TWI341928B - - Google Patents

Download PDF

Info

Publication number
TWI341928B
TWI341928B TW093107989A TW93107989A TWI341928B TW I341928 B TWI341928 B TW I341928B TW 093107989 A TW093107989 A TW 093107989A TW 93107989 A TW93107989 A TW 93107989A TW I341928 B TWI341928 B TW I341928B
Authority
TW
Taiwan
Prior art keywords
liquid crystal
film
layer
plate
polarizing element
Prior art date
Application number
TW093107989A
Other languages
Chinese (zh)
Other versions
TW200428041A (en
Inventor
Takahiro Fukuoka
Kazutaka Hara
Miki Shiraogawa
Naoki Takahashi
Kentarou Takeda
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Publication of TW200428041A publication Critical patent/TW200428041A/en
Application granted granted Critical
Publication of TWI341928B publication Critical patent/TWI341928B/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133541Circular polarisers

Description

玖、發明說明: Γ發明所屬之技術領域;j 本發明是有關於寬頻扭層液晶膜之製造方法。本發明之寬 頻扭層液晶膜可作為圓偏光板(反射型偏光子)。又,本發明 係有關於使用s玄圓偏光板之直線偏光子、照明裝置及液晶顯示 裝置。 C:先前技術3 一般而S,液晶顯示器具有在形成透明電極之玻璃板間注 入液晶,並於該玻璃板前後配置偏光子之構造。用於這種液晶 顯示器之偏光子係藉由使碘或二色性染料等吸著於聚乙烯醇 膜,並使之朝一定方向延伸來製造。如此製造之偏光子其本身 乃是吸收朝-側方向振動之光’僅使朝另—側方向振動之光通 過來產生直線偏光。因此,偏光子之效率在理論上無法㈣ 50%,成為使液晶顯示器效率降低之最大主因。又由於該吸 收光線’使得液晶顯示裝置在光源輸出之增大進行到某一程度 時’會因吸收光線之熱變換造成之發熱而使偏光子遭到破壞, 又’由於對晶胞内部之液晶層之熱影響,會導致顯示品質低劣 等弊害。 具 離機能之扭層液晶,係液晶螺旋之旋轉方向 與圓偏光方向致,且具有只反射波長為液晶螺距之圓偏光之 光这種選擇反射特性。彻這種選擇反射特性,使-定之波長 頻帶之mah偏域過而分離,並將剩絲線反射 利用’藉此可製造“率之偏光膜。這時,已透過之圓 由通過ΛΜ波長板變換為直料光,並使該直料光之方向^ 1341928 用於液晶顯示器之吸收型偏光子之透過方向一致,藉此可得到 高透過率之液晶顯示裝置。亦即,一旦將扭層液晶膜與λ /4波 長板組合作為直線偏光子使用,則理論上沒有光的損失,故相 較於單獨使用吸收50%之光之習知吸收型偏光子,在理論上可 5 得到提昇2倍之亮度。 然而,扭層液晶之選擇反射特性僅限定於特定之波長頻 帶,很難涵蓋可見光線全域。扭層液晶之選擇反射波長領域寬 度△ λ係以: Δ λ = 2 λ · ( ne-no )/( ne+no ) 10 no :扭層液晶分子對正常光之折射率 ne :扭層液晶分子對異常光之折射率 λ :選擇反射之中心波長 表示,依存於扭層液晶之分子構造。根據上式,若使ne-no較 大則選擇反射波長領域寬度△又會變寬,而ne-no通常為0.3 15 以下。若使該值變大,則作為液晶之其他機能(定向特性、液 晶溫度等)會變得不充分,實用上很困難。因此,現實上選擇 反射波長領域寬度△ λ最大也是150nm左右。可實用作為扭層 液晶者最多只有30〜1 OOnm。 又,選擇反射中心波長λ係以: 20 λ — ( ne+no) P/2 P:扭層液晶一旋轉扭曲所需螺距長 表示,若螺距固定則依存於液晶分子之平均折射率與螺距長。 因此,要涵蓋可見光全領域,可進行將具有相異之選擇反 射中心波長之多數層積層,或使螺距在厚度方向連續變化以形 6 1341928 成選擇反射中心波長之存在分布。 例如,在厚度方向使螺距長連續變化之方法,舉例而言, 可參考特開平6-281814號公報,特許第3272668號說明書、特 開平11-248943號公報。該方法係在以紫外線曝光,使扭層液 5 晶組成物硬化之際,賦予曝光面側與射出面側之曝光強度差, 並賦予聚合速度差,藉此在厚度方向提供反應速度不同之液晶 組成物之組成比變化。 該方法之重點在於使取曝光面側與射出面側之曝光強度 之差變大。因此,前述習知技術之實施例之多數情況,係採用 10 將紫外線吸收劑混合於液晶組成物,使其在厚度方向發生吸 收,以隨著光程長增加曝光量的方法。 然而,如特開平6-281814號公報中使螺距長連續變化之方 法中,使機能展現所需之液晶層厚度必須要15〜20/zm,除了 液晶層之精密塗工問題外,更需要大量高價的液晶,故成本增 15 加無可避免。且曝光時間需要1〜60分鐘,若要得到10m/分之 生產線速度,則曝光生產線長需要加長為10〜600m之製造生產 線。若降低生產線速度,則生產線長雖可減低,但生產速度降 低卻無可避免。 這點係如特開平6-281814號公報所揭示的,因為用以使螺 20 距長在厚度方向變化之在厚度方向之紫外線曝光強度差、與伴 隨之聚合速度差所造成的物質移動所形成之組成比變化,要藉 該組成比變化來控制扭層螺距在理論上有問題,故形成迅速之 螺距變化是很困難的。特開平6-281814號公報中,短螺距側與 長螺距側螺距長相差1 OOnm,故必須較大地變更組成比,要實 7 1341928 現這一點,必須要相當之液晶厚度、微弱的紫外線照射及加長 的曝光時間。 特開平11-248943號公報中,使螺距變化之物質之移動性 優於藉特開平6-281814號公報中所使用之材料例,故可以1分 5鐘之曝光量成膜。然而,這種情況仍需要15Mm之厚度。 特弄第3272668號明細書中,改變一次曝光與二次曝光之 皿度條件,並在暗處另外安置使組成比在厚度方向變化所需之 時間,然而若要以該方法涵蓋實質可見光全域,由該溫度變化 造成之物質移動之等待時間需要12()分鐘。 1〇 如特開2002-286935號公報之使螺距長連續變化之方法 令,使機能展現所需之液晶層厚度需要15〜2〇ym,除了液晶 層之精密塗工問題外,更需要大量高價的液晶,故成本增加無 可避免。又,特開2002-286935號公報中,從基材與相反側(空 氣界面側)以紫外線曝光使扭層液晶組成物硬化時,藉氧氣阻 15害賦予曝光面側與射出面側之曝光強度差,藉此使組成比變化 在厚度方向變化。 然而,特開2002-286935號公報之實施例丨中之第4圖中, 選擇反射波長雖為寬頻化,但透過率曲線之短波長端側、長波 長側之傾斜皆很平穩,實質上並未達到涵蓋可見光全域。又, 20該公報之實施例2中之第6圖,兩波長端之傾斜雖报陡急,頻 帶卻很狹窄。 特別是在液晶顯示裝置中使用該種偏光元件時,對背光光 源之發光光譜之435nm、545nm、615nm之3波長必須充分確 保平坦之透過率/反射率特性。特開2〇〇2_286935號公報中所呓 8 1341928 載之藉實施例卜2之方法得到之寬頻化範圍,每個都未充分 涵蓋435nm、6l5nm之輝線光譜。這種情況下,透過光線之色 調很難得到白色,無法用在液晶顯示裝置等用途。发明, invention description: The technical field to which the invention belongs; j The invention relates to a method for manufacturing a broadband twisted layer liquid crystal film. The wide-frequency twisted layer liquid crystal film of the present invention can be used as a circularly polarizing plate (reflective type polarizer). Further, the present invention relates to a linear polarizer using a s-circular polarizing plate, an illumination device, and a liquid crystal display device. C: Prior Art 3 In general, a liquid crystal display has a structure in which a liquid crystal is injected between glass plates forming a transparent electrode, and a polarizer is disposed in front of and behind the glass plate. The polarizer used in such a liquid crystal display is produced by absorbing iodine or a dichroic dye or the like on a polyvinyl alcohol film and extending it in a certain direction. The polarizer thus produced is itself a light that absorbs vibration in the side-side direction, and only causes light that vibrates in the other side direction to generate linearly polarized light. Therefore, the efficiency of the photon is theoretically impossible (4) 50%, which is the biggest cause of the decrease in the efficiency of the liquid crystal display. Moreover, since the absorption light —— causes the liquid crystal display device to increase to a certain extent when the output of the light source is increased to a certain extent, the polarizer is destroyed by the heat generated by the heat transfer of the absorbed light, and the liquid crystal is internal to the unit cell. The thermal effects of the layer can lead to poor display quality and other disadvantages. The twisted layer liquid crystal with off-state function is caused by the direction of rotation of the liquid crystal spiral and the direction of circular polarization, and has selective reflection characteristics of light that reflects only circularly polarized light having a wavelength of liquid crystal. This selective reflection characteristic is such that the mah bias of the predetermined wavelength band is excessively separated, and the residual wire reflection is utilized to thereby produce a "rate" polarizing film. At this time, the transmitted circle is converted by the ΛΜ wavelength plate into Straight light, and the direction of the direct light ^ 1341928 for the absorption direction of the absorption type polarizer of the liquid crystal display is uniform, thereby obtaining a high transmittance liquid crystal display device. That is, once the twisted layer liquid crystal film is When the λ /4 wavelength plate combination is used as a linear polarizer, there is theoretically no loss of light. Therefore, in comparison with a conventional absorption type polarizer that absorbs 50% of light alone, it is theoretically possible to obtain a brightness of 2 times. However, the selective reflection characteristics of the twisted layer liquid crystal are limited to a specific wavelength band, and it is difficult to cover the entire visible light line. The selective reflection wavelength domain