogen compound (A) is preferably about 1 to 20 parts by weight, more preferably 3 to 7 parts by weight, based on the total of 100 parts by weight of the sex chiral agent (B).
  • the helical torsional force (HTP) is controlled by the ratio of the polymerizable mesogen compound (A) and the polymerizable chiral agent (B). By setting the ratio within the above range, the reflection band can be selected so that the reflection spectrum of the obtained cholesteric liquid crystal film can cover a long wavelength region.
  • the liquid crystal mixture usually contains a photopolymerization initiator (C).
  • a photopolymerization initiator C
  • Various photopolymerization initiators (C) can be used without particular limitation.
  • irgacure 184, irgacure 907, irgacure 369, and irgacure 651 manufactured by Ciba Specialty Chemicals Inc. may be mentioned.
  • the amount of the photopolymerization initiator is preferably about 0.01 to 10 parts by weight based on 100 parts by weight of the total of the polymerizable mesogen compound (A) and the polymerizable chiral agent (B). 0.05-5 parts by weight is more preferred.
  • the mixture may be mixed with an ultraviolet absorber to increase the difference in ultraviolet exposure intensity in the thickness direction.
  • an ultraviolet absorber having a large molar extinction coefficient.
  • the mixture can be used as a solution.
  • Solvents used in preparing the solution are usually forms of chloroform, dichloromethane, dichloromethane, tetrachlorethane, trichloroethylene, tetrachloroethylene, and chloroform.
  • Halogenated hydrocarbons such as benzene, phenols such as phenol and parachlorophenol, benzene, tonolen, xylene, methoxybenzene, aromatic hydrocarbons such as 1,2-dimethoxybenzene, etc.
  • Ton methylethyl ketone, ethyl acetate, tert-butyl alcohol, glycerin, ethylene glycol, triethylene glycol ⁇ , ethylene glycol, monomethyl methinooleate, diethylene glycol dimethyl ether, ethylcellosolve, butylcellosolve, 2 — Pyrrolidone, N-methyl I 2-pyrrolidone, pyridine, triethylamine, tetrahydrofuran, dimethylformamide, dimethylacetamide, dimethylsulfoxide, acetonitril, butyronitrile, carbon disulfide, cyclopentanoic And cyclohexane can be used.
  • the solvent to be used is not particularly limited, but is preferably methylethyl ketone, cyclohexanone, cyclopentanone, or the like.
  • concentration of the solution cannot be specified unconditionally because it depends on the solubility of the thermotropic liquid crystal compound and the final thickness of the target cholesteric liquid crystal film, but it is usually about 3 to 50% by weight. Is preferred.
  • the production of the broadband cholesteric liquid crystal film of the present invention includes a step of applying the liquid crystal mixture to an alignment substrate, and a step of irradiating the liquid crystal mixture with ultraviolet rays and polymerizing and curing.
  • the alignment base material As the alignment base material, a conventionally known one can be used.
  • a polymer with a photocrosslinking group such as a rubbing film, obliquely deposited film, or cinnamate diazobenzene, which is formed by forming a thin film made of polyimide or polyvinyl alcohol on a substrate and rubbing it with rayon cloth or the like
  • a light directing film or a stretched film obtained by irradiating a polyimide with polarized ultraviolet light is used.
  • it can be oriented by magnetic field, electric field orientation, and shear stress operation.
  • the type of the base material is not particularly limited, but a material having a high transmittance is desirable in view of the method of irradiating irradiation light (ultraviolet rays) from the base material side.
  • the substrate 2 0 0 1 1 1 1 1 or more 4 0 0 11 m or less
  • good Ri desirably 3 0 0 nm or more 4 0 0 nm transmittance of 1 0% or more in the ultraviolet region, preferably Is required to be 20% or more.
  • the plastic film has a transmittance of 10% or more to ultraviolet light having a wavelength of 365 nm, more preferably 20% or more.
  • the transmittance is a value measured by an 11 1 OOS spectrophotometer.
  • the substrate examples include polyethylene terephthalate, triacetyl cellulose, norbornene resin, polyvinyl alcohol, polyimide, polyacrylate, polycarbonate, polysulfone, and polyethersulfone.
  • a plastic film or glass plate is used. Examples include Triacetyl cellulose manufactured by Fudo Photo Film Company, ARTON manufactured by JSR, and ZONEX manufactured by Zeon Corporation.
  • a polymer film described in Japanese Patent Application Laid-Open Publication No. 2001-334535 for example, (A) a side chain substituted and / or unsubstituted And (B) a thermoplastic resin having a substituted or unsubstituted phenyl in the side chain and a thermoplastic resin having a ditolyl group.
  • a resin composition film containing an alternating copolymer of isobutylene and N-methylmaleimide and an acrylonitrile.styrene copolymer As the film, a film made of a mixed extruded product of a resin composition or the like can be used.
  • the base material may be used while being bonded to the cholesteric liquid crystal layer, or may be peeled off. When using it as it is, use a material whose retardation value is sufficiently small for practical use.
  • the base material When the base material is used while being bonded, it is desirable that the base material does not decompose, deteriorate or yellow even when irradiated with ultraviolet rays.
  • the desired purpose can be achieved by incorporating a light stabilizer or the like into the aforementioned base material.
  • the light stabilizer Tinuvin 120 and 144, manufactured by Chipa Specialty Chemicals, etc., are preferably used.
  • the wavelength from the exposure light to a wavelength of 300 nm or less, coloring, deterioration, and yellowing can be reduced.
  • the coating thickness of the liquid crystal mixture (the coating thickness after drying the solvent in the case of a solution) is preferably about 1 to 20 im. If the coating thickness is thinner than 1 ⁇ m, the reflection bandwidth can be secured, but the degree of polarization itself tends to decrease, which is not preferable.
  • the coating thickness is preferably 2 / im or more, more preferably 3 ⁇ m or more. On the other hand, when the coating thickness is larger than 20 / zm, no remarkable improvement is seen in both the reflection bandwidth and the degree of polarization, and the cost is simply increased, which is not preferable.
  • the coating thickness is preferably 15 / im or less, and more preferably 10 / m or less.
  • the mixed solution for example, a roll coating method, a gravure coating method, a spin coating method, a per coating method, or the like can be employed.
  • the solvent is removed, and a liquid crystal layer is formed on the substrate.
  • the conditions for removing the solvent are not particularly limited, and it is sufficient that the solvent can be substantially removed, and the liquid crystal layer does not flow or drop.
  • the solvent is removed by drying at room temperature, drying in a drying oven, or heating on a hot plate.
  • the liquid crystal layer formed on the alignment base material is brought into a liquid crystal state, and cholesteric alignment is performed.
  • heat treatment is performed so that the liquid crystal layer has a liquid crystal temperature range.
  • the heat treatment can be performed by the same method as the above-mentioned drying method.
  • the heat treatment temperature varies depending on the type of liquid crystal material and alignment substrate, and cannot be unconditionally determined. To 300 ° C., preferably 70 to 200 ° C.
  • the heat treatment time varies depending on the heat treatment temperature and the type of liquid crystal material or alignment base material to be used-although it cannot be generally specified, it is usually selected in the range of 10 seconds to 2 hours, preferably in the range of 20 seconds to 30 minutes. Is done.
  • the step of applying the liquid crystal mixture to the alignment base material and irradiating the liquid crystal mixture with ultraviolet rays includes the above three steps (1) to (3).
  • an ultraviolet irradiation intensity of 20 to 200 mW / cm 2 is used. UV irradiation from the alignment substrate side for ⁇ 5 seconds.
  • the liquid crystal mixture is polymerized to form a polymer / oligomer having an average molecular weight of about 1,000 to 500,000, and the alignment base material side and its opposite side (oxygen In the thickness direction (at the interface side), there is a difference in the reaction rate due to oxygen inhibition and the difference in the amount of radicals generated due to ultraviolet absorption of the liquid crystal composition, forming a layer in which the amount of polymer z oligomers is continuously distributed in the thickness direction Let it.
  • the temperature at the time of the first ultraviolet irradiation is set to 20 ° C. or higher in order to polymerize and cure the liquid crystal mixture in a favorable alignment state.
  • the upper limit of the temperature is not particularly limited, but is preferably 100 ° C. or lower. If the temperature is higher than 100 ° C
  • the temperature is preferably from 20 ° C to 50 ° C.
  • the first ultraviolet irradiation intensity is 2 0 ⁇ 2 0 0 mW / cm 2, 2 5 ⁇ 2 0 0 mW / cm 2 is laid favored, 4 0 ⁇ ; 1 5 0 mWZ cm 2 Gayo Ri preferred arbitrariness. If the UV irradiation intensity is lower than 20 mWZ cm 2 , the polymerization will not be performed to the extent that a monomer distribution is formed in the thickness direction, so that the band will not be broadened. Further, if the UV irradiation intensity is higher than 200 mW / cm 2 , the polymerization reaction rate becomes higher than the diffusion rate, so that the band is not broadened.
  • the first ultraviolet irradiation time in the step (1) is 0.2 to 5 seconds, and preferably 0.3 to 3 seconds. More preferably, it is 0.5 to 1.5 seconds. If the time is shorter than 0.2 seconds, the polymerization is not carried out to such an extent that the monomer is distributed in the thickness direction, so that the band is not broadened. If the time is longer than 5 seconds, the change in pitch of the cholesteric liquid crystal layer is not a continuous change from large to small from the alignment substrate side to the oxygen interface side, but is a discontinuous change. Discontinuous pitch changes cause severe coloring when viewed from an angle Become.
  • the exposure environment for ultraviolet irradiation is performed in a state where the liquid crystal mixture applied to the alignment base material is in contact with a gas containing oxygen.
  • the gas containing oxygen contains 0.5% or more of oxygen.
  • Such an environment may be any one that can utilize oxygen polymerization inhibition, and can be performed under a general atmospheric atmosphere.
  • the oxygen concentration may be increased or decreased in view of the wavelength width for controlling the pitch in the thickness direction and the speed required for polymerization.
  • the required amount of the photopolymerization initiator (C) tends to increase under an air atmosphere.
  • the desired purpose can be achieved with an addition amount of about 1 to 5 parts by weight based on a total of 100 parts by weight of the compound (A) and the polymerizable chiral agent (B).
  • the polymer / oligomer In the irradiation of the first ultraviolet ray, if the weight average molecular weight of the formed polymer oligomer is too small, the diffusion speed becomes too high. Care must therefore be taken to ensure that uncontrolled diffusion rates do not even out the polymer / oligomer concentration gradient. It is necessary not only to form a large change in the cholesteric pitch length in the thickness direction of the liquid crystal layer but also to maintain this. If the polymer / oligomer is too low in molecular weight, the formed gradient cannot be maintained, and the structure is lost due to molecular diffusion. In order to satisfy the conditions for controlling the diffusion rate under industrial conditions, the polymer / oligomer is formed in a weight average molecular weight of about 1,000 to 5,000.
  • the weight average molecular weight of the polymer / oligomer is preferably between 1000 and 3000.
  • the weight average molecular weight of the polymer oligomer is a value measured by the GPC method.
  • the weight average molecular weight was calculated using polyethylene oxide as a standard sample.
  • Main unit Tosoh HLC—8 120 GPC, power ram: Tosoh Supper AWM-H + Supper AWM-H + Supper AW 300 0 (each 6 mni (i) X 15) cm, total 45 cm), Column temperature: 40 ° C, Eluent: 10 mM—LiBr ZNMP, Flow rate: 0. A ml Zmin, Inlet pressure: 8.5 MPa, Sample concentration: 0.1% NMP solution, Detector: Differential refractometer (RI).
  • the heating rate is higher than that of the step (1) and the heating rate is increased until the temperature reaches 60 ° C or more.
  • UV irradiation is performed from the alignment substrate side for 10 seconds or more at a UV irradiation intensity lower than that in step (1) for at least CZ seconds.
  • the pitch on the alignment substrate side can be further increased. Since the increase in the molecular weight of the liquid crystal composition layer and the decrease in the diffusion rate are significantly different from those during the first ultraviolet irradiation in step (1), the amount of radicals generated per unit time should be reduced, and the progress rate of polymerization should be reduced. Further broadening of the bandwidth is possible.
  • the temperature conditions for the first ultraviolet irradiation and the second ultraviolet irradiation are changed, and the time required for the composition ratio to change in the thickness direction is separately determined in a place. It is set up. However, in order to cover substantially the entire visible light region using this method, it is necessary to wait about 120 minutes for mass transfer due to this temperature change. On the other hand, the manufacturing method of the present invention does not require a dark place. Furthermore, the process can be completed in a short time of less than one minute, so that a practical and efficient production speed can be produced.
  • the second ultraviolet irradiation is performed while increasing the temperature to a predetermined temperature.
  • the starting temperature at the time of the irradiation of the second ultraviolet ray is the same as that in the step (1). That is, it is at least 20 ° C. If the onset temperature is lower than 20 ° C, the diffusion rate of the polymerizable mesogen compound (a) is extremely slow, and it takes a long time to broaden the band. Further, the attained temperature is set higher than that of the step (1) and at a temperature of 60 ° C. or more. If the reached temperature is lower than 60 ° C, the diffusion of the polymerizable mesogen compound (a) does not sufficiently occur, and the band is not sufficiently widened.
  • the upper limit of the attained temperature is not particularly limited, but is preferably 140 ° C. or lower. Furthermore, the ultimate temperature is 80 ° C ⁇ 120 ° C is preferred. If the ultimate temperature is higher than 140 ° C, the diffusion rate is too fast to control.
  • the temperature is rapidly increased from the end of the first ultraviolet irradiation to the ultimate temperature at a heating rate of 2 ° C / sec or more. If the heating rate is lower than 2 ° CZ seconds, the diffusion of the polymerizable mesogen compound (a) will not occur sufficiently, and the band will not be sufficiently widened.
  • the heating rate is preferably between 2 and 20 ° C / sec.
  • the second ultraviolet irradiation can be usually performed while maintaining the attained temperature.
  • the temperature is within a range of 140 ° C. or less, the temperature can be gradually increased after reaching a predetermined temperature.
  • Irradiation is performed at a second UV irradiation intensity lower than the first UV irradiation intensity.
  • the second ultraviolet irradiation intensity is preferably 1 to 50 mW / cm 2 in a range lower than the first ultraviolet irradiation intensity.
  • the second ultraviolet irradiation time depends on the illuminance, but is generally preferably 10 seconds or more.
  • the second UV irradiation time is the sum of the irradiation time until the temperature is rapidly increased to the reached temperature and the irradiation time after the reached the reached temperature.
  • the ultraviolet irradiation time is preferably 120 seconds or less, more preferably 60 seconds or less from the point of working time.
  • the bandwidth can be broadened by the step (2) as described in the following embodiment, and the viewing angle at which the obliquely incident light is colored and decolored by the blue shift becomes extremely large. Coloring can be significantly reduced.
  • step (3) ultraviolet irradiation is performed in the absence of oxygen.
  • the third ultraviolet ray irradiation the cholesteric reflection band extended in the steps (1) and (2) is cured without deteriorating.
  • the pitch change structure is fixed without deterioration.
  • the absence of oxygen can be, for example, an inert gas atmosphere.
  • the inert gas is not particularly limited as long as it does not affect the ultraviolet polymerization of the liquid crystal mixture.
  • examples of such an inert gas include nitrogen, argon, helium, neon, xenon, and krypton. Of these, nitrogen is the most versatile preferable. Further, by bonding a transparent base material to the cholesteric liquid crystal layer, it is possible to eliminate the presence of oxygen.
  • step (3) the ultraviolet irradiation may be performed from any of the alignment substrate side and the applied liquid crystal mixture side.
  • the ultraviolet irradiation condition is not particularly limited as long as the liquid crystal mixture is cured. Usually, it is preferable to irradiate at an irradiation intensity of about 40 to 300 mWZ cm 2 for about 1 to 60 seconds.
  • the irradiation temperature is about 20 to 100 ° C.
  • step (3) ultraviolet irradiation is performed from the alignment substrate surface side in order to utilize oxygen inhibition positively in the first ultraviolet irradiation in the step (1) and the second ultraviolet irradiation in the step (2). For this reason, it is possible to form a large gradient in the reaction direction in the thickness direction. There is a possibility that problems such as lack of sex may occur. For this reason, in step (3), third ultraviolet irradiation is performed in an oxygen-free atmosphere to complete the polymerization of the remaining monomers and enhance the film quality.
  • the reaction rate of the surface does not improve sufficiently in an air atmosphere (in the presence of oxygen), and it is difficult for the reaction rate to exceed 90%. Therefore, in order to obtain sufficient reliability, it is desired to perform ultraviolet irradiation in the absence of oxygen.
  • the direction of the irradiation surface is not particularly limited. This is because irradiation from the liquid crystal layer side is desirable, but the reaction on the surface proceeds sufficiently even from the substrate side in a nitrogen atmosphere.
  • the cholesteric liquid crystal film thus obtained can be used without peeling from the substrate, or may be peeled off from the substrate.
  • the broadband cholesteric liquid crystal film of the present invention is used as a circularly polarizing plate.
  • Four circular plates can be stacked on the circularly polarizing plate to form a linearly polarizing element.
  • the cholesteric liquid crystal film, which is a circularly polarizing plate, is preferably laminated on four plates so that the pitch length is continuously narrowed.
  • the ⁇ 4 plate is not particularly limited, but may be formed by stretching such as polycarbonate, polyethylene terephthalate, polystyrene, polysulfone, polybutyl alcohol, polymethyl methacrylate, or the like. Generating transparent resin fill Mupol A norpolene-based resin film such as ARTON film manufactured by JSR is preferably used. Further, it is preferable to perform biaxial stretching and use a retardation plate that compensates for a change in retardation value due to the incident angle, since the viewing angle characteristics can be improved. Further, a ⁇ / 4 plate obtained by fixing a four-layer obtained by, for example, aligning a liquid crystal other than the expression of a retardation by stretching a resin may be used. In this case, the thickness of the e / 4 plate can be significantly reduced. The thickness of the ⁇ / 4 wavelength plate is usually preferably from 0.5 to 200 m, and particularly preferably from 1 to 100 zm.
  • a retardation plate that functions as a ⁇ / 4 wavelength plate in a wide wavelength range such as a visible light castle is, for example, a retardation layer that functions as a four-wavelength plate for light-color light having a wavelength of 550 nm. It can be obtained by a method in which a phase difference layer exhibiting other phase difference characteristics, for example, a phase difference layer functioning as a two-wavelength plate is superimposed. Therefore, the retardation plate disposed between the polarizing plate and the brightness enhancement film may be composed of one or two or more retardation layers. It is used with the transmission axis direction aligned.
  • the polarizer is not particularly limited, and various types can be used.
  • Polarizers include, for example, hydrophilic polymer films such as polyvinyl alcohol-based films, partially formalized polyvinyl alcohol-based films, and ethylene / vinyl acetate copolymer-based partially saponified films; Examples thereof include a uniaxially stretched film obtained by adsorbing a dichroic substance such as a dichroic dye, a dehydrated product of polyvinyl alcohol, and a dehydrochlorinated product of polychlorinated polyene-based oriented film.
  • a polarizer made of a polyvinyl alcohol-based film and a dichroic substance such as iodine is preferable.
  • the thickness of these polarizers is not particularly limited, but is generally about 5 to 80 / Xm.
  • a uniaxially stretched polarizer obtained by dyeing a polybutyl alcohol-based film with iodine is dyed, for example, by immersing the polybutyl alcohol in an aqueous solution of iodine, and stretching the original length 3 to 7 times.
  • It can be manufactured by the following. If necessary, it can be immersed in an aqueous solution of boric acid or potassium iodide. If necessary, the polyvinyl alcohol-based film may be immersed in water and washed with water before dyeing. Polyvinyl alcohol-based film is washed by water In addition to being able to clean surface stains and anti-blocking agents, it also has the effect of preventing unevenness such as uneven dyeing by swelling the polyvinyl alcohol-based film.
  • Stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be dyed with iodine after stretching. Stretching can be performed in an aqueous solution of boric acid or calcium iodide or in a water bath.
  • the polarizer is usually provided with a transparent protective film on one or both sides and used as a polarizing plate. It is preferable that the transparent protective film is excellent in transparency, mechanical strength, heat stability, moisture shielding property, isotropy and the like.
  • the transparent protective film include polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, and cellulose polymers such as diacetinoresenorelose and triacetinoresenorelose.
  • films made of transparent polymers such as polycarbonate polymers and acrylic polymers such as polymethyl methacrylate.
  • Styrene polymers such as polystyrene, acrylonitrile and styrene copolymers; and polyolefins such as polyethylene, polypropylene, polyolefins having a cyclic or norbornene structure, and ethylene propylene copolymers.
  • Films made of transparent polymers such as amide polymers such as vinyl chloride polymers and nylon-aromatic polyamides are also included.
  • imid-based polymers such as a butyral-based polymer, an arylate-based polymer, a polyoxymethylene-based polymer, an epoxy-based polymer, or a blend of the above polymers may also be used. In particular, those having low optical birefringence are preferably used.
  • triacetyl cellulose, polycarbonate, an acrylic polymer, a cycloolefin resin, a polyolefin having a norbornene structure, and the like are preferable.
  • a polymer film described in Japanese Patent Application Laid-Open No. 2001-334529 for example, (A) a side chain substituted and / or unsubstituted imide Resin compositions containing a thermoplastic resin having a group, and (B) a thermoplastic resin having a substituted or unsubstituted phenyl and a ditolyl group in a side chain.
  • a film of a resin composition containing an alternating copolymer composed of isobutylene and N-methylmaleide and an acrylonitrile / styrene copolymer may be used.
  • a film made of a mixed extruded product of a resin composition or the like can be used.
  • a transparent substrate that can be particularly preferably used in view of polarization characteristics and durability is a triacetyl cellulose film whose surface is saponified with alkali or the like.
  • the thickness of the transparent protective film can be determined as appropriate, but is generally about 10 to 500 ⁇ m in view of strength, workability and other workability, and thinness. In particular, it is preferably from 20 to 300 / zm, more preferably from 30 to 200 ⁇ .
  • the retardation value in the film thickness direction represented by) is-9 0 ⁇ ⁇ !
  • a protective film having a thickness of up to +75 nm is preferably used. By using such a retardation value (Rth) in the thickness direction of 190 nm to +75 nm, the coloring (optical coloring) of the polarizing plate caused by the protective film is almost eliminated. be able to.
  • the thickness direction retardation value (R th) is more preferably 180 ⁇ ⁇ ! To +60 nm, particularly preferably from 70 nm to +45 nm.
  • a transparent protective film made of the same polymer material on both sides may be used, or a transparent protective film made of a different polymer material or the like may be used.
  • the surface of the transparent protective film on which the polarizer is not adhered may be subjected to a hard coat layer antireflection treatment, a treatment for preventing sticking, or a treatment for diffusion or antiglare.
  • the hard coat treatment is performed for the purpose of preventing scratches on the surface of the polarizing plate.
  • a cured film having an excellent hardness and a sliding property by an appropriate ultraviolet curable resin such as an acrylic or silicone resin is used. It can be formed by a method of adding to the surface of the protective film.
  • the anti-reflection treatment is performed for the purpose of preventing reflection of external light on the polarizing plate surface, and can be achieved by forming an anti-reflection film or the like according to the related art.
  • the anti-stating treatment is performed for the purpose of preventing adhesion to the adjacent layer.
  • the anti-glare treatment is performed for the purpose of preventing external light from being reflected on the surface of the polarizing plate and hindering the visibility of light transmitted through the polarizing plate, and is, for example, a sand-plasting method or an embossing method. It can be formed by imparting a fine uneven structure to the surface of the transparent protective film by an appropriate method such as a surface roughening method or a method of blending transparent fine particles. Examples of the fine particles to be included in the formation of the surface fine unevenness include silica, alumina, titania, zircoair, tin oxide, indium oxide, cadmium oxide having an average particle size of 0.5 to 50 ⁇ .
  • Transparent fine particles such as inorganic fine particles which may be made of antimony oxide or the like and organic fine particles made of a crosslinked or uncrosslinked polymer or the like are used.
  • the amount of the fine particles used is generally about 2 to 50 parts by weight with respect to 100 parts by weight of the transparent resin forming the fine surface uneven structure, and 5 to 25 parts by weight. Parts by weight are preferred.
  • the anti-glare layer may also serve as a diffusion layer (such as a viewing angle expansion function) for diffusing light transmitted through the polarizing plate to increase the viewing angle.
  • the anti-reflection layer, anti-sticking layer, diffusion layer, anti-glare layer and the like can be provided on the transparent protective film itself, or separately provided as an optical layer separately from the transparent protective layer. You can also.
  • the above-described linear polarizing element may be provided with an adhesive layer for bonding to another member such as a liquid crystal cell.
  • the pressure-sensitive adhesive that forms the pressure-sensitive adhesive layer is not particularly limited.
  • an acrylic polymer, a silicone-based polymer, a polyester, a polyurethane, a polyamide, a polyether, a fluorine-based or rubber-based polymer may be used as a base polymer.
  • a base polymer may be appropriately selected and used.
  • those having excellent optical transparency, such as an acrylic adhesive, exhibiting appropriate wettability, cohesiveness and adhesive adhesive properties, and having excellent weather resistance and heat resistance are preferably used.
  • an adhesive layer with low moisture absorption and excellent heat resistance is preferred.
  • the adhesive layer is made of, for example, natural or synthetic resins, in particular, tackifying resin, glass, It may contain fillers such as fibers, glass beads, metal powders, and other inorganic powders, and additives such as pigments, colorants, and antioxidants that are added to the adhesive layer.
  • an adhesive layer containing fine particles and exhibiting light diffusibility may be used.
  • the attachment of the adhesive layer may be performed by an appropriate method. For example, about 10 to 40% by weight of a base polymer or a composition thereof dissolved or dispersed in a solvent consisting of a single substance or a mixture of appropriate solvents such as toluene and ethyl acetate.
  • An adhesive solution is prepared and applied directly on the polarizer by an appropriate developing method such as a casting method or a coating method, or an adhesive layer is formed on a separator according to the method described above, and then the optical element is formed. There is a method to transfer to the top.
  • the adhesive layer may be provided as a superimposed layer of different compositions or types of layers.
  • the thickness of the pressure-sensitive adhesive layer can be appropriately determined according to the purpose of use, adhesive strength, and the like, and is generally 1 to 500, preferably 5 to 200 / im, and particularly preferably 10 to 100. ⁇ is preferred.
  • a separator is temporarily attached to the exposed surface of the adhesive layer for the purpose of preventing contamination, etc., until it is put to practical use. This can prevent the adhesive layer from coming into contact with the adhesive layer in a normal handling state.
  • suitable thin sheets such as plastic films, rubber sheets, paper, cloth, non-woven fabrics, nets, foamed sheets, metal foils, and laminates thereof are used as the separator.
  • a suitable release agent such as a silicone-based, long-chain alkyl-based, fluorine-based, or molybdenum sulfide.
  • Each layer such as an adhesive layer is treated with an ultraviolet absorber such as a salicylate compound, a benzophenol compound, a benzotriazole compound, a cyanoacrylate compound, or a nickel complex compound. It may be a method having a function of absorbing ultraviolet rays by a method such as a method.
  • an ultraviolet absorber such as a salicylate compound, a benzophenol compound, a benzotriazole compound, a cyanoacrylate compound, or a nickel complex compound. It may be a method having a function of absorbing ultraviolet rays by a method such as a method.
  • the linear polarizing element of the present invention can be preferably used for forming various devices such as a liquid crystal display device.
  • the formation of the liquid crystal display device can be performed according to a conventional method. That is, a liquid crystal display device is generally formed by appropriately assembling components such as a liquid crystal cell and an optical element and, if necessary, an illumination system and incorporating a drive circuit. There is no particular limitation except that an element is used, and the conventional method is followed.
  • the liquid crystal cell any type such as ⁇ -type, STN-type, and ⁇ -type can be used. sell.
  • Appropriate liquid crystal display devices such as a liquid crystal display device in which the linear polarizing element is arranged on one side or both sides of a liquid crystal cell, and a lighting system using a backlight or a reflector can be formed.
  • the linear polarizing element according to the present invention can be installed on one side or both sides of the liquid crystal cell.
  • linear polarizing elements are provided on both sides, they may be the same or different.
  • appropriate components such as a diffusion plate, an antiglare layer, an antireflection film, a protection plate, a prism array, a lens array sheet, a light diffusion plate, and a backlight are appropriately positioned.
  • One or two or more layers can be arranged.
  • the circular polarizer (reflective polarizer) using the cholesteric liquid crystal film is provided between at least two reflective polarizers (a) in which the wavelength bands of selective reflection of polarized light overlap each other.
  • a retardation layer (b) having a front retardation (normal direction) of almost zero and having a phase difference of ⁇ / 8 or more with respect to incident light incident at an angle of 30 ° or more with respect to the normal direction is arranged. Used in polarizing element systems.
  • either the maximum pitch or the minimum pitch of the spiral twisted molecular structure may be the side of the retardation layer (b), but the viewing angle (the viewing angle is good and the coloring is small)
  • the reflection polarizer (a) is expressed as (maximum pitch / minimum pitch)
  • the reflective polarizer (a) such that the minimum pitch side of the reflective polarizer (a) is the four plate side.
  • the polarizing element system that is, the cholesteric liquid crystal laminate having a wideband selective reflection function has a circularly polarized light reflection / transmission function in the front direction, and can be used in a liquid crystal display device as a wideband circularly polarizing plate. .
  • it can be used as a circularly polarizing plate by arranging it on the light source side of a circularly polarized mode liquid crystal cell, for example, a transmissive V-mode liquid crystal cell having multiple domains.
  • the retardation layer (b) has a phase difference of almost zero in the front direction, and has a phase difference of 8 or more with respect to incident light at an angle of 30 ° from the normal direction.
  • the front phase difference is desirably ⁇ 10 or less since the purpose is to maintain the vertically incident polarized light.
  • the incident light from the oblique direction is appropriately determined by the angle of total reflection so as to be efficiently converted in polarization. For example, 60 to completely reflect at an angle of about 60 ° from the normal. What is necessary is just to determine so that the phase difference at the time of measurement at is about 1/2.
  • the transmitted light by the reflective polarizer (a) changes its polarization state due to the C-plate birefringence of the reflective polarizer itself, it is measured at that angle of the normally inserted C-plate.
  • the phase difference may be smaller than E2. Since the phase difference of the C-plate increases monotonically as the incident light tilts, the effective total reflection occurs when the light is tilted at an angle of 30 ° or more. And L / 8 or more.
  • the material of the retardation layer (b) is not particularly limited as long as it has the above-mentioned optical characteristics.
  • the cholesteric liquid crystal having a selective reflection wavelength other than in the visible light region (380 ⁇ ! ⁇ 780 nm) is fixed in the planar state, or the rod-shaped liquid crystal is fixed in the homeotropic aperture.
  • the C plate in which the cholesteric liquid crystal having a selective reflection wavelength other than the visible light region (380 nm to 780 nm) has a fixed planar state is a selective reflection of a cholesteric liquid crystal. It is desirable that the wavelength is not colored in the visible light region. Therefore, it is necessary that the selective reflection light is not in the visible region.
  • the selective reflection is uniquely determined by the chiral pitch of the cholesteric and the refractive index of the liquid crystal.
  • the value of the central wavelength of selective reflection may be in the near-infrared region, but it may be in the ultraviolet region of 350 nm or less due to the effects of optical rotation, etc., causing a somewhat complicated phenomenon. More desirable.
  • the formation of the cholesteric liquid crystal layer is performed in the same manner as the formation of the cholesteric layer in the reflective polarizer described above.
  • the C-plate having a fixed homeotropic orbital alignment state is a liquid crystalline thermoplastic resin or a liquid crystal monomer exhibiting nematic liquid crystallinity at a high temperature, and an alignment aid as required, and ionizing radiation such as an electron beam or ultraviolet light.
  • Polymerizable liquid crystal polymerized by irradiation or heat, or a mixture thereof is used.
  • the liquid crystal properties may be either lyotropic or thermotropic, but are easy to control and easy to form a mono domain. From the viewpoint of the above, it is desirable that the liquid crystal is a thermo-pic pickable liquid crystal.
  • the homeotropic alignment can be obtained, for example, by coating the above-mentioned birefringent material on a film on which a vertical alignment film (such as a long-chain alkylsilane) has been formed, and developing and fixing a liquid crystal state.
  • a vertical alignment film such as a long-chain alkylsilane
  • the liquid crystal material has a negative uniaxial property like a phthalocyanine or triphenylene compound having a molecular spread in the plane as a liquid crystal material. It is a discotic liquid crystal material that is fixed by developing a nematic phase or a columnar phase. Negative uniaxial inorganic layered compounds are described in detail in, for example, Japanese Patent Application Laid-Open Publication No. Hei 6—8277777.
  • C-plates utilizing the biaxial orientation of polymer films include a method of biaxially stretching a polymer film having a positive refractive index anisotropy, a method of pressing a thermoplastic resin, and a crystal with parallel orientation. It can be obtained by the method of cutting out from the.
  • the layers may be stacked only, but it is preferable that the layers be stacked using an adhesive or a pressure-sensitive adhesive from the viewpoint of workability and light use efficiency.
  • the adhesive or pressure-sensitive adhesive is transparent, has no absorption in the visible light region, and the refractive index is preferably as close as possible to the refractive index of each layer from the viewpoint of suppressing surface reflection. From this viewpoint, for example, an acrylic pressure-sensitive adhesive is preferably used.
  • Each layer separately forms a monodomain in the form of an alignment film, and is sequentially laminated on a translucent substrate by a method such as transfer, or without an adhesive layer, etc. It is also possible to form each layer appropriately and to sequentially form each layer sequentially.
  • Particles may be added to each layer and the (viscosity) adhesive layer to adjust the degree of diffusion, if necessary, to provide isotropic scattering, or to use an ultraviolet absorber, an antioxidant, A surfactant or the like can be appropriately added for the purpose of imparting a leveling property.
  • the polarizing element (cholesteric liquid crystal laminate) of the present invention has a function of reflecting and transmitting circularly polarized light, it can be used as a linear polarizing element for converting transmitted light into linearly polarized light by combining four plates. it can. Examples of the plate include those similar to the above.
  • the ⁇ / plate functions well only for a specific wavelength in a single layer made of a single material, there is a problem that the ⁇ / plate has a reduced function as a ⁇ 4 plate due to wavelength dispersion characteristics for other wavelengths. Therefore, if lamination is performed with the ⁇ / 2 plate and the axis angle specified, there is a practical difference over the entire visible light range. It can be used as a broadband / 4 board that functions within a range that does not hurt.
  • the L4 plate and the ⁇ / 2 plate may be the same material, or may be a combination of different materials obtained by the same method as the above-described E / 4 plate.
  • a / 4 plate 140 nm is laminated on a broadband circularly polarizing plate, and a 1/2 plate (270 nm) is arranged at 17.5 degrees with respect to this axis angle.
  • the transmission polarization axis is 10 degrees with respect to the axis of the ⁇ 4 plate. Since the bonding angle varies depending on the phase difference value of each phase difference plate, the bonding angle is not limited to the above bonding angle.
  • An absorptive polarizer is attached to the transmission axis of the linearly polarizing element so that its transmission axis direction is aligned.
  • a diffuse reflection plate below the light guide plate as the light source (on the side opposite to the liquid crystal cell arrangement surface).
  • the main component of the light beam reflected by the collimating film is an oblique incident component, which is specularly reflected by the collimating film and returned to the pack light direction.
  • the rear-side reflector has high specular reflectivity, the reflection angle is preserved, and light cannot be emitted in the front direction, resulting in lost light. Therefore, it is desirable to dispose a diffuse reflector in order to increase the diffuse reflection component in the front direction without preserving the reflection angle of the reflected return light beam.
  • the diffusion plate used can be obtained by embedding fine particles having different refractive indices in a resin, etc., in addition to the one having the uneven surface shape.
  • This diffusion plate may be sandwiched between the collimating film and the pack light, or may be bonded to the collimating film.
  • the liquid crystal cell with the collimated film attached is placed in close proximity to the pack light, Newton rings may occur in the gap between the film surface and the pack light.
  • a diffusion plate having surface irregularities on the side surface By arranging a diffusion plate having surface irregularities on the side surface, the generation of Newton rings can be suppressed.
  • the surface itself of the collimating film in the present invention has an uneven structure and a light diffusion structure. A layer that also serves as a layer may be formed.
  • the viewing angle expansion in the liquid crystal display device of the present invention is achieved by diffusing light beams having good display characteristics near the front obtained from the liquid crystal display device, which are combined with the parallel-packed pack light, so as to be uniform within the entire viewing angle. It is obtained by obtaining good display characteristics.
  • a diffusion plate having substantially no back scattering is used for the viewing angle widening film used here.
  • the diffusion plate can be provided as a diffusion adhesive.
  • the placement location is on the viewing side of the liquid crystal display device, but it can be used either above or below the polarizing plate.
  • a film that does not substantially eliminate polarized light is desirable.
  • a fine particle-dispersed diffusion plate as disclosed in JP-A-2000-347706 and JP-A-2007-40707 is preferably used.
  • the viewing angle widening film When the viewing angle widening film is located outside the polarizing plate, the parallelized light passes through the liquid crystal layer and one polarizing plate.Therefore, in the case of a TN liquid crystal cell, a viewing angle compensating phase plate must be used. Is also good. In the case of an STN liquid crystal cell, it is only necessary to use a retardation film in which only the front characteristics are well compensated. In this case, since the viewing angle widening film has an air surface, it is possible to adopt a type using a refraction effect due to the surface shape. On the other hand, when a viewing angle widening film is inserted between the polarizing plate and the liquid crystal layer, the light is diffused at the stage of passing through the polarizing plate.
  • a TN liquid crystal In the case of a TN liquid crystal, it is necessary to compensate for the viewing angle characteristics of the polarizer itself. In this case, it is necessary to insert a retardation plate for compensating the viewing angle characteristics of the polarizer between the polarizer and the viewing angle widening film. In the case of the STN liquid crystal, it is necessary to insert a retardation plate for compensating the viewing angle characteristics of the polarizer in addition to the front phase difference compensation of the STN liquid crystal.
  • the collimated film in the present invention is in-plane. Since the regular structure is not visible at all, and there is no regular modulation in the emitted light, there is no need to consider the compatibility with the viewing angle expansion film and the arrangement order. Therefore, the viewing angle widening film has no particular limitation as long as it does not cause interference / moire with the pixel black matrix of the liquid crystal display device, and there are a wide range of options.
  • the viewing angle widening film has substantially no backscattering and does not eliminate polarization, and is disclosed in Japanese Patent Application Laid-Open Publication No. 2000-34067 and Japanese Patent Publication No.
  • it even if it has a regular structure inside, such as a hologram sheet, microprism array, microphone opening lens array, etc., it can be used without forming interference / moire with the pixel black matrix of the liquid crystal display device.
  • liquid crystal display device is manufactured by appropriately using various optical layers and the like according to an ordinary method.
  • Photopolymerizable main Sogen compound (polymerizable nematic liquid crystal monomer, compounds 2 0 of Table 1, the molar extinction coefficient, ld mSm ol ⁇ cm ⁇ S e S nm 2 1 0 0 dm 3 mo 1 _1 cm _1 @ 3 3 4 nm, 3 6 0 0 0 dm 3 mol. 1 c m. 1 @ 3 1 4 nm.
  • the obtained film was irradiated with first ultraviolet rays at 40 mW / cm 2 for 1.2 seconds in an air atmosphere at 40 from the alignment substrate side.
  • first ultraviolet rays at 40 mW / cm 2 for 1.2 seconds in an air atmosphere at 40 from the alignment substrate side.
  • second UV irradiation was carried out in an air atmosphere at 4 mWZ cm 2 for 60 seconds while the temperature was raised up to 90 ° C. (after reaching 90 ° C.).
  • third ultraviolet irradiation was performed from the alignment substrate side at 60 mWZ cm 2 for 10 seconds, and the selected wavelength was 425 to 90 nm broadband cholesteric.
  • a liquid crystal film was obtained.
  • Figure 4 shows the reflection spectrum of the broadband cholesteric liquid crystal film.
  • a negative biaxial retardation plate was transferred onto the upper part of the obtained broadband cholesteric liquid crystal film (circularly polarizing reflector).
  • This negative biaxial retardation plate was obtained by the following method. That is, 93 parts by weight of a photopolymerizable nematic liquid crystal monomer (manufactured by BASF, LC224), and 30 parts by weight of 7 parts by weight of a polymerizable chiral agent (LC755, manufactured by BASF).
  • the obtained layer was obtained by fixing the alignment state by performing 50 mWZcm for 5 seconds on the obtained layer.
  • the phase difference of this negative biaxial retardation plate was measured, it was 2 nm and 30 in the front direction with respect to light having a wavelength of 55 O nm.
  • the phase difference measured at an inclination was 120 nm.
  • the measurement of the phase difference was performed by KOBRA-121 ADH manufactured by Oji Scientific Instruments.
  • a circularly polarized light reflecting plate similar to that described above was transferred and laminated on the upper portion using the same light-transmitting adhesive to obtain a polarizing element.
  • a polycarbonate film was uniaxially stretched to the obtained polarizing element; an I4 plate (front retardation: 140 nm) was adhered to obtain a linear polarizing element.
  • a polarizing plate (manufactured by Nitto Denko Corporation, TEG1465DU) was attached to the linear polarizing element so that the transmission axis directions were aligned, and a polarizing plate integrated polarizing element was obtained.
  • the coating liquid prepared in Example 1 was applied to a stretched polyethylene terephthalate film
  • the substrate was coated with a wire par so as to have a thickness after drying, and the solvent was dried at 100 ° C. for 2 minutes.
  • the obtained film was subjected to first ultraviolet irradiation at 40 mW / cm 2 for 1.2 seconds in an air atmosphere at 40 ° C. from the alignment substrate side. Then, while raising the temperature to 90 ° C at a temperature rising rate of 1 ° CZ second (while maintaining the temperature at 90 ° C after reaching the temperature), the second UV irradiation was performed in an air atmosphere at 4 mW. 60 cm / cm 2 .
  • a negative biaxial retardation plate similar to that of Example 1 was transferred onto the obtained broadband cholesteric liquid crystal film (circularly polarizing reflector). Further, a circularly-polarized light reflecting plate similar to the above was transferred and laminated on the upper portion using the same translucent adhesive to obtain a polarizing element.
  • a ⁇ / 4 plate (front retardation: 140 nm) obtained by uniaxially stretching a polycarbonate film was adhered to the obtained polarizing element to obtain a linear polarizing element. Further, a polycarbonate film was uniaxially stretched on an I-4 plate; and an I2 plate (front retardation: 270 nm) was adhered to obtain a linearly polarizing element.
  • a polarizing plate (manufactured by TOKYO ELECTRIC CO., LTD., TEG1465DU) was bonded to the linear polarizing element so that the direction of the transmission axis was aligned to obtain a polarizing element integrated with the polarizing plate.
  • the lamination was performed as shown in FIG. 3 in which the angle between the stretching axis (slow axis) of the four or two plates and the stretching axis (absorption axis) of the polarizing plate was set.
  • FIG. 3 the angle between the stretching axis (slow axis) of the four or two plates and the stretching axis (absorption axis) of the polarizing plate was set.
  • P L denotes an absorption type polarizing plate
  • C 1 denotes a ⁇ / 4 plate (front retardation: 140 nm)
  • C 2 denotes a ⁇ 2 plate (front retardation: 2700 nm).
  • the arrow of PL indicates the stretching axis (long side direction), where 0 is 17.5 ° and 02 is 80 °.
  • Photopolymerizable mesogen compound (Polymerizable nematic liquid crystal monomer, compound 20 in Table 1 above, monolith extinction coefficient is ld mSol -icm— 1 @ 365 nm, 2100 dm 3 mo 1 _1 cm _1 @ 3 3 4 nm, 3 6 0 0 0 dm 3 mol- one 1 @ 3 1 4 nm.) 9 4. 8 parts by weight of the polymerizable chiral agent (BASF Corp. LC 7 5 6) 5. 2 parts by weight Contact And solvent (cyclopentanone) are adjusted so that the central reflection wavelength is 550 nm.
  • the formulation solution the solid content with respect to a photopolymerization initiator (Ciba Specialty Chemicals Luz Co., Irugakyua 3 6 9) 0 .. 3 wt% added with the coating solution (solid content 3 0 wt 0 / 0 ) was prepared.
  • the coating liquid is applied on a stretched polyethylene terephthalate film (alignment substrate) using a wire par so that the thickness after drying is 7 ⁇ m, and the solvent is heated at 100 ° C. Dry for 2 minutes.
  • the obtained film was subjected to first ultraviolet irradiation at 40 mW / cm 2 for 1.2 seconds in an air atmosphere at 40 ° C. from the alignment substrate side.
  • a negative biaxial retardation plate similar to that of Example 1 was transferred onto the obtained broadband cholesteric liquid crystal film (circularly polarizing reflector). Further, a circularly-polarized light reflecting plate similar to the above was transferred and laminated on the upper portion using the same translucent adhesive to obtain a polarizing element.
  • a ⁇ -no. 4 plate (front retardation: 125 nm, Nz coefficient: 11.0) obtained by biaxially stretching the polycarbonate film was adhered to the obtained polarizing element to obtain a linear polarizing element.
  • a polarizing plate (manufactured by Nitto Denko Corporation, TEG1465DU) was bonded to the linear polarizing element so that the transmission axis directions coincided with each other to obtain a polarizing plate-integrated polarizing element.
  • Photopolymerizable mesogen compound (Polymerizable nematic liquid crystal monomer, Compound 3 in Table 1 above, molar extinction coefficient is 0.1 ld mSmol -icm— 1 @ 365 nm, 220 nm dm 3 mol 1 cm 1 @ 3 334 nm, 3700 dm 3 mol _1 cm _1 @ 314 nm.) 94.8 parts by weight of polymerizable chiral agent (LC756 manufactured by BASF) 5. 2 parts by weight and a solvent (cyclopentanone) were adjusted and blended so that the central wavelength of selective reflection was 550 nm.
  • LC756 polymerizable chiral agent
  • the solid content of the solution was adjusted with a photopolymerization initiator (Chipa Specialty Chemicals Co., Ltd.
  • a coating liquid (solid content 30 wt. 0 /.) was prepared by adding 3 wt.
  • the obtained film was subjected to first ultraviolet irradiation at 50 mW / cm 2 for 2.2 seconds in an air atmosphere at 40 ° C. from the alignment substrate side.
  • FIG. 7 shows the reflection spectrum of the broadband cholesteric liquid crystal film.
  • Example 1 The coating solution prepared in Example 1 was applied on a stretched polyethylene terephthalate film (directing substrate) using a wire bar so as to have a thickness after drying, and the solvent was added to the solution. Dried at ° C for 2 minutes. The obtained film was irradiated with first ultraviolet rays at 50 mW / cm 2 for 10 seconds in an air atmosphere at 60 ° C. from the alignment substrate side. Then, at 5 0 ° UV irradiating 6 0 mW / cm 2 from the alignment substrate side under a nitrogen atmosphere at C, 1 performs 0 seconds, broadband co Leste click selection wavelengths 4 3 5 ⁇ 8 3 5 nm A liquid crystal film was obtained.
  • Figure 8 shows the reflection spectrum of a broadband cholesteric liquid crystal film.
  • a negative biaxial retardation plate similar to that of Example 1 was transferred onto the obtained broadband cholesteric liquid crystal film (circularly polarizing reflector). Further, a circularly-polarized light reflecting plate similar to the above was transferred and laminated on the upper portion using the same translucent adhesive to obtain a polarizing element.
  • a ⁇ 4 plate (front retardation: 14 O nm) obtained by uniaxially stretching a polycarbonate film was adhered to the obtained polarizing element to obtain a linear polarizing element.
  • a polarizing plate (manufactured by Nitto Denko Corporation, TEG1465DU) was attached to the linear polarizing element so that the transmission axis directions were aligned, to obtain a polarizing plate integrated polarizing element.
  • the coating solution prepared in Example 1 was applied on a stretched polyethylene terephthalate film (directing substrate) using a wire par so that the thickness after drying was 7 ⁇ , and the solvent was added to the solution. Dry at 0 ° C for 2 minutes.
  • the obtained film was subjected to first ultraviolet irradiation at 40 mW / cm 2 for 1.2 seconds in an air atmosphere at 40 ° C. from the alignment substrate side. Continue Then, the temperature was raised to 90 ° C. at a rate of 3 ° C./second, and after reaching 90 ° C., treatment was performed at 90 ° C. in an air atmosphere for 20 seconds.
  • UV irradiation from the alignment substrate side was performed at 60 mWZ cm 2 for 10 seconds in a nitrogen atmosphere at 50 ° C, and the selected wavelength was 415-710 nm, a broadband cholesteric liquid crystal film.
  • Figure 9 shows the reflection spectrum of a broadband cholesteric liquid crystal film.
  • a negative biaxial retardation plate similar to that of Example 1 was transferred onto the obtained broadband cholesteric liquid crystal film (circularly polarizing reflector). Further, a circularly-polarized light reflecting plate similar to the above was transferred and laminated on the upper portion using the same translucent adhesive to obtain a polarizing element.
  • a polycarbonate film was uniaxially stretched to the obtained polarizing element; an I / 4 plate (front retardation: 140 nm) was adhered to obtain a linear polarizing element.
  • a polarizing plate (manufactured by Nitto Denko Corporation, TEG1465DU) was attached to the linear polarizing element so that the transmission axis directions coincided with each other to obtain a polarizing plate integrated polarizing element.
  • the coating solution prepared in Example 1 was applied on a stretched polyethylene terephthalate film (directing substrate) using a wire par so that the thickness after drying was 7 m, and the solvent was removed. Dry at 100 ° C. for 2 ′ minutes.
  • the obtained film was subjected to first ultraviolet irradiation at 40 mW / cm 2 for 1.2 seconds in an air atmosphere at 40 ° C. from the alignment substrate side. Then, while increasing the temperature to 90 ° C at a rate of 3 ° C / sec (while maintaining the temperature at 90 ° C after reaching the temperature), ultraviolet irradiation was performed in an air atmosphere at 4 mW / cm 2. For 60 seconds to obtain a broadband cholesteric liquid crystal film having a selected wavelength of 425 to 90 O nm.
  • Figure 10 shows the reflection spectrum of the broadband cholesteric liquid crystal film.
  • a negative biaxial retardation plate similar to that in Example 1 was transferred onto the obtained broadband cholesteric liquid crystal film (circularly polarizing reflector). Further, a circularly-polarized light reflecting plate similar to the above was transferred and laminated on the upper portion using the same translucent adhesive to obtain a polarizing element.
  • the obtained polarizing element was bonded with a quarter plate (front retardation: 14 Onm) obtained by uniaxially stretching a polycarbonate film to obtain a linear polarizing element.
  • a polarizing plate manufactured by Nitto Denko Corporation, TEG1465DU
  • TEG1465DU was attached to this linear polarizing element so that the transmission axis directions coincided with each other to obtain a polarizing plate integrated polarizing element.
  • the polarizing plate integrated with the polarizing plate obtained in each example was used as the lower plate of the TF ⁇ -LCD, while the upper plate side was made of an acrylic adhesive (thickness 25 / im, refractive index 1.4). 7) A polarizing plate (manufactured by Nitto Denko Corporation) using a light scattering adhesive (haze 80%) in which spherical silica particles (refractive index: 1.44, diameter: 4 / m) are embedded at 20% by weight. , TEG 1465 DU).
  • a cold-cathode tube with a diameter of about 3 mm was placed on the side of a light guide having a fine prism structure on the lower surface, and the light source holder was made of a silver-evaporated polyethylene terephthalate film.
  • a silver-evaporated polyethylene terephthalate film reflection plate was disposed on the lower surface of the light guide plate, and a polyethylene terephthalate film having a scattering layer made of styrene beads formed on the surface was disposed on the upper surface of the light guide plate. This was disposed as a light source below the polarizing plate integrated with the polarizing element.
  • FIG. 1 shows a case in which the polarizing plate integrated type polarizing elements of Examples 1 and 3 and Comparative Examples 1 to 3 are used
  • FIG. 2 shows a case in which the polarizing plate integrated type polarizing element of Example 2 is used.
  • PL is an absorption polarizer
  • D is a viewing angle widening film (diffusion adhesive)
  • LC is a liquid crystal cell
  • C1 is 4 plates
  • C2 is 2 plates
  • A is reflection.
  • B retarder
  • C-plate S: thyroid type light guide plate
  • R diffusion reflector.
  • X indicates a polarization element
  • Y indicates a linear polarization element
  • Z indicates a polarization-integrated linear polarization element.
  • Example 4 only the selective reflection wavelength band and the change in the bandwidth pitch were evaluated.
  • the broadband cholesteric liquid crystal film (circularly polarizing reflector) and the polarizing plate integrated polarizing element obtained above were evaluated as follows. Table 2 shows the results. Table 2 also shows the conditions of each step in the examples and comparative examples.
  • the reflection spectrum of the broadband cholesteric liquid crystal film was measured with a spectrophotometer (Otsuka Electronics Co., Ltd., Instantaneous Multi-System MC PD 2000), and the selective reflection wavelength band was approximately half-value width ⁇ . I asked. The half-value width ⁇ was set as the reflection band at half the reflectance of the maximum reflectance. (Pitch change)
  • the polarizing plate integrated polarizing element was placed on a dot-printing backlight with the polarizing plate side facing up, and evaluated with a luminance meter (TOPCON, BM-7).
  • the oblique change in color tone of the liquid crystal display device was evaluated by a viewing angle measuring instrument EZ_CONTRAST manufactured by ELDIM, according to the following criteria.
  • Color tone change ⁇ Xy at a viewing angle of 60 ° is less than 0.04.
  • a cholesteric liquid crystal film having a selective reflection wavelength in a wide band including a long wavelength region is obtained.
  • the cholesteric liquid crystal film has high reliability, and a polarizing element using the cholesteric liquid crystal film as a circularly polarizing plate is also excellent in luminance enhancement characteristics.
  • the display information in the region where the gradation is not inverted is distributed by light diffusion in the oblique direction.
  • a display device can be obtained.
  • the broadband cholesteric liquid crystal film obtained by the production method of the present invention is useful as a circularly polarizing plate (reflection type polarizer), and the circularly polarizing plate is used for a linear polarizing element, an illumination device, a liquid crystal display device, and the like. Applicable.