width of the twisted layer liquid crystal λ λ is: Δ λ = 2 λ · ( ne-no ) /( ne+no ) 10 no : refractive index of twisted liquid crystal molecules to normal light ne : refractive index of twisted liquid crystal molecules to abnormal light λ : the center wavelength of selective reflection, depending on the molecular structure of the twisted layer liquid crystal. In the above formula, if ne-no is made larger, the width Δ of the reflection wavelength region is selected to be wider, and ne-no is usually 0.3 15 or less. If this value is made larger, it functions as other functions of liquid crystal (orientation characteristics, liquid crystal). Temperature, etc.) may become insufficient and practically difficult. Therefore, in reality, the width of the reflection wavelength region Δλ is also about 150 nm at the maximum. It can be practically used as a torsion layer liquid crystal with a maximum of 30 to 100 nm. λ is as follows: 20 λ — ( ne+no) P/2 P: The pitch of the twisted layer liquid crystal is required to be long. If the pitch is fixed, the average refractive index and pitch of the liquid crystal molecules are long. Therefore, it is necessary to cover visible light. In the whole field, it is possible to carry out a plurality of laminated layers having different selective reflection center wavelengths, or to continuously change the pitch in the thickness direction to form a distribution of selective reflection center wavelengths in the shape of 6 1341928. For example, the pitch length is continuously changed in the thickness direction. For example, Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. When the five-crystal composition of the torsion layer liquid is hardened, the exposure intensity difference between the exposure surface side and the emission surface side is given, and the polymerization rate difference is given, whereby the composition ratio of the liquid crystal composition having different reaction rates is provided in the thickness direction. The focus is on increasing the difference in exposure intensity between the side of the exposed surface and the side of the exit surface. Therefore, in many cases of the above-described embodiments, the ultraviolet absorber is mixed with the liquid crystal composition to make it thick. The method of absorbing the direction to increase the amount of exposure with the length of the optical path. However, in the method of continuously changing the pitch length in the Japanese Patent Publication No. 6-281814, the thickness of the liquid crystal layer required for the function to be exhibited must be 15 to 20 /zm, in addition to the precision coating problem of the liquid crystal layer, it requires a large amount of high-priced liquid crystal, so the cost increase of 15 is unavoidable. And the exposure time needs to be 1 to 60 minutes. If a line speed of 10 m/min is to be obtained, the length of the exposure line needs to be increased to a manufacturing line of 10 to 600 m. If the line speed is reduced, the production line length can be reduced, but the production speed is reduced but inevitable. This is disclosed in Japanese Laid-Open Patent Publication No. Hei 6-281814, which is formed by the difference in ultraviolet exposure intensity in the thickness direction and the difference in polymerization speed accompanying the change in the thickness direction of the screw 20 in the thickness direction. The composition ratio change, it is theoretically problematic to control the pitch of the torsion layer by the composition ratio change, so it is very difficult to form a rapid pitch change. In Japanese Laid-Open Patent Publication No. Hei 6-281814, the short pitch side and the long pitch side have a pitch difference of 100 nm, so the composition ratio must be changed to a large extent. To be true, it is necessary to have a liquid crystal thickness and a weak ultraviolet ray. Increased exposure time. In the publication of Japanese Laid-Open Patent Publication No. H11-248943, the material having a variable pitch is superior to the material used in the Japanese Patent Publication No. Hei 6-281814, so that the film can be formed in an exposure amount of 1 minute and 5 minutes. However, this situation still requires a thickness of 15Mm. In the special book No. 3272668, the conditions of the one-time exposure and the double-exposure are changed, and the time required for the composition ratio to change in the thickness direction is additionally placed in the dark, but if the true visible light region is covered by the method, The waiting time for the movement of the substance caused by this temperature change requires 12 (minutes). In the method of continuously changing the pitch length, the function of the liquid crystal layer required for the function is required to be 15 to 2 〇 ym, in addition to the precise coating problem of the liquid crystal layer, a large amount of high price is required. LCD, so the cost increase is inevitable. In the case of curing the torsion layer liquid crystal composition by ultraviolet light exposure from the substrate and the opposite side (air interface side), the exposure intensity of the exposure surface side and the emission surface side is imparted by the oxygen barrier 15 Poor, whereby the composition ratio change is varied in the thickness direction. However, in the fourth embodiment of the embodiment of the Japanese Patent Publication No. 2002-286935, although the selective reflection wavelength is widened, the inclination of the short-wavelength end side and the long-wavelength side of the transmittance curve is stable, substantially Not covered by the entire visible light range. Further, in Fig. 6 of the second embodiment of the publication, the inclination of the two wavelength ends is steep, and the frequency band is narrow. In particular, when such a polarizing element is used in a liquid crystal display device, it is necessary to sufficiently ensure a flat transmittance/reflectance characteristic for three wavelengths of 435 nm, 545 nm, and 615 nm of the light emission spectrum of the backlight source. The broadening range obtained by the method of Example 2, which is described in Japanese Patent Application Laid-Open No. Hei No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. 2, 286, 935, each of which does not fully cover the gamma spectrum of 435 nm and 615 nm. In this case, it is difficult to obtain white color by the color of the light, and it cannot be used for a liquid crystal display device or the like.

C^明内容;J 5 針對上述問題’本申請人申請了特願200卜339632號。該 申請案中’餘以基材對塗布於定向紐之液晶組餘照射 紫外線。藉此,從不易受到接觸定向基材之氧對聚合阻害造成 的影響該面開始聚合,利於液晶層之莫耳消光係數之吸收,在 厚度方向形成紫外線照射強度分布,減低受氧氣阻害之空氣面 10側之备、外線實效照射量,藉此形成大於以往之液晶反應速度斜 坡、組成濃度分布斜坡。像這樣賦予曝光面側與射出面側之曝 光強度差,可成功在扭層螺距長之厚度方向形成大變化。該申 請案中,可得到選擇反射波長帶寬最大達到296nm者。 前述申請案,可涵蓋400〜700nm之波長帶。這些波長帶涵 15蓋光源光譜。這些可在垂直入射附近得到良好的圓偏光反射特 性。另一方面’傾斜入射時,稱不上充分之波長帶寬。由於傾 斜入射時之選擇反射波長又為: 入=npcos{sin·丨(sin0/n) } n==液晶的平均折射率 20 P=扭層螺距長 Θ二入射角 ,一旦傾斜入射,則選擇反射波長會比垂直入射時移動到短 波長側。因此要使傾斜入射光線能有效作用’必須使其在長波 長威發揮作用。 9 本發明之目的係在提供可製造在長波長域也具有寬頻之 反射帶之寬頻扭層液晶臈之方法。 又,本發明之目的係提供利用以該製造方法製得之寬頻扭 層液晶膜之圓偏光板,更在提供利用該圓偏光板之直線偏光元 5 件、照明裝置及液晶顯示裝置。 本發明人為了解決上述課題而專心研究之結果,發現藉以 下之製造方法,可製得達到上述目的之寬頻杻層液晶膜,而完 成了本發明。亦即,本發明係如下所述。 1. 一種寬頻扭層液晶膜之製造方法,包含有將含有聚合性 10液晶原化合物(A)及聚合性旋光劑(B)之液晶混合物塗布於 定向基材之步驟,及對該液晶混合物進行紫外線照射使之聚合 硬化之步驟’以製造出具有反射帶寬在2〇〇mn以上之寬頻扭層 液晶膜,其中前述紫外線聚合步驟包含: 在使前述液晶混合物接觸含氧氣體之狀態下,於2〇〇c以上 15之溫度下,以20〜200mW/cm2之紫外線照射強度,從前述定向 基材側進行紫外線照射0·2〜5秒之步驟(1 ); 接著’在使前述液晶層接觸含氧氣體之狀態下,以升溫速 度2C/秒以上’達到高於步驟(〇且在6〇艺以上之到達溫度 為止’且以低於步驟(1 )之紫外線照射強度,從定向基材側 20照射紫外線丨〇秒鐘以上之步驟(2);及 接著’在不存在氧下,進行紫外線照射之步驟 2. 如上述第丨項之寬頻扭層液晶膜之製造方法其中該寬 頻扭層液晶膜之螺距長變化係從定向基材側起連續地變狹窄。 3. 如上述第1或2項之寬頻扭層液晶膜之製造方法,其中 10 1341928 該聚合性液晶原化合物(A)具有1個聚合性官能基,且該聚 合性旋光劑(B)具有2個以上之聚合性官能基。 4. 如上述第1〜3項任一項之寬頻扭層液晶膜之製造方法, 其中該聚合性液晶原化合物(A)之莫耳消光係數為: 0.1〜500(11113111〇1-|(^11-丨@36511111, 10〜^ΟΟΟίΜιτ^ΓηοΓ1^!!-1®]〗^!!!,且 1000~100000<11113111〇1-1(:111-1@31411111。 5. 如上述第1〜4項任一項之寬頻扭層液晶膜之製造方法, 其中該聚合性液晶原化合物(A )係以下述一般式(1 ):C^ Ming content; J 5 for the above problem' The applicant applied for a special wish 200 339632. In the application, the substrate was coated with ultraviolet light from the liquid crystal group coated on the alignment layer. Thereby, the surface is polymerized from the surface of the liquid crystal layer, which is less susceptible to the influence of oxygen on the contact-oriented substrate, which is advantageous for the polymerization resistance, which facilitates the absorption of the molar extinction coefficient of the liquid crystal layer, and forms an ultraviolet irradiation intensity distribution in the thickness direction to reduce the air surface which is hindered by oxygen. The amount of effective radiation on the 10 side and the outside line is formed to form a slope larger than the conventional liquid crystal reaction speed and a composition concentration distribution slope. By giving the difference in the exposure intensity between the exposure surface side and the emission surface side as described above, it is possible to form a large change in the thickness direction of the twisted layer pitch length. In this application, the wavelength of the selected reflection wavelength can be up to 296 nm. The aforementioned application may cover a wavelength band of 400 to 700 nm. These wavelength bands cover the spectrum of the source. These provide good circularly polarized light reflection characteristics near normal incidence. On the other hand, when obliquely incident, a sufficient wavelength bandwidth cannot be said. Since the selected reflection wavelength at oblique incidence is again: In = npcos{sin·丨(sin0/n) } n==The average refractive index of the liquid crystal 20 P=The torsion layer pitch is longer than the incident angle. Once obliquely incident, the selection is made. The reflected wavelength will move to the shorter wavelength side than when it is incident normally. Therefore, to make the oblique incident light work effectively, it must be made to function in the long wave. The object of the present invention is to provide a method for fabricating a wide-band twisted layer liquid crystal germanium having a wide reflection band in a long wavelength region. Further, an object of the present invention is to provide a circular polarizing plate using a wide-band twisted-layer liquid crystal film produced by the manufacturing method, and to provide a linear polarizing element using the circular polarizing plate, an illumination device, and a liquid crystal display device. As a result of intensive studies in order to solve the above problems, the present inventors have found that a wide-band 杻 layer liquid crystal film which achieves the above object can be obtained by the following production method, and the present invention has been completed. That is, the present invention is as follows. A method for producing a wide-frequency twisted layer liquid crystal film comprising the steps of applying a liquid crystal mixture containing a polymerizable 10 liquid crystal original compound (A) and a polymerizable optical agent (B) to an oriented substrate, and performing the liquid crystal mixture a step of polymerizing and hardening by ultraviolet irradiation to produce a wide-band twisted-layer liquid crystal film having a reflection bandwidth of 2 〇〇 mn or more, wherein the ultraviolet ray polymerization step comprises: in a state where the liquid crystal mixture