Abstract

A process for producing a wideband cholesteric liquid crystal film, comprising the step of coating an alignment substrate with a liquid crystal mixture containing a polymerizable mesogen compound (A) and a polymerizable chiral agent (B) and the step of exposing the liquid crystal mixture to ultraviolet radiation so as to effect polymerization and hardening, wherein the ultraviolet polymerization step comprises the step (1) of exposing the alignment substrate side of the liquid crystal mixture while in contact with an oxygenic gas to ultraviolet radiation at 20°C or higher by means of 20 to 200 mW/cm2 ultraviolet irradiator for 0.2 to 5 sec; subsequently the step (2) of exposing the alignment substrate side of the liquid crystal layer while in contact with an oxygenic gas to ultraviolet radiation of intensity lower than in the step (1) for 10 sec or longer while increasing temperature to a final temperature that is higher than in the step (1) and not lower than 60°C at a rate of 2°C/sec or greater; and the step (3) of effecting ultraviolet irradiation in the absence of oxygen. Through this process, there can be obtained a wideband cholesteric liquid crystal film having a wide reflection band in even long wavelength region.

Description

広帯域コレステリ ック液晶フィルムの製造方法、 円偏光板、 直線偏光素子、 照明 装置および液晶表示装置 技術分野 Manufacturing method of broadband cholesteric liquid crystal film, circularly polarizing plate, linearly polarizing element, lighting device and liquid crystal display device
本発明は広帯域コレステリ ック液晶フィルムの製造方法に関する。 本発明の広 帯域コレステリ ック液晶フィルムは円偏光板 (反射型偏光子) と して有用である The present invention relates to a method for producing a broadband cholesteric liquid crystal film. The broadband cholesteric liquid crystal film of the present invention is useful as a circularly polarizing plate (reflective polarizer).
。 また本発明は、 当該円偏光板を用いた直線偏光素子、 照明装置および液晶表示 装置に関する。 明 . Further, the present invention relates to a linearly polarizing element, an illuminating device and a liquid crystal display device using the circularly polarizing plate. Light
背景技術 書 Background art
一般に、 液晶ディスプレイは、 透明電極を形成したガラス板の間に液晶を注入 し、 上記ガラス板の前後に偏光子を配置した構造を有する。 このよ うな液晶ディ スプレイに用いられる偏光子は、 ポリ ビュルアルコールフィルムにヨ ウ素や二色 性染料などを吸着させ、 これを一定方向に延伸することによ り製造される。 この よ う に製造された偏光子それ自体は一方方向に振動する光を吸収し、 他の一方方 向に振動する光だけを通過させて直線偏光を作る。 そのため、 偏光子の効率は理 論的に 5 0 %を超えるこ とができず、 液晶ディスプレイの効率を低下させる一番 大きい要因となっている。 また、 この吸収光線のため、 液晶表示装置は光源出力 の増大をある程度以上まで行う と吸収光線の熱変換による発熱で偏光子が破壊さ れたり、 またはセル内部の液晶層への熱影響にて表示品位が劣化する等の弊害を 招いていた。  Generally, a liquid crystal display has a structure in which liquid crystal is injected between glass plates on which transparent electrodes are formed, and polarizers are arranged before and after the glass plates. A polarizer used for such a liquid crystal display is manufactured by adsorbing iodine or a dichroic dye on a polyvinyl alcohol film and stretching it in a certain direction. The polarizer thus manufactured itself absorbs light that oscillates in one direction, and passes only the light that oscillates in the other direction to produce linearly polarized light. As a result, the efficiency of the polarizer cannot theoretically exceed 50%, which is the largest factor that lowers the efficiency of liquid crystal displays. Also, due to this absorbed light, when the output of the light source is increased to a certain degree or more, the liquid crystal display device destroys the polarizer due to the heat generated by the heat conversion of the absorbed light, or the thermal effect on the liquid crystal layer inside the cell. This has caused adverse effects such as deterioration of display quality.
円偏光分離機能を有するコレステリ ック液晶は、 液晶の螺旋の回転方向と円偏 光方向とがー致し、 波長が液晶の螺旋ピッチであるよ うな円偏光の光だけを反射 する選択反射特性がある。 この選択反射特性を用いて、 一定した波長帯域の自然 光の特定の円偏光のみを透過分離し、 残り を反射し再利用することによ り高効率 の偏光膜の製造が可能である。 この時、 透過した円偏光は、 λ Ζ 4波長板を通過 するこ とによ り直線偏光に変換され、 この直線偏光の方向を液晶ディスプレイに 用いる吸収型偏光子の透過方向と揃えることで高透過率の液晶表示装置を得るこ とができる。 すなわち、 コ レステリ ック液晶フィルムを L /4波長板と組み合わ せて直線偏光素子と して用いる と理論的に光の損失がないため、 5 0 %の光を吸 収する従来の吸収型偏光子を単独で用いた場合に比べて理論上は 2倍の明るさ向 上を得ることができる。 Cholesteric liquid crystals with a function of separating circularly polarized light have a selective reflection characteristic that reflects only circularly polarized light whose wavelength is the helical pitch of the liquid crystal, with the direction of rotation of the liquid crystal helix and the direction of circular polarization. is there. By using this selective reflection characteristic, only specific circularly polarized light of natural light in a certain wavelength band is transmitted and separated, and the remaining is reflected and reused, so that a highly efficient polarizing film can be manufactured. At this time, the transmitted circularly polarized light is converted into linearly polarized light by passing through a λ Ζ 4 wavelength plate, and the direction of the linearly polarized light is transmitted to the liquid crystal display. A liquid crystal display device with high transmittance can be obtained by adjusting the transmission direction of the absorption polarizer used. That is, when a cholesteric liquid crystal film is used as a linear polarizing element in combination with an L / 4 wavelength plate, there is theoretically no loss of light, so that a conventional absorption type polarizing light absorbing 50% light is used. In theory, it is possible to obtain twice the brightness improvement compared to the case of using a single element.
しかし、 コレステリ ック液晶の選択反射特性は特定の波長帯域のみに限定され 、 可視光線全域のカバーを行うのは困難であった。 コ レステリ ック液晶の選択反 射波長領域巾△ は、  However, the selective reflection characteristics of the cholesteric liquid crystal are limited to a specific wavelength band, and it has been difficult to cover the entire visible light range. The selective reflection wavelength range width コ of the cholesteric liquid crystal is
Δ Χ = 2 1 - (n e — n o ) / ( n e + n o  Δ Χ = 2 1-(n e — no) / (ne + no)
n o : コレステリ ック液晶分子の正常光に対する屈折率  n o: Refractive index of cholesteric liquid crystal molecules to normal light
n e : コ レステリ ック液晶分子の異常光に対する屈折率  n e: refractive index of cholesteric liquid crystal molecules for extraordinary light
λ : 選択反射の中心波長  λ: center wavelength of selective reflection
で表され、 コレステリ ック液晶そのものの分子構造に依存する。 上記式よ り n e - n o を大きくすれば選択反射波長領域巾△ λは広げられるが、 n e — η οは通 常 0. 3以下である。 この値を大き くすると液晶と しての他の機能 (配向特性、 液晶温度など) が不十分となり実用は困難であった。 したがって、 現実には選択 反射波長領域巾△ λは最も大きく ても 1 5 0 n m程度であつた。 コレステリ ック 液晶と して実用可能なものの多く は 3 0〜 1 0 0 n m程度でしかなかった。 また、 選択反射中心波長えは、 It depends on the molecular structure of the cholesteric liquid crystal itself. According to the above equation, if ne-no is increased, the selective reflection wavelength region width λ λ is widened, but ne-η ο is usually 0.3 or less. If this value is increased, other functions (alignment characteristics, liquid crystal temperature, etc.) of the liquid crystal become insufficient, and practical use was difficult. Therefore, in practice, the selective reflection wavelength region width 領域 λ was at most about 150 nm. Most of the cholesteric liquid crystals that can be practically used are only about 30 to 100 nm. Also, the selective reflection center wavelength is
λ = (n e + n o ) P / 2  λ = (ne + no) P / 2
P : コレステリ ック液晶一回転ねじれに要する螺旋ピッチ長  P: Spiral pitch length required for one turn of cholesteric liquid crystal
で表され、 ピッチ一定であれば液晶分子の平均屈折率と ピツチ長に依存する。 したがって、 可視光全域をカバーするには、 異なる選択反射中心波長を有する 複数層を積層するか、 ピツチ長を厚み方向で連続変化させ選択反射中心波長その ものの存在分布を形成することが行われていた。 If the pitch is constant, it depends on the average refractive index of the liquid crystal molecules and the pitch length. Therefore, in order to cover the entire visible light range, a plurality of layers having different selective reflection center wavelengths are laminated, or the pitch distribution is continuously changed in the thickness direction to form the existence distribution of the selective reflection center wavelength itself. Was.
例えば、 厚み方向でピッチ長を連続変化させる手法があげられる。 たとえば、 特開平 6 — 2 8 1 8 1 4号公報、 特許第 3 2 7 2 6 6 8号明細書、 特開平 1 1 — 2 4 8 9 4 3号公報、 特開 2 0 0 2— 2 8 6 9 3 5号公報参照。 この手法はコ レ ステリ ック液晶組成物を紫外線露光で硬化させる際に、 露光面側と出射面側の露 光強度に差を付け、 重合速度に差を付けることで、 反応速度の異なる液晶組成物 の組成比変化を厚み方向で設けるという ものである。 For example, there is a method of continuously changing the pitch length in the thickness direction. For example, Japanese Unexamined Patent Application Publication No. 6-28184, Japanese Patent No. 3272686, Japanese Unexamined Patent Application Publication No. See Japanese Patent Publication No. 86953/86. In this method, when the cholesteric liquid crystal composition is cured by exposure to ultraviolet light, the exposed surface and the exit surface are exposed. By making a difference in light intensity and making a difference in polymerization rate, the composition ratio of liquid crystal compositions having different reaction rates is changed in the thickness direction.
この手法のボイン トは露光面側と出射面側の露光強度の差を大きく取ることで ある。 そのため、 前述の先行技術の実施例の多く の場合には紫外線吸収剤を液晶 組成物に混合し、 厚み方向で吸収を発生させ、 光路長による露光量の差を増幅す る手法が採られていた。  The point of this method is to take a large difference in exposure intensity between the exposure surface side and the emission surface side. For this reason, in many of the above-mentioned prior art examples, a method is employed in which an ultraviolet absorber is mixed with a liquid crystal composition to cause absorption in a thickness direction to amplify a difference in exposure amount due to an optical path length. Was.
しかし、 特開平 6 — 2 8 1 8 1 4号公報のよ うなピッチ長を連続変化させる手 法では、 機能を発現させるに必要な液晶層厚みが 1 5〜 2 0 Z m程度必要であり 、 液晶層の精密塗工の問題の他に高価な液晶を多く必要とするためにコス トアツ プが避けられなかった。 さ らに露光時間は 1〜 6 0分間程度必要と され、 1 0 m Z分のライン速度を得るには露光ライン長が 1 0〜 6 0 O mと長大な製造ライン が必要と された。 ライン速度を低下させればライン長は低減できるが生産速度の 低下が避けられない。  However, the method of continuously changing the pitch length as disclosed in Japanese Patent Application Laid-Open No. 6-281814 requires a liquid crystal layer thickness of about 15 to 20 Zm necessary for realizing the function. In addition to the problem of precision coating of the liquid crystal layer, cost was inevitable due to the need for expensive liquid crystals. In addition, the exposure time required was about 1 to 60 minutes, and a long production line with an exposure line length of 10 to 60 Om was required to obtain a line speed of 10 mZ. If the line speed is reduced, the line length can be reduced, but a reduction in production speed is inevitable.
これは特開平 6 — 2 8 1 8 1 4号公報で述べられているとおり、 ピッチ長を厚 み方向で変化させるための厚み方向での紫外線露光強度差と、 それに伴う重合速 度の差による物質移動からなる組成比変化によってコレステリ ック ピッチをコン トロールする理論上の問題から、 迅速なピツチ変化を形成することが困難なため である。 特開平 6— 2 8 1 8 1 4号公報では短ピッチ側と長ピッチ側ではピッチ 長が 1 0 0 n m程度も違うので組成比を大きく変える必要があり、 これを実現す るには相当な液晶厚みと微弱な紫外線照射と長大な露光時間が必要である。 特開平 1 1 一 2 4 8 9 4 3号公報ではピツチ変化させる物質の移動性が、 特開 平 6— 2 8 1 8 1 4号公報で用いられる材料例よ り も良好であるため、 1分間程 度の露光量で成膜可能である。 しかし、 この場合でも 1 5 mの厚みは必要にな る。  This is due to the difference in UV exposure intensity in the thickness direction to change the pitch length in the thickness direction and the resulting polymerization speed difference, as described in JP-A-6-281814. This is because it is difficult to form a quick pitch change due to the theoretical problem of controlling the cholesteric pitch by changing the composition ratio due to mass transfer. In Japanese Patent Application Laid-Open No. 6-281814, the pitch ratio on the short pitch side and the long pitch side differs by about 100 nm, so it is necessary to greatly change the composition ratio. Liquid crystal thickness, weak UV irradiation, and long exposure time are required. In Japanese Patent Application Laid-Open No. Hei 11-248, 943, the mobility of the substance causing the pitch change is better than the material example used in Japanese Patent Application Laid-Open No. A film can be formed with an exposure amount of about a minute. However, even in this case, a thickness of 15 m is required.
特許第 3 2 7 2 6 6 8号明細書では一次露光と二次露光との温度条件を変え、 かつ組成比が厚み方向で変化するに必要な時間を暗所にて別途設けているが、 こ の方法で実質可視光線全域をカバーさせよ う とすると、 この温度変化による物質 移動の待ち時間は 1 2 0分間程度は必要である。  Patent No. 3 2 7 2 6 6 8 In the specification, the temperature conditions of the primary exposure and the secondary exposure are changed, and the time required for the composition ratio to change in the thickness direction is separately provided in a dark place, In order to cover substantially the entire visible light region by this method, it is necessary to wait about 120 minutes for mass transfer due to this temperature change.
特開 2 0 0 2— 2 8 6 9 3 5号公報のよ うなピッチ長を連続変化させる手法で  A technique of continuously changing the pitch length as disclosed in Japanese Patent Application Laid-Open No. 2002-2866935.
3 は機能を発現させるに必要な液晶層厚みが 1 5〜 2 0 μ m程度必要であり、 液晶 層の精密塗工の問題の他に高価な液晶を多く必要とするためにコス トアップが避 けられなかった。 また、 特開 2 0 0 2— 2 8 6 9 3 5号公報ではコレステリ ック 液晶組成物を基材と反対側 (空気界面側) から紫外線露光で硬化させる際に、 酸 素阻害によつて露光面側と出射面側の露光強度に差を付けることで組成比変化を 厚み方向で変化させている。 Three Requires a liquid crystal layer thickness of about 15 to 20 μm to exhibit its functions, and in addition to the problem of precise coating of the liquid crystal layer, it also requires a large amount of expensive liquid crystal, which saves cost. I couldn't. In Japanese Patent Application Laid-Open No. 2002-2866935, when the cholesteric liquid crystal composition is cured by ultraviolet exposure from the side opposite to the substrate (air interface side), the cholesteric liquid crystal composition is inhibited by oxygen. The composition ratio change is changed in the thickness direction by making a difference between the exposure intensity on the exposure surface side and the exposure intensity on the emission surface side.
しかし、 特開 2 0 0 2— 2 8 6 9 3 5号公報の実施例 1 における図 4では選択 反射波長が広帯域化しているものの、 透過率カーブの短波長端側 . 長波長側の傾 斜が共に穏やかで実質的に可視光全域のカバーには至っていない。 また当該公報 の実施例 2における図 6は両波長端の傾斜は急峻であるものの帯域そのものは狭 いものであった。  However, in FIG. 4 of Example 1 of Japanese Patent Application Laid-Open No. 2002-2866935, although the selective reflection wavelength is broadened, the slope of the transmittance curve on the short wavelength end side and on the long wavelength side is reduced. However, they are both calm and do not cover virtually all visible light. Also, in FIG. 6 in Example 2 of the publication, the slope at both wavelength ends is steep, but the band itself is narrow.
特に液晶表示装置にこの種の偏光素子を用いる場合にはバックライ ト光源の発 光スペク トルである 4 3 5 n m、 5 4 5 n m、 6 1 5 n mの 3波長に対して十分 に平坦な透過率ノ反射率特性を確保する必要がある。 特開 2 0 0 2— 2 8 6 9 3 5号公報に記載の実施例 1、 2の手法によ り得られる広帯域化範囲は、 いずれも の場合も 4 3 5 n m、 6 1 5 nmの輝線スぺク トルのカバーには不十分であった 。 このよ うな場合には透過光線の色調が白色を得にく く、 液晶表示装置等の用途 には用いられない。 発明の開示  In particular, when this type of polarizing element is used in a liquid crystal display, the transmission is sufficiently flat for the three emission wavelengths of the backlight source, namely, 355 nm, 545 nm, and 615 nm. It is necessary to ensure the reflectance characteristics. The bandwidth broadening range obtained by the methods of Examples 1 and 2 described in Japanese Patent Application Laid-Open No. 2002-2866935 is 43.5 nm and 615 nm in each case. It was not enough to cover the emission line spectrum. In such a case, the color tone of the transmitted light is difficult to obtain white and cannot be used for a liquid crystal display device or the like. Disclosure of the invention
上記問題に対し、 本出願人は、 特願 2 0 0 1 — 3 3 9 6 3 2号を出願している 。 当該出願では、 配向基材に塗布した液晶組成物を、 配向基材から紫外線照射し ている。 これよ り、 配向基材と接した酸素による重合阻害の影響の受けにく い面 から重合を開始させ、 液晶層のモル吸光計数による吸収を利して厚み方向に紫外 線照射強度分布を形成せしめ、 酸素阻害を大きく受ける空気面側の紫外線実効照 射量を低減せしめることで従来よ り大きな液晶反応速度勾配 · 組成濃度分布勾配 を形成している。 このよ うに露光面側と出射面側の露光強度に差をつけることに よ り、 コレステリ ック ピッチ長の厚み方向での大きな変化を形成せしめることに 成功した。 当該出願では選択反射波長帯域幅が最大で 2 9 6 n mと広いものが得 られていた。 In response to the above problems, the present applicant has filed a Japanese Patent Application No. 2001-339396. In this application, the liquid crystal composition applied to the alignment substrate is irradiated with ultraviolet light from the alignment substrate. As a result, polymerization is started from the surface that is not easily affected by polymerization inhibition due to oxygen in contact with the alignment substrate, and an ultraviolet irradiation intensity distribution is formed in the thickness direction by utilizing absorption by the molar absorption coefficient of the liquid crystal layer. At the same time, the liquid crystal reaction rate gradient and the composition concentration distribution gradient are larger than before by reducing the effective UV radiation on the air surface side, which is greatly affected by oxygen inhibition. By making a difference between the exposure intensity on the exposure surface side and the exposure intensity on the emission surface side, we succeeded in forming a large change in the cholesteric pitch length in the thickness direction. In this application, a selective reflection wavelength bandwidth as wide as 296 nm was obtained. Had been.
前記出願の場合には、 4 0 0〜 7 0 0 n m程度の波長帯域をカバーしている。 これらの波長帯域は、 光源スペク トルをカバーしている。 これらは垂直入射近傍 に良好な円偏光反射特性が得られる。 一方、 斜め入射時には十分な波長帯域とは いえないものであった。 斜め入射時の選択反射波長 は、 In the case of the above-mentioned application, the wavelength band of about 400 to 700 nm is covered. These wavelength bands cover the light source spectrum. These provide good circularly polarized light reflection characteristics near normal incidence. On the other hand, at oblique incidence, the wavelength band was not sufficient. The selective reflection wavelength at oblique incidence is
L = n p c o S ' { s i n—1 s ι n θ / n ) } L = npco S '{sin— 1 s ι n θ / n)}
n =液晶の平均屈折率  n = average refractive index of liquid crystal
ρ -コレステリ ックのピッチ長  ρ-cholesteric pitch length
Θ 入射角  入射 Incident angle
であるため、 斜めに入射すると垂直入射する場合よ り短波長側に選択反射波長が シフ トする。 このため斜め入射光線に対して有効に機能するには長波長域で機能 する必要がある。 As a result, the selective reflection wavelength shifts to a shorter wavelength side when the light is obliquely incident than when it is perpendicularly incident. Therefore, in order to function effectively for oblique incident light, it is necessary to function in a long wavelength region.
本発明は、 長波長域にも広帯域の反射帯域を有する広帯域コレステリ ック液晶 フィルムを製造しう る方法を提供することを目的とする。  An object of the present invention is to provide a method for manufacturing a broadband cholesteric liquid crystal film having a broadband reflection band even in a long wavelength region.
また本発明は、 当該製造方法によ り得られた広帯域コレステリ ック液晶フィル ムを用いた円偏光板を提供することを目的とする。 さ らには当該円偏光板を用い た直線偏光素子、 照明装置および液晶表示装置を提供することを目的とする。 本発明者らは前記課題を解決すべく鋭意検討を重ねた結果、 以下の製造方法に よ り上記目的を達成できる広帯域コレステリ ック液晶フィルムが得られることを 見出し本発明を完成するに至った。 すなわち本発明は、 下記の通りである。  Another object of the present invention is to provide a circularly polarizing plate using a broadband cholesteric liquid crystal film obtained by the manufacturing method. It is another object of the present invention to provide a linear polarizing element, a lighting device, and a liquid crystal display using the circular polarizing plate. The present inventors have conducted intensive studies to solve the above problems, and as a result, have found that a broadband cholesteric liquid crystal film that can achieve the above object can be obtained by the following manufacturing method, and have completed the present invention. . That is, the present invention is as follows.
1. 重合性メ ソゲン化合物 (A) および重合性カイラル剤 (B) を含む液晶混 合物を配向基材に塗布する工程、 および前記液晶混合物に紫外線照射を行い重合 硬化する工程を含む、 反射帯域巾が 2 0 0 n m以上を有する広帯域コ レステリ ッ ク液晶フィルムの製造方法であって、  1. a step of applying a liquid crystal mixture containing a polymerizable mesogen compound (A) and a polymerizable chiral agent (B) to an alignment substrate, and a step of polymerizing and curing the liquid crystal mixture by irradiating the liquid crystal mixture with ultraviolet light. A method for producing a broadband cholesteric liquid crystal film having a bandwidth of 200 nm or more,
前記紫外線重合工程が、  The ultraviolet polymerization step,
前記液晶混合物が酸素を含む気体と接触している状態で、 2 0 °C以上の温度下 に、 2 0 ~ 2 0 0 mW/ c m2の紫外線照射強度で、 0. 2〜 5秒間、 配向基材 側から紫外線照射する工程 ( 1 )、 In the state where the liquid crystal mixture is in contact with a gas containing oxygen, at a temperature of 20 ° C. or more, at an ultraviolet irradiation intensity of 20 to 200 mW / cm 2 , the alignment is performed for 0.2 to 5 seconds. UV irradiation from the substrate side (1),
次いで、 液晶層が酸素を含む気体と接触している状態で、 工程 ( 1 ) よ り も高 く、 かつ 6 0 °C以上の到達温度になるまでは、 昇温速度 2 °C/秒以上で、 工程 ( 1 ) よ り も低い紫外線照射強度で、 1 0秒間以上、 配向基材側から紫外線照射す る工程 ( 2 )、 Next, when the liquid crystal layer is in contact with a gas containing oxygen, the pressure is higher than in step (1). Until the temperature reaches 60 ° C or more, the heating rate is 2 ° C / second or more, and the UV irradiation intensity is lower than that in step (1), and the intensity is 10 seconds or more from the alignment substrate side. UV irradiation process (2),
次いで、 酸素不存在下で、 紫外線照射する工程 ( 3 ) を有することを特徴とす る広帯域コレステリ ック液晶フィルムの製造方法。  Next, there is provided a method for producing a broadband cholesteric liquid crystal film, which comprises a step of irradiating ultraviolet rays in the absence of oxygen (3).
2. コレステ リ ック液晶フィルムのピッチ長が、 配向基材側から連続的に狭く なるよ うに変化していることを特徴とする上記 1記載の広帯域コレステリ ック液 晶フィルムの製造方法。  2. The method for producing a broadband cholesteric liquid crystal film according to the above item 1, wherein a pitch length of the cholesteric liquid crystal film is changed so as to be continuously narrowed from the alignment substrate side.
3. 重合性メ ソゲン化合物 (A) が重合性官能基を 1つ有し、 重合性カイラル 剤 (B ) が重合性官能基を 2つ以上有することを特徴とする上記 1 または 2記載 の広帯域コレステリ ック液晶フィルムの製造方法。  3. The broadband as described in 1 or 2 above, wherein the polymerizable mesogen compound (A) has one polymerizable functional group, and the polymerizable chiral agent (B) has two or more polymerizable functional groups. Manufacturing method of cholesteric liquid crystal film.
4. 重合性メ ソゲン化合物 (A) のモル吸光係数が、 重合性メ ソゲン化合物 (A 4. The molar extinction coefficient of the polymerizable mesogen compound (A) is
) のモル吸光係数が、 ) Has a molar extinction coefficient of
0. l^ S O O d mSm o l -ic m S e S nmであり、  0.l ^ S O O d mSm o l -ic m S e S nm
1 0〜 3 0 0 0 0 d m 3m o 1 c m_1@ 3 3 4 n mであり、 力 つ、 10 ~ 3 0 0 0 0 dm 3 mo 1 cm _1 @ 3 3 4 nm
1 0 0 0〜 1 0 0 0 0 0 d m 3m o l ^c m^ S l A n mであることを特徴と する上記 1〜 3 のいずれかに記載の広帯域コレステリ ック液晶フィルムの製造方 法。 4. The method for producing a broadband cholesteric liquid crystal film according to any one of the above items 1 to 3, wherein the thickness is 100 to 100 000 dm 3 mol ^ cm ^ SlA nm.
5. 重合性メ ソゲン化合物 (A) が、 下記一般式 ( 1 ) :  5. The polymerizable mesogen compound (A) has the following general formula (1):
Figure imgf000008_0001
Figure imgf000008_0001
(式中、 R t〜 R 12は同一でも異なっていてもよく、 一 F、 一 H、 一 C H3、 - C 2 H5または一〇 C H3を示し、 R13は一Hまたは _ CH3を示し、 は一般式 ( 2 )(Wherein, R t to R 12 may be the same or different and represent 1 F, 1 H, 1 CH 3 , -C 2 H 5 or 1 CH 3 , and R 13 represents 1 H or _CH 3 And the general formula (2)
: - (CH2CH20) a— (CH2) b- (O) c―、 を示し、 X2は一 C Nまたは一 Fを示す。 但し、 一般式 ( 2 ) 中の aは 0〜 3の整数、 bは 0〜: L 2の整数、 c は 0または 1であり、 かつ a = l ~ 3のときは b = 0、 c = 0であり、 a = 0の ときは b = l〜 1 2、 c = 0〜 lである。) で表される化合物であることを特徴 とする上記 1〜 4のいずれかに記載の広帯域コレステリ ック液晶フィルムの製造 方法。 :-(CH 2 CH 2 0) a- (CH 2 ) b- (O) c- , and X 2 represents one CN or one F. However, in the general formula (2), a is an integer of 0 to 3, b is 0 to: an integer of L2, c is 0 or 1, and when a = l to 3, b = 0 and c = 0, and when a = 0, b = l to 12 and c = 0 to l. ) 5. The method for producing a broadband cholesteric liquid crystal film according to any one of the above items 1 to 4.
6. 上記 1 ~ 5のいずれかに記載の製造方法によ り得られた広帯域コレステリ ック液晶フィルムを用いた円偏光板。  6. A circularly polarizing plate using the broadband cholesteric liquid crystal film obtained by the production method according to any one of the above 1 to 5.
7. 偏光の選択反射の波長帯域が互いに重なっている少なく とも 2層の反射偏 光子 ( a ) の間に、  7. Between at least two layers of reflective polarizers (a) where the selective reflection wavelength bands of polarized light overlap each other.
正面位相差 (法線方向) がほぼゼロで、 法線方向に対し 3 0 ° 以上傾けて入射 した入射光に対して; L / 8以上の位相差を有する位相差層 ( b ) が配置されてい る偏光素子であって、  A phase difference layer (b) having a phase difference of L / 8 or more is provided for incident light whose front phase difference (normal direction) is almost zero and is incident at an angle of 30 ° or more with respect to the normal direction. Polarizing element,
反射偏光子 ( a ) 力 上記 6記載の円偏光板であることを特徴とする偏光素子  Reflective polarizer (a) Power Polarizing element characterized by being a circularly polarizing plate as described in 6 above
8 . 少なく と も 2層の反射偏光子 ( a ) の選択反射波長が、 5 5 0 n m± 1 0 n mの波長範囲で互いに重なっていることを特徴とする上記 7記載の偏光素子。 8. The polarizing element according to the above item 7, wherein the selective reflection wavelengths of at least two layers of the reflective polarizer (a) overlap each other in a wavelength range of 550 nm ± 10 nm.
9 . 位相差層 (b ) 、 選択反射波長域を可視光領域以外に有するコ レステリ ック液晶相のプラナ一配向を固定したもの、  9. The retardation layer (b), in which the cholesteric liquid crystal phase having a selective reflection wavelength region other than the visible light region has a fixed planar alignment,
棒状液晶のホメオ ト口ピック配向状態を固定したもの、  The fixed state of the home-pic pick alignment of the rod-shaped liquid crystal,
ディスコチック液晶のネマチック相またはカラムナー相配向状態を固定したも の、  A discotic liquid crystal in which the nematic or columnar phase orientation is fixed,
ポリマーフィルムを 2軸配向したもの、 または、  Biaxially oriented polymer film, or
負の 1軸性を有する無機層状化合物を面の法線方向に光軸がなるよ うに配向固 定したものであることを特徴とする上記 7または 8記載の偏光素子。  9. The polarizing element according to the above item 7 or 8, wherein an inorganic layered compound having a negative uniaxial property is fixed so as to have an optical axis in a direction normal to the surface.
1 0 . 上記 6記載の円偏光板、 または上記 7〜 9のいずれかに記載の偏光素子 に、 / 4板が積層されており 、 透過で直線偏光が得られることを特徴とする直 線偏光素子。  10. A linearly polarized light, characterized in that a / 4 plate is laminated on the circularly polarizing plate described in the above item 6 or the polarizing element described in any of the above items 7 to 9 so that linearly polarized light can be obtained by transmission. element.
1 1. 円偏光板であるコ レステリ ック液晶フィルムを、 λΖ4板に対し、 ピッ チ長が連続的に狭く なるよ うに積層して得られる上記 1 0記載の直線偏光素子。  1 1. The linear polarizing element according to 10 above, obtained by laminating a cholesteric liquid crystal film, which is a circular polarizing plate, on a λΖ4 plate so that the pitch length is continuously narrowed.
1 2. ;1 4板が、 2軸延伸して斜め入射光線の位相差捕正を行い、 視野角改 善した位相差板であることを特徴とする上記 1 0または 1 1記載の直線偏光素子 1 3. え / 4板が、 ネマチック液晶またはスメ クチック液晶を塗布、 固定化し て得られる液晶ポリマー型位相差板であることを特徴とする上記 1 0または 1 1 記載の直線偏光素子。 12. The linearly polarized light as described in 10 or 11 above, wherein the 14 plate is a retardation plate having an improved viewing angle by biaxially stretching and performing phase difference correction of obliquely incident light. element 1 3. The linearly polarizing element according to 10 or 11, wherein the e / 4 plate is a liquid crystal polymer type retardation plate obtained by applying and fixing a nematic liquid crystal or a smectic liquid crystal.
1 4. え /4板が、 面内の主屈折率を n x、 n y、 厚さ方向の主屈折率を n z と したとき、 式 : (n x— n z ) / (n x— n y ) で定義される N z係数が一 0 1 4. If the / 4 plate has a principal refractive index in the plane of nx and ny and a principal refractive index in the thickness direction as nz, it is defined by the formula: (nx—nz) / (nx—ny) N z coefficient is 1 0
. 5〜一 2. 5 を満足するものであることを特徴とする上記 1 0〜 1 3のいずれ かに記載の直線偏光素子。 The linear polarizing element according to any one of the above 10 to 13, which satisfies the following conditions: 5 to 2.5.
1 5. 上記 1 0〜 1 4のいずれかに記載の直線偏光素子のえ / 4板に、 さ らに え Z 2板が積層されていることを特徴とする直線偏光素子。  1 5. A linear polarizing element, characterized in that a Z 2 plate is further laminated on the quarter plate of the linear polarizing element according to any one of the above 10 to 14.
1 6. 上記 1 0〜 1 5のいずれかに記載の直線偏光素子の透過軸と、 透過軸方 向を合わせた吸収型偏光子を、 直線偏光素子の λノ 4板側に積層したことを特徴 とする直線偏光素子。  16. The absorption polarizer whose transmission axis and transmission axis of the linear polarizing element according to any of the above 10 to 15 are aligned on the λ / 4 plate side of the linear polarizing element. Features a linear polarization element.
1 7. 裏面側に反射層を有する面光源の表面側に上記 6記載の円偏光板、 上記 7〜 9のいずれかに記載の偏光素子、 または上記 1 0〜 1 6のいずれかに記載の 直線偏光素子を有することを特徴とする照明装置。  1 7. On the front side of a surface light source having a reflective layer on the back side, the circularly polarizing plate described in 6 above, the polarizing element in any of 7 to 9 above, or the polarizing element in any of 10 to 16 above. An illumination device comprising a linear polarizing element.
1 8. 上記 1 7記載の照明装置の光出射側に、 液晶セルを有することを特徴と する液晶表示装置。  1 8. A liquid crystal display device comprising a liquid crystal cell on the light emission side of the lighting device according to the above item 17.
1 9. 液晶セルに対して、 視認側に、 液晶セルを透過した視認側の光線を拡散 する視野角拡大フィルムを配置してなることを特徴とする上記 1 8記載の視野角 拡大液晶表示装置。  1 9. A viewing angle widening liquid crystal display device as described in 18 above, wherein a viewing angle widening film for diffusing light on the viewing side transmitted through the liquid crystal cell is arranged on the viewing side with respect to the liquid crystal cell. .
2 0. 視野角拡大フィルムと して、 実質的に後方散乱、 偏光解消を有さない拡 散板を用いたことを特徴とする上記 1 9記載の視野角拡大液晶表示装置。  20. The viewing angle widening liquid crystal display device according to the above item 19, characterized in that a spreading plate having substantially no backscattering or depolarization is used as the viewing angle widening film.
(発明の効果)  (The invention's effect)