is brought into contact with an oxygen-containing gas, at 2 〇〇c above 15, at a temperature of 20 to 200 mW/cm 2 of ultraviolet ray irradiation, ultraviolet ray irradiation from the side of the oriented substrate is carried out for a period of 0·2 to 5 seconds (1); then 'the liquid crystal layer is brought into contact with In the state of the oxygen gas, at a temperature increase rate of 2 C/sec or more, the temperature is higher than the step (and the temperature reaches the temperature above 6 〇 art) and the ultraviolet ray irradiation intensity lower than the step (1), from the oriented substrate side 20 a step of irradiating ultraviolet rays for a second or more; (2); and then a step of performing ultraviolet irradiation in the absence of oxygen. 2. A method of manufacturing a broadband twisted layer liquid crystal film according to the above item The pitch length change of the wide-band twisted-layer liquid crystal film is continuously narrowed from the side of the oriented substrate. 3. The method for producing a wide-band twisted-layer liquid crystal film according to the above item 1 or 2, wherein 10 1341928 the polymerizable liquid crystal original compound (A) has one polymerizable functional group, and the polymerizable optically active agent (B) has two or more polymerizable functional groups. 4. The production of the wide-band twisted layer liquid crystal film according to any one of the above items 1 to 3 The method, wherein the molecular extinction coefficient of the polymerizable liquid crystal original compound (A) is: 0.1 to 500 (11113111〇1-|(^11-丨@36511111, 10~^ΟΟΟίΜιτ^ΓηοΓ1^!!-1®] The method for producing a broadband twisted layer liquid crystal film according to any one of the above items 1 to 4, wherein the polymerizable liquid crystal is used in the method of manufacturing a liquid crystal film of a wide frequency twisted layer liquid crystal according to any one of the above items 1 to 4, wherein: The original compound (A) is represented by the following general formula (1):

表示之化合物(式中’ Ri〜Rl2可相同或相異,表示—F、_H、 -CH3、一C2H5 或一OCH3,Rl3 表示一Η 或一CH3,X,表示一 般式(2): - (CH2CH20) a— (CH2) b— (O) c—、x2 表示 —CN或一F,唯’一般式(2)中之a為0〜3之整數,b為0〜12 5 之正數、c為0或1’且當a= 1〜3時b=0、c=0,a=0時b= 1 ~ 12、 C=Q〜1)〇 6·—種圓偏光板,係使用以如上述第丨〜5項任一項之製造 方法製得之寬頻扭層液晶膜者。 7·—種偏光元件系統’係在偏光之選擇反射之波長帶相互 20重疊之至少2層反射偏光子(a )之間,配置有正面相位差(法 線方向)幾乎為零且對於以相對於法線方向3〇。以上傾斜入射 11 射光具有λ/8以上之相位差層(b)纟,其中該反射偏光 子(a)為上述第6項之圓偏光板。 上it第7項之偏光元件,其中前述至少2層之反射偏 光子⑴之選擇反射波長在550nm土 10nm之波長範圍中互相 重疊。 9·如上述第7或8項之偏光元件,其中該相位差層(b)係: 用以固定在可見光領域以外具有選擇反射波長域之扭層 液晶相之平面定向者, 用以固定棒狀液晶之垂直定向狀態者, 用以固定盤狀液晶之相列相或管束相定向狀態者, 用以將聚合物骐2轴定向者,或 將具有負之1軸性之無機層狀化合物定向固定,使面之法 線方向構成光轴。 1〇·—種直線偏光元件,係於上述第6項之圓偏光板、或上 述第7〜9項任一項之偏光元件上積層λ/4板,以透過得到直線 偏光者。 11. 如上述第10項之直線偏光元件,其係積層圓偏光板之 扭層液晶膜於Λ /4板以使螺距長連續地變狹窄而得者。 12. 如上述第10或11項之直線偏光元件,其中該λ/4板係 進行2軸延伸傾斜入射光線之相位差補正,以改善視角之相位 差板。 13. 如上述第10或11項之直線偏光元件,其中該又/4板係 塗布並固定向列液晶或矩列液晶而得之液晶聚合物型相位差 板0 1341928 14. 如上述第10~13項任一項之直線偏光元件,其中該又/4 板係當以面内之主折射率為nx'ny,厚度方向之主折射率為 , nz時,以式(nx-nz) / (nx —ny)定義之Nz係數滿足_〇 5〜·2 5 者。 - 15. —種直線偏光元件’係於上述第1〇〜14項任一項之直線 4 偏光元件之λ/4板上再積層;1/2板者。 16. —種直線偏光元件,係使吸收型偏光子之透過轴方向對 齊如上述第10〜15項任一項之直線偏光元件之透過軸,而於直 線偏光元件之;1/4板側積層該吸收型偏光子者。 Φ 17. —種照明裝置,係在裡面側具有反射層之面光源之表面 側上’具有上述第6項之圓偏光板、上述第7〜9項任一項之偏 光元件、或上述第10〜16項任一項之直線偏光元件。 18. —種液晶顯示裝置,係在上述第17項之照明裝置之光 射出側具有液晶晶胞者。 19. 一種視角擴大液晶顯示裝置’係在上述第〖8項之液晶 顯示裝置上,在相對於液晶晶胞之目視側配置使透過液晶晶胞 之目視側之光線擴散之視角擴大膜而成者。 ® 20. 如上述第19項之視角擴大液晶顯示裝置,其係使用實 質上沒有後方散亂、偏光消解之擴散板作為視角擴大膜。 ’ (發明效果) , 如上所述’本發明中,為了使反射帶寬頻化,液晶混合物 在與含氧氣體接觸之狀態下從定向基材側進行紫外線照射 時’其紫外線照射照度、照射溫度在第1次曝光之步驟(1) 與第2次曝光之步驟(3)中,各自使用相異之條件。藉此, 13 1341928 可實現對聚合性之液晶混合物之反應舉動更緻密之控制,與以 往相較,可藉高效率之生產速度,得到寬頻扭層液晶膜。The compound represented (wherein Ri~Rl2 may be the same or different, representing -F, _H, -CH3, a C2H5 or an OCH3, Rl3 represents a Η or a CH3, and X represents a general formula (2): - ( CH2CH20) a—(CH2) b—(O) c—, x2 represents —CN or an F, except that a in general formula (2) is an integer from 0 to 3, and b is a positive number from 0 to 12 5 , c It is 0 or 1' and b=0, c=0 when a=1~3, b=1~12, C=Q~1) when a=0, 〇6·—a kind of circular polarizer, which is used as The wide-frequency twisted-layer liquid crystal film produced by the manufacturing method of any one of the above items. 