上記のよ うに、 本発明では、 反射帯域を広帯域化させるために、 液晶混合物が 酸素を含む気体と接触している状態で配向基材側から紫外線照射の照度 · 照射温 度と して、 1回目の露光である工程 ( 1 ) と 2回目の露光である工程 ( 2 ) にお いて、 それぞれ異なる条件を用いている。 これによ り、 重合性の液晶混合物の反 応挙動のよ り緻密な制御を実現でき、 従来に比して、 高効率の生産速度によ り、 広帯域コ レステリ ック液晶フィルムが得られる。 すなわち、 紫外線照射条件は 1回目の照射強度 > 2回目の照射強度であり、 か つ 1回目照射時間く 2回目照射時間である。 また、 2回目の紫外線照射では所定 の設定温度 (到達温度) まで急激に昇温を行っている。 照射強度の違いによ り単 位時間あたり の液晶組成物中において光反応開始剤の紫外線反応によって発生す るラジカル量を 1回目の紫外線照射と 2回目の紫外線照射時では大きく変えてい る。 1回目の紫外線照射では、 反応初期のモノマーリ ッチな条件で瞬間的に大量 のラジカルを形成し、 酸素阻害と液晶組成物の吸収によ り ラジカル存在分布に厚 み方向の大きな傾斜を形成せしめる。 これによ り平均分子量 1 0 0 0 0〜 5 0 0 0 0 0程度のポリマー オリ ゴマーが形成され、 しかも厚み方向に濃度分布が形 成される。 また、 この際に、 液晶配合物中の重合性メ ソゲン化合物 (A ) と重合 性カイラル剤 (B ) の反応速度が異なるために重合比が厚み方向で異なる。 この ため重合性カイラル剤 (B ) がリ ッチな面はコレステリ ック ピッチが短く 、 逆方 向面は長く なる。 これによ り全体と して広帯域な反射波長を有するコ レステリ ッ ク液晶フィルムが得られる。 As described above, in the present invention, in order to broaden the reflection band, in the state where the liquid crystal mixture is in contact with a gas containing oxygen, the irradiance and irradiation temperature of ultraviolet irradiation from the alignment substrate side are as follows. Different conditions are used in the first exposure step (1) and the second exposure step (2). This makes it possible to realize more precise control of the reaction behavior of the polymerizable liquid crystal mixture and to obtain a broadband cholesteric liquid crystal film with a higher production rate than before. That is, the ultraviolet irradiation condition is that the first irradiation intensity is greater than the second irradiation intensity, and that the first irradiation time is shorter than the second irradiation time. In the second UV irradiation, the temperature rises rapidly to a predetermined set temperature (achieved temperature). Due to the difference in irradiation intensity, the amount of radicals generated by the UV reaction of the photoreaction initiator in the liquid crystal composition per unit time is greatly changed between the first UV irradiation and the second UV irradiation. In the first UV irradiation, a large amount of radicals are instantaneously formed under monomer-rich conditions at the beginning of the reaction, and the radical distribution has a large gradient in the thickness direction due to oxygen inhibition and absorption of the liquid crystal composition. . As a result, a polymer oligomer having an average molecular weight of about 1,000 to 5,000 is formed, and a concentration distribution is formed in the thickness direction. At this time, the polymerization ratio differs in the thickness direction because the reaction rates of the polymerizable mesogen compound (A) and the polymerizable chiral agent (B) in the liquid crystal composition are different. For this reason, the cholesteric pitch is short on the surface where the polymerizable chiral agent (B) is rich, and long on the opposite surface. As a result, a cholesteric liquid crystal film having a broadband reflection wavelength as a whole can be obtained.
このよ うにして得られた広帯域コ レステリ ック液晶フィルムは広帯域円偏光反 射板と して機能し、 特開平 6 — 2 8 1 8 1 4号公報乃至 4等と光学特性的には同 等の性質を有する と と もに、 従来の製造方法に比べて積層枚数の低減によ り厚み を低減でき、 さ らには簡単に短時間で製造でき、 生産速度の向上によ り低コス ト 化が可能である。  The broadband cholesteric liquid crystal film obtained in this manner functions as a broadband circularly polarizing reflector, and has the same optical characteristics as those of Japanese Patent Application Laid-Open Nos. In addition to having the same properties, the thickness can be reduced by reducing the number of layers compared to the conventional manufacturing method, and the manufacturing can be performed easily and in a short time. Conversion is possible.
上記本発明の製造方法で得られた広帯域コ レステリ ック液晶フィルムは、 その 選択反射波長の反射帯域巾が 2 0 0 n m以上と広く 、 広帯域の反射帯域巾を有す る。 反射帯域巾は、 3 0 0 n m以上、 さ らには 4 0 0 n m以上、 さ らには 4 5 0 n mであるのが好ましい。 また 2 0 0 n m以上の反射帯域巾は可視光領域、 特に 4 0 0〜 9 0 0 n mの波長領域において有することが好ましい。  The broadband cholesteric liquid crystal film obtained by the production method of the present invention has a wide reflection bandwidth of 200 nm or more in the selective reflection wavelength, and has a broadband reflection bandwidth. The reflection bandwidth is preferably at least 300 nm, more preferably at least 400 nm, and further preferably at least 450 nm. Further, it is preferable that the reflection band width of 200 nm or more is provided in a visible light region, particularly in a wavelength region of 400 to 900 nm.
円偏光反射板が長波長域にも広帯域の反射帯域を有するこ とは、 液晶表示装置 の良好な視野角特性を得るために重要な問題である。 実用的な視野角範囲で透過 光線に着色が見られないためには選択反射の長波長端が 8 0 0〜 9 0 0 n mに達 する必要がある。 本発明の製造方法によれば、 かかる長波長域にも反射帯域を有 する広帯域コレステリ ック液晶フィルムを得ることができる。 かかる広帯域コ レ ステリ ック液晶フィルムは、 単に高輝度を得るための反射偏光子と して用いる場 合だけでなく 、 位相差板などの他の光学素子と組み合わせて作成する偏光素子の 場合でも同様に正面以外の斜め入射光線に対する安定した光学特性が求められる The fact that a circularly polarized light reflector has a broadband reflection band even in a long wavelength region is an important issue for obtaining good viewing angle characteristics of a liquid crystal display device. The long wavelength end of the selective reflection must reach 800 to 900 nm in order to prevent the transmitted light from being colored in a practical viewing angle range. According to the production method of the present invention, a broadband cholesteric liquid crystal film having a reflection band even in such a long wavelength region can be obtained. Such a broadband collection The Steric liquid crystal film is used not only as a reflective polarizer for obtaining high brightness, but also in the case of a polarizing element made in combination with other optical elements such as a retardation plate, except for the front. Stable optical characteristics are required for obliquely incident light
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施例 1、 3、 比較例 1〜 3の偏光板一体型偏光素子を用いた視野角 拡大液晶表示装置の概念図である。  FIG. 1 is a conceptual diagram of a viewing angle widening liquid crystal display device using the polarizing plate integrated polarizing element of Examples 1, 3 and Comparative Examples 1 to 3.
図 2は、 実施例 2の偏光板一体型偏光素子を用いた視野角拡大液晶表示装置の 概念図である。  FIG. 2 is a conceptual diagram of a viewing angle widening liquid crystal display device using the polarizing plate integrated polarizing element of the second embodiment.
図 3は、 実施例 2の偏光板一体型偏光素子における各層の軸角度を表す図であ る。  FIG. 3 is a diagram illustrating an axis angle of each layer in the polarizing plate integrated polarizing element according to the second embodiment.
図 4は、 実施例 1 で作製したコ レステ リ ック液晶フィルムの反射スぺク トルで ある。  FIG. 4 is a reflection spectrum of the cholesteric liquid crystal film produced in Example 1.
図 5は、 実施例 2で作製したコレステリ ック液晶フィルムの反射スペク トルで ある。  FIG. 5 is a reflection spectrum of the cholesteric liquid crystal film produced in Example 2.
図 6は、 実施例 3で作製したコレステリ ック液晶フィルムの反射スぺク トルで め  FIG. 6 shows the reflection spectrum of the cholesteric liquid crystal film produced in Example 3.
図 7は、 実施例 4で作製したコレステリ ック液晶フィルムの反射スぺク トルで ある。  FIG. 7 is a reflection spectrum of the cholesteric liquid crystal film produced in Example 4.
図 8は、 比較例 1 で作製したコレステリ ック液晶フィルムの反射スぺク トルで ある。  FIG. 8 is a reflection spectrum of the cholesteric liquid crystal film produced in Comparative Example 1.
図 9は、 比較例 2で作製したコレステリ ック液晶フィルムの反射スぺク トルで ある。  FIG. 9 is a reflection spectrum of the cholesteric liquid crystal film produced in Comparative Example 2.
図 1 0は、 比較例 3で作製したコ レステリ ック液晶フィルムの反射スぺク トル である。 発明を実施するための最良の形態  FIG. 10 is a reflection spectrum of the cholesteric liquid crystal film produced in Comparative Example 3. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の広帯域コ レステリ ック液晶フィルムは、 重合性メ ソゲン化合物 (A ) および重合性カイラル剤 (B ) を含む液晶混合物を紫外線重合して得られる。 重合性メ ソゲン化合物 (A) は、 重合性官能基を少なく と も 1つ有し、 これに 環状単位等からなるメ ソゲン基を有するものが好適に用いられる。 重合性官能基 と しては、 ァク リ ロイル基、 メタク リ ロイル基、 エポキシ基、 ビュルエーテル基 等があげられるが、 これらのなかでもァク リ ロイル基、 メタク リ ロイル基が好適 である。 また重合性官能基を 2つ以上有するものを用いるこ とによ り架橋構造を 導入して耐久性を向上させることもできる。 メ ソゲン基となる前記環状単位と し ては、 たとえば、 ビフエ二ル系、 フエニルベンゾエー ト系、 フエニルシク ロへキ サン系、 ァゾキシベンゼン系、 ァゾメチン系、 ァゾベンゼン系、 フエニルピリ ミ ジン系、 ジフエニルアセチレン系、 ジフエニルベンゾエー ト系、 ビシクロへキサ ン系、 シク ロへキシルベンゼン系、 ターフェ-ル系等があげられる。 なお、 これ ら環状単位の末端は、 たとえば、 シァノ基、 アルキル基、 アルコキシ基、 ハロゲ ン基等の置換基を有していてもよい。 前記メ ソゲン基は屈曲性を付与するスぺー サ部を介して結合していてもよい。 スぺーサ部と しては、 ポリ メチレン鎖、 ポリ ォキシメチレン鎖等があげられる。 スぺーサ部を形成する構造単位の繰り返し数 は、 メ ソゲン部の化学構造によ り適宜に決定されるがポリ メチレン鎖の繰り返し 単位は 0〜 2 0、 好ましく は 2〜 1 2、 ポリオキシメチレン鎖の繰り返し単位は 0〜 ; 1 0、 好ましく は 1 〜 3である。 The broadband cholesteric liquid crystal film of the present invention comprises a polymerizable mesogen compound (A) And a liquid crystal mixture containing a polymerizable chiral agent (B). As the polymerizable mesogen compound (A), a compound having at least one polymerizable functional group and having a mesogen group composed of a cyclic unit or the like is preferably used. Examples of the polymerizable functional group include an acryloyl group, a methacryloyl group, an epoxy group, and a butyl ether group. Of these, an acryloyl group and a methacryloyl group are preferable. . Further, by using a compound having two or more polymerizable functional groups, a crosslinked structure can be introduced to improve the durability. Examples of the cyclic unit to be a mesogen group include biphenyl-based, phenylbenzoate-based, phenylcyclohexane-based, azoxybenzene-based, azomethine-based, azobenzene-based, phenylpyrimidine-based, and diphenyl-based. Examples include acetylene, diphenylbenzoate, bicyclohexane, cyclohexylbenzene, and terphenyl. In addition, the terminal of these cyclic units may have a substituent such as a cyano group, an alkyl group, an alkoxy group, and a halogen group. The mesogen group may be bonded via a spacer that imparts flexibility. Examples of the spacer include a polymethylene chain and a polymethylene chain. The number of repetitions of the structural unit forming the spacer portion is appropriately determined depending on the chemical structure of the mesogen portion, but the number of recurring units of the polymethylene chain is 0 to 20, preferably 2 to 12, The repeating unit of the methylene chain is 0 to 10; preferably 1 to 3.
重合性メ ソゲン化合物 (A) のモル吸光係数は、 0 . 1 〜 5 0 0 d m3m o 1 一
Figure imgf000013_0001
S S A n m であり、 力 つ 1 0 0 0〜 1 0 0 0 0 0 d m 3m o 1 一1 c m-1@ 3 1 4 n mであるこ とが好ましい。 前記モル吸光係数を有するものは紫外線吸収能を有する。 モル吸 光係数は、 0. l 〜 5 0 d m3m o l —1 c ni-1@ 3 6 5 n inであり、 5 0〜 : 1 0 0 0 0 d m3m o 1 — i c m-^ S S n mであり、 1 0 0 0 0〜 5 0 0 0 0 d m 3m o 1 -1 c m"1® 3 1 4 n mがよ り好適である。 モル吸光係数は、 0 . 1 〜 1 0 d m3m o 1 _1 c m_1@ 3 6 5 n mであり、 1 0 0 0〜 4 0 0 0 d m3m o 1 — 1 c m— L @ 3 3 4 n mであり、 3 0 0 0 0〜 4 0 0 0 0 d m 3m o 1 _1 c m"1® 3 1 4 n m であるのがより好ましい。 モル吸光係数が 0. I d m3m o 1 _1 c m"1® 3 6 5 n m、 1 0 d m3m o l ^ c m^O S 3 4 n m 1 0 0 0 d m3m o l _1 c m-1@ 3 1 4 n mよ り小さいと十分な重合速度差がつかずに広帯域化し難い。 一方、 5 0 0 d m3m o 1 "^1 c m"1® 3 6 5 n m , 3 0 0 0 0 d m3m o 1 _1 c m_1@ 3 3 4 n m 、 1 0 0 0 0 0 d m3m o 1 _1 c m"1® 3 1 4 n mよ り大きいと重合が完全に進行 せずに硬化が終了しない場合がある。 なお、 モル吸光係数は、 各材料の分光光度 スペク トルを測定し、 得られた 3 6 5 n m、 3 3 4 n m、 3 1 4 n mの吸光度か ら測定した値である。
The molar extinction coefficient of the polymerizable mesogen compound (A) is 0.1 to 500 dm 3 mo 1
Figure imgf000013_0001
An SSA nm, force one 1 0 0 0~ 1 0 0 0 0 0 dm 3 mo 1 one 1 c m- 1 @ 3 1 4 nm Dearuko and are preferred. Those having the molar extinction coefficient have an ultraviolet absorbing ability. The molar extinction coefficient is 0.1 to 50 dm 3 mol — 1 c ni- 1 @ 365 nin, and 50 to: 100 000 dm 3 mo 1 — ic m- ^ SS nm and a, 1 0 0 0 0~ 5 0 0 0 0 dm 3 mo 1 -.. 1 cm "1 ® 3 1 4 nm Gayo Ri is suitable molar absorption coefficient, 0 1 ~ 1 0 dm 3 mo 1 _1 cm _1 @ 365 nm, 1 0 0 0 ~ 4 0 0 dm 3 mo 1 — 1 cm— L @ 3 3 4 nm, 3 0 0 0 0 ~ 4 0 0 0 dm 3 mo 1 _1 cm " 1 ® 3 14 nm is more preferable. Molar extinction coefficient is 0. I dm 3 mo 1 _1 cm " 1 ® 365 nm, 10 dm 3 mol ^ cm ^ OS 34 nm 100 dm 3 mol _1 cm -1 @ 3 1 If it is smaller than 4 nm, there is no sufficient difference in polymerization rate and it is difficult to broaden the band. On the other hand, 500 dm 3 mo 1 "^ 1 cm" 1 ® 365 nm, 300 000 dm 3 mo 1 _1 cm _1 @ 334 nm, 100 000 dm 3 mo 1 _1 cm " 1 ® 3 14 nm, the polymerization may not completely proceed and the curing may not be completed. The molar extinction coefficient was obtained by measuring the spectrophotometric spectrum of each material. It is a value measured from the absorbance at 65 nm, 334 nm, and 314 nm.
重合性官能基を 1つ有する重合性メ ソゲン化合物 (A) は、 たとえば、 下記一 般式 :  The polymerizable mesogen compound (A) having one polymerizable functional group has, for example, the following general formula:
Figure imgf000014_0001
(式中、 1^〜1 12は同一でも異なっていてもよく、 一 F、 一 H、 一 C H3、 一 C2 H5または一〇 C H3を示し、 R13は一 Hまたは一 CH3を示し、 は一般式 ( 2 ) : - (CH2C H20) a- (C H2) b— (O) c―、 を示し、 X2は一 C Nまたは一 Fを示す。 但し、 一般式 ( 2 ) 中の a は 0〜 3の整数、 bは 0〜: 1 2の整数、 c は 0または 1であり、 かつ a = l〜 3のときは b = 0、 c = 0であり、 a = 0の ときは b = l〜 1 2、 c = 0〜 lである。) で表される化合物があげられる。 一般式 ( 1 ) で表される重合性メ ソゲン化合物 (A) の具体例を表 1 に挙げる
Figure imgf000014_0001
(Wherein 1 ^ to 1 12 may be the same or different and represent 1 F, 1 H, 1 CH 3 , 1 C 2 H 5 or 1 CH 3 , and R 13 represents 1 H or 1 CH 3 are shown, the general formula (2): -. (CH 2 CH 2 0) a - (CH 2) b - (O) c -, indicates, X 2 represents an CN or a F, however, the general formula A in (2) is an integer of 0 to 3, b is an integer of 0 to: 12 is an integer of 2, c is 0 or 1, and when a = l to 3, b = 0 and c = 0; When a = 0, b = l to 12 and c = 0 to l.). Table 1 shows specific examples of the polymerizable mesogen compound (A) represented by the general formula (1).
表 1 table 1
Figure imgf000015_0001
重合性メ ソゲン化合物 (A) はこれら例示化合物に限定されるものではない。 また、 重合性カイ ラル剤 (B) と しては、 たとえば、 B A S F社製 L C 7 5 6 があげられる。
Figure imgf000015_0001
The polymerizable mesogen compound (A) is not limited to these exemplified compounds. Examples of the polymerizable chiral agent (B) include LC756 manufactured by BASF.
上記重合性カイラル剤 (B ) の配合量は、 重合性メ ソゲン化合物 (A) と重合 性カイラル剤 (B ) の合計 1 0 0重量部に対して、 1〜 2 0重量部程度が好まし く、 3〜 7重量部がよ り好適である。 重合性メ ソゲン化合物 (A ) と重合性カイ ラル剤 (B ) の割合によ り螺旋ねじり力 (H T P ) が制御される。 前記割合を前 記範囲内とすることで、 得られるコ レステリ ック液晶フィルムの反射スぺク トル が長波長域をカバーできるよ う に反射帯域を選択することができる。 The amount of the polymerizable chiral agent (B) to be mixed with the polymerizable mesogen compound (A) The amount is preferably about 1 to 20 parts by weight, more preferably 3 to 7 parts by weight, based on the total of 100 parts by weight of the sex chiral agent (B). The helical torsional force (HTP) is controlled by the ratio of the polymerizable mesogen compound (A) and the polymerizable chiral agent (B). By setting the ratio within the above range, the reflection band can be selected so that the reflection spectrum of the obtained cholesteric liquid crystal film can cover a long wavelength region.
また液晶混合物には、 通常、 光重合開始剤 (C ) を含む。 光重合開始剤 (C ) と しては各種のものを特に制限なく使用できる。 例えば、 チバスペシャルティケ ミカルズ社製のィルガキュア 1 8 4、 ィルガキュア 9 0 7、 ィルガキュア 3 6 9 、 ィルガキュア 6 5 1等があげられる。 光重合開始剤の配合量は、 重合性メ ソゲ ン化合物 (A ) と重合性カイラル剤 ( B ) の合計 1 0 0重量部に対して、 0 . 0 1〜 1 0重量部程度が好ましく、 0 . 0 5〜 5重量部がよ り好適である。  The liquid crystal mixture usually contains a photopolymerization initiator (C). Various photopolymerization initiators (C) can be used without particular limitation. For example, irgacure 184, irgacure 907, irgacure 369, and irgacure 651 manufactured by Ciba Specialty Chemicals Inc. may be mentioned. The amount of the photopolymerization initiator is preferably about 0.01 to 10 parts by weight based on 100 parts by weight of the total of the polymerizable mesogen compound (A) and the polymerizable chiral agent (B). 0.05-5 parts by weight is more preferred.
前記混合物には、 得られるコ レステリ ック液晶フィルムの帯域幅を広げるため に、 紫外線吸収剤を混入して厚み方向での紫外線露光強度差を大き くすることが できる。 また、 モル吸光係数の大きな光反応開始剤を用いることで同様の効果を 得ることもできる。  In order to widen the bandwidth of the obtained cholesteric liquid crystal film, the mixture may be mixed with an ultraviolet absorber to increase the difference in ultraviolet exposure intensity in the thickness direction. A similar effect can be obtained by using a photoinitiator having a large molar extinction coefficient.
前記混合物は溶液と して用いることができる。 溶液を調製する際に用いられる 溶媒と しては、 通常、 ク ロ 口ホルム、 ジク ロ ロメ タン、 ジク ロ ロェタン、 テ トラ ク ロ 口ェタン、 ト リ ク ロ ロエチレン、 テ トラク ロ ロエチレン、 ク ロ 口ベンゼンな どのハロゲン化炭化水素類、 フエノール、 パラク ロ ロフエノールなどのフエノー ノレ類、 ベンゼン、 トノレェン、 キシレン、 メ トキシベンゼン、 1 , 2 —ジメ トキべ ンゼンなどの芳香族炭化水素類、 その他、 アセ トン、 メ チルェチルケ トン、 酢酸 ェチル、 t e r t —ブチルアルコール、 グリセ リ ン、 エチレングリ コール、 ト リ エチレングリ コー ^、 エチレンブリ コ一ノレモノ メチノレエーテノレ、 ジエチレングリ コールジメチルエーテル、 ェチルセルソルブ、 プチルセルソルブ、 2 —ピロ リ ド ン、 N—メチル一 2 —ピロ リ ドン、 ピリ ジン、 ト リェチルァミ ン、 テ トラ ヒ ドロ フラン、 ジメチルホルムアミ ド、 ジメチルァセ トアミ ド、 ジメチルスルホキシ ド 、 ァセ トニ ト リル、 ブチロニ ト リル、 二硫化炭素、 シク ロペンタノ ン、 シク ロへ キサノ ンなどを用いるこ とができる。 使用する溶媒と しては、 特に制限されない が メチルェチルケ トン、 シクロへキサノン、 シクロペンタノ ン等が好ましい。 溶液の濃度は、 サーモ トロピック液晶性化合物の溶解性や最終的に目的とするコ レステリ ック液晶フィルムの膜厚に依存するため一概には言えないが、 通常 3〜 5 0重量%程度とするのが好ま しい。 The mixture can be used as a solution. Solvents used in preparing the solution are usually forms of chloroform, dichloromethane, dichloromethane, tetrachlorethane, trichloroethylene, tetrachloroethylene, and chloroform. Halogenated hydrocarbons such as benzene, phenols such as phenol and parachlorophenol, benzene, tonolen, xylene, methoxybenzene, aromatic hydrocarbons such as 1,2-dimethoxybenzene, etc. Ton, methylethyl ketone, ethyl acetate, tert-butyl alcohol, glycerin, ethylene glycol, triethylene glycol ^, ethylene glycol, monomethyl methinooleate, diethylene glycol dimethyl ether, ethylcellosolve, butylcellosolve, 2 — Pyrrolidone, N-methyl I 2-pyrrolidone, pyridine, triethylamine, tetrahydrofuran, dimethylformamide, dimethylacetamide, dimethylsulfoxide, acetonitril, butyronitrile, carbon disulfide, cyclopentanoic And cyclohexane can be used. The solvent to be used is not particularly limited, but is preferably methylethyl ketone, cyclohexanone, cyclopentanone, or the like. The concentration of the solution cannot be specified unconditionally because it depends on the solubility of the thermotropic liquid crystal compound and the final thickness of the target cholesteric liquid crystal film, but it is usually about 3 to 50% by weight. Is preferred.
本発明の広帯域コ レステリ ック液晶フィルムの製造は、 前記液晶混合物を配向 基材に塗布する工程、 および前記液晶混合物に紫外線照射を行い重合硬化するェ 程を含む。  The production of the broadband cholesteric liquid crystal film of the present invention includes a step of applying the liquid crystal mixture to an alignment substrate, and a step of irradiating the liquid crystal mixture with ultraviolet rays and polymerizing and curing.
配向基材と しては、 従来知られているものを採用できる。 たとえば、 基板上に ポリイ ミ ドゃポリ ビュルアルコール等からなる薄膜を形成して、 それをレーヨン 布等でラ ビング処理したラビング膜、 斜方蒸着膜、 シンナメー トゃァゾベンゼン など光架橋基を有するポリマーあるいはポリイ ミ ドに偏光紫外線を照射した光配 向膜、 延伸フィルムなどが用いられる。 その他、 磁場、 電場配向、 ずり応力操作 によ り配向させるこ ともできる。  As the alignment base material, a conventionally known one can be used. For example, a polymer with a photocrosslinking group, such as a rubbing film, obliquely deposited film, or cinnamate diazobenzene, which is formed by forming a thin film made of polyimide or polyvinyl alcohol on a substrate and rubbing it with rayon cloth or the like Alternatively, a light directing film or a stretched film obtained by irradiating a polyimide with polarized ultraviolet light is used. In addition, it can be oriented by magnetic field, electric field orientation, and shear stress operation.
基材の種類は特に限定しないが、 基材側から照射線 (紫外線) を照射する手法 上、 透過率の高い素材が望ましい。 たとえば、 基材は、 2 0 0 11 111以上4 0 0 11 m以下、 よ り望ましく は 3 0 0 n m以上 4 0 0 n m以下の紫外域に対して透過率 1 0 %以上、 望ましく は 2 0 %以上であることが求められる。 具体的には、 波長 3 6 5 n mの紫外光に対する透過率が 1 0 %以上、 さ らには 2 0 %以上のプラス チックフィルムであることが好ましい。 なお、 透過率は、 11 1 下 〇 ^1 1製1;_ 4 1 O O S p e c t r o p h o t o m e t e r によ り測定される値である。 The type of the base material is not particularly limited, but a material having a high transmittance is desirable in view of the method of irradiating irradiation light (ultraviolet rays) from the base material side. For example, the substrate, 2 0 0 1 1 1 1 1 or more 4 0 0 11 m or less, good Ri desirably 3 0 0 nm or more 4 0 0 nm transmittance of 1 0% or more in the ultraviolet region, preferably Is required to be 20% or more. Specifically, it is preferable that the plastic film has a transmittance of 10% or more to ultraviolet light having a wavelength of 365 nm, more preferably 20% or more. The transmittance is a value measured by an 11 1 OOS spectrophotometer.
なお、 前記基板と しては、 ポリエチレンテレフタ レー ト、 ト リァセチルセル口 ース、 ノルボルネン樹脂、 ポリ ビュルアルコール、 ポリイ ミ ド、 ポリ ア リ レー ト 、 ポリ カーボネー ト、 ポリ スルホンやポリ エーテルスルホン等のプラスチックか らなるフィルムやガラス板が用いられる。 例えば富土写真フィルム社製ト リァセ チルセルロースや J S R製 AR T ON、 日本ゼオン製ゼォネックスなどがあげら れる。  Examples of the substrate include polyethylene terephthalate, triacetyl cellulose, norbornene resin, polyvinyl alcohol, polyimide, polyacrylate, polycarbonate, polysulfone, and polyethersulfone. A plastic film or glass plate is used. Examples include Triacetyl cellulose manufactured by Fudo Photo Film Company, ARTON manufactured by JSR, and ZONEX manufactured by Zeon Corporation.
また、 特開 2 0 0 1 — 3 4 3 5 2 9号公報 (WO 0 1 Z 3 7 0 0 7 ) に記載の ポリマ一フィルム、 たとえば、 (A) 側鎖に置換および または非置換イ ミ ド基 を有する熱可塑性樹脂と、 (B) 側鎖に置換およぴノ非置換フエニルならびに二 ト リル基を有する熱可塑性樹脂を含有する樹脂組成物があげられる。 具体例と し てはィ ソブチレンと N —メチルマレイ ミ ドからなる交互共重合体とアタ リ ロニ ト リル . スチレン共重合体とを含有する樹脂組成物のフイルムがあげられる。 フィ ルムは樹脂組成物の混合押出品などからなるフィルムを用いることができる。 前記基材はコレステリ ック液晶層と貼り合わせたまま用いても良いし剥離除去 しても良い。 貼り合わせたまま用いる場合には位相差値が実用上十分小さな材質 を用いる。 Further, a polymer film described in Japanese Patent Application Laid-Open Publication No. 2001-334535 (WO01Z37007), for example, (A) a side chain substituted and / or unsubstituted And (B) a thermoplastic resin having a substituted or unsubstituted phenyl in the side chain and a thermoplastic resin having a ditolyl group. Specific examples And a resin composition film containing an alternating copolymer of isobutylene and N-methylmaleimide and an acrylonitrile.styrene copolymer. As the film, a film made of a mixed extruded product of a resin composition or the like can be used. The base material may be used while being bonded to the cholesteric liquid crystal layer, or may be peeled off. When using it as it is, use a material whose retardation value is sufficiently small for practical use.
基材を貼り合わせたまま用いる場合には、 基材は紫外線が照射されても分解 · 劣化 · 黄変しないものが望ましい。 たとえば、 前述の基材には光安定剤等を配合 するこ とのよ り所用の目的を達成しう る。 光安定剤と しては、 チパスペシャルテ ィケミカルズ社製チヌビン 1 2 0、 同 1 4 4等が好適に用いられる。 露光光線か ら波長 3 0 0 n m以下を力ッ ト しておけば着色 · 劣化 · 黄変を低減するこ とがで きる。  When the base material is used while being bonded, it is desirable that the base material does not decompose, deteriorate or yellow even when irradiated with ultraviolet rays. For example, the desired purpose can be achieved by incorporating a light stabilizer or the like into the aforementioned base material. As the light stabilizer, Tinuvin 120 and 144, manufactured by Chipa Specialty Chemicals, etc., are preferably used. By increasing the wavelength from the exposure light to a wavelength of 300 nm or less, coloring, deterioration, and yellowing can be reduced.
前記液晶混合物の塗布厚み (溶液の場合は溶媒乾燥後の塗布厚み) は 1〜 2 0 i m程度が好ましい。 塗布厚みが 1 μ mよ り薄い場合は、 反射帯域巾は確保でき るものの偏光度そのものが低下する傾向があり好ましく ない。 塗布厚みは 2 /i m 以上、 さらには 3 μ m以上であるのが好ましい。 一方、 塗布厚みは 2 0 /z mよ り 厚い場合には反射帯域巾 · 偏光度共に顕著な向上は見られず、 単に高コス ト とな り好ましく ない。 塗布厚みは 1 5 /i m以下、 さ らには 1 0 / m以下がよ り好適で ある。  The coating thickness of the liquid crystal mixture (the coating thickness after drying the solvent in the case of a solution) is preferably about 1 to 20 im. If the coating thickness is thinner than 1 μm, the reflection bandwidth can be secured, but the degree of polarization itself tends to decrease, which is not preferable. The coating thickness is preferably 2 / im or more, more preferably 3 µm or more. On the other hand, when the coating thickness is larger than 20 / zm, no remarkable improvement is seen in both the reflection bandwidth and the degree of polarization, and the cost is simply increased, which is not preferable. The coating thickness is preferably 15 / im or less, and more preferably 10 / m or less.
配向基材に前記混合溶液を塗工する方法と しては、 例えば、 ロールコー ト法、 グラビアコー ト法、 スピンコート法、 パーコー ト法などを採用することができる 。 混合溶液の塗工後、 溶媒を除去し、 基板上に液晶層を形成させる。 溶媒の除去 条件は、 特に限定されず、 溶媒をおおむね除去でき、 液晶層が流動したり、 流れ 落ちたり さえしなければ良い。 通常、 室温での乾燥、 乾燥炉での乾燥、 ホッ トプ レー ト上での加熱などを利用して溶媒を除去する。  As a method of applying the mixed solution to the alignment substrate, for example, a roll coating method, a gravure coating method, a spin coating method, a per coating method, or the like can be employed. After the application of the mixed solution, the solvent is removed, and a liquid crystal layer is formed on the substrate. The conditions for removing the solvent are not particularly limited, and it is sufficient that the solvent can be substantially removed, and the liquid crystal layer does not flow or drop. Usually, the solvent is removed by drying at room temperature, drying in a drying oven, or heating on a hot plate.
次いで、 前記配向基材上に形成された液晶層を液晶状態と し、 コレステリ ック 配向させる。 たとえば、 液晶層が液晶温度範囲になるよ うに熱処理を行う。 熱処 理方法と しては、 上記の乾燥方法と同様の方法で行う ことができる。 熱処理温度 は、 液晶材料や配向基材の種類によ り異なるため一概には言えないが、 通常 6 0 〜 3 0 0 °C、 好ましく は 7 0〜 2 0 0 °Cの範囲において行う。 また熱処理時間は 、 熱処理温度および使用する液晶材料や配向基材の種類によって異なるためー概 には言えないが、 通常 1 0秒間〜 2時間、 好ましく は 2 0秒間〜 3 0分間の範囲 で選択される。 . 配向基材に塗布して液晶混合物を紫外線照射する工程は上記工程 ( 1 ) 〜 ( 3 ) の 3段階を含む。 Next, the liquid crystal layer formed on the alignment base material is brought into a liquid crystal state, and cholesteric alignment is performed. For example, heat treatment is performed so that the liquid crystal layer has a liquid crystal temperature range. The heat treatment can be performed by the same method as the above-mentioned drying method. The heat treatment temperature varies depending on the type of liquid crystal material and alignment substrate, and cannot be unconditionally determined. To 300 ° C., preferably 70 to 200 ° C. The heat treatment time varies depending on the heat treatment temperature and the type of liquid crystal material or alignment base material to be used-although it cannot be generally specified, it is usually selected in the range of 10 seconds to 2 hours, preferably in the range of 20 seconds to 30 minutes. Is done. The step of applying the liquid crystal mixture to the alignment base material and irradiating the liquid crystal mixture with ultraviolet rays includes the above three steps (1) to (3).
工程 ( 1 ) では、 液晶混合物が酸素を含む気体と接触している状態で、 2 0 °C 以上の温度下に、 2 0〜 2 0 0 mW/ c m2の紫外線照射強度で、 0. 2〜 5秒 間、 配向基材側から紫外線照射する。 これによ り、 液晶混合物を重合して、 平均 分子量 1 0 0 0 0〜 5 0 0 0 0 0程度のポリマー/オリ ゴマーを形成する と と も に、 配向基材側とその反対側 (酸素界面側) の厚み方向に、 酸素阻害による反応 速度差と、 液晶組成物の紫外線吸収によるラジカル発生量の差異が生じ、 厚み方 向に、 ポリマー zオリ ゴマーの生成量が連続分布した層を形成させる。 In the step (1), in a state where the liquid crystal mixture is in contact with a gas containing oxygen, at a temperature of 20 ° C. or more, an ultraviolet irradiation intensity of 20 to 200 mW / cm 2 is used. UV irradiation from the alignment substrate side for ~ 5 seconds. As a result, the liquid crystal mixture is polymerized to form a polymer / oligomer having an average molecular weight of about 1,000 to 500,000, and the alignment base material side and its opposite side (oxygen In the thickness direction (at the interface side), there is a difference in the reaction rate due to oxygen inhibition and the difference in the amount of radicals generated due to ultraviolet absorption of the liquid crystal composition, forming a layer in which the amount of polymer z oligomers is continuously distributed in the thickness direction Let it.
工程 ( 1 ) における、 第 1紫外線照射時の温度は、 液晶混合物を良好な配向状 態で重合硬化させるため、 2 0 °C以上の温度で行う。 一方、 温度の上限は特に制 限されないが、 1 0 0 °C以下とするのが好適である。 温度が 1 0 0 °cよ り高いと In the step (1), the temperature at the time of the first ultraviolet irradiation is set to 20 ° C. or higher in order to polymerize and cure the liquid crystal mixture in a favorable alignment state. On the other hand, the upper limit of the temperature is not particularly limited, but is preferably 100 ° C. or lower. If the temperature is higher than 100 ° C
、 照射中に拡散が起こってしまい管理が難しく なる場合がある。 これらの点から 前記温度は 2 0 °C〜 5 0 °Cが好適である。 第 1紫外線照射強度は、 2 0〜 2 0 0 mW/ c m2であり、 2 5〜 2 0 0 mW/ c m2が好ま しく 、 4 0〜; 1 5 0 mWZ c m2がよ り好ま しい。 紫外線照射強度が 2 0 mWZ c m2よ り低いと、 厚み方向 にモノマー分布が形成されるほどの重合がなされないために広帯域化しなく なる 。 また紫外線照射強度が 2 0 0 mW/ c m2よ り髙いと重合反応速度が拡散速度 よ り大きく なるために、 広帯域化しなく なるため好ましく ない。 However, diffusion may occur during irradiation, making management difficult. From these points, the temperature is preferably from 20 ° C to 50 ° C. The first ultraviolet irradiation intensity is 2 0~ 2 0 0 mW / cm 2, 2 5~ 2 0 0 mW / cm 2 is laid favored, 4 0~; 1 5 0 mWZ cm 2 Gayo Ri preferred arbitrariness. If the UV irradiation intensity is lower than 20 mWZ cm 2 , the polymerization will not be performed to the extent that a monomer distribution is formed in the thickness direction, so that the band will not be broadened. Further, if the UV irradiation intensity is higher than 200 mW / cm 2 , the polymerization reaction rate becomes higher than the diffusion rate, so that the band is not broadened.
工程 ( 1 ) における、 第 1紫外線照射時間は、 0. 2〜 5秒間であり、 0. 3 〜 3秒間が好適である。 よ り好ましく は 0. 5〜 1 . 5秒間である。 0. 2秒間 よ り短いと、 厚み方向にモノマー分布がつく ほどの重合がなされないために広帯 域化しなく なる。 また 5秒間よ り長いと、 コ レステリ ック液晶層のピッチ変化が 配向基材側から酸素界面側へと大から小になる連続変化ではなく、 不連続変化と なるため好ましく ない。 不連続ピッチ変化だと、 斜めから見た時の着色がひどく なる。 The first ultraviolet irradiation time in the step (1) is 0.2 to 5 seconds, and preferably 0.3 to 3 seconds. More preferably, it is 0.5 to 1.5 seconds. If the time is shorter than 0.2 seconds, the polymerization is not carried out to such an extent that the monomer is distributed in the thickness direction, so that the band is not broadened. If the time is longer than 5 seconds, the change in pitch of the cholesteric liquid crystal layer is not a continuous change from large to small from the alignment substrate side to the oxygen interface side, but is a discontinuous change. Discontinuous pitch changes cause severe coloring when viewed from an angle Become.
紫外線照射における露光環境は、 配向基材に塗布された液晶混合物が、 酸素を 含む気体と接触している状態で行う。 酸素を含む気体が 0. 5 %以上の酸素を含 んでいることが好ましい。 かかる環境は、 酸素重合阻害を利用できるものであれ ばよく 、 一般的な大気雰囲気下で行う こ とができる。 また、 厚み方向のピッチ制 御を目的とする波長巾、 重合に必要な速度を鑑み、 酸素濃度を増減させてもよい 。 なお、 大気雰囲気下では光重合開始剤 (C) の必要量が増大する傾向にあるが ィルガキュア 1 8 4、 ィルガキュア 9 0 7 (いずれもチバスペシャルティケミカ ルズ社製) を用いれば、 重合性メ ソゲン化合物 (A) と重合性カイラル剤 (B) の合計 1 0 0重量部に対して、 1〜 5重量部程度の添加量で所用の目的を達成で さる。  The exposure environment for ultraviolet irradiation is performed in a state where the liquid crystal mixture applied to the alignment base material is in contact with a gas containing oxygen. Preferably, the gas containing oxygen contains 0.5% or more of oxygen. Such an environment may be any one that can utilize oxygen polymerization inhibition, and can be performed under a general atmospheric atmosphere. The oxygen concentration may be increased or decreased in view of the wavelength width for controlling the pitch in the thickness direction and the speed required for polymerization. Note that the required amount of the photopolymerization initiator (C) tends to increase under an air atmosphere. The desired purpose can be achieved with an addition amount of about 1 to 5 parts by weight based on a total of 100 parts by weight of the compound (A) and the polymerizable chiral agent (B).
なお、 第 1紫外線照射にあたっては、 形成されるポリマーノオリ ゴマーの重量 平均分子量が小さすぎると拡散速度が高く なりすぎる。 したがって、 制御不能な 拡散速度によって、 ポリマー/オリ ゴマーの濃度勾配が均一化してしまわないよ う に注意するのがよい。 コ レステリ ック ピッチ長の液晶層厚み方向での大きな変 化を形成するだけでなく 、 これを維持する必要がある。 前記ポリマー/オリ ゴマ 一が余り にも低分子量では形成した傾斜が維持できず、 分子拡散によつて構造が 消失してしま う。 拡散速度を工業条件的に管理するための条件を満たすには、 重 量平均分子量 1 0 0 0 0〜5 0 0 0 0 0程度の範囲にポリマー/オリ ゴマーが形 成される。 ポリマー/オリ ゴマーの重量平均分子量は 1 0 0 0 0 0〜 3 0 0 0 0 0であるのが好ましい。 なお、 ポリマーノオリ ゴマーの重量平均分子量は、 G P C法によ り測定される値である。 なお、 重量平均分子量は、 ポリエチレンォキサ ィ ドを標準試料に用い算出した。 本体 : 東ソー製の H L C— 8 1 2 0 G P C、 力 ラム : 東ソ一製の S u p e r AWM- H + S u p e r AWM- H + S u p e r A W 3 0 0 0 (各 6 mni (i) X 1 5 c m, 計 4 5 c m)、 カラム温度 : 4 0 °C、 溶離 液 : 1 0 mM— L i B r ZNMP、 流速 : 0. A m l Zm i n、 入口圧 : 8. 5 MP a、 サンプル濃度 : 0. 1 %NMP溶液、 検出器 : 示差屈折計 (R I )、 で める。  In the irradiation of the first ultraviolet ray, if the weight average molecular weight of the formed polymer oligomer is too small, the diffusion speed becomes too high. Care must therefore be taken to ensure that uncontrolled diffusion rates do not even out the polymer / oligomer concentration gradient. It is necessary not only to form a large change in the cholesteric pitch length in the thickness direction of the liquid crystal layer but also to maintain this. If the polymer / oligomer is too low in molecular weight, the formed gradient cannot be maintained, and the structure is lost due to molecular diffusion. In order to satisfy the conditions for controlling the diffusion rate under industrial conditions, the polymer / oligomer is formed in a weight average molecular weight of about 1,000 to 5,000. The weight average molecular weight of the polymer / oligomer is preferably between 1000 and 3000. The weight average molecular weight of the polymer oligomer is a value measured by the GPC method. The weight average molecular weight was calculated using polyethylene oxide as a standard sample. Main unit: Tosoh HLC—8 120 GPC, power ram: Tosoh Supper AWM-H + Supper AWM-H + Supper AW 300 0 (each 6 mni (i) X 15) cm, total 45 cm), Column temperature: 40 ° C, Eluent: 10 mM—LiBr ZNMP, Flow rate: 0. A ml Zmin, Inlet pressure: 8.5 MPa, Sample concentration: 0.1% NMP solution, Detector: Differential refractometer (RI).
工程 ( 1 ) の第 1紫外線照射で形成された濃度分布をこのまま固定化する場合 には特開 2 0 0 2— 2 8 6 9 3 5号公報等と同水準の反射波長帯域しか得られな い When fixing the concentration distribution formed by the first ultraviolet irradiation in step (1) as it is Can obtain only the same level of reflection wavelength band as in JP-A-2002-2866935, etc.
そこで、 工程 (2) では、 液晶層が酸素を含む気体と接触している状態で、 ェ 程 ( 1 ) よ り も高く、 かつ 6 0 °C以上の到達温度になるまで、 昇温速度 2°CZ秒 以上で、 工程 ( 1 ) よ り も低い紫外線照射強度で、 1 0秒間以上、 配向基材側か ら紫外線照射する。 かかる工程 ( 2) における第 2紫外線照射によ り、 酸素界面 側から浸透する酸素による重合阻害の有効深さを工程 ( 1 ) よ り深くすることが でき、 また工程 ( 1 ) においてポリマー/オリ ゴマーを厚み方向に濃度傾斜して 形成させたために逆に形成される未重合モノマー成分の濃度傾斜勾配を均一化さ せることができる。 それと同時に、 配向基板側の長ピッチ領域のみ反応を進行さ せることによ り、 配向基板側の長ピッチ化をさらに増大させることができる。 液晶組成層の分子量の増大と拡散速度の低下が、 工程 ( 1 ) における第 1紫外 線照射時と大きく異なるため、 単位時間あたり に発生するラジカル量を低減し、 重合の進行速度を低下せしめることでさ らなる広帯域化が可能である。  Therefore, in the step (2), in a state where the liquid crystal layer is in contact with the gas containing oxygen, the heating rate is higher than that of the step (1) and the heating rate is increased until the temperature reaches 60 ° C or more. UV irradiation is performed from the alignment substrate side for 10 seconds or more at a UV irradiation intensity lower than that in step (1) for at least CZ seconds. By the second ultraviolet irradiation in the step (2), the effective depth of polymerization inhibition by oxygen penetrating from the oxygen interface side can be made deeper than in the step (1). Since the gomers are formed with a concentration gradient in the thickness direction, the concentration gradient of the unpolymerized monomer component formed conversely can be made uniform. At the same time, by allowing the reaction to proceed only in the long pitch region on the alignment substrate side, the pitch on the alignment substrate side can be further increased. Since the increase in the molecular weight of the liquid crystal composition layer and the decrease in the diffusion rate are significantly different from those during the first ultraviolet irradiation in step (1), the amount of radicals generated per unit time should be reduced, and the progress rate of polymerization should be reduced. Further broadening of the bandwidth is possible.
特許第 3 2 7 2 6 6 8号明細書では, 第 1紫外線照射と第 2紫外線照射との温 度条件を変え、 かつ組成比が厚み方向で変化するに必要な時間を喑所にて別途設 けている。 しかし、 この方法で実質可視光線全域をカバーしょ う とすると、 この 温度変化による物質移動の待ち時間は 1 2 0分間程度は必要である。 一方、 本発 明の製造方法では、 特に暗所は必要でない。 さらには 1分間以内の短い時間でェ 程を終了することが可能なため、 実用的な高効率生産速度を生み出すことが可能 である。  In the specification of Japanese Patent No. 3,272,668, the temperature conditions for the first ultraviolet irradiation and the second ultraviolet irradiation are changed, and the time required for the composition ratio to change in the thickness direction is separately determined in a place. It is set up. However, in order to cover substantially the entire visible light region using this method, it is necessary to wait about 120 minutes for mass transfer due to this temperature change. On the other hand, the manufacturing method of the present invention does not require a dark place. Furthermore, the process can be completed in a short time of less than one minute, so that a practical and efficient production speed can be produced.
工程 ( 2) では、 所定の到達温度になるまで昇温しながら、 第 2紫外線照射を 行なう。 工程 ( 2) における、 第 2紫外線照射時の開始温度は、 工程 ( 1 ) と同 じ温度である。 すなわち、 2 0°C以上である。 開始温度が 2 0 °Cよ り低いと、 重 合性メ ソゲン化合物 ( a ) の拡散速度が非常に遅く、 広帯域化するのに長時間を 要することになる。 また到達温度は、 工程 ( 1 ) よ り も高く 、 かつ 6 0 °C以上の 温度に設定される。 到達温度が 6 0 °C未満では、 重合性メ ソゲン化合物 ( a ) の 拡散が十分に起きずに、 十分に広帯域化しなく なる。 到達温度の上限は特に制限 されないが、 1 4 0 °C以下が好適である。 さらには、 到達温度は 8 0 °C〜 1 2 0 °Cが好適である。 到達温度が 1 4 0 °Cよ り高いと、 拡散速度が速すぎて管理が難 しい。 In the step (2), the second ultraviolet irradiation is performed while increasing the temperature to a predetermined temperature. In the step (2), the starting temperature at the time of the irradiation of the second ultraviolet ray is the same as that in the step (1). That is, it is at least 20 ° C. If the onset temperature is lower than 20 ° C, the diffusion rate of the polymerizable mesogen compound (a) is extremely slow, and it takes a long time to broaden the band. Further, the attained temperature is set higher than that of the step (1) and at a temperature of 60 ° C. or more. If the reached temperature is lower than 60 ° C, the diffusion of the polymerizable mesogen compound (a) does not sufficiently occur, and the band is not sufficiently widened. The upper limit of the attained temperature is not particularly limited, but is preferably 140 ° C. or lower. Furthermore, the ultimate temperature is 80 ° C ~ 120 ° C is preferred. If the ultimate temperature is higher than 140 ° C, the diffusion rate is too fast to control.
また第 2紫外線照射時には、 第 1紫外線照射の終了時から 2 °C /秒以上の昇温 速度で、 急激に到達温度まで昇温させる。 昇温速度が 2 °C Z秒よ り低いと重合性 メ ソゲン化合物 ( a ) の拡散が十分に起きずに、 十分に広帯域化しなく なる。 昇 温速度は、 2〜 2 0 °C /秒であるのが好ま しい。 所定の到達温度に到達した後は 、 通常、 当該到達温度を保持した状態で第 2紫外線照射を行なう ことができる。 また、 1 4 0 °C以下の範囲であれば、 所定の到達温度に到達した後に徐々に昇温 すること もできる。 第 2紫外線照射強度は、 第 1紫外線照射強度よ り低い紫外線 照射強度で照射する。 照度を第 1紫外線照射時よ り低くすることで、 酸素阻害深 さが第 1紫外線照射時の酸素阻害深さよ り深く なり、 空気界面側に形成された短 波長帯城はほとんど変化させず、 基材側の長波長'帯域を広帯域化できる。 なお、 第 2紫外線照射強度は、 第 1紫外線照射強度よ り低い範囲で、 l〜 5 0 m W/ c m 2であるのが好ましい。 At the time of the second ultraviolet irradiation, the temperature is rapidly increased from the end of the first ultraviolet irradiation to the ultimate temperature at a heating rate of 2 ° C / sec or more. If the heating rate is lower than 2 ° CZ seconds, the diffusion of the polymerizable mesogen compound (a) will not occur sufficiently, and the band will not be sufficiently widened. The heating rate is preferably between 2 and 20 ° C / sec. After reaching the predetermined attained temperature, the second ultraviolet irradiation can be usually performed while maintaining the attained temperature. In addition, if the temperature is within a range of 140 ° C. or less, the temperature can be gradually increased after reaching a predetermined temperature. Irradiation is performed at a second UV irradiation intensity lower than the first UV irradiation intensity. By making the illuminance lower than when irradiating the first ultraviolet ray, the oxygen inhibition depth becomes deeper than the oxygen inhibition depth when irradiating the first ultraviolet ray, and the short-wavelength band formed on the air interface side hardly changes. It is possible to broaden the long wavelength band on the substrate side. The second ultraviolet irradiation intensity is preferably 1 to 50 mW / cm 2 in a range lower than the first ultraviolet irradiation intensity.
第 2紫外線照射時間は、 照度によるが、 一般的には 1 0秒間以上が好適である 。 第 2紫外線照射時間は、 到達温度まで急激に昇温するまでの照射時間および到 達温度に到達した後の照射時間の合計である。 なお、 紫外線照射時間は、 作業時 間の点から 1 2 0秒間以下、 さ らには 6 0秒間以下が好適である。 前述のよ うに 工程 ( 2 ) による広帯域化によ り後述の実施例に示す広帯域化が可能であり、 斜 め入射光線のブルーシフ トによる着色 · 色抜けが生じる視野角度が極めて大きく なり、 視角による着色は著しく低減せしめることができる。  The second ultraviolet irradiation time depends on the illuminance, but is generally preferably 10 seconds or more. The second UV irradiation time is the sum of the irradiation time until the temperature is rapidly increased to the reached temperature and the irradiation time after the reached the reached temperature. The ultraviolet irradiation time is preferably 120 seconds or less, more preferably 60 seconds or less from the point of working time. As described above, the bandwidth can be broadened by the step (2) as described in the following embodiment, and the viewing angle at which the obliquely incident light is colored and decolored by the blue shift becomes extremely large. Coloring can be significantly reduced.
次いで、 工程 ( 3 ) では、 酸素不存在下で、 紫外線照射する。 かかる第 3紫外 線照射によ り、 工程 ( 1 )、 ( 2 ) で拡張されたコレステリ ック反射帯域を劣化さ せることなく、 硬化させる。 これによ り、 ピッチ変化構造を劣化させることなく 固定する。  Next, in step (3), ultraviolet irradiation is performed in the absence of oxygen. By the third ultraviolet ray irradiation, the cholesteric reflection band extended in the steps (1) and (2) is cured without deteriorating. As a result, the pitch change structure is fixed without deterioration.
酸素不存在下は、 たとえば不活性ガス雰囲気下とすることができる。 不活性ガ スは、 前記液晶混合物の紫外線重合に影響を及ぼさないものであれば特に制限さ れない。 かかる不活性ガスと しては、 窒素、 アルゴン、 ヘリ ウム、 ネオン、 キセ ノン、 ク リ プトン等があげられる。 これらのなかでも、 窒素が最も汎用性が高く 好ましい。 また、 コレステリ ック液晶層に、 透明基材を貼り合わせることによ り 、 酸素不存在下とすることもできる。 The absence of oxygen can be, for example, an inert gas atmosphere. The inert gas is not particularly limited as long as it does not affect the ultraviolet polymerization of the liquid crystal mixture. Examples of such an inert gas include nitrogen, argon, helium, neon, xenon, and krypton. Of these, nitrogen is the most versatile preferable. Further, by bonding a transparent base material to the cholesteric liquid crystal layer, it is possible to eliminate the presence of oxygen.
工程 ( 3 ) において、 紫外線照射は、 配向基材側、 塗布した液晶混合物の側の いずれの側から行ってもよい。  In step (3), the ultraviolet irradiation may be performed from any of the alignment substrate side and the applied liquid crystal mixture side.
紫外線照射条件は、 液晶混合物が硬化する条件であれば特に制限されない。 通 常は、 4 0〜 3 0 0 m WZ c m 2程度の照射強度で、 1〜 6 0秒間程度照射する のが好ましい。 照射温度は、 2 0〜 1 0 0 °C程度である。 The ultraviolet irradiation condition is not particularly limited as long as the liquid crystal mixture is cured. Usually, it is preferable to irradiate at an irradiation intensity of about 40 to 300 mWZ cm 2 for about 1 to 60 seconds. The irradiation temperature is about 20 to 100 ° C.
これによ り液晶層の架橋密度の向上 · 分子量増大によ り信頼性が著しく 向上す る。 本発明では、 工程 ( 1 ) の第 1紫外線照射、 工程 ( 2 ) の第 2紫外線照射で 酸素阻害を積極的に活用するため配向基材面側からの紫外線照射を行っている。 このため反応率に厚み方向に大きな勾配を形成することが可能と しているが、 問 題と して空気界面側の重合率の低さから膜表面の硬度 · 強度の不足、 または長期 の信頼性の不足などの問題が生じるおそれがある。 このため、 工程 ( 3 ) では、 酸素不存在雰囲気下にて第 3紫外線照射を行い、 残存モノマーを重合完結させ、 膜質の強化を行っている。 この場合、 空気雰囲気下 (酸素存在下) では表面の反 応率は十分に向上せず、 反応率が 9 0 %を上回るこ と 'は困難である。 したがって 、 十分な信頼性を得るには、 酸素不存在下にて紫外線照射を行う ことが望まれる 。 照射面方向は特に限定される物ではない。 液晶層側からの照射が望ま しいが、 窒素雰囲気下では基材側からの照射でも十分に表面の反応は進行するからである 。  As a result, the crosslink density of the liquid crystal layer is improved and the reliability is significantly improved due to the increase in the molecular weight. In the present invention, ultraviolet irradiation is performed from the alignment substrate surface side in order to utilize oxygen inhibition positively in the first ultraviolet irradiation in the step (1) and the second ultraviolet irradiation in the step (2). For this reason, it is possible to form a large gradient in the reaction direction in the thickness direction. There is a possibility that problems such as lack of sex may occur. For this reason, in step (3), third ultraviolet irradiation is performed in an oxygen-free atmosphere to complete the polymerization of the remaining monomers and enhance the film quality. In this case, the reaction rate of the surface does not improve sufficiently in an air atmosphere (in the presence of oxygen), and it is difficult for the reaction rate to exceed 90%. Therefore, in order to obtain sufficient reliability, it is desired to perform ultraviolet irradiation in the absence of oxygen. The direction of the irradiation surface is not particularly limited. This is because irradiation from the liquid crystal layer side is desirable, but the reaction on the surface proceeds sufficiently even from the substrate side in a nitrogen atmosphere.
こう して得られるコレステリ ック液晶フィルムは、 基材から剥離するこ となく 用いられる他、 基材から剥離して用いてもよい。  The cholesteric liquid crystal film thus obtained can be used without peeling from the substrate, or may be peeled off from the substrate.
本発明の広帯域コ レステリ ック液晶フィルムは円偏光板と して用いられる。 円 偏光板には、 え 4板を積層して直線偏光素子とすることができる。 円偏光板で あるコ レステリ ック液晶フィルムは、 4板に対し、 ピッチ長が連続的に狭く なるよ う に積層するのが好ましい。  The broadband cholesteric liquid crystal film of the present invention is used as a circularly polarizing plate. Four circular plates can be stacked on the circularly polarizing plate to form a linearly polarizing element. The cholesteric liquid crystal film, which is a circularly polarizing plate, is preferably laminated on four plates so that the pitch length is continuously narrowed.
λ 4板と しては、 特に限定されないがポリカーボネー ト、 ポリエチレンテ レ フタ レー ト、 ポリ スチレン、 ポリ スルホン、 ポリ ビュルアルコール、 ポリ メチル メ タク リ レー ト等のよ うな延伸することで位相差を発生する汎用透明樹脂フィル ムゃ J S R製 A R T O Nフィルムのよ う なノルポルネン系樹脂フィルム等が好適 に用いられる。 さ らに 2軸延伸を行い、 入射角による位相差値変化を補償する位 相差板を用いれば視野角特性を改善できるので好適である。 また樹脂の延伸によ る位相差発現以外の例えば液晶を配向せしめることで得られる え / 4層を固定す ることで得られる λ / 4板を用いても良い。 この場合、 え / 4板の厚みを大幅に 低減できる。 λノ 4波長板の厚さは、 通常 0 . 5 〜 2 0 0 mであることが好ま しく、 特に 1 〜 1 0 0 z mであることが好ま しい。 The λ4 plate is not particularly limited, but may be formed by stretching such as polycarbonate, polyethylene terephthalate, polystyrene, polysulfone, polybutyl alcohol, polymethyl methacrylate, or the like. Generating transparent resin fill Mupol A norpolene-based resin film such as ARTON film manufactured by JSR is preferably used. Further, it is preferable to perform biaxial stretching and use a retardation plate that compensates for a change in retardation value due to the incident angle, since the viewing angle characteristics can be improved. Further, a λ / 4 plate obtained by fixing a four-layer obtained by, for example, aligning a liquid crystal other than the expression of a retardation by stretching a resin may be used. In this case, the thickness of the e / 4 plate can be significantly reduced. The thickness of the λ / 4 wavelength plate is usually preferably from 0.5 to 200 m, and particularly preferably from 1 to 100 zm.
可視光城等の広い波長範囲で λ / 4波長板と して機能する位相差板は、 例えば 波長 5 5 0 n mの淡色光に対してえノ 4波長板と して機能する位相差層と他の位 相差特性を示す位相差層、 例えば 2波長板と して機能する位相差層とを重畳 する方式などによ り得ることができる。 従って、 偏光板と輝度向上フィルムの間 に配置する位相差板は、 1層又は 2層以上の位相差層からなるものであってよい 前記直線偏光素子の透過軸に、 吸収型偏光子をその透過軸方向を合わせて貼り 合わせて用いられる。  A retardation plate that functions as a λ / 4 wavelength plate in a wide wavelength range such as a visible light castle is, for example, a retardation layer that functions as a four-wavelength plate for light-color light having a wavelength of 550 nm. It can be obtained by a method in which a phase difference layer exhibiting other phase difference characteristics, for example, a phase difference layer functioning as a two-wavelength plate is superimposed. Therefore, the retardation plate disposed between the polarizing plate and the brightness enhancement film may be composed of one or two or more retardation layers. It is used with the transmission axis direction aligned.
偏光子は、 特に制限されず、 各種のものを使用できる。 偏光子と しては、 たと えば、 ポリ ビュルアルコール系フィルム、 部分ホルマール化ポリ ビュルアルコー ル系フィルム、 エチレン · 酢酸ビニル共重合体系部分ケン化フィルム等の親水性 高分子フィルムに、 ョ ゥ素ゃ二色性染料等の二色性物質を吸着させて一軸延伸し たもの、 ポリ ビュルアルコールの脱水処理物やポリ塩化ビュルの脱塩酸処理物等 ポリェン系配向フィルム等があげられる。 これらのなかでもポリ ビュルアルコ ー ル系フィルム と ヨ ウ素などの二色性物質からなる偏光子が好適である。 これら偏 光子の厚さは特に制限されないが、 一般的に、 5 〜 8 0 /X m程度である。  The polarizer is not particularly limited, and various types can be used. Polarizers include, for example, hydrophilic polymer films such as polyvinyl alcohol-based films, partially formalized polyvinyl alcohol-based films, and ethylene / vinyl acetate copolymer-based partially saponified films; Examples thereof include a uniaxially stretched film obtained by adsorbing a dichroic substance such as a dichroic dye, a dehydrated product of polyvinyl alcohol, and a dehydrochlorinated product of polychlorinated polyene-based oriented film. Among these, a polarizer made of a polyvinyl alcohol-based film and a dichroic substance such as iodine is preferable. The thickness of these polarizers is not particularly limited, but is generally about 5 to 80 / Xm.
ポリ ビュルアルコール系フィルムをョゥ素で染色し一軸延伸した偏光子は、 た とえば、 ポリ ビュルアルコールをヨ ウ素の水溶液に浸漬することによって染色し 、 元長の 3 〜 7倍に延伸することで作製することができる。 必要に応じてホウ酸 やヨ ウ化カ リ ゥムなどの水溶液に浸漬すること もできる。 さ らに必要に応じて染 色の前にポリ ビュルアルコール系フィルムを水に浸潰して水洗してもよい。 ポリ ビュルアルコール系フィルムを水洗するこ とでポリ ビュルアルコール系フィルム 表面の汚れやプロ ッキング防止剤を洗浄することができるほかに、 ポリ ビュルァ ルコール系フィルムを膨潤させることで染色のムラなどの不均一を防止する効果 もある。 延伸はヨ ウ素で染色した後に行っても良いし、 染色しながら延伸しても よ し、 また延伸してからヨウ素で染色してもよい。 ホウ酸やヨ ウ化カ リ ウムなど の水溶液中や水浴中でも延伸することができる。 A uniaxially stretched polarizer obtained by dyeing a polybutyl alcohol-based film with iodine is dyed, for example, by immersing the polybutyl alcohol in an aqueous solution of iodine, and stretching the original length 3 to 7 times. It can be manufactured by the following. If necessary, it can be immersed in an aqueous solution of boric acid or potassium iodide. If necessary, the polyvinyl alcohol-based film may be immersed in water and washed with water before dyeing. Polyvinyl alcohol-based film is washed by water In addition to being able to clean surface stains and anti-blocking agents, it also has the effect of preventing unevenness such as uneven dyeing by swelling the polyvinyl alcohol-based film. Stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be dyed with iodine after stretching. Stretching can be performed in an aqueous solution of boric acid or calcium iodide or in a water bath.
前記偏光子は、 通常、 片側または両側に透明保護フィルムが設けられ偏光板と して用いられる。 透明保護フィルムは透明性、 機械的強度、 熱安定性、 水分遮蔽 性、 等方性などに優れるものが好ましい。 透明保護フィルムと しては、 例えばポ リ エチレンテレフタ レー ト、 ポリエチレンナフタ レー ト等のポリエステル系ポリ マー、 ジァセチノレセノレロース、 ト リ ァセチノレセノレロース等のセルロース系ポリ マ 一、 ポリカーボネー ト系ポリマー、 ポリメチルメ タク リ レー ト等のアク リル系ポ リマー等の透明ポリマーからなるフィルムがあげられる。 またポリ スチレン、 ァ ク リ ロニ ト リル . スチレン共重合体等のスチレン系ポリマ一、 ポリ エチレン、 ポ リプロ ピレン、 環状ないしノルボルネン構造を有するポリオレフイ ン、 エチレン ' プロピレン共重合体等のォレフィ ン系ポリマ一、 塩化ビニル系ポリマー、 ナイ 口ンゃ芳香族ポリ アミ ド等のアミ ド系ポリマー等の透明ポリ マーからなるフィル ムもあげられる。 さ らにイ ミ ド系ポリ マー、 スルホン系ポリ マー、 ポリエーテル スルホン系ポリマ一、 ポリエーテルエ一テルケ トン系ポリマー、 ポリ フエ二レン スルフィ ド系ポリマー、 ビニルアルコール系ポリマー、 塩化ビニリデン系ポリマ 一、 ビニルプチラール系ポリマー、 ァリ レー ト系ポリマー、 ポリオキシメチレン 系ポリマー、 エポキシ系ポリマーや前記ポリマーのブレン ド物等の透明ポリマー からなるフィルムなどもあげられる。 特に光学的に複屈折の少ないものが好適に 用いられる。 偏光板の保護フィルムの観点よ り は、 ト リ ァセチルセルロース、 ポ リ カーポネー ト、 アク リル系ポリマー、 シクロォレフイ ン系樹脂、 ノルボルネン 構造を有するポリオレフインなどが好適である。  The polarizer is usually provided with a transparent protective film on one or both sides and used as a polarizing plate. It is preferable that the transparent protective film is excellent in transparency, mechanical strength, heat stability, moisture shielding property, isotropy and the like. Examples of the transparent protective film include polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, and cellulose polymers such as diacetinoresenorelose and triacetinoresenorelose. Examples include films made of transparent polymers such as polycarbonate polymers and acrylic polymers such as polymethyl methacrylate. Styrene polymers such as polystyrene, acrylonitrile and styrene copolymers; and polyolefins such as polyethylene, polypropylene, polyolefins having a cyclic or norbornene structure, and ethylene propylene copolymers. 1. Films made of transparent polymers such as amide polymers such as vinyl chloride polymers and nylon-aromatic polyamides are also included. In addition, imid-based polymers, sulfone-based polymers, polyether-sulfone-based polymers, polyether-ether-ketone-based polymers, polyphenylene-sulfide-based polymers, vinyl alcohol-based polymers, vinylidene chloride-based polymers, and vinyl A film made of a transparent polymer such as a butyral-based polymer, an arylate-based polymer, a polyoxymethylene-based polymer, an epoxy-based polymer, or a blend of the above polymers may also be used. In particular, those having low optical birefringence are preferably used. From the viewpoint of a protective film for a polarizing plate, triacetyl cellulose, polycarbonate, an acrylic polymer, a cycloolefin resin, a polyolefin having a norbornene structure, and the like are preferable.
また、 特開 2 0 0 1 — 3 4 3 5 2 9号公報 (W O 0 1ノ 3 7 0 0 7 ) に記載の ポリマーフィルム、 たとえば、 (A ) 側鎖に置換および または非置換イ ミ ド基 を有する熱可塑性樹脂と、 (B ) 側鎖に置換およぴノ非置換フエニルならびに二 ト リル基を有する熱可塑性樹脂を含有する樹脂組成物があげられる。 具体例と し てはイソプチレンと N—メチルマレイ ミ ドからなる交互共重合体とアタ リ ロニ ト リル · スチレン共重合体とを含有する樹脂組成物のフィルムがあげられる。 フィ ルムは樹脂組成物の混合押出品などからなるフィルムを用いることができる。 偏光特性や耐久性などの点よ り、 特に好ましく用いることができる透明基板は 、 表面をアルカ リ などでケン化処理した ト リ ァセチルセルロースフィルムである 。 透明保護フィルムの厚さは、 適宜に決定しう るが、 一般には強度や取扱性等の 作業性、 薄層性などの点よ り 1 0〜 5 0 0 μ m程度である。 特に 2 0 ~ 3 0 0 /z mが好ましく 、 3 0〜 2 0 0 μ ηιがよ り好ましい。 Further, a polymer film described in Japanese Patent Application Laid-Open No. 2001-334529 (WO 01/37007), for example, (A) a side chain substituted and / or unsubstituted imide Resin compositions containing a thermoplastic resin having a group, and (B) a thermoplastic resin having a substituted or unsubstituted phenyl and a ditolyl group in a side chain. Specific examples For example, a film of a resin composition containing an alternating copolymer composed of isobutylene and N-methylmaleide and an acrylonitrile / styrene copolymer may be used. As the film, a film made of a mixed extruded product of a resin composition or the like can be used. A transparent substrate that can be particularly preferably used in view of polarization characteristics and durability is a triacetyl cellulose film whose surface is saponified with alkali or the like. The thickness of the transparent protective film can be determined as appropriate, but is generally about 10 to 500 μm in view of strength, workability and other workability, and thinness. In particular, it is preferably from 20 to 300 / zm, more preferably from 30 to 200 μηι.
また、 透明保護フィルムは、 できるだけ色付きがないことが好ましい。 したが つて、 R t h = [( n x + n y ) / 2 - n z ] · d (ただし、 n x、 n yはフイスレ ム平'面内の主屈折率、 n z はフィルム厚方向の屈折率、 dはフィルム厚みである ) で表されるフィルム厚み方向の位相差値が— 9 0 η π!〜 + 7 5 n mである保護 フィルムが好ましく用いられる。 かかる厚み方向の位相差値 (R t h) が一 9 0 n m〜+ 7 5 n mのものを使用することによ り、 保護フイルムに起因する偏光板 の着色 (光学的な着色) をほぼ解消するこ とができる。 厚み方向位相差値 (R t h ) は、 さ らに好ましく は一 8 0 η π!〜 + 6 0 n m、 特に一 7 0 n m〜+ 4 5 n mが好ましい。  Further, it is preferable that the transparent protective film has as little coloring as possible. Therefore, R th = [(nx + ny) / 2-nz] d (where nx and ny are the main refractive indices in the plane of the film plane, nz is the refractive index in the film thickness direction, and d is the film refractive index. The retardation value in the film thickness direction represented by) is-9 0 η π! A protective film having a thickness of up to +75 nm is preferably used. By using such a retardation value (Rth) in the thickness direction of 190 nm to +75 nm, the coloring (optical coloring) of the polarizing plate caused by the protective film is almost eliminated. be able to. The thickness direction retardation value (R th) is more preferably 180 η π! To +60 nm, particularly preferably from 70 nm to +45 nm.
前記透明保護フィルムは、 表裏で同じポリマー材料からなる透明保護フィルム を用いてもよく、 異なるポリマー材料等からなる透明保護フィルムを用いてもよ い。  As the transparent protective film, a transparent protective film made of the same polymer material on both sides may be used, or a transparent protective film made of a different polymer material or the like may be used.
前記透明保護フィルムの偏光子を接着させない面には、 ハー ドコー ト層ゃ反射 防止処理、 ステイ ツキング防止や、 拡散ないしアンチグレアを目的と した処理を 施したものであってもよい。  The surface of the transparent protective film on which the polarizer is not adhered may be subjected to a hard coat layer antireflection treatment, a treatment for preventing sticking, or a treatment for diffusion or antiglare.
ハー ドコート処理は偏光板表面の傷付き防止などを目的に施されるものであり 、 例えばアク リル系、 シリ コーン系などの適宜な紫外線硬化型樹脂による硬度や 滑り特性等に優れる硬化皮膜を透明保護フィルムの表面に付加する方式などにて 形成するこ とができる。 反射防止処理は偏光板表面での外光の反射防止を目的に 施されるものであり、 従来に準じた反射防止膜などの形成によ り達成することが できる。 また、 ステイ ツキング防止処理は隣接層との密着防止を目的に施される W 200 またアンチグレア処理は偏光板の表面で外光が反射して偏光板透過光の視認を 阻害することの防止等を目的に施されるものであり、 例えばサンドプラス ト方式 やエンボス加工方式による粗面化方式や透明微粒子の配合方式などの適宜な方式 にて透明保護フィルムの表面に微細凹凸構造を付与することにより形成すること ができる。 前記表面微細凹凸構造の形成に含有させる微粒子と しては、 例えば平 均粒径が 0 . 5〜 5 0 μ ηιのシリカ、 アルミナ、 チタニア、 ジルコエア、 酸化錫 、 酸化インジウム、 酸化カ ドミ ウム、 酸化アンチモン等からなる導電性のこ と も ある無機系微粒子、 架橋又は未架橋のポリマー等からなる有機系微粒子などの透 明微粒子が用いられる。 表面微細凹凸構造を形成する場合、 微粒子の使用量は、 表面微細凹凸構造を形成する透明樹脂 1 0 0重量部に対して一般的に 2〜 5 0重 量部程度であり、 5〜 2 5重量部が好ま しい。 アンチグレア層は偏光板透過光を 拡散して視角などを拡大するための拡散層 (視角拡大機能など) を兼ねるもので あってもよい。 The hard coat treatment is performed for the purpose of preventing scratches on the surface of the polarizing plate. For example, a cured film having an excellent hardness and a sliding property by an appropriate ultraviolet curable resin such as an acrylic or silicone resin is used. It can be formed by a method of adding to the surface of the protective film. The anti-reflection treatment is performed for the purpose of preventing reflection of external light on the polarizing plate surface, and can be achieved by forming an anti-reflection film or the like according to the related art. The anti-stating treatment is performed for the purpose of preventing adhesion to the adjacent layer. W 200 The anti-glare treatment is performed for the purpose of preventing external light from being reflected on the surface of the polarizing plate and hindering the visibility of light transmitted through the polarizing plate, and is, for example, a sand-plasting method or an embossing method. It can be formed by imparting a fine uneven structure to the surface of the transparent protective film by an appropriate method such as a surface roughening method or a method of blending transparent fine particles. Examples of the fine particles to be included in the formation of the surface fine unevenness include silica, alumina, titania, zircoair, tin oxide, indium oxide, cadmium oxide having an average particle size of 0.5 to 50 μηι. Transparent fine particles such as inorganic fine particles which may be made of antimony oxide or the like and organic fine particles made of a crosslinked or uncrosslinked polymer or the like are used. When forming the fine surface uneven structure, the amount of the fine particles used is generally about 2 to 50 parts by weight with respect to 100 parts by weight of the transparent resin forming the fine surface uneven structure, and 5 to 25 parts by weight. Parts by weight are preferred. The anti-glare layer may also serve as a diffusion layer (such as a viewing angle expansion function) for diffusing light transmitted through the polarizing plate to increase the viewing angle.