7. The type of polarizing element system is disposed between at least two layers of reflected polarizers (a) in which the polarization bands of the polarized light selectively overlap each other, and the front phase difference (normal direction) is arranged to be almost zero and 3 inches in the normal direction. The oblique incident light 11 has a retardation layer (b) λ of λ/8 or more, wherein the reflective polarizer (a) is the circular polarizing plate of the sixth item. The polarizing element of the above item 7, wherein the selective reflection wavelength of the at least two reflective polarizers (1) overlaps each other in a wavelength range of 550 nm and 10 nm. 9. The polarizing element according to Item 7 or 8, wherein the phase difference layer (b) is a plane orientation for fixing a liquid crystal phase of a twisted layer having a selective reflection wavelength range outside the visible light region, for fixing the rod shape The vertical alignment state of the liquid crystal is used to fix the phase of the phase of the discotic liquid crystal or the orientation of the tube bundle phase, to orient the polymer 骐 2 axis, or to fix the inorganic lamellar compound having a negative one-axis property. , the normal direction of the face constitutes the optical axis. In the linear polarizing element of the above item 6, the λ/4 plate is laminated on the polarizing element of any of the above items 7 to 9 to obtain a linear polarized light. 11. The linear polarizing element according to item 10 above, wherein the twisted layer liquid crystal film of the laminated circular polarizing plate is formed on the Λ4 plate so that the pitch length is continuously narrowed. 12. The linear polarizing element according to Item 10 or 11, wherein the λ/4 plate is subjected to phase difference correction of the oblique incident light of the 2-axis extension to improve the phase difference plate of the viewing angle. 13. The linear polarizing element according to the above item 10 or 11, wherein the /4 plate is a liquid crystal polymer type retardation plate 0 1341928 obtained by coating and fixing a nematic liquid crystal or a matrix liquid crystal. 14. A linear polarizing element according to any one of the preceding claims, wherein the /4 plate has a principal refractive index of nx'ny in the plane, a main refractive index in the thickness direction is nz, and a formula (nx-nz) / ( Nx — ny) The defined Nz coefficient satisfies _〇5~·2 5 . - 15. - A linear polarizing element is attached to the λ/4 plate of the linear polarizing element of any one of the above items 1 to 14; 16. A linear polarizing element which aligns a transmission axis direction of an absorbing type polarizer with a transmission axis of a linear polarization element according to any one of the above items 10 to 15, and a linear polarization element; The absorption type polarizer. Φ 17. The illuminating device is a circular polarizing plate having the above-mentioned item 6 on the surface side of the surface light source having the reflective layer on the back side, and the polarizing element according to any one of the above items 7 to 9 or the above-mentioned 10th ~16 linear polarizing elements. A liquid crystal display device comprising a liquid crystal cell on a light-emitting side of the illumination device of the above item 17. 19. A viewing angle-enhancing liquid crystal display device according to the liquid crystal display device of item 8, wherein a viewing angle-enlarging film that diffuses light passing through a visual side of the liquid crystal cell is disposed on a visual side of the liquid crystal cell. . ® 20. The liquid crystal display device of the above-mentioned item 19 is expanded by using a diffusing plate which is substantially free of rear scattered and polarized light as a viewing angle widening film. ' (Effect of the Invention), as described above, in the present invention, in order to make the reflection bandwidth frequency, when the liquid crystal mixture is irradiated with ultraviolet rays from the side of the oriented substrate in contact with the oxygen-containing gas, the ultraviolet irradiation illuminance and the irradiation temperature are In the step (1) of the first exposure and the step (3) of the second exposure, conditions different from each other are used. Thereby, 13 1341928 can realize a more compact control of the reaction behavior of the polymerizable liquid crystal mixture, and a wide-band twisted layer liquid crystal film can be obtained by a high efficiency production speed as compared with the prior art.

亦即,紫外線照射條件是第1次照射強度> 第2次照射強 度,且第1次照射時間 < 第2次照射時間。又,第1次紫外線 5 照射與第2次紫外線照射之間設有加熱步驟(3)。藉照射強度 之不同,使得在每單位時間之液晶組成物中,因光反應引發劑 之紫外線反應產生之自由基量在第1次紫外線照射與第2次紫 外線照射時有大變化。第1次紫外線照射時,以反應初期之富 單體(monomer-rich )條件瞬間形成大量自由基,藉氧阻害與 10 液晶組成物之吸收使自由基存在分布形成厚度方向之大傾 斜。平均分子量10000〜500000程度之聚合物/寡聚物藉此形 成,且在厚度方向形成濃度分布。又,這時,由於液晶混合物 中之聚合性液晶原化合物(A)與聚合性旋光劑(B)之反應速 度不同,故聚合比在厚度方向不同。因此,聚合性旋光劑(B) 15 在富面為扭層螺距短,在相反方向面變長。藉此,可得到全體 而言具有寬頻之反射波長之扭層液晶膜。 如此得到之寬頻扭層液晶膜可作為寬頻圓偏光反射板,與 前述特開平6-281814號公報等在光學特性上具有同等性質,同 時相較於習知之製造方法,因減低其積層張數故可減低厚度, 20 更可簡單地以短時間製造,可因生產速度提昇而降低成本。 藉上述本發明之製造方法得到之寬頻扭層液晶膜,其選擇 反射波長之反射帶寬廣達200nm以上,具有寬頻之反射帶寬。 反射帶寬以在300nm以上為佳,更以在400nm以上為佳,尤以 在450nm以上為佳。又,200nm以上之反射帶寬以在可見光領 14 1341928 域、特別是400〜900nm之波長領域中為佳。 圓偏光反射板在長波長域中也具有寬頻之反射帶,是液晶 顯示裝置為了得到良好視角之重要問題。在實用之視角範圍 内,為了使透過光線看不出著色,選擇反射之長波長端必須達 5 到800〜900nm。藉本發明之製造方法,可得到在該長波長端也 具有反射帶寬之寬頻扭層液晶膜。該寬頻扭層液晶膜所尋求的 的,不僅是在作為純粹為了得到高亮度之反射偏光子來使用 時,就連在與相位差板等其他光學元件組合作成之偏光元件 時,同樣對正面以外之傾斜入射光線具有安定之光學特性。 