なお、 前記反射防止層、 ステイ ツキング防止層、 拡散層やアンチグレア層等は 、 透明保護フィルムそのものに設けることができるほか、 別途光学層と して透明 保護層とは別体のものと して設けること もできる。  The anti-reflection layer, anti-sticking layer, diffusion layer, anti-glare layer and the like can be provided on the transparent protective film itself, or separately provided as an optical layer separately from the transparent protective layer. You can also.
前述した直線偏光素子には、 液晶セル等の他部材と接着するための粘着層を設 けること もできる。 粘着層を形成する粘着剤は特に制限されないが、 例えばァク リル系重合体、 シリ コーン系ポリマー、 ポリ エステル、 ポリ ウレタン、 ポリ アミ ド、 ポリエーテル、 フッ素系やゴム系などのポリマーをベースポリマーとするも のを適宜に選択して用いることができる。 特に、 アク リル系粘着剤の如く光学的 透明性に優れ、 適度な濡れ性と凝集性と接着性の粘着特性を示して、 耐候性ゃ耐 熱性などに優れるものが好ま しく用いう る。  The above-described linear polarizing element may be provided with an adhesive layer for bonding to another member such as a liquid crystal cell. The pressure-sensitive adhesive that forms the pressure-sensitive adhesive layer is not particularly limited.For example, an acrylic polymer, a silicone-based polymer, a polyester, a polyurethane, a polyamide, a polyether, a fluorine-based or rubber-based polymer may be used as a base polymer. Can be appropriately selected and used. In particular, those having excellent optical transparency, such as an acrylic adhesive, exhibiting appropriate wettability, cohesiveness and adhesive adhesive properties, and having excellent weather resistance and heat resistance are preferably used.
また上記に加えて、 吸湿による発泡現象や剥がれ現象の防止、 熱膨張差等によ る光学特性の低下や液晶セルの反り防止、 ひいては高品質で耐久性に優れる液晶 表示装置の形成性などの点よ り、 吸湿率が低くて耐熱性に優れる粘着層が好まし い  In addition to the above, it is also necessary to prevent foaming and peeling phenomena due to moisture absorption, prevent optical characteristics from deteriorating due to differences in thermal expansion, prevent liquid crystal cells from warping, and form the liquid crystal display device with high quality and excellent durability. Therefore, an adhesive layer with low moisture absorption and excellent heat resistance is preferred.
粘着層は、 例えば天然物や合成物の樹脂類、 特に、 粘着性付与樹脂や、 ガラス 繊維、 ガラス ビーズ、 金属粉、 その他の無機粉末等からなる充填剤や顔料、 着色 剤、 酸化防止剤などの粘着層に添加されるこ との添加剤を含有していてもよい。 また微粒子を含有して光拡散性を示す粘着層などであってもよい。 The adhesive layer is made of, for example, natural or synthetic resins, in particular, tackifying resin, glass, It may contain fillers such as fibers, glass beads, metal powders, and other inorganic powders, and additives such as pigments, colorants, and antioxidants that are added to the adhesive layer. In addition, an adhesive layer containing fine particles and exhibiting light diffusibility may be used.
粘着層の付設は、 適宜な方式で行いう る。 その例と しては、 例えばトルエンや 酢酸ェチル等の適宜な溶剤の単独物又は混合物からなる溶媒にベースポリマーま たはその組成物を溶解又は分散させた 1 0 〜 4 0重量%程度の粘着剤溶液を調製 し、 それを流延方式や塗工方式等の適宜な展開方式で前記偏光子上に直接付設す る方式、 あるいは前記に準じセパレータ上に粘着層を形成してそれを光学素子上 に移着する方式などがあげられる。 粘着層は、 各層で異なる組成又は種類等のも のの重畳層と して設けることもできる。 粘着層の厚さは、 使用目的や接着力など に応じて適宜に決定でき、 一般には 1 〜 5 0 0 であり、 5 〜 2 0 0 /i mが好 ましく 、 特に 1 0 〜 1 0 0 μ πιが好ましい。  The attachment of the adhesive layer may be performed by an appropriate method. For example, about 10 to 40% by weight of a base polymer or a composition thereof dissolved or dispersed in a solvent consisting of a single substance or a mixture of appropriate solvents such as toluene and ethyl acetate. An adhesive solution is prepared and applied directly on the polarizer by an appropriate developing method such as a casting method or a coating method, or an adhesive layer is formed on a separator according to the method described above, and then the optical element is formed. There is a method to transfer to the top. The adhesive layer may be provided as a superimposed layer of different compositions or types of layers. The thickness of the pressure-sensitive adhesive layer can be appropriately determined according to the purpose of use, adhesive strength, and the like, and is generally 1 to 500, preferably 5 to 200 / im, and particularly preferably 10 to 100. μπι is preferred.
粘着層の露出面に対しては、 実用に供するまでの間、 その汚染防止等を目的に セパ レータが仮着されてカバーされる。 これによ り、 通例の取扱状態で粘着層に 接触することを防止できる。 セパレータと しては、 上記厚さ条件を除き、 例えば プラスチック フィルム、 ゴムシー ト、 紙、 布、 不織布、 ネッ ト、 発泡シー トゃ金 属箔、 それらのラ ミネー ト体等の適宜な薄葉体を、 必要に応じシリ コーン系や長 鎖アルキル系、 フッ素系や硫化モリブデン等の適宜な剥離剤でコー ト処理したも のなどの、 従来に準じた適宜なものを用いう る。  A separator is temporarily attached to the exposed surface of the adhesive layer for the purpose of preventing contamination, etc., until it is put to practical use. This can prevent the adhesive layer from coming into contact with the adhesive layer in a normal handling state. Except for the above thickness conditions, suitable thin sheets such as plastic films, rubber sheets, paper, cloth, non-woven fabrics, nets, foamed sheets, metal foils, and laminates thereof are used as the separator. If necessary, use an appropriate material similar to the conventional one, such as a material treated with a suitable release agent such as a silicone-based, long-chain alkyl-based, fluorine-based, or molybdenum sulfide.
なお、 粘着層などの各層には、 例えばサリチル酸エステル系化合物やべンゾフ エノ一ル系化合物、 ベンゾ ト リァゾール系化合物やシァノアタ リ レー ト系化合物 、 二ッケル錯塩系化合物等の紫外線吸収剤で処理する方式などの方式によ り紫外 線吸収能をもたせたものなどであってもよい。  Each layer such as an adhesive layer is treated with an ultraviolet absorber such as a salicylate compound, a benzophenol compound, a benzotriazole compound, a cyanoacrylate compound, or a nickel complex compound. It may be a method having a function of absorbing ultraviolet rays by a method such as a method.
本発明の直線偏光素子は液晶表示装置等の各種装置の形成などに好ましく用い るこ とができる。 液晶表示装置の形成は、 従来に準じて行いう る。 すなわち液晶 表示装置は一般に、 液晶セルと光学素子、 及び必要に応じての照明システム等の 構成部品を適宜に組立てて駆動回路を組込むことなどによ り形成されるが、 本発 明の直線偏光素子を用いる点を除いて特に限定はなく 、 従来に準じう る。 液晶セ ルについても、 例えば Τ Ν型や S T N型、 π型などの任意なタイプのものを用い う る。 The linear polarizing element of the present invention can be preferably used for forming various devices such as a liquid crystal display device. The formation of the liquid crystal display device can be performed according to a conventional method. That is, a liquid crystal display device is generally formed by appropriately assembling components such as a liquid crystal cell and an optical element and, if necessary, an illumination system and incorporating a drive circuit. There is no particular limitation except that an element is used, and the conventional method is followed. As for the liquid crystal cell, any type such as セ -type, STN-type, and π-type can be used. sell.
液晶セルの片側又は両側に前記直線偏光素子を配置した液晶表示装置や、 照明 システムにバック ライ トあるいは反射板を用いたものなどの適宜な液晶表示装置 を形成することができる。 その場合、 本発明による直線偏光素子は液晶セルの片 側又は両側に設置するこ とができる。 両側に直線偏光素子を設ける場合、 それら は同じものであってもよいし、 異なるものであってもよい。 さ らに、 液晶表示装 置の形成に際しては、 例えば拡散板、 アンチグレア層、 反射防止膜、 保護板、 プ リ ズムアレイ、 レンズア レイシート、 光拡散板、 バックライ トなどの適宜な部品 を適宜な位置に 1層又は 2層以上配置することができる。  Appropriate liquid crystal display devices such as a liquid crystal display device in which the linear polarizing element is arranged on one side or both sides of a liquid crystal cell, and a lighting system using a backlight or a reflector can be formed. In that case, the linear polarizing element according to the present invention can be installed on one side or both sides of the liquid crystal cell. When linear polarizing elements are provided on both sides, they may be the same or different. In addition, when forming a liquid crystal display device, for example, appropriate components such as a diffusion plate, an antiglare layer, an antireflection film, a protection plate, a prism array, a lens array sheet, a light diffusion plate, and a backlight are appropriately positioned. One or two or more layers can be arranged.
また前記コ レステリ ック液晶フィルムを用いた円偏光板 (反射偏光子) は、 偏 光の選択反射の波長帯域が互いに重なっている少なく と も 2層の反射偏光子 ( a ) の間に、 正面位相差 (法線方向) がほぼゼロで、 法線方向に対し 3 0 ° 以上傾 けて入射した入射光に対して λ / 8以上の位相差を有する位相差層 ( b ) が配置 された偏光素子システムに用いられる。 なお、 コ レステリ ック液晶フィルムは、 螺旋状ねじれ分子構造の最大ピッチと最小ピッチのいずれの側が位相差層 ( b ) の側であってもよいが、 視角 (視角がよい、 色づきが小さい) 点から、 反射偏光 子 ( a ) を (最大ピッチ/最小ピッチ) と表示すれば、 最大ピッチ/最小ピッチ Z位相差層 ( b ) /最大ピッチ/最小ピッチのよ うに配置するのが好ましい。 ま た、 / 4板を組み合わせる場合には、 反射偏光子 ( a ) の最小ピッチ側が 4板側になるよ う に配置するのが好ましい。  Further, the circular polarizer (reflective polarizer) using the cholesteric liquid crystal film is provided between at least two reflective polarizers (a) in which the wavelength bands of selective reflection of polarized light overlap each other. A retardation layer (b) having a front retardation (normal direction) of almost zero and having a phase difference of λ / 8 or more with respect to incident light incident at an angle of 30 ° or more with respect to the normal direction is arranged. Used in polarizing element systems. In the cholesteric liquid crystal film, either the maximum pitch or the minimum pitch of the spiral twisted molecular structure may be the side of the retardation layer (b), but the viewing angle (the viewing angle is good and the coloring is small) From the point of view, if the reflection polarizer (a) is expressed as (maximum pitch / minimum pitch), it is preferable to arrange the polarizers as maximum pitch / minimum pitch Z phase difference layer (b) / maximum pitch / minimum pitch. Further, in the case of combining / 4 plates, it is preferable to arrange the reflective polarizer (a) such that the minimum pitch side of the reflective polarizer (a) is the four plate side.
前記偏光素子システム、 すなわち、 広帯域選択反射機能を有するコレステリ ッ ク液晶積層体は、 正面方向は円偏光反射 透過機能を有し、 これを広帯域円偏光 板と して液晶表示装置に用いることができる。 この場合には円偏光モー ドの液晶 セル、 例えばマルチドメインを有する透過型 V Αモー ド液晶セルの光源側に配置 することで円偏光板と して用いることができる。  The polarizing element system, that is, the cholesteric liquid crystal laminate having a wideband selective reflection function has a circularly polarized light reflection / transmission function in the front direction, and can be used in a liquid crystal display device as a wideband circularly polarizing plate. . In this case, it can be used as a circularly polarizing plate by arranging it on the light source side of a circularly polarized mode liquid crystal cell, for example, a transmissive V-mode liquid crystal cell having multiple domains.
位相差層 ( b ) は、 正面方向の位相差がほぼゼロであり、 法線方向から 3 0 ° の角度の入射光に対してえ 8以上の位相差を有するものである。 正面位相差は 垂直入射された偏光が保持される目的であるので、 ぇ 1 0以下であることが望 ま しい。 斜め方向からの入射光に対しては効率的に偏光変換されるべく全反射させる角 度などによって適宜決定される。 例えば、 法線からのなす角 6 0 ° 程度で完全に 全反射させるには 6 0。 で測定したときの位相差が 1 / 2程度になるよ うに決定 すればよい。 ただし、 反射偏光子 ( a ) による透過光は、 反射偏光子自身の Cプ レー ト的な複屈折性によっても偏光状態が変化しているため、 通常挿入される C プレー トのその角度で測定したときの位相差はえノ 2 よ り も小さな値でよい。 C プレー トの位相差は入射光が傾く ほど単調に増加するため、 効果的な全反射を 3 0 ° 以上のある角度傾斜した時に起こさせる 目安と して 3 0 ° の角度の入射光に 対して; L / 8以上有すればよい。 The retardation layer (b) has a phase difference of almost zero in the front direction, and has a phase difference of 8 or more with respect to incident light at an angle of 30 ° from the normal direction. The front phase difference is desirably ぇ 10 or less since the purpose is to maintain the vertically incident polarized light. The incident light from the oblique direction is appropriately determined by the angle of total reflection so as to be efficiently converted in polarization. For example, 60 to completely reflect at an angle of about 60 ° from the normal. What is necessary is just to determine so that the phase difference at the time of measurement at is about 1/2. However, since the transmitted light by the reflective polarizer (a) changes its polarization state due to the C-plate birefringence of the reflective polarizer itself, it is measured at that angle of the normally inserted C-plate. In this case, the phase difference may be smaller than E2. Since the phase difference of the C-plate increases monotonically as the incident light tilts, the effective total reflection occurs when the light is tilted at an angle of 30 ° or more. And L / 8 or more.
位相差層 ( b ) の材質は上記のよ うな光学特性を有するものであれば、 特に制 限はない。 例えば、 可視光領域 ( 3 8 0 η π!〜 7 8 0 n m ) 以外に選択反射波長 を有するコレステリ ック液晶のブラナー配向状態を固定したものや、 棒状液晶の ホメオト口 ピック配向状態を固定したもの、 ディスコチック液晶のカラムナー配 向ゃネマチック配向を利用したもの、 負の 1軸性結晶を面内に配向させたもの、 2軸性配向したポリマーフィルムなどがあげられる。  The material of the retardation layer (b) is not particularly limited as long as it has the above-mentioned optical characteristics. For example, the cholesteric liquid crystal having a selective reflection wavelength other than in the visible light region (380 ηπ! ~ 780 nm) is fixed in the planar state, or the rod-shaped liquid crystal is fixed in the homeotropic aperture. And those utilizing columnar orientation and nematic orientation of discotic liquid crystals, those in which negative uniaxial crystals are oriented in-plane, and biaxially oriented polymer films.
本発明において、 可視光領域 ( 3 8 0 n m〜 7 8 0 n rn ) 以外に選択反射波長 を有するコレステリ ック液晶のブラナー配向状態を固定した Cプレー トは、 コレ ステリ ック液晶の選択反射波長と しては、 可視光領域に色付きなどがないことが , 望ましい。 そのため、 選択反射光が可視領域にない必要がある。 選択反射はコ レ ステリ ックのカイラルピッチと液晶の屈折率によって一義的に決定される。 選択 反射の中心波長の値は近赤外領域にあっても良いが、 旋光の影響などを受けるた め、 やや複雑な現象が発生するため、 3 5 0 n m以下の紫外部にあることがよ り 望ましい。 コレステリ ック液晶層の形成については、 前記した反射偏光子におけ るコレステリ ック層形成と同様に行われる。  In the present invention, the C plate in which the cholesteric liquid crystal having a selective reflection wavelength other than the visible light region (380 nm to 780 nm) has a fixed planar state is a selective reflection of a cholesteric liquid crystal. It is desirable that the wavelength is not colored in the visible light region. Therefore, it is necessary that the selective reflection light is not in the visible region. The selective reflection is uniquely determined by the chiral pitch of the cholesteric and the refractive index of the liquid crystal. The value of the central wavelength of selective reflection may be in the near-infrared region, but it may be in the ultraviolet region of 350 nm or less due to the effects of optical rotation, etc., causing a somewhat complicated phenomenon. More desirable. The formation of the cholesteric liquid crystal layer is performed in the same manner as the formation of the cholesteric layer in the reflective polarizer described above.
本発明における、 ホメオト口ピック配向状態を固定した Cプレー トは、 高温で ネマチック液晶性を示す液晶性熱可塑樹脂または液晶モノマーと必要に応じての 配向助剤を電子線や紫外線などの電離放射線照射や熱によ り重合せしめた重合性 液晶、 またはそれらの混合物が用いられる。 液晶性はリオトロピックでもサーモ トロ ピック性のいずれでもよいが、 制御の簡便性やモノ ドメイ ンの形成しやすさ の観点よ り、 サーモ ト口ピック性の液晶であることが望ま しい。 ホメオトロ ピッ ク配向は、 例えば、 垂直配向膜 (長鎖アルキルシランなど) を形成した膜上に前 記複屈折材料を塗設し、 液晶状態を発現させ固定することによって得られる。 ディスコテイ ツク液晶を用いた Cプレー トと しては、 液晶材料と して面内に分 子の広がり を有したフタロシアニン類や ト リ フエ二レン類化合物のごと く負の 1 軸性を有するディスコティ ック液晶材料を、 ネマチック相やカラムナー相を発現 させて固定したものである。 負の 1軸性無機層状化合物と しては、 たとえば、 特 開平 6 — 8 2 7 7 7号公報などに詳しい。 In the present invention, the C-plate having a fixed homeotropic orbital alignment state is a liquid crystalline thermoplastic resin or a liquid crystal monomer exhibiting nematic liquid crystallinity at a high temperature, and an alignment aid as required, and ionizing radiation such as an electron beam or ultraviolet light. Polymerizable liquid crystal polymerized by irradiation or heat, or a mixture thereof is used. The liquid crystal properties may be either lyotropic or thermotropic, but are easy to control and easy to form a mono domain. From the viewpoint of the above, it is desirable that the liquid crystal is a thermo-pic pickable liquid crystal. The homeotropic alignment can be obtained, for example, by coating the above-mentioned birefringent material on a film on which a vertical alignment film (such as a long-chain alkylsilane) has been formed, and developing and fixing a liquid crystal state. As a C-plate using discotic liquid crystal, the liquid crystal material has a negative uniaxial property like a phthalocyanine or triphenylene compound having a molecular spread in the plane as a liquid crystal material. It is a discotic liquid crystal material that is fixed by developing a nematic phase or a columnar phase. Negative uniaxial inorganic layered compounds are described in detail in, for example, Japanese Patent Application Laid-Open Publication No. Hei 6—8277777.
ポリマーフィルムの 2軸性配向を利用した Cプレー トは、 正の屈折率異方性を 有する高分子フィルムをバランス良く 2軸延伸する方法、 熱可塑樹脂をプレスす る方法、 平行配向した結晶体から切り出す方法などによ り得られる。  C-plates utilizing the biaxial orientation of polymer films include a method of biaxially stretching a polymer film having a positive refractive index anisotropy, a method of pressing a thermoplastic resin, and a crystal with parallel orientation. It can be obtained by the method of cutting out from the.
各層の積層は、 重ね置いただけでも良いが、 作業性や、 光の利用効率の観点よ り各層を接着剤や粘着剤を用いて積層することが望ましい。 その場合、 接着剤ま たは粘着剤は透明で、 可視光域に吸収を有さず、 屈折率は、 各層の屈折率と可及 的に近いことが表面反射の抑制の観点よ り望ましい。 かかる観点よ り 、 例えば、 アク リル系粘着剤などが好ましく用いう る。 各層は、 それぞれ別途配向膜状など でモノ ドメインを形成し、 透光性基材へ転写などの方法によって順次積層してい く方法や、 接着層などを設けず、 配向のために、 配向膜などを適宜形成し、 各層 を順次直接形成して行く ことも可能である。  The layers may be stacked only, but it is preferable that the layers be stacked using an adhesive or a pressure-sensitive adhesive from the viewpoint of workability and light use efficiency. In this case, the adhesive or pressure-sensitive adhesive is transparent, has no absorption in the visible light region, and the refractive index is preferably as close as possible to the refractive index of each layer from the viewpoint of suppressing surface reflection. From this viewpoint, for example, an acrylic pressure-sensitive adhesive is preferably used. Each layer separately forms a monodomain in the form of an alignment film, and is sequentially laminated on a translucent substrate by a method such as transfer, or without an adhesive layer, etc. It is also possible to form each layer appropriately and to sequentially form each layer sequentially.
各層および (粘) 接着層には、 必要に応じて拡散度合い調整用に更に粒子を添 加して等方的な散乱性を付与することや、 紫外線吸収剤、 酸化防止剤、 製膜時の レベリ ング性付与の目的で界面活性剤などを適宜に添加することができる。 本発明の偏光素子 (コレステリ ック液晶積層体) は、 円偏光反射 透過機能を 有するが、 これに; 4板を組み合わせることで透過光線を直線偏光へ変換する 直線偏光素子と して用いることができる。 板と しては、 前記同様のものを 例示できる。  Particles may be added to each layer and the (viscosity) adhesive layer to adjust the degree of diffusion, if necessary, to provide isotropic scattering, or to use an ultraviolet absorber, an antioxidant, A surfactant or the like can be appropriately added for the purpose of imparting a leveling property. Although the polarizing element (cholesteric liquid crystal laminate) of the present invention has a function of reflecting and transmitting circularly polarized light, it can be used as a linear polarizing element for converting transmitted light into linearly polarized light by combining four plates. it can. Examples of the plate include those similar to the above.
λ / 板は単一材料による単層では特定の波長に対してのみ良好に機能するが 、 その他の波長に対しては波長分散特性上、 λ 4板と して機能が低下する問題 がある。 そこで、 λ / 2板と軸角度を規定して積層すれば可視光全域で実用上差 し支えない程度の範囲で機能する広帯域え / 4板と して用いることができる。 こ の場合の各; L 4板、 λ / 2板は同一材料でも良いし上記記述のえ / 4板と同様 の手法で得られる別個の材料によって作製した物を組み合わせても良い。 Although the λ / plate functions well only for a specific wavelength in a single layer made of a single material, there is a problem that the λ / plate has a reduced function as a λ4 plate due to wavelength dispersion characteristics for other wavelengths. Therefore, if lamination is performed with the λ / 2 plate and the axis angle specified, there is a practical difference over the entire visible light range. It can be used as a broadband / 4 board that functions within a range that does not hurt. In this case, the L4 plate and the λ / 2 plate may be the same material, or may be a combination of different materials obtained by the same method as the above-described E / 4 plate.
例えば、 広帯域円偏光板に / 4板 ( 1 4 0 n m ) を積層し、 この軸角度に対 して 1 7 . 5度で; / 2板 ( 2 7 0 n m ) を配置する。 この場合の透過偏光軸は ぇ 4板の軸に対して 1 0度となる。 この貼り合わせ角度は各位相差板の位相差 値によ り変動するので上記の貼り合わせ角度に限定するものではない。  For example, a / 4 plate (140 nm) is laminated on a broadband circularly polarizing plate, and a 1/2 plate (270 nm) is arranged at 17.5 degrees with respect to this axis angle. In this case, the transmission polarization axis is 10 degrees with respect to the axis of the ぇ 4 plate. Since the bonding angle varies depending on the phase difference value of each phase difference plate, the bonding angle is not limited to the above bonding angle.
前記直線偏光素子の透過軸に、 吸収型偏光子をその透過軸方向を合わせて貼り 合わせて用いられる。  An absorptive polarizer is attached to the transmission axis of the linearly polarizing element so that its transmission axis direction is aligned.
(拡散反射板の配置)  (Arrangement of diffuse reflector)
光源たる導光板の下側 (液晶セルの配置面とは反対側) には拡散反射板の配置 が望ましい。 平行光化フィルムにて反射される光線の主成分は斜め入射成分であ り、 平行光化フィルムにて正反射されてパックライ ト方向へ戻される。 こ こで背 面側の反射板が正反射性が高い場合には反射角度が保存され、 正面方向に出射で きずに損失光となる。 従って反射戻り光線の反射角度を保存せず、 正面方向へ散 乱反射成分を増大させるため拡散反射板の配置が望ましい。  It is desirable to arrange a diffuse reflection plate below the light guide plate as the light source (on the side opposite to the liquid crystal cell arrangement surface). The main component of the light beam reflected by the collimating film is an oblique incident component, which is specularly reflected by the collimating film and returned to the pack light direction. Here, if the rear-side reflector has high specular reflectivity, the reflection angle is preserved, and light cannot be emitted in the front direction, resulting in lost light. Therefore, it is desirable to dispose a diffuse reflector in order to increase the diffuse reflection component in the front direction without preserving the reflection angle of the reflected return light beam.
(拡散板の配置)  (Arrangement of diffusion plate)
本発明における平行光化フィルムとバックライ ト光源の間には適当な拡散板を 設置することも望ま しい。 斜め入射し、 反射された光線をバックライ ト導光体近 傍にて散乱させ、 その一部を垂直入射方向へ散乱せしめるこ とで光の再利用効率 が高まるためである。  It is also desirable to provide a suitable diffuser between the collimating film and the backlight light source in the present invention. This is because the light reuse efficiency is enhanced by scattering the light beam obliquely incident and reflected near the backlight light guide and scattering a part of the light beam in the vertical incidence direction.
用いられる拡散板は表面凹凸形状による物の他、 屈折率が異なる微粒子を樹脂 中に包埋する等の方法で得られる。 この拡散板は平行光化フィルムとパックライ ト間に挟み込んでも良いし、 平行光化フィルムに貼り合わせてもよい。  The diffusion plate used can be obtained by embedding fine particles having different refractive indices in a resin, etc., in addition to the one having the uneven surface shape. This diffusion plate may be sandwiched between the collimating film and the pack light, or may be bonded to the collimating film.
平行光化フィルムを貼り合わせた液晶セルをパックライ ト と近接して配置する 場合、 フィルム表面とパックライ トの隙間でニュー トンリ ングが生じる恐れがあ るが、 本発明における平行光化フィルムの導光板側表面に表面凹凸を有する拡散 板を配置することによってニュー トンリ ングの発生を抑制することができる。 ま た、 本発明における平行光化フィルムの表面そのものに凹凸構造と光拡散構造を 兼ねた層を形成しても良い。 If the liquid crystal cell with the collimated film attached is placed in close proximity to the pack light, Newton rings may occur in the gap between the film surface and the pack light. By arranging a diffusion plate having surface irregularities on the side surface, the generation of Newton rings can be suppressed. In addition, the surface itself of the collimating film in the present invention has an uneven structure and a light diffusion structure. A layer that also serves as a layer may be formed.
(視野角拡大フィルムの配置)  (Placement of viewing angle expansion film)
本発明の液晶表示装置における視野角拡大は、 平行光化されたパックライ ト と 組み合わされた、 液晶表示装置から得られる正面近傍の良好な表示特性の光線を 拡散し、 全視野角内で均一で良好な表示特性を得ることによって得られる。 ここで用いられる視野角拡大ブイルムは実質的に後方散乱を有さない拡散板が 用いられる。 拡散板は、 拡散粘着材と して設けることができる。 配置場所は液晶 表示装置の視認側であるが偏光板の上下いずれでも使用可能である。 ただし画素 のにじみ等の影響やわずかに残る後方散乱によるコン トラス ト低下を防止するた めに偏光板〜液晶セル間など、 可能な限りセルに近い層に設けることが望ま しい 。 またこの場合には実質的に偏光を解消しないフィルムが望ましい。 例えば特開 2 0 0 0 - 3 4 7 0 0 6号公報、 特開 2 0 0 0— 3 4 7 0 0 7号公報に開示され ているよ うな微粒子分散型拡散板が好適に用いられる。  The viewing angle expansion in the liquid crystal display device of the present invention is achieved by diffusing light beams having good display characteristics near the front obtained from the liquid crystal display device, which are combined with the parallel-packed pack light, so as to be uniform within the entire viewing angle. It is obtained by obtaining good display characteristics. For the viewing angle widening film used here, a diffusion plate having substantially no back scattering is used. The diffusion plate can be provided as a diffusion adhesive. The placement location is on the viewing side of the liquid crystal display device, but it can be used either above or below the polarizing plate. However, in order to prevent the effects of pixel bleeding and the like and the decrease in contrast due to slightly remaining back scattering, it is desirable to provide the layer as close to the cell as possible, such as between the polarizing plate and the liquid crystal cell. In this case, a film that does not substantially eliminate polarized light is desirable. For example, a fine particle-dispersed diffusion plate as disclosed in JP-A-2000-347706 and JP-A-2007-40707 is preferably used.
偏光板よ り外側に視野角拡大フィルムを位置する場合には液晶層一偏光板まで 平行光化された光線が透過するので T N液晶セルの場合は特に視野角捕償位相差 板を用いなく と もよい。 S T N液晶セルの場合には正面特性のみ良好に補償した 位相差フィルムを用いるだけでよい。 この場合には視野角拡大ブイルムが空気表 面を有するので表面形状による屈折効果によるタイプの採用も可能である。 一方で偏光板と液晶層間に視野角拡大フィルムを揷入する場合には偏光板を透 過する段階では拡散光線となっている。 T N液晶の場合、 偏光子そのものの視野 角特性は補償する必要がある。 この場合には偏光子の視野角特性を捕償する位相 差板を偏光子と視野角拡大フィルムの間に揷入する必要がある。 S T N液晶の場 合には S T N液晶の正面位相差補償に加えて偏光子の視野角特性を捕償する位相 差板を挿入する必要がある。  When the viewing angle widening film is located outside the polarizing plate, the parallelized light passes through the liquid crystal layer and one polarizing plate.Therefore, in the case of a TN liquid crystal cell, a viewing angle compensating phase plate must be used. Is also good. In the case of an STN liquid crystal cell, it is only necessary to use a retardation film in which only the front characteristics are well compensated. In this case, since the viewing angle widening film has an air surface, it is possible to adopt a type using a refraction effect due to the surface shape. On the other hand, when a viewing angle widening film is inserted between the polarizing plate and the liquid crystal layer, the light is diffused at the stage of passing through the polarizing plate. In the case of a TN liquid crystal, it is necessary to compensate for the viewing angle characteristics of the polarizer itself. In this case, it is necessary to insert a retardation plate for compensating the viewing angle characteristics of the polarizer between the polarizer and the viewing angle widening film. In the case of the STN liquid crystal, it is necessary to insert a retardation plate for compensating the viewing angle characteristics of the polarizer in addition to the front phase difference compensation of the STN liquid crystal.
従来から存在するマイクロ レンズアレイフィルムやホログラムフィルムのよ う に、 内部に規則性構造体を有する視野角拡大フィルムの場合、 液晶表示装置のプ ラ ックマ ト リ クスゃ従来のバックライ トの平行光化システムが有するマイク ロ レ ンズアレイ/プリズムァレイ/ルーパー/マイクロ ミ ラーアレイ等の微細構造と 干渉しモアレを生じやすかつた。 しかし本発明における平行光化フィルムは面内 に規則性構造が視認されず、 出射光線に規則性変調が無いので視野角拡大フィル ムとの相性や配置順序を考慮する必要はない。 従って視野角拡大ブイルムは液晶 表示装置の画素ブラックマ ト リ クスと干渉/モアレを発生しなければ特に制限は なく選択肢は広い。 In the case of a viewing angle widening film that has a regular structure inside, such as a microlens array film or hologram film that has existed in the past, the liquid crystal display device's black matrix ゃ parallel light from the conventional backlight It interfered with the microstructure of the system such as micro lens array / prism array / looper / micro mirror array etc. and easily caused moire. However, the collimated film in the present invention is in-plane. Since the regular structure is not visible at all, and there is no regular modulation in the emitted light, there is no need to consider the compatibility with the viewing angle expansion film and the arrangement order. Therefore, the viewing angle widening film has no particular limitation as long as it does not cause interference / moire with the pixel black matrix of the liquid crystal display device, and there are a wide range of options.
本発明においては視野角拡大フィルムと して実質的に後方散乱を有さない、 偏 光を解消しない、 特開 2 0 0 0— 3 4 7 0 0 6号公報、 特開 2 0 0 0— 3 4 7 0 0 7号公報に記載されているよ うな光散乱板で、 ヘイズ 8 0 %〜 9 0 %の物が好 適に用いられる。 その他、 ホログラムシー ト、 マイクロプリズムアレイ、 マイク 口 レンズァレイ等、 内部に規則性構造を有していても液晶表示装置の画素ブラッ クマ ト リ クスと干渉/モアレを形成しなければ使用可能である。  In the present invention, the viewing angle widening film has substantially no backscattering and does not eliminate polarization, and is disclosed in Japanese Patent Application Laid-Open Publication No. 2000-34067 and Japanese Patent Publication No. A light-scattering plate as described in JP-A-347077, which has a haze of 80% to 90%, is suitably used. In addition, even if it has a regular structure inside, such as a hologram sheet, microprism array, microphone opening lens array, etc., it can be used without forming interference / moire with the pixel black matrix of the liquid crystal display device.
なお、 液晶表示装置には、 常法に従って、 各種の光学層等が適宜に用いられて 作製される。 実施例  In addition, the liquid crystal display device is manufactured by appropriately using various optical layers and the like according to an ordinary method. Example
以下、 実施例、 比較例をあげて本発明を説明するが、 本発明はこれらの実施例 に限定されるものではない。  Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
実施例 1  Example 1
光重合性メ ソゲン化合物 (重合性ネマチック液晶モノマー, 上記表 1 の化合物 2 0 , モル吸光係数は、 l d mSm o l ^c m^ S e S n m 2 1 0 0 d m 3m o 1 _1 c m_1@ 3 3 4 n m, 3 6 0 0 0 d m 3m o l .1 c m.1 @ 3 1 4 n m。 純度 > 9 9 %のものを用いた。) 9 4. 8重量部おょぴ重合性カイラル剤 (B A S F 社製 L C 7 5 6 ) 5. 2重量部および溶媒 (シクロペンタノ ン) を選択反射中心 波長が 5 5 0 n mとなるよ う調整配合した溶液に、 その固形分に対し、 光重合開 始剤 (チパスペシャルティケミカルズ社製, ィルガキュア 9 0 7 ) を 3重量%添 加した塗工液 (固形分含有量 3 0重量%) を調製した。 当該塗工液を、 延伸ポリ エチレンテレフタレー トフィルム (配向基材) 上にワイヤーパーを用いて乾燥後 の厚みで 7 μ ηιとなるよ う に塗設し、 溶媒を 1 0 0°Cで 2分間乾燥させた。 得ら れた膜に、 配向基材側から 4 0での空気雰囲気下で第 1紫外線照射を 4 0 mW/ c m2で、 1 . 2秒間行った。 引き続き、 3 °CZ秒の昇温速度で到達温度 9 0 °C まで昇温させながら (到達後には 9 0 °Cで保持しながら)、 第 2紫外線照射を空 気雰囲気下で、 4 mWZ c m2で、 6 0秒間行った。 次いで、 5 0 °Cの窒素雰囲 気下で配向基材側から第 3紫外線照射を 6 0 mWZ c m2で、 1 0秒間行い、 選 択波長が 4 2 5〜 9 O 0 n mの広帯域コレステリ ック液晶フィルムを得た。 広帯 域コ レステ リ ック液晶フィルムの反射スぺク トルを図 4 に示す。 Photopolymerizable main Sogen compound (polymerizable nematic liquid crystal monomer, compounds 2 0 of Table 1, the molar extinction coefficient, ld mSm ol ^ cm ^ S e S nm 2 1 0 0 dm 3 mo 1 _1 cm _1 @ 3 3 4 nm, 3 6 0 0 0 dm 3 mol. 1 c m. 1 @ 3 1 4 nm. purity> 99% of was used.) 9 4.8 parts by weight Contact Yopi polymerizable chiral agent (BASF LC756) 5.2 parts by weight and a solvent (cyclopentanone) adjusted and blended so that the selective reflection center wavelength becomes 550 nm, and the photopolymerization initiator ( A coating liquid (solid content: 30% by weight) was prepared by adding 3% by weight of Irgacure 907) manufactured by Chipa Specialty Chemicals. The coating liquid is applied on a stretched polyethylene terephthalate film (oriented substrate) using a wire par so that the thickness after drying is 7 μηι, and the solvent is applied at 100 ° C. Dried for minutes. The obtained film was irradiated with first ultraviolet rays at 40 mW / cm 2 for 1.2 seconds in an air atmosphere at 40 from the alignment substrate side. Continue at 90 ° C with a heating rate of 3 ° CZ seconds The second UV irradiation was carried out in an air atmosphere at 4 mWZ cm 2 for 60 seconds while the temperature was raised up to 90 ° C. (after reaching 90 ° C.). Next, in a nitrogen atmosphere at 50 ° C, third ultraviolet irradiation was performed from the alignment substrate side at 60 mWZ cm 2 for 10 seconds, and the selected wavelength was 425 to 90 nm broadband cholesteric. A liquid crystal film was obtained. Figure 4 shows the reflection spectrum of the broadband cholesteric liquid crystal film.
得られた広帯域コ レステ リ ック液晶フィルム (円偏光反射板) の上部へ、 透光 性の接着剤を用いて、 負の 2軸性位相差板を転写した。 この負の 2軸性位相差板 は、 下記方法によ り得た。 すなわち、 光重合性ネマチック液晶モノマー ( B A S F社製, L C 2 4 2 ) 9 3重量部、 重合性カイラル剤 (B A S F社製 L C 7 5 6 ) 7重量部に 3 0重量。 /0濃度となるよ うに溶媒と してシクロへキサノ ンを加え、 また選択反射中心波長が 3 5 0 n mとなるよ う調整配合した後、 前述の固形分に 対して光重合開始剤と してィルガキュア 9 0 7を 5重量%添加した塗工液を調製 し、 上記溶液を、 延伸ポリエチレンテレフタ レー ト基材にワイヤーバーを用いて 乾燥後の厚みで 4 /z mとなるよ うに塗設し、 溶媒を 1 0 0 °C、 2分間で乾燥した 。 その後、 一度この液晶モノマーの等方性転移温度まで温度を上げた後、 徐々に 冷却して、 均一な配向状態を有した層を形成した。 得られた層に、 5 0 mWZ c m 5秒間行い配向状態を固定するこ とで得た。 この負の 2軸性位相差板の位 相差を測定したと ころ 5 5 O n mの波長の光に対して正面方向では 2 n m、 3 0 。 傾斜させて測定したときの位相差は 1 2 0 n mであった。 なお、 位相差の測定 は、 O j i S c i e n t i f i c I n s t r u m e n t s社製の K O B R A 一 2 1 AD Hによ り行った。 Using a translucent adhesive, a negative biaxial retardation plate was transferred onto the upper part of the obtained broadband cholesteric liquid crystal film (circularly polarizing reflector). This negative biaxial retardation plate was obtained by the following method. That is, 93 parts by weight of a photopolymerizable nematic liquid crystal monomer (manufactured by BASF, LC224), and 30 parts by weight of 7 parts by weight of a polymerizable chiral agent (LC755, manufactured by BASF). / 0 as a by Uni solvent to a concentration Kisano down the added cyclohexane and was compounded adjusted power sale by selective reflection center wavelength is 3 5 0 nm, and a photopolymerization initiator for the solid content of the above A coating solution containing 5% by weight of irgacure 907 was prepared, and the above solution was applied to a stretched polyethylene terephthalate substrate using a wire bar so that the thickness after drying was 4 / zm. Then, the solvent was dried at 100 ° C. for 2 minutes. Thereafter, the temperature was once raised to the isotropic transition temperature of the liquid crystal monomer, and then gradually cooled to form a layer having a uniform alignment state. The obtained layer was obtained by fixing the alignment state by performing 50 mWZcm for 5 seconds on the obtained layer. When the phase difference of this negative biaxial retardation plate was measured, it was 2 nm and 30 in the front direction with respect to light having a wavelength of 55 O nm. The phase difference measured at an inclination was 120 nm. The measurement of the phase difference was performed by KOBRA-121 ADH manufactured by Oji Scientific Instruments.
さ らにこの上部に同じく透光性の接着剤を用いて、 上記同様の円偏光反射板を 転写して積層し、 偏光素子を得た。 得られた偏光素子に、 ポリカーボネ一 トフィ ルムを一軸延伸して得られた; I 4板 (正面位相差 1 4 0 n m) を接着して直線 偏光素子を得た。 この直線偏光素子に、 偏光板 (日東電工社製, T E G 1 4 6 5 D U) を透過軸方向が一致するよ うに貼り合わせ、 偏光板一体型偏光素子を得た 実施例 2  Further, a circularly polarized light reflecting plate similar to that described above was transferred and laminated on the upper portion using the same light-transmitting adhesive to obtain a polarizing element. A polycarbonate film was uniaxially stretched to the obtained polarizing element; an I4 plate (front retardation: 140 nm) was adhered to obtain a linear polarizing element. A polarizing plate (manufactured by Nitto Denko Corporation, TEG1465DU) was attached to the linear polarizing element so that the transmission axis directions were aligned, and a polarizing plate integrated polarizing element was obtained.
実施例 1 で調製した塗工液を、 延伸ポリエチレンテレフタ レー トフィルム (配 向基材) 上にワイヤーパーを用いて乾燥後の厚みで となるよ う に塗設し、 溶媒を 1 0 0 °Cで 2分間乾燥させた。 得られた膜に、 配向基材側から 4 0 °Cの空 気雰囲気下で第 1紫外線照射を 4 0 mW/ c m2で、 1. 2秒間行った。 引き続 き、 1 ◦ °CZ秒の昇温速度で 9 0 °Cまで昇温させながら (到達後には 9 0 °Cで保 持しながら)、 第 2紫外線照射を空気雰囲気下で、 4 mW/ c m2で、 6 0秒間行 つた。 次いで、 5 0 °Cの窒素雰囲気下で配向基材側から第 3紫外線照射を 6 0 m W/ c m2で、 1 0秒間行い、 選択波長が 4 3 0〜 9 0 0 n mの広帯域コ レステ リ ック液晶フィルムを得た。 広帯域コレステリ ック液晶フィルムの反射スぺク ト ルを図 5 に示す。 The coating liquid prepared in Example 1 was applied to a stretched polyethylene terephthalate film The substrate was coated with a wire par so as to have a thickness after drying, and the solvent was dried at 100 ° C. for 2 minutes. The obtained film was subjected to first ultraviolet irradiation at 40 mW / cm 2 for 1.2 seconds in an air atmosphere at 40 ° C. from the alignment substrate side. Then, while raising the temperature to 90 ° C at a temperature rising rate of 1 ° CZ second (while maintaining the temperature at 90 ° C after reaching the temperature), the second UV irradiation was performed in an air atmosphere at 4 mW. 60 cm / cm 2 . Then, at 5 0 ° 6 0 the third ultraviolet radiation from the alignment substrate side under a nitrogen atmosphere at C m W / cm 2, 1 performs 0 seconds, broadband co Leste selected wavelength is 4 3 0 to 9 0 0 nm A liquid crystal film was obtained. Figure 5 shows the reflection spectrum of the broadband cholesteric liquid crystal film.
得られた広帯域コ レステリ ック液晶フィルム (円偏光反射板) の上部へ、 透光 性の接着剤を用いて、 実施例 1 と同様の負の 2軸性位相差板を転写した。 さ らに この上部に同じく透光性の接着剤を用いて、 上記同様の円偏光反射板を転写して 積層し、 偏光素子を得た。 得られた偏光素子に、 ポリカーボネー トフィルムを一 軸延伸して得られた λ / 4板 (正面位相差 1 4 0 n m) を接着して直線偏光素子 を得た。 さ らに、 その; Iノ 4板上に、 ポリカーボネー トフィルムを一軸延伸して 得られた; I 2板 (正面位相差 2 7 0 n m) を接着して直線偏光素子を得た。 こ の直線偏光素子に、 偏光板 ( 3東電工社製, T E G 1 4 6 5 DU) を透過軸方向 がー致するよ うに貼り合わせ、 偏光板一体型偏光素子を得た。 これらの積層は、 え 4板、 ぇ 2板の延伸軸 (遅相軸) と偏光板の延伸軸 (吸収軸) の角度が、 図 3に示すよ う に行った。 図 3において、 P Lは吸収型偏光板、 C 1 は λ / 4板 (正面位相差 1 4 0 n m)、 C 2は λΖ2板 (正面位相差 2 7 0 n m)、 を示す。 P Lの矢印は延伸軸 (長辺方向) を示す、 0 1 は 1 7. 5 ° 、 0 2は 8 0 ° であ る。  Using a translucent adhesive, a negative biaxial retardation plate similar to that of Example 1 was transferred onto the obtained broadband cholesteric liquid crystal film (circularly polarizing reflector). Further, a circularly-polarized light reflecting plate similar to the above was transferred and laminated on the upper portion using the same translucent adhesive to obtain a polarizing element. A λ / 4 plate (front retardation: 140 nm) obtained by uniaxially stretching a polycarbonate film was adhered to the obtained polarizing element to obtain a linear polarizing element. Further, a polycarbonate film was uniaxially stretched on an I-4 plate; and an I2 plate (front retardation: 270 nm) was adhered to obtain a linearly polarizing element. A polarizing plate (manufactured by TOKYO ELECTRIC CO., LTD., TEG1465DU) was bonded to the linear polarizing element so that the direction of the transmission axis was aligned to obtain a polarizing element integrated with the polarizing plate. The lamination was performed as shown in FIG. 3 in which the angle between the stretching axis (slow axis) of the four or two plates and the stretching axis (absorption axis) of the polarizing plate was set. In FIG. 3, P L denotes an absorption type polarizing plate, C 1 denotes a λ / 4 plate (front retardation: 140 nm), and C 2 denotes a λΖ2 plate (front retardation: 2700 nm). The arrow of PL indicates the stretching axis (long side direction), where 0 is 17.5 ° and 02 is 80 °.
実施例 3  Example 3
光重合性メ ソゲン化合物 (重合性ネマチック液晶モノマー, 上記表 1 の化合物 2 0 , モノレ吸光係数は、 l d mSm o l -i c m— 1@ 3 6 5 n m、 2 1 0 0 d m 3m o 1 _1 c m_1@ 3 3 4 n m , 3 6 0 0 0 d m3m o l— 一1 @ 3 1 4 n m。) 9 4 . 8重量部および重合性カイラル剤 (B A S F社製 L C 7 5 6 ) 5. 2重量部お よび溶媒 (シクロペンタノ ン) を選択反射中心波長が 5 5 0 n mとなるよ う調整 配合した溶液に、 その固形分に対し、 光重合開始剤 (チバスペシャルティケミカ ルズ社製, ィルガキュア 3 6 9 ) を 0.. 3重量%添加した塗工液 (固形分含有量 3 0重量0 /0) を調製した。 当該塗工液を、 延伸ポリ エチレンテレフタ レー トフィ ルム (配向基材) 上にワイヤーパーを用いて乾燥後の厚みで 7 μ mとなるよ うに 塗設し、 溶媒を 1 0 0 °Cで 2分間乾燥させた。 得られた膜に、 配向基材側から 4 0 °Cの空気雰囲気下で第 1紫外線照射を 4 0 mW/ c m2で、 1. 2秒間行った 。 引き続き、 3 °C/秒の昇温速度で 9 0°Cまで昇温させながら (到達後には 9 0 °Cで保持しながら)、 第 2紫外線照射を空気雰囲気下で、 4,mWZ c m2で、 3 0 秒間行った。 次いで、 5 0 °Cの窒素雰囲気下で配向基材側から第 3紫外線照射を 6 0 mW/ c m2で、 1 0秒間行い、 選択波長が 4 2 0〜 9 2 5 n mの広帯域コ レステ リ ック液晶フィルムを得た。 広帯域コ レステリ ック液晶フィルムの反射ス ぺク トノレを図 6 に示す。 Photopolymerizable mesogen compound (Polymerizable nematic liquid crystal monomer, compound 20 in Table 1 above, monolith extinction coefficient is ld mSol -icm— 1 @ 365 nm, 2100 dm 3 mo 1 _1 cm _1 @ 3 3 4 nm, 3 6 0 0 0 dm 3 mol- one 1 @ 3 1 4 nm.) 9 4. 8 parts by weight of the polymerizable chiral agent (BASF Corp. LC 7 5 6) 5. 2 parts by weight Contact And solvent (cyclopentanone) are adjusted so that the central reflection wavelength is 550 nm. The formulation solution, the solid content with respect to a photopolymerization initiator (Ciba Specialty Chemicals Luz Co., Irugakyua 3 6 9) 0 .. 3 wt% added with the coating solution (solid content 3 0 wt 0 / 0 ) was prepared. The coating liquid is applied on a stretched polyethylene terephthalate film (alignment substrate) using a wire par so that the thickness after drying is 7 μm, and the solvent is heated at 100 ° C. Dry for 2 minutes. The obtained film was subjected to first ultraviolet irradiation at 40 mW / cm 2 for 1.2 seconds in an air atmosphere at 40 ° C. from the alignment substrate side. Then, while raising the temperature to 90 ° C at a heating rate of 3 ° C / sec (while maintaining the temperature at 90 ° C after reaching the temperature), the second ultraviolet irradiation was performed in an air atmosphere at 4, mWZ cm 2 For 30 seconds. Then, 5 from 0 ° oriented substrate side under a nitrogen atmosphere at C the third ultraviolet irradiation at 6 0 mW / cm 2, 1 performs 0 seconds, selected wavelengths 4 2 0~ 9 2 5 nm broadband co Leste Li A liquid crystal film was obtained. Figure 6 shows the reflection spectrum of a broadband cholesteric liquid crystal film.
得られた広帯域コ レステリ ック液晶フィルム (円偏光反射板) の上部へ、 透光 性の接着剤を用いて、 実施例 1 と同様の負の 2軸性位相差板を転写した。 さ らに この上部に同じく透光性の接着剤を用いて、 上記同様の円偏光反射板を転写して 積層し、 偏光素子を得た。 得られた偏光素子に、 ポリカーボネー トフィルムを二 軸延伸して得られた λノ 4板 (正面位相差 1 2 5 n m, N z係数が一 1 . 0 ) を 接着して直線偏光素子を得た。 この直線偏光素子に、 偏光板 (日東電工社製, T E G 1 4 6 5 DU) を透過軸方向が一致するよ うに貼り合わせ、 偏光板一体型偏 光素子を得た。  Using a translucent adhesive, a negative biaxial retardation plate similar to that of Example 1 was transferred onto the obtained broadband cholesteric liquid crystal film (circularly polarizing reflector). Further, a circularly-polarized light reflecting plate similar to the above was transferred and laminated on the upper portion using the same translucent adhesive to obtain a polarizing element. A λ-no. 4 plate (front retardation: 125 nm, Nz coefficient: 11.0) obtained by biaxially stretching the polycarbonate film was adhered to the obtained polarizing element to obtain a linear polarizing element. Was. A polarizing plate (manufactured by Nitto Denko Corporation, TEG1465DU) was bonded to the linear polarizing element so that the transmission axis directions coincided with each other to obtain a polarizing plate-integrated polarizing element.
実施例 4  Example 4
光重合性メ ソゲン化合物 (重合性ネマチック液晶モノマー, 上記表 1 の化合物 3 , モル吸光係数は、 0. l d mSm o l -i c m— 1@ 3 6 5 n m、 2 2 0 0 d m3 m o l 一1 c m一1 @ 3 3 4 n m、 3 7 0 0 0 d m3m o l _1c m_1@ 3 1 4 n m。) 9 4. 8重量部おょぴ重合性カイラル剤 (B A S F社製 L C 7 5 6 ) 5. 2重量部 および溶媒 (シクロペンタノ ン) を選択反射中心波長が 5 5 0 n mとなるよ う調 整配合した溶液に、 その固形分に対し、 光重合開始剤 (チパスペシャルティケミ カルズ社製, ィルガキュア 9 0 7 ) を 3重量%添加した塗工液 (固形分含有量 3 0重量0 /。) を調製した。 当該塗工液を、 延伸ポリエチレンテレフタ レー トフィル ム (配向基材) 上にワイヤーバーを用いて乾燥後の厚みで 7 μ ΐηとなるよ うに塗 設し、 溶媒を 1 0 0 °Cで 2分間乾燥させた。 得られた膜に、 配向基材側から 4 0 °Cの空気雰囲気下で第 1紫外線照射を 5 0 mW/ c m2で、 2. 2秒間行った。 引き続き、 3 °CZ秒の昇温速度で 9 0 °Cまで昇温させながら (到達後には 9 0 °C で保持しながら)、 第 2紫外線照射を空気雰囲気下で、 4 mWZ c m2で、 6 0秒 間行った。 次いで、 5 0 °Cの窒素雰囲気下で配向基材側から第 3紫外線照射を 6 0 mW/ c m2で、 1 0秒間行い、 選択波長が 4 5 5〜 9 3 O n mの広帯域コ レ ステリ ック液晶フィルムを得た。 広帯域コレステリ ック液晶フィルムの反射スぺ ク トルを図 7に示す。 Photopolymerizable mesogen compound (Polymerizable nematic liquid crystal monomer, Compound 3 in Table 1 above, molar extinction coefficient is 0.1 ld mSmol -icm— 1 @ 365 nm, 220 nm dm 3 mol 1 cm 1 @ 3 334 nm, 3700 dm 3 mol _1 cm _1 @ 314 nm.) 94.8 parts by weight of polymerizable chiral agent (LC756 manufactured by BASF) 5. 2 parts by weight and a solvent (cyclopentanone) were adjusted and blended so that the central wavelength of selective reflection was 550 nm. The solid content of the solution was adjusted with a photopolymerization initiator (Chipa Specialty Chemicals Co., Ltd. A coating liquid (solid content 30 wt. 0 /.) Was prepared by adding 3 wt. Apply the coating solution to a stretched polyethylene terephthalate film Using a wire bar, a coating was applied on a substrate (alignment substrate) so that the thickness after drying was 7 μΐη, and the solvent was dried at 100 ° C for 2 minutes. The obtained film was subjected to first ultraviolet irradiation at 50 mW / cm 2 for 2.2 seconds in an air atmosphere at 40 ° C. from the alignment substrate side. Then, while raising the temperature to 90 ° C at a heating rate of 3 ° CZ seconds (while maintaining the temperature at 90 ° C after reaching the temperature), the second ultraviolet irradiation was performed in an air atmosphere at 4 mWZ cm 2 , Performed for 60 seconds. Then, at 5 0 ° the third ultraviolet radiation from the alignment substrate side under a nitrogen atmosphere at C 6 0 mW / cm 2, 1 performs 0 seconds, broadband Collector Steri selected wavelength is 4 5 5~ 9 3 O nm A liquid crystal film was obtained. FIG. 7 shows the reflection spectrum of the broadband cholesteric liquid crystal film.
比較例 1  Comparative Example 1
実施例 1で調製した塗工液を、 延伸ポリエチレンテレフタ レー トフィルム (配 向基材) 上にワイヤーバーを用リ、て乾燥後の厚みで となるよ うに塗設し、 溶媒を 1 0 0 °Cで 2分間乾燥させた。 得られた膜に、 配向基材側から 6 0 °Cの空 気雰囲気下で第 1紫外線照射を 5 0 mW/ c m2で、 1 0秒間行った。 次いで、 5 0 °Cの窒素雰囲気下で配向基材側から紫外線照射を 6 0 mW/ c m2で、 1 0 秒間行い、 選択波長が 4 3 5〜 8 3 5 n mの広帯域コ レステ リ ック液晶フィルム を得た。 広帯域コレステリ ック液晶フィルムの反射スぺク トルを図 8 に示す,。 得られた広帯域コ レステリ ック液晶フィルム (円偏光反射板) の上部へ、 透光 性の接着剤を用いて、 実施例 1 と同様の負の 2軸性位相差板を転写した。 さ らに この上部に同じく透光性の接着剤を用いて、 上記同様の円偏光反射板を転写して 積層し、 偏光素子を得た。 得られた偏光素子に、 ポリカーボネー トフィルムを一 軸延伸して得られた λ 4板 (正面位相差 1 4 O n m) を接着して直線偏光素子 を得た。 この直線偏光素子に、 偏光板 (日東電工社製, T E G 1 4 6 5 DU) を 透過軸方向が一致するよ うに貼り合わせ、 偏光板一体型偏光素子を得た。 The coating solution prepared in Example 1 was applied on a stretched polyethylene terephthalate film (directing substrate) using a wire bar so as to have a thickness after drying, and the solvent was added to the solution. Dried at ° C for 2 minutes. The obtained film was irradiated with first ultraviolet rays at 50 mW / cm 2 for 10 seconds in an air atmosphere at 60 ° C. from the alignment substrate side. Then, at 5 0 ° UV irradiating 6 0 mW / cm 2 from the alignment substrate side under a nitrogen atmosphere at C, 1 performs 0 seconds, broadband co Leste click selection wavelengths 4 3 5~ 8 3 5 nm A liquid crystal film was obtained. Figure 8 shows the reflection spectrum of a broadband cholesteric liquid crystal film. Using a translucent adhesive, a negative biaxial retardation plate similar to that of Example 1 was transferred onto the obtained broadband cholesteric liquid crystal film (circularly polarizing reflector). Further, a circularly-polarized light reflecting plate similar to the above was transferred and laminated on the upper portion using the same translucent adhesive to obtain a polarizing element. A λ4 plate (front retardation: 14 O nm) obtained by uniaxially stretching a polycarbonate film was adhered to the obtained polarizing element to obtain a linear polarizing element. A polarizing plate (manufactured by Nitto Denko Corporation, TEG1465DU) was attached to the linear polarizing element so that the transmission axis directions were aligned, to obtain a polarizing plate integrated polarizing element.
比較例 2  Comparative Example 2
実施例 1で調製した塗工液を、 延伸ポリエチレンテレフタ レー トフィルム (配 向基材) 上にワイヤーパーを用いて乾燥後の厚みで 7 μ πιとなるよ うに塗設し、 溶媒を 1 0 0 °Cで 2分間乾燥させた。 得られた膜に、 配向基材側から 4 0 °Cの空 気雰囲気下で第 1紫外線照射を 4 0 mW/ c m2で、 1. 2秒間行った。 引き続 き、 3 °C/秒の昇温速度で 9 0 °Cまで昇温させ、 9 0 °Cに到達後には 9 0 °Cで、 空気雰囲気下で、 2 0秒間処理を行った。 次いで、 5 0 °Cの窒素雰囲気下で配向 基材側から紫外線照射を 6 0 mWZ c m2で、 1 0秒間行い、 選択波長が 4 1 5 - 7 1 0 n mの広帯域コ レステリ ック液晶フィルムを得た。 広帯域コ レステリ ッ ク液晶フィルムの反射スペク トルを図 9に示す。 The coating solution prepared in Example 1 was applied on a stretched polyethylene terephthalate film (directing substrate) using a wire par so that the thickness after drying was 7 μπι, and the solvent was added to the solution. Dry at 0 ° C for 2 minutes. The obtained film was subjected to first ultraviolet irradiation at 40 mW / cm 2 for 1.2 seconds in an air atmosphere at 40 ° C. from the alignment substrate side. Continue Then, the temperature was raised to 90 ° C. at a rate of 3 ° C./second, and after reaching 90 ° C., treatment was performed at 90 ° C. in an air atmosphere for 20 seconds. Next, UV irradiation from the alignment substrate side was performed at 60 mWZ cm 2 for 10 seconds in a nitrogen atmosphere at 50 ° C, and the selected wavelength was 415-710 nm, a broadband cholesteric liquid crystal film. Got. Figure 9 shows the reflection spectrum of a broadband cholesteric liquid crystal film.
得られた広帯域コ レステリ ック液晶フィルム (円偏光反射板) の上部へ、 透光 性の接着剤を用いて、 実施例 1 と同様の負の 2軸性位相差板を転写した。 さ らに この上部に同じく透光性の接着剤を用いて、 上記同様の円偏光反射板を転写して 積層し、 偏光素子を得た。 得られた偏光素子に、 ポリカーボネー トフィルムを一 軸延伸して得られた; I / 4板 (正面位相差 1 4 0 n m) を接着して直線偏光素子 を得た。 この直線偏光素子に、 偏光板 (日東電工社製, T E G 1 4 6 5 DU) を 透過軸方向が一致するよ うに貼り合わせ、 偏光板一体型偏光素子を得た。  Using a translucent adhesive, a negative biaxial retardation plate similar to that of Example 1 was transferred onto the obtained broadband cholesteric liquid crystal film (circularly polarizing reflector). Further, a circularly-polarized light reflecting plate similar to the above was transferred and laminated on the upper portion using the same translucent adhesive to obtain a polarizing element. A polycarbonate film was uniaxially stretched to the obtained polarizing element; an I / 4 plate (front retardation: 140 nm) was adhered to obtain a linear polarizing element. A polarizing plate (manufactured by Nitto Denko Corporation, TEG1465DU) was attached to the linear polarizing element so that the transmission axis directions coincided with each other to obtain a polarizing plate integrated polarizing element.
比較例 3  Comparative Example 3
実施例 1で調製した塗工液を、 延伸ポリエチレンテレフタ レ一 トフイルム (配 向基材) 上にワイヤーパーを用いて乾燥後の厚みで 7 ^ mとなるよ う に塗設し、 溶媒を 1 0 0 °Cで 2'分間乾燥させた。 得られた膜に、 配向基材側から 4 0 °Cの空 気雰囲気下で第 1紫外線照射を 4 0 mW/ c m2で、 1. 2秒間行った。 引き続 き、 3 °C/秒の昇温速度で 9 0 °Cまで昇温させながら (到達後には 9 0 °Cで保持 しながら)、 紫外線照射を空気雰囲気下で、 4 mW/ c m2で、 6 0秒間行い、 選 択波長が 4 2 5〜 9 0 O n mの広帯域コレステリ ック液晶フィルムを得た。 広帯 域コレステリ ック液晶フィルムの反射スぺク トルを図 1 0に示す。 The coating solution prepared in Example 1 was applied on a stretched polyethylene terephthalate film (directing substrate) using a wire par so that the thickness after drying was 7 m, and the solvent was removed. Dry at 100 ° C. for 2 ′ minutes. The obtained film was subjected to first ultraviolet irradiation at 40 mW / cm 2 for 1.2 seconds in an air atmosphere at 40 ° C. from the alignment substrate side. Then, while increasing the temperature to 90 ° C at a rate of 3 ° C / sec (while maintaining the temperature at 90 ° C after reaching the temperature), ultraviolet irradiation was performed in an air atmosphere at 4 mW / cm 2. For 60 seconds to obtain a broadband cholesteric liquid crystal film having a selected wavelength of 425 to 90 O nm. Figure 10 shows the reflection spectrum of the broadband cholesteric liquid crystal film.
得られた広帯域コレステリ ック液晶フィルム (円偏光反射板) の上部へ、 透光 性の接着剤を用いて、. 実施例 1 と同様の負の 2軸性位相差板を転写した。 さ らに この上部に同じく透光性の接着剤を用いて、 上記同様の円偏光反射板を転写して 積層し、 偏光素子を得た。 得られた偏光素子に、 ポリカーボネー トフィルムを一 軸延伸して得られたえ / 4板 (正面位相差 1 4 O n m) を接着して直線偏光素子 を得た。 この直線偏光素子に、 偏光板 (日東電工社製, T E G 1 4 6 5 D U) を 透過軸方向が一致するよ うに貼り合わせ、 偏光板一体型偏光素子を得た。  Using a translucent adhesive, a negative biaxial retardation plate similar to that in Example 1 was transferred onto the obtained broadband cholesteric liquid crystal film (circularly polarizing reflector). Further, a circularly-polarized light reflecting plate similar to the above was transferred and laminated on the upper portion using the same translucent adhesive to obtain a polarizing element. The obtained polarizing element was bonded with a quarter plate (front retardation: 14 Onm) obtained by uniaxially stretching a polycarbonate film to obtain a linear polarizing element. A polarizing plate (manufactured by Nitto Denko Corporation, TEG1465DU) was attached to this linear polarizing element so that the transmission axis directions coincided with each other to obtain a polarizing plate integrated polarizing element.
(液晶表示装置) 各例で得られた偏光板一体型偏光素子を T F Τ— L C Dの下板と して用い、 一 方、 上板側にはアク リル系粘着材 (厚み 2 5 /i m, 屈折率 1 . 4 7 ) 中に球状シ リカ粒子 (屈折率 1 . 4 4 , 直径 4 / m) を 2 0重量%包埋した光散乱性粘着材 (ヘイズ 8 0 %) を用いて偏光板 (日東電工社製, T E G 1 4 6 5 DU) を積層 した。 (Liquid crystal display) The polarizing plate integrated with the polarizing plate obtained in each example was used as the lower plate of the TFΤ-LCD, while the upper plate side was made of an acrylic adhesive (thickness 25 / im, refractive index 1.4). 7) A polarizing plate (manufactured by Nitto Denko Corporation) using a light scattering adhesive (haze 80%) in which spherical silica particles (refractive index: 1.44, diameter: 4 / m) are embedded at 20% by weight. , TEG 1465 DU).
また、 下面に微細プリズム構造を有した導光体の側面に直径約 3 mmの冷陰極 管を配置し、 銀蒸着ポリエチレンテレフタレー トフィルムから成る光源ホルダで 力パーした。 導光板の下面には銀蒸着ポリエチレンテレフタレ一 トフイルム反射 板を配置し、 導光板上面にはスチレンビーズから成る散乱層を表面に形成したポ リエチレンテレフタ レー トフィルムを配置した。 これを、 光源と して、 偏光板一 体型偏光素子の下側に配置した。  A cold-cathode tube with a diameter of about 3 mm was placed on the side of a light guide having a fine prism structure on the lower surface, and the light source holder was made of a silver-evaporated polyethylene terephthalate film. A silver-evaporated polyethylene terephthalate film reflection plate was disposed on the lower surface of the light guide plate, and a polyethylene terephthalate film having a scattering layer made of styrene beads formed on the surface was disposed on the upper surface of the light guide plate. This was disposed as a light source below the polarizing plate integrated with the polarizing element.
実施例 1、 3、 比較例 1〜 3の偏光板一体型偏光素子を用いた場合が図 1であ り、 実施例 2の偏光板一体型偏光素子を用いた場合が図 2である。 図 1、 図 2に おいて、 P Lは吸収型偏光板、 Dは視野角拡大フィルム (拡散粘着材)、 L Cは 液晶セル、 C 1 は; 4板、 C 2はえ 2板、 Aは反射偏光子 ( a ) : 円偏光板 、 Bは位相差板 ( b ) : C—プレー ト、 Sはサイ ドライ ト型導光板、 Rは拡散反 射板を示す。 また Xは偏光素子、 Yは直線偏光素子、 Zは偏光一体型直線偏光素 子を示す。 なお、 実施例 4は、 選択反射波長帯域および帯域巾 ピッチ 変化についてのみ評価した。  FIG. 1 shows a case in which the polarizing plate integrated type polarizing elements of Examples 1 and 3 and Comparative Examples 1 to 3 are used, and FIG. 2 shows a case in which the polarizing plate integrated type polarizing element of Example 2 is used. In Figures 1 and 2, PL is an absorption polarizer, D is a viewing angle widening film (diffusion adhesive), LC is a liquid crystal cell, C1 is 4 plates, C2 is 2 plates, and A is reflection. Polarizer (a): Circular polarizer, B: retarder (b): C-plate, S: thyroid type light guide plate, R: diffusion reflector. X indicates a polarization element, Y indicates a linear polarization element, and Z indicates a polarization-integrated linear polarization element. In Example 4, only the selective reflection wavelength band and the change in the bandwidth pitch were evaluated.
<評価方法 >  <Evaluation method>
上記で得られた広帯域コレステリ ック液晶フィルム (円偏光反射板)、 偏光板 一体型偏光素子について下記評価を行った。 結果を表 2に示す。 なお、 実施例お よび比較例の各工程の条件も表 2に示す。  The broadband cholesteric liquid crystal film (circularly polarizing reflector) and the polarizing plate integrated polarizing element obtained above were evaluated as follows. Table 2 shows the results. Table 2 also shows the conditions of each step in the examples and comparative examples.
(選択反射波長帯域および帯域巾 (Δ λ ))  (Selective reflection wavelength band and bandwidth (Δλ))
広帯域コレステリ ック液晶フィルムの反射スぺク トルを分光光度計 (大塚電子 株式会社製, 瞬間マルチシステム MC P D 2 0 0 0 ) にて測定し、 選択反射波長 帯域おょぴ半値巾△ λを求めた。 半値巾 Δ λは、 最大反射率の半分の反射率にお ける反射帯域と した。 (ピッチ変化) The reflection spectrum of the broadband cholesteric liquid crystal film was measured with a spectrophotometer (Otsuka Electronics Co., Ltd., Instantaneous Multi-System MC PD 2000), and the selective reflection wavelength band was approximately half-value width λλ. I asked. The half-value width Δλ was set as the reflection band at half the reflectance of the maximum reflectance. (Pitch change)
広帯域コレステリ ック液晶フィルムの紫外線照射面近傍 (紫外線照射面から 1 μ πι下層) と、 空気界面近傍 (空気界面から 1 m下層) およびその中間のピッ チ長を断面 T EM写真によ り測定した。  Cross-sectional TEM photographs measure the pitch near the UV-irradiated surface of the broadband cholesteric liquid crystal film (1 μππ below the UV-irradiated surface), near the air interface (1 m below the air interface), and the intermediate pitch. did.
(信頼性)  (reliability)
広帯域コ レステリ ック液晶フィルムを、 8 0 °C、 および 6 0 °Cで 9 0 % R Hの 信頼性試験にそれぞれ 5 0 0時間投入したときに、 表面に粉状物質の析出が認め られるか否かを評価した。  When a wideband cholesteric liquid crystal film is put into a reliability test of 90% RH at 80 ° C and 60 ° C for 500 hours each, does powdery substance precipitate on the surface? Was evaluated.
〇 : 析出物なし。 〇: No precipitate.
X : 析出物あり。 X: There is a precipitate.
(正面輝度)  (Front brightness)
偏光板一体型偏光素子の偏光板側が上になるよ う に ドッ ト印刷型バックライ ト 上に配置して輝度計 (T O P C O N製, B M- 7 ) によ り評価した。  The polarizing plate integrated polarizing element was placed on a dot-printing backlight with the polarizing plate side facing up, and evaluated with a luminance meter (TOPCON, BM-7).
(斜めの色調変化)  (Slanted color change)
液晶表示装置の斜めの色調変化を、 E L D I M社製視野角測定器 E Z _ C O N T RA S Tによ り下記基準で評価した。  The oblique change in color tone of the liquid crystal display device was evaluated by a viewing angle measuring instrument EZ_CONTRAST manufactured by ELDIM, according to the following criteria.
Δ X y = ( ( x o- i) 2+ ( Y o- 7 i) 2) °.5 Δ X y = ((x o- i) 2 + (Y o- 7 i) 2 ) °. 5
正面色度 ( x。, y。)、 斜め。 ± 6 0 ° からの色度 ( X ly i) Front chromaticity (x., Y.), Oblique. Chromaticity from ± 60 ° ( Xl , yi )
良好 : 視野角 6 0 ° における色調変化 Δ X yが 0. 0 4未満。 Good: Color tone change ΔXy at a viewing angle of 60 ° is less than 0.04.
不良 : 視野角 6 0 ° における色調変化 Δ X yが 0. 0 4以上。 Poor: Color tone change ΔXy at a viewing angle of 60 ° is 0.04 or more.
表 2 Table 2
Figure imgf000042_0001
Figure imgf000042_0001
実施例では、 長波長域を含む広帯域に選択反射波長を有するコレステリ ック液 晶フィルムが得られている。 当該コ レステリ ック液晶フィルムは、 信頼性が高く また、 これを円偏光板と して用いた偏光素子は輝度向上特性にも優れている。 ま た、 当該偏光素子を用いた液晶表示装置は、 諧調反転しない領域の表示情報を斜 め方向に光拡散で振り分けたため、 斜め方向からの色調変化や諧調反転が生じに くい視野角の広い液晶表示装置を得ることができる。 産業上の利用可能性 In the examples, a cholesteric liquid crystal film having a selective reflection wavelength in a wide band including a long wavelength region is obtained. The cholesteric liquid crystal film has high reliability, and a polarizing element using the cholesteric liquid crystal film as a circularly polarizing plate is also excellent in luminance enhancement characteristics. In addition, in the liquid crystal display device using the polarizing element, the display information in the region where the gradation is not inverted is distributed by light diffusion in the oblique direction. A display device can be obtained. Industrial applicability
本発明の製造方法によ り得られる広帯域コレステリ ック液晶フィルムは円偏光 板 (反射型偏光子) と して有用であり、 当該円偏光板は直線偏光素子、 照明装置 および液晶表示装置等に適用できる。  The broadband cholesteric liquid crystal film obtained by the production method of the present invention is useful as a circularly polarizing plate (reflection type polarizer), and the circularly polarizing plate is used for a linear polarizing element, an illumination device, a liquid crystal display device, and the like. Applicable.