10 圖式簡單說明 第1圖是利用實施例1、3、比較例1〜3之偏光板一體型偏 光元件之視角擴大液晶顯示裝置之概念圖。 第2圖是利用實施例2之偏光板一體型偏光元件之視角擴 大液晶顯示裝置之概念圖。 15 第3圖是顯示實施例2之偏光板一體型偏光元件當中各層 之軸角度之圖。 第4圖是實施例1中製作之扭層液晶膜之反射光譜。 第5圖是實施例2中製作之扭層液晶膜之反射光譜。 第6圖是實施例3中製作之扭層液晶膜之反射光譜。 20 第7圖是實施例4中製作之扭層液晶膜之反射光譜。 第8圖是比較例1中製作之扭層液晶膜之反射光譜。 第9圖是比較例2中製作之扭層液晶膜之反射光譜。 第10圖是比較例3中製作之扭層液晶膜之反射光譜。 【實施方式3 15 1341928 本發明之寬頻扭層液晶膜係將含有聚合性液晶原化合物 (A)及聚合性旋光劑(b)之液晶混合物進行紫外線聚合而得 者。 該聚合性液晶原化合物(A)適宜使用具有至少1個聚合 5 性官能基、其中具有由環狀單位等形成之液晶原基者。聚合性 官能基可舉丙烤醯基、曱基丙稀醯基、環氧基、乙稀基等, 當中又以丙烯醯基、曱基丙烯醯基為佳。又,藉由使用具有2 個以上之聚合性官能基者,可導入交聯構造使耐久性提昇。成 為液晶原基之前述環狀單位可舉例如聯苯、苯基苯甲酸酯系、 10 笨基環己烷系、氧化偶氮苯系、甲亞胺系、偶氮苯系、笨基嘧 啶系、二苯基乙炔系、聯苯基笨甲酸酯系、二環己烷系、環己 基笨系、聯三笨系等。又,這些環狀單位之末端’亦可具有例 如氰基、烷基、烷氧基、齒素基等取代基。前述液晶原基亦可 經由賦予屈撓性之調距板部結合。調距板部可舉聚甲撐鏈、聚 15 羥甲撐鏈等。形成調距板部之構造單位之反覆數可藉液晶原部 之化學構造適當決定,而聚甲撐鏈之反覆單位以0〜20為佳, 又以2〜12為佳,聚羥曱撐鏈之反覆單位以0~10為佳,又以1〜3 為佳。 該聚合性液晶原化合物(A)之莫耳消光係數以CU〜500 20 、ΙΟ^βΟΟΟίΜη^ηιοΙ^ηΓ1®]]^!!!、且 100 O—lOOOOOdn^moricnT'^SMnm為佳。具有前述莫耳消光係數者 具有紫外線吸收能。莫耳消光係數又適宜為〇UOdn^moricm- ,@365nm、5〇~Η)〇_ηΛη〇1-^ι@334ηηι、且 ι〇〇〇〇〜5〇〇〇〇dm ^ 丈適宜為0.1〜lOdn^mol icm 16 1341928 i@365nm、1000〜4000dm3mol-1cm1@334nm ' 且 30000〜40000d 。若莫耳消光係數小於 〇,ldm3mol-icm-i@3 65nm ' 10dm3m〇r,cm-,@334nm ' lOOOdm^or'cm'^SMnm · 則無法賦予充分之聚合速度差,而難以寬頻化。另一方面,若 5 大於 SOOdn^mor'cnr’^GSTim、SOOOOdn^mor'cm-^SS^m、1 OOOOOdn^mol'm^SMnm,則可能聚合無法完全進行,硬化 無法完成。又,莫耳消光係數乃是測定各材料之分光光度光 譜,從所得到之365nm、334nm、314nm之消光度測定之值。 具有一個聚合性官能基之聚合性液晶原化合物(A)可舉 10 例如以下述一般式:(1)That is, the ultraviolet irradiation conditions are the first irradiation intensity > the second irradiation intensity, and the first irradiation time < the second irradiation time. Further, a heating step (3) is provided between the first ultraviolet ray 5 irradiation and the second ultraviolet ray irradiation. The amount of radicals generated by the ultraviolet reaction of the photoreaction initiator in the liquid crystal composition per unit time varies greatly in the first ultraviolet irradiation and the second ultraviolet irradiation by the difference in irradiation intensity. In the first ultraviolet irradiation, a large amount of radicals are instantaneously formed in the monomer-rich condition at the initial stage of the reaction, and the absorption of the liquid crystal composition by the absorption of the liquid crystal composition causes the radicals to be distributed to form a large gradient in the thickness direction. A polymer/oligomer having an average molecular weight of about 10,000 to 500,000 is formed by this, and a concentration distribution is formed in the thickness direction. Further, at this time, since the reaction rate of the polymerizable liquid crystal original compound (A) in the liquid crystal mixture and the polymerizable optical agent (B) is different, the polymerization ratio is different in the thickness direction. Therefore, the polymerizable optical agent (B) 15 has a short pitch in the rich surface and a long surface in the opposite direction. Thereby, a twisted layer liquid crystal film having a wide reflection wavelength of a wide frequency can be obtained. The wide-frequency torsion layer liquid crystal film thus obtained can be used as a wide-band circularly polarizing reflector, and has the same optical properties as those of the above-mentioned Japanese Patent Publication No. Hei 6-281814, and the like, and the number of laminated sheets is reduced as compared with the conventional manufacturing method. The thickness can be reduced, 20 can be easily manufactured in a short time, and the cost can be reduced due to the increase in production speed. The wide-band torsion layer liquid crystal film obtained by the above-described manufacturing method of the present invention has a reflection bandwidth of a selective reflection wavelength of 200 nm or more and a wide-band reflection bandwidth. The reflection bandwidth is preferably 300 nm or more, more preferably 400 nm or more, and particularly preferably 450 nm or more. Further, the reflection bandwidth of 200 nm or more is preferably in the wavelength range of the visible light collar 14 1341928 domain, particularly 400 to 900 nm. The circularly polarizing reflector also has a broadband reflection band in the long wavelength region, which is an important problem for the liquid crystal display device in order to obtain a good viewing angle. In the practical range of view, in order to make the transmitted light not visible, the long wavelength end of the selective reflection must be 5 to 800 to 900 nm. According to the manufacturing method of the present invention, a wide-band twisted layer liquid crystal film having a reflection bandwidth at the long wavelength end can be obtained. The wide-frequency twisted-layer liquid crystal film is not only used as a polarizing element which is formed by a combination of other optical element groups such as a phase difference plate, but also when it is used as a reflective polarizer for obtaining high luminance. The oblique incident light has a stable optical characteristic. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a conceptual view showing an enlarged liquid crystal display device using the viewing angles of the polarizing plate-integrated polarizing elements of Examples 1 and 3 and Comparative Examples 1 to 3. Fig. 2 is a conceptual view showing the expansion of the liquid crystal display device by the viewing angle of the polarizing plate-integrated polarizing element of the second embodiment. Fig. 3 is a view showing the axial angles of the respective layers in the polarizing plate-integrated polarizing element of the second embodiment. Fig. 4 is a reflection spectrum of the twisted layer liquid crystal film produced in Example 1. Fig. 5 is a reflection spectrum of the twisted layer liquid crystal film produced in Example 2. Fig. 6 is a reflection spectrum of the twisted layer liquid crystal film produced in Example 3. 20 Fig. 7 is a reflection spectrum of the twisted layer liquid crystal film produced in Example 4. Fig. 8 is a reflection spectrum of the twisted layer liquid crystal film produced in Comparative Example 1. Fig. 9 is a reflection spectrum of the twisted layer liquid crystal film produced in Comparative Example 2. Fig. 10 is a reflection spectrum of the twisted layer liquid crystal film produced in Comparative Example 3. [Embodiment 3 15 1341928] The wide-frequency twisted-layer liquid crystal film of the present invention is obtained by subjecting a liquid crystal mixture containing a polymerizable liquid crystal original compound (A) and a polymerizable optical agent (b) to ultraviolet polymerization. As the polymerizable liquid crystal original compound (A), those having at least one polymerizable functional group and having a liquid crystal starting group formed of a cyclic unit or the like are preferably used. The polymerizable functional group may, for example, be an acryl group, a mercapto propyl group, an epoxy group or an ethylene group, and particularly preferably an acrylonitrile group or a mercapto propylene group. Moreover, by using a polymerizable functional group having two or more, a crosslinked structure can be introduced to improve durability. Examples of the cyclic unit to be a liquid crystal priming unit include biphenyl, phenyl benzoate, 10 styrene cyclohexane, azobenzene, azomethine, azobenzene, and pyridyl pyrimidine. A system, a diphenylacetylene system, a biphenyl benzoate system, a dicyclohexane system, a cyclohexyl group, a hydrazine system, and the like. Further, the terminal '' of these cyclic units may have a substituent such as a cyano group, an alkyl group, an alkoxy group or a dentate group. The liquid crystal nucleus may also be bonded via a pitch plate portion that imparts flexibility. The pitch plate portion may be a polymethylene chain or a poly-15 hydroxymethylene chain. The number of the structural units forming the pitch plate portion can be appropriately determined by the chemical structure of the liquid crystal original portion, and the reversal unit of the polymethylene chain is preferably 0 to 20, and preferably 2 to 12, and the polyhydroxy hydrazine chain. The reversal unit is preferably 0 to 10, and preferably 1 to 3. The molar extinction coefficient of the polymerizable liquid crystal original compound (A) is preferably CU~500 20 , ΙΟ^βΟΟΟίΜη^ηιοΙ^ηΓ1®]]^!!!, and 100 O—lOOOOdn^moricnT'^SMnm. Those having the aforementioned moir extinction coefficient have ultraviolet absorbing energy. The Mohr extinction coefficient is also suitable for 〇UOdn^moricm-, @365nm, 5〇~Η)〇_ηΛη〇1-^ι@334ηηι, and ι〇〇〇〇~5〇〇〇〇dm ^ zhang is suitable for 0.1 ~ lOdn^mol icm 16 1341928 i@365nm, 1000~4000dm3mol-1cm1@334nm ' and 30000~40000d. If the molar extinction coefficient is less than 〇, ldm3mol-icm-i@3 65nm '10dm3m〇r, cm-, @334nm ' lOOOdm^or'cm'^SMnm · can not give sufficient polymerization speed difference, and it is difficult to widen. On the other hand, if 5 is larger than SOOdn^mor'cnr'^GSTim, SOOOOdn^mor'cm-^SS^m, 1 OOOOOdn^mol'm^SMnm, the polymerization may not be completed completely, and the hardening cannot be completed. Further, the molar extinction coefficient is a value obtained by measuring the spectrophotometry of each material from the extinction degrees of 365 nm, 334 nm, and 314 nm obtained. The polymerizable liquid crystal original compound (A) having one polymerizable functional group can be exemplified by the following general formula: (1)

表示之化合物(式中,RcRu可相同或相異,表示—F、一H、 -CH3、— C2H5 或-〇CH3,Ri3 表示-Η 或-CH3,X,表示一 般式(2) : - (CH2CH20) a- (CH2) b- (〇) c—、χ2 表示 ~(^或-17。唯,一般式(2)中之3為0〜3之整數,1)為0〜1 2之整數、c為0或1,且當a=l~3時b=0、c=0,a=0時b= 1〜1 2 、 c=〇〜1)〇 以一般式(1)表示之聚合性液晶原化合物(Α)之具體例 列舉於表1。 17 1341928 表1 fri示 R, R4 Rs «6 R7 r4 Rs R ι〇 Rn R.3 XI ί匕合物 r3 入2 a b c i Η Η Η Η Η Η F Η Η Η Η Η Η CN 1 0 0 2 Η Η Η Η Η Η F Η Η Η Η Η Η CN 0 3 1 3 Η Η Η Η Η Η F Η Η Η Η Η Η CN 0 4 1 4 Η Η Η Η CH, Η Η Η Η Η Η Η Η CN 2 0 0 5 Η Κ Η Η Η F Η Η Η Η Η Η Η CN 0 6 1 6 Η Η Η Η Η Η Η Η Η Η Η Η CN 0 7 1 7 Η Η Η Η Η Η F Η Η Η Η Η Η CN 0 6 1 8 Η Η Η Η Η Η CHil Η Η Η Η Η Η CN 1 0 0 9 Η Η Η Η Η Η F Η Η Η Η Η Η CN 0 10 1 10 Η Η Η Η Η Η Η Η Η Η Η Η ch3 CN 2 0 0 11 l·. .F Η Η Η Η Η Η Η Η Η Η ch3 CN 0 6 1 12 Η Η CW, Η Η Η F Η Η Η Η Η Η CN 0 8 1 13 Η Η Η Η Η Η Η Η Η Η Η Η Η CN 1 0 0 14 Η Η Η Η Η Η Η Η Η Η Η Η Η CN 2 0 0 15 Η ,Η Η Η Η Η F Η Η Η Η Η Η CN 3 0 0 16 Η Η Η Η Η Η CHs0 Η Ή Η Η Η Η CN 1 0 0 ]7 Κ F Η Η Η Η Η Η Η Η Η Η Η CN 2 0 0 18 κ Η Η Η Η Η Η Η Η Η Η Η Η CN 2 0 0 19 Η Η Η Η Κ Η Η Η Η Η Η Η Η CN Z 0 0 20 Η Η Η Η Η Η F Η Η Η Η Η Η CN z 0 0 21 Η Η Η Η Η Η ch3 Η Η Η Η Η Η CN 2 0 0 η 广 Η Η Η Η Η t£ Η Η Ή Η Η Η CN 3 0 0 23 Η Η Η Η Η CH, Η Η Η Η Η Η Η CN 1 0 0 U Η Η F Η Η Η Η Η Η Η Η Η Η CN 3 0 Q 25 Η Η Η Η Η Η CHs0 Η Η Η Η Η Η CN 2 0 0 26 Η Η Η Η Η Η Η Η Η Η Η Η CN 3 0 0 27 Κ Η Η Η Η Η Η Η Η Η Η Η Η CN 3 Q 0 28 Η Η Η Η Η Η F F Η Η Η Η Η CN 2 0 0 29 Κ Η Η Η Η Η Η Η Η Η Η Η CN i 0 0 30 Η Η Η ι Η Η Η F Η Η Η Η Η CH3 CN 2 0 0 31 Κ ,ίΓ Η Η Η Η Η Η Η Η Η CH, CN 3 0 0 32 Η Η Η Η Η Η F Η Η Η Η Η ch3 CN 3 0 0 33 F Η Η Η Η Η Η Η Η Η Η Η CN 0 10 1 34 Η Η Η Η Μ Η Η Η Η Η Η Η Η F 2 0 0 35 Η Η Η Η Η Η F Η Η Ή Η Η Η F 2 0 0 36 Η Η Η Η Γ Η Η Η Η Η Η Η Η F 2 0 0 37 Η Η Η Η Η Η CH^ Η Η Η Η Η Η F 1 0 0 38 Η Η Η Η Η Η CH30 Η Η Η Η Η Η F 2 0 0 39 Η Η Η Η Η Η F F Η Η Η Η Η F 2 0 0 40 F" ? Η Η Η Η Η Η Η Η Η Η Η F 1 0 0 41 Η Η Η Η Η Η Η Η Η Η Η Η Η CN 0 3 0 42 Η Η Η Η Η Η F Η Η Η Η Η Η CN 0 3 0 聚合性液晶原化合物(A)並不限定於這些例示化合物。 又’聚合性旋光劑(B)可舉例如BASF社製LC756。 上述聚合性旋光劑(B)之混合量,相對於聚合性液晶原 5化合物(A)與聚合性旋光劑(B)之合計】〇〇重量份,宜為 】〜20重量份,3〜7 ί量份更佳。可藉由聚合性液晶原化合物⑷ 與聚合性旋光劑(Β)之比例來控制螺旋扭轉力(ΗΤρ)。藉由 18 1341928 使前述比例在前述範圍内,可選擇反射帶以使所得到之扭層液 晶膜之反射光譜涵蓋長波長域。 又,液晶混合物中通常含有光聚合引發劑(c)。光聚合引 發劑(c)可使用各種種類,而無特別限制。例如,可舉于八 5 力Μ杜製之心…二了 m、心卜力、 年二了 907、彳少力年1 了 369、彳小力年二了 651等。光聚 合引發劑之混合量,相對於聚合性液晶原化合物(Α)與聚合 性旋光劑(Β)之合計100重量份,宜為〇 〇1〜1〇重量份,〇 〇5〜5 重量份更佳。 1〇 在前述混合物中,為了拓寬所得到之扭層液晶膜之帶寬, 可混入紫外線吸收劑來加大厚度方向之紫外線曝光強度差。 又,使用莫耳消光係數大的光反應引發劑也可得到相同效果。 前述混合物可作為溶液使用。調製溶液時所使用之溶劑’ 通常可使用,三氣甲烷、二氣曱坑、二氣乙烷、四氣乙烷、三 15氣乙烯、四氣乙烯、氣笨等函代烴類、笨酚、對氣笨酚等笨酚 類、苯、曱笨、二甲苯、甲氧基笨、1,2_二甲氧基笨等芳香族 經類、其他如丙酮、曱基乙基甲_、醋酸乙酯、第三丁醇、丙 二醇、乙二醇、三乙二醇、乙二醇單甲基醚、二乙二醇二曱基 越、乙基赛璐素、丁基赛璐素、2-吡咯啶酮、Ν-甲基-2-0比咯咬 20 _、°比啶、三乙胺 '四氫呋喃、二曱基甲醞胺 '二甲基乙醯胺、 二曱基亞颯、乙腈、丁腈、二硫化碳、環己酮、環戊酮等。所 使用之溶劑並無特別限制,而以甲基乙基甲酮、環己酮、環戍 酮等為佳。溶液之濃度因牽扯到向熱性液晶性化合物之溶解性 或最終目的之扭層液晶骐之祺厚’故不可一概而論,通常以 19 1341928 3〜50重量%為佳。 本發明之寬頻扭層液晶膜之製造,包含:於定向基材塗布 前述液晶混合物之步驟、及對前述液晶混合物進行紫外線照射 使之聚合硬化之步驟。 5 定向基材可採用習知已知者,例如,可使用:在基材上形 成由聚醯亞胺或聚乙烯醇等所形成之薄膜,並將之以人造絲布 等摩擦處理之摩擦膜;斜方蒸鍍膜;在桂皮酸或偶氮苯等具有 光交聯基之聚合物、或聚醯亞胺上照射偏光紫外線之光定向 膜;延伸膜等。此外,亦可藉磁場、電場定向、摩擦應力操作 10 使之定向。 基材之種類並無特別限制,從基材側照射照射線(紫外線) 之方法上,以透過率高之素材為佳。例如,基材最好對200nm 以上400nm以下、尤其是300nm以上400nm以下之紫外線域, 有10%以上、尤其是20%以上之透過率。具體來說,以對波長 15 365nm之紫外線之透過率為10%以上、甚至20%以上之塑膠薄 膜為佳。又,透過率乃是藉HITACHI製U-4100Spectrophotom eter所測定之值。 又,前述基板可使用聚乙烯對笨二曱酸酯、三乙醯纖維 素、去甲莰系樹脂、聚乙烯醇、聚醯亞胺、聚烯丙酯、聚碳酸 20 酯、聚颯或聚醚颯等由塑膠形成之膜、玻璃板、石英薄片。可 舉例如富士寫真7彳少厶社製三乙醯纖維素或JSR製ARTO N、日本七才 > 製七才氺y夕只等。 又,特開2001-343529號公報(WOO 1/37007)中所記載之 聚合物膜,可舉例如含有(A)側鏈上具有取代及/或非取代醯 20 1341928 胺基之熱可塑性樹脂、及(B)側鏈上具有取代及/或非取代苯 基以及睛基之熱可塑性樹脂之樹脂組成物。具體例可舉含有由 異丁稀與N-甲基順丁缚二酿亞胺形成之交互共聚合物及丙烤 晴•苯乙稀共聚合物之樹脂組成物之膜。膜可使用由樹脂組成 5物之混合押出品等所形成之膜。 刖述基材可在保持與扭層液晶層貼合之狀態下使用,亦可 剝離除去。在貼合之狀態下使用時,係使用在實用上相位差值 非常小之材質。 貼合於基材上使用時,最好使用即使基材受紫外線照射也 10不會分解、劣化、變黃者。例如,在前述基材中混合光安定劑 等可達到所需目的。光安定劑可適當使用 少力/以社製于只匕、,> 12〇、144等。從曝光光線刪除波長3 〇〇nm以下,就可減低著色、劣化、變黃。 前述液晶混合物之塗布厚度(溶液之情況係溶劑乾燥後之 15塗布厚度)以1〜2〇//m為佳。塗布厚度若薄於丨^,則雖可 確保反射帶寬,但會有偏光度低劣之傾向,故不適宜。塗布厚 度以在2/zm以上、甚至3ym以上為佳。另一方面若厚於2 〇 — ’則反射帶寬、偏光度皆未見顯著提昇,只是徒增高成本, 故不適且。塗布厚度以在15#爪以下為佳,1〇以爪以下更佳。 20 在疋向基材塗工前述混合溶液之方法,例如可採用:輥塗 抹法、凹版塗模法、旋轉塗布法、線錠塗布法等。混合溶液之 塗工後,除去溶劑,使液晶層形成於基板上。溶劑之除去條件 並無特別限定,只要可大概除去溶劑,且液晶層不會流動、流 動滴落即可。通常,是利用在室溫下之乾燥、在乾燥爐之乾燥、 21 1341928 加熱板上之加熱等來除去溶劑。 接著’使形成於前述定向基材上之液晶層呈液晶狀態,使 之扭層定向。例如,進行熱處理使液晶層成為液晶溫度範圍。 熱處理方法可以與上述乾燥方法同樣之方法來進行。熱處理溫 5 度隨著液晶材料或定向基材之種類而不同,故不可一概而論, 而通常為60~300。(:,又以在70〜200。(:之範圍進行為佳。又, 熱處理時間隨著熱處理溫度及所使用之液晶材料或定向基材 之種類而不同’故不可一概而論,通常在10秒〜2小時之範圍 内選擇’又以20秒〜30分鐘之範圍為佳。 10 將液晶混合物塗布於定向基材並進行紫外線照射之步 驟,包含上述步驟(1 )〜(3)。 步驟(1)中’液晶混合物在與含氧氣體接觸之狀態下, 於2〇t以上之溫度下’以20〜200mW/cm2之紫外線照射強度從 定向基材側照射紫外線0.2〜5秒。藉此,使液晶混合物聚合, 15形成平均分子量丨〇〇〇〇〜500000程度之聚合物/募聚物,同時, 因氧阻害導致的反應速度差、及因液晶組成物之紫外線吸收導 致的自由基產生量之差異,會在定向基材側及其相反側(氧界 面側)之厚度方向產生’使厚度方向形成聚合物/寡聚物之生成 量連續分布之層。 2〇 步驟(1 )中’為了使液晶混合物以良好之定向狀態聚合 硬化,故第1紫外線照射時的溫度是以2〇。匸以上進行。另—方 面,溫度之上限並無特別限制,而以1〇〇〇c以下較適宜。若溫 度鬲於loot: ’則照射中會引起擴散,難以管理。從這些點來 看,前述溫度以20°C〜50eC為佳。第1紫外線照射強度為2〇〜2 22 1341928 o〇mw/cm ’ 又以 25〜200mW/cm2,為佳,而 4〇〜i5〇mw/cm2 更 佳。紫外線照射強度純於2Qmw/em2,則無法完成可在厚纟 . 方向形成單體分布之聚合,而無法寬頻化。又,紫外線照射強 度若高於200mw/cm2,則聚合反應速度大於擴散速度而無法 ‘ 5 完成寬頻化,故不適宜。 4 步驟⑴巾,第1紫外線照射時間為〇2〜5秒,以〇3〜3 秒為佳’ 0.5〜1.5秒更佳。若短於0 2秒,則無法完成可在厚度 方向造成單體分布之聚合,而無法寬頻化。又,若超過5秒, 則扭層液晶層之螺距變化不是從定向基材側到氧界面側為從 · 10大到小之連續變化,而變成不連續變化,故不適宜,若形成不 連續變化’則從傾斜看時,著色會變嚴重。 紫外線照射時的曝光環境係在使塗布於基材之液晶混合 物與含氧氣體接觸之狀態下進行。含氧氣體以含有〇 5%以上之 氧為佳。該環境