Claims

請 求 の 範 囲 The scope of the claims
1 . 重合性メ ソゲン化合物 (A) および重合性カイラル剤 (B) を含む液晶混 合物を配向基材に塗布する工程、 および前記液晶混合物に紫外線照射を行い重合 硬化する工程を含む、 反射帯域巾が 2 0 0 n m以上を有する広帯域コレステリ ッ ク液晶フィルムの製造方法であって、 1. a step of applying a liquid crystal mixture containing a polymerizable mesogen compound (A) and a polymerizable chiral agent (B) to an alignment substrate, and a step of irradiating the liquid crystal mixture with ultraviolet rays to polymerize and cure. A method for producing a broadband cholesteric liquid crystal film having a bandwidth of 200 nm or more,
前記紫外線重合工程が、  The ultraviolet polymerization step,
前記液晶混合物が酸素を含む気体と接触している状態で、 2 0 °C以上の温度下 に、 2 0〜 2 0 0 mW/ c m2の紫外線照射強度で、 0. 2〜 5秒間、 配向基材 側から紫外線照射する工程 ( 1 )、 In a state where the liquid crystal mixture is in contact with a gas containing oxygen, at a temperature of 20 ° C. or more, at an ultraviolet irradiation intensity of 20 to 200 mW / cm 2 , the alignment is performed for 0.2 to 5 seconds. UV irradiation from the substrate side (1),
次いで、 液晶層が酸素を含む気体と接触している状態で、 工程 ( 1 ) よ り も高 く、 かつ 6 0 °C以上の到達温度になるまでは、 昇温速度 2 °CZ秒以上で、 工程 ( 1 ) よ り も低い紫外線照射強度で、 1 0秒間以上、 配向基材側から紫外線照射す る工程 ( 2 )、  Next, in a state where the liquid crystal layer is in contact with the gas containing oxygen, the temperature is higher than in the step (1) and the heating rate is 2 ° CZ seconds or more until the temperature reaches 60 ° C or more. A step (2) of irradiating ultraviolet rays from the alignment substrate side for 10 seconds or more with a lower ultraviolet irradiation intensity than the step (1);
次いで、 酸素不存在下で、 紫外線照射する工程 ( 3 ) を有することを特徴とす る広帯域コ レステリ ック液晶フィルムの製造方法。  Next, there is provided a method for producing a broadband cholesteric liquid crystal film, which comprises a step (3) of irradiating ultraviolet rays in the absence of oxygen.
2. コ レステリ ック液晶フィルムのピッチ長が、 配向基材側から連続的に狭く なるよ うに変化していることを特徴とする請求の範囲第 1項に記載の広帯域コレ ステリ ック液晶フィルムの製造方法。  2. The broadband cholesteric liquid crystal film according to claim 1, wherein the pitch length of the cholesteric liquid crystal film changes so as to continuously narrow from the alignment substrate side. Manufacturing method.
3. 重合性メ ソゲン化合物 (A) が重合性官能基を 1つ有し、 重合性カイラル 剤 (B) が重合性官能基を 2つ以上有することを特徴とする請求の範囲第 1項ま たは第 2項に記載の広帯域コ レステリ ック液晶フィルムの製造方法。  3. The polymerizable mesogen compound (A) has one polymerizable functional group, and the polymerizable chiral agent (B) has two or more polymerizable functional groups. Or the method for producing a broadband cholesteric liquid crystal film according to item 2.
4. 重合性メ ソゲン化合物 (A) のモル吸光係数が、  4. The molar extinction coefficient of the polymerizable mesogen compound (A) is
0. :!〜 5 0 0 d m3m o 1 c m_1@ 3 6 5 n mであり、 0.:! Is a ~ 5 0 0 dm 3 mo 1 cm _1 @ 3 6 5 nm,
1 0〜 3 0 0 0 0 d m 3m o I -1 c m—1 @ 3 3 4 n mであり、 かつ、 10 to 3 0 0 0 0 dm 3 mo I -1 cm— 1 @ 3 3 4 nm, and
1 0 0 0〜 1 0 0 0 0 0 d m3m o 1 _1 c m"1® 3 1 4 n mであるこ とを特徴と する請求の範囲第 1項〜第 3項のいずれかに記載の広帯域コ レステリ ック液晶フ ィルムの製造方法。 1 0 0 0~ 1 0 0 0 0 0 dm 3 mo 1 _1 cm "1 ® 3 1 4 nm Dearuko wideband co according to any one of claims 1 through Section third term, characterized in Resuteri Manufacturing method of backlit liquid crystal film.
5. 重合性メ ソゲン化合物 (A) が、 下記一般式 ( 1 ) : 5. The polymerizable mesogen compound (A) has the following general formula (1):
Figure imgf000045_0001
Figure imgf000045_0001
(式中、 1^〜1 12は同一でも異なっていてもよ く、 一 F、 一 H、 一 CH3、 一 C2 H5または一 O C H3を示し、 1 13はー:《または一( 《^を示し、 は一般式 ( 2 ) : - (C H2C H20) a— (C H2) b- (O) c一、 を示し、 X2は一 C Nまたは一 Fを示す。 但し、 一般式 ( 2 ) 中の aは 0〜 3の整数、 bは 0〜 1 2の整数、 c は 0または 1であり、 かつ a = l〜 3のときは b = 0、 c = 0であり、 a = 0の ときは b = l ~ 1 2、 c = 0〜 l である。) で表される化合物であることを特徴 とする請求の範囲第 1項〜第 4項のいずれかに記載の広帯域コレステリ ック液晶 フィルムの製造方法。 (In the formula, 1 ^ to 1 12 may be the same or different and represent 1 F, 1 H, 1 CH 3 , 1 C 2 H 5 or 1 OCH 3 , and 1 13 is-: << or 1 ( "^ indicates, the general formula (2): -. (CH 2 CH 2 0) a - (CH 2) b - (O) c one, indicates, X 2 represents an CN or a F, however, In the general formula (2), a is an integer of 0 to 3, b is an integer of 0 to 12, c is 0 or 1, and when a = l to 3, b = 0 and c = 0 , A = 0, b = l to 12 and c = 0 to l.) The compound according to any one of claims 1 to 4, characterized in that: Method for manufacturing wideband cholesteric liquid crystal film.
6. 請求の範囲第 1項〜第 5項のいずれかに記載の製造方法によ り得られた広 帯域コレステリ ック液晶フィルムを用いた円偏光板。  6. A circularly polarizing plate using a broadband cholesteric liquid crystal film obtained by the production method according to any one of claims 1 to 5.
7. 偏光の選択反射の波長帯域が互いに重なっている少なく とも 2層の反射偏 光子 ( a ) の間に、  7. Between at least two layers of reflective polarizers (a) where the selective reflection wavelength bands of polarized light overlap each other.
正面位相差 (法線方向) がほぼゼロで、 法線方向に対し 3 0° 以上傾けて入射 した入射光に対して; I / 8以上の位相差を有する位相差層 ( b ) が配置されてい る偏光素子であって、  A phase difference layer (b) having a phase difference of I / 8 or more is disposed for incident light that has almost zero front phase difference (normal direction) and is inclined at an angle of 30 ° or more with respect to the normal direction. Polarizing element,
反射偏光子 ( a ) 力 請求の範囲第 6項に記載の円偏光板であることを特徴と する偏光素子。  7. A reflective polarizer (a) power A polarizing element, which is the circularly polarizing plate according to claim 6.
8. 少なく とも 2層の反射偏光子 ( a ) の選択反射波長が、 5 5 0 n m± 1 0 n mの波長範囲で互いに重なっていることを特徴とする請求の範囲第 7項に記載 の偏光素子。  8. The polarized light according to claim 7, wherein the selective reflection wavelengths of at least two layers of the reflective polarizer (a) overlap each other in a wavelength range of 550 nm ± 10 nm. element.
9. 位相差層 ( b ) 力 選択反射波長域を可視光領域以外に有するコレステリ ック液晶相のブラナー配向を固定したもの、  9. Retardation layer (b) Force Fixed cholesteric liquid crystal phase having a selective reflection wavelength range other than the visible light range, with fixed planar orientation,
棒状液晶のホメォトロピック配向状態を固定したもの、  Fixed homeotropic alignment state of rod-shaped liquid crystal,
ディスコチック液晶のネマチック相またはカラムナー相配向状態を固定したも の The alignment state of the nematic or columnar phase of discotic liquid crystal is fixed. of
ポリマーフィルムを 2軸配向したもの、 または、  Biaxially oriented polymer film, or
負の 1軸性を有する無機層状化合物を面の法線方向に光軸がなるよ うに配向固 定したものであることを特徴とする請求の範囲第 7項または第 8項に記載の偏光 素子。  9. The polarizing element according to claim 7, wherein an inorganic layered compound having a negative uniaxial property is fixed so as to have an optical axis in a direction normal to the surface. .
1 0. 請求の範囲第 6項に記載の円偏光板、 または請求の範囲第 7項〜第 9項 のいずれかに記載の偏光素子に、 λ / 4板が積層されており、 透過で直線偏光が 得られるこ とを特徴とする直線偏光素子。  10. A λ / 4 plate is laminated on the circularly polarizing plate according to claim 6 or the polarizing element according to any one of claims 7 to 9, and the transmission is linear. A linearly polarized light element that can obtain polarized light.
1 1. 円偏光板であるコレステリ ック液晶フィルムを、 ぇノ4板に対し、 ピッ チ長が連続的に狭く なるよ うに積層して得られる請求の範囲第 1 0項に記載の直 線偏光素子。  1 1. The straight line according to claim 10, which is obtained by laminating a cholesteric liquid crystal film, which is a circularly polarizing plate, on a 44 plate so that the pitch length is continuously narrowed. Polarizing element.
1 2. λ Ζ 4板が、 2軸延伸して斜め入射光線の位相差補正を行い、 視野角改 善した位相差板であることを特徴とする請求の範囲第 1 0項または第 1 1項に記 載の直線偏光素子。  12. The λΖ4 plate is a retardation plate having a viewing angle improved by performing biaxial stretching to correct a phase difference of obliquely incident light beams, wherein the λ Ζ 4 plate is a retardation plate having an improved viewing angle. Linear polarizing element described in section.
1 3. ノ 4板が、 ネマチック液晶またはスメクチック液晶を塗布、 固定化し て得られる液晶ポリマー型位相差板であるこ とを特徴とする請求の範囲第 1 0項 または第 1 1項に記載の直線偏光素子。  13. The straight line according to claim 10 or 11, wherein the four-plate is a liquid crystal polymer type retardation plate obtained by applying and fixing a nematic liquid crystal or a smectic liquid crystal. Polarizing element.
1 4. λΖ4板が、 面内の主屈折率を n x、 n y、 厚さ方向の主屈折率を n z と したとき、 式 : (n x— n z ) / ( n X - n y ) で定義される N z係数が一 0 . 5〜一 2. 5を満足するものであることを特徴とする請求の範囲第 1 0項〜第 1 3項のいずれかに記載の直線偏光素子。  1 4. If the λΖ4 plate has a principal refractive index in the plane of nx and ny and a principal refractive index in the thickness direction as nz, N defined by the formula: (nx—nz) / (nX-ny) The linear polarizing element according to any one of claims 10 to 13, wherein the z coefficient satisfies 0.5 to 12.5.
1 5. 請求の範囲第 1 0項〜第 1 4項のいずれかに記載の直線偏光素子の λノ 4板に、 さ らに; I 2板が積層されているこ とを特徴とする直線偏光素子。  1 5. A straight line, characterized in that the linear polarizing element according to any one of claims 10 to 14 further comprises an I 2 plate laminated on a λ 4 plate. Polarizing element.
1 6. 請求の範囲第 1 0項〜第 1 5項のいずれかに記載の直線偏光素子の透過 軸と、 透過軸方向を合わせた吸収型偏光子を、 直線偏光素子の λ / 4板側に積層 したことを特徴とする直線偏光素子。  1 6. An absorption polarizer whose transmission axis is aligned with the transmission axis of the linear polarizing element according to any one of claims 10 to 15 is the λ / 4 plate side of the linear polarizing element. A linear polarizing element characterized by being laminated on a substrate.
1 7. 裏面側に反射層を有する面光源の表面側に請求の範囲第 6項に記載の円 偏光板、 請求の範囲第 7項〜第 9項のいずれかに記載の偏光素子、 または請求の 範囲第 1 0項〜第 1 6項のいずれかに記載の直線偏光素子を有することを特徴と する照明装置。 、 1 7. A circularly polarizing plate according to claim 6, a polarizing element according to any one of claims 7 to 9, or a claim on a surface side of a surface light source having a reflective layer on a back surface side. Characterized by having the linear polarizing element according to any one of Items 10 to 16 Lighting equipment. ,
1 8 . 請求の範囲第 1 7項に記載の照明装置の光出射側に、 液晶セルを有する ことを特徴とする液晶表示装置。  18. A liquid crystal display device having a liquid crystal cell on the light emission side of the lighting device according to claim 17.
1 9 . 液晶セルに対して、 視認側に、 液晶セルを透過した視認側の光線を拡散 する視野角拡大フィルムを配置してなることを特徴とする請求の範囲第 1 8項に 記載の視野角拡大液晶表示装置。  19. The viewing field according to claim 18, wherein a viewing angle magnifying film for diffusing the light beam on the viewing side transmitted through the liquid crystal cell is disposed on the viewing side with respect to the liquid crystal cell. Angle enlarged liquid crystal display.
2 0 . 視野角拡大フィルムと して、 実質的に後方散乱、 偏光解消を有さない拡 散板を用いたこ とを特徴とする請求の範囲第 1 9項に記載の視野角拡大液晶表示 装置。  20. The viewing angle widening liquid crystal display device according to claim 19, wherein a spreading plate having substantially no backscattering or depolarization is used as the viewing angle widening film. .
PCT/JP2004/003718 2003-03-31 2004-03-19 Process for producing wideband cholesteric liquid crystal film, circular polarization plate, linear polarizer, lighting apparatus and liquid crystal display WO2004088366A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003094605 2003-03-31
JP2003-094605 2003-03-31
JP2003365759A JP4293882B2 (en) 2003-03-31 2003-10-27 Broadband cholesteric liquid crystal film manufacturing method, circularly polarizing plate, linearly polarizing element, illumination device, and liquid crystal display device
JP2003-365759 2003-10-27

Publications (1)

Publication Number Publication Date
WO2004088366A1 true WO2004088366A1 (en) 2004-10-14

Family

ID=33134318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003718 WO2004088366A1 (en) 2003-03-31 2004-03-19 Process for producing wideband cholesteric liquid crystal film, circular polarization plate, linear polarizer, lighting apparatus and liquid crystal display

Country Status (3)

Country Link
JP (1) JP4293882B2 (en)
TW (1) TW200428041A (en)
WO (1) WO2004088366A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2042895A1 (en) * 2006-07-13 2009-04-01 Zeon Corporation Method for producing circularly polarized light isolation sheet, and apparatus for coating film formation

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4931167B2 (en) * 2004-06-14 2012-05-16 日東電工株式会社 Colored reflective material, colored reflective filler and applications using these
EP2128223B1 (en) * 2007-02-22 2015-11-18 Zeon Corporation Cholesteric liquid-crystal composition, circularly polarizing separation sheet, and production process
JP4888853B2 (en) 2009-11-12 2012-02-29 学校法人慶應義塾 Method for improving visibility of liquid crystal display device, and liquid crystal display device using the same
KR101699497B1 (en) 2010-06-22 2017-01-24 도요보 가부시키가이샤 Liquid crystal display device, polarizing plate and polarizer protective film
WO2012157663A1 (en) 2011-05-18 2012-11-22 東洋紡株式会社 Liquid crystal display device, polarizing plate, and polarizer protection film
KR101833582B1 (en) 2011-05-18 2018-02-28 도요보 가부시키가이샤 Polarizing plate suitable for liquid crystal display device capable of displaying three-dimensional images, and liquid crystal display device
CN103309074B (en) * 2013-05-24 2016-02-24 京东方科技集团股份有限公司 A kind of preparation method of PDLC liquid crystal panel
KR101909074B1 (en) * 2013-08-26 2018-10-18 후지필름 가부시키가이샤 Luminance-enhancing film, optical sheet member, and liquid crystal display device
KR102508041B1 (en) * 2014-08-29 2023-03-08 스미또모 가가꾸 가부시키가이샤 Process for producing optical film
JP7055146B2 (en) * 2017-11-08 2022-04-15 富士フイルム株式会社 Optical laminated film and organic electroluminescence display device
JP7182627B2 (en) * 2018-06-12 2022-12-02 富士フイルム株式会社 Method for producing optically anisotropic layer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281814A (en) * 1993-01-11 1994-10-07 Philips Electron Nv Cholesteric polarizer and manufacture thereof
JPH1180733A (en) * 1997-06-19 1999-03-26 Consortium Elektrochem Ind Gmbh Expansion of cholesteric reflection zone of photopolymerizable cholesteric liquid crystal, and optical element produced thereby
JP2002286935A (en) * 2001-03-28 2002-10-03 Dainippon Printing Co Ltd Circularly polarized light controlling optical element and method for manufacturing the same
JP2002308832A (en) * 2001-04-12 2002-10-23 Nitto Denko Corp Polymerizable liquid crystal compound and optical film
JP2004029743A (en) * 2002-04-23 2004-01-29 Nitto Denko Corp Polarizing element, polarizing light source and picture display device using them

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281814A (en) * 1993-01-11 1994-10-07 Philips Electron Nv Cholesteric polarizer and manufacture thereof
JPH1180733A (en) * 1997-06-19 1999-03-26 Consortium Elektrochem Ind Gmbh Expansion of cholesteric reflection zone of photopolymerizable cholesteric liquid crystal, and optical element produced thereby
JP2002286935A (en) * 2001-03-28 2002-10-03 Dainippon Printing Co Ltd Circularly polarized light controlling optical element and method for manufacturing the same
JP2002308832A (en) * 2001-04-12 2002-10-23 Nitto Denko Corp Polymerizable liquid crystal compound and optical film
JP2004029743A (en) * 2002-04-23 2004-01-29 Nitto Denko Corp Polarizing element, polarizing light source and picture display device using them

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2042895A1 (en) * 2006-07-13 2009-04-01 Zeon Corporation Method for producing circularly polarized light isolation sheet, and apparatus for coating film formation
EP2042895A4 (en) * 2006-07-13 2012-07-11 Zeon Corp Method for producing circularly polarized light isolation sheet, and apparatus for coating film formation

Also Published As

Publication number Publication date
JP4293882B2 (en) 2009-07-08
TW200428041A (en) 2004-12-16
TWI341928B (en) 2011-05-11
JP2004318062A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
US7393570B2 (en) Broad-band-cholesteric liquid-crystal film, process for producing the same, circularly polarizing plate, linearly polarizing element, illiminator, and liquid-crystal display
JP2004264322A (en) Wideband cholesteric liquid crystal film and manufacturing method therefor, circularly polarized plate, linear polarizer, illuminating system, and liquid crystal display
JP4247894B2 (en) Optical element, condensing backlight system, and liquid crystal display device
JP4416119B2 (en) Method for producing broadband cholesteric liquid crystal film
JP4293888B2 (en) Broadband cholesteric liquid crystal film manufacturing method, circularly polarizing plate, linearly polarizing element, illumination device, and liquid crystal display device
WO2004088366A1 (en) Process for producing wideband cholesteric liquid crystal film, circular polarization plate, linear polarizer, lighting apparatus and liquid crystal display
JP4008417B2 (en) Broadband cholesteric liquid crystal film, manufacturing method thereof, circularly polarizing plate, linear polarizer, illumination device, and liquid crystal display device
JP2004302075A (en) Method for manufacturing wideband cholesteric liquid crystal film, circularly polarizing plate, linearly polarizing element, lighting device and liquid crystal display
JP2006133385A (en) Light collimating system, condensing backlight system, and liquid crystal display apparatus
JP4323205B2 (en) Manufacturing method of liquid crystal film
JP2005308988A (en) Circularly polarized reflection polarizing plate, optical element, convergent back light system, and liquid crystal display apparatus
JP2005258192A (en) Manufacturing method of wide-band cholesteric liquid crystal film
KR100910954B1 (en) Optical element, condensing backlight system and liquid crystal display unit
JP4133839B2 (en) Method for producing broadband cholesteric liquid crystal film
JP2006098946A (en) Optical element, polarizing element, lighting device, and liquid crystal display
JP2006024519A (en) Direct backlight and liquid crystal display device
JP2004212911A (en) Method of manufacturing wide band cholesteric liquid crystal film, circular polarizing plate, linear polarizer, lighting device and liquid crystal display device
JP2004219559A (en) Polarizing element and liquid crystal display device
JP2005351956A (en) Optical device, condensing backlight system, and liquid crystal display device
JP2009128793A (en) Method for manufacturing tilt-alignment retardation film
JP2004219522A (en) Wide band cholesteric liquid crystal film, its manufacture method, circularly polarizing plate, linear polarizer, illuminator and liquid crystal display device
WO2004063780A1 (en) Broad-band-cholesteric liquid-crystal film and process for producing the same, circularly polarizing plate, linearly polarizing element, illuminator, and liquid-crystal display
JP4397757B2 (en) Optical element, condensing backlight system, and liquid crystal display device
JP2004212909A (en) Method for manufacturing wideband cholesteric liquid crystal film, circularly polarizing plate, linear polarizer, illuminator, and liquid crystal display device
JP2005128214A (en) Optical element, condensing backlight system, and liquid crystal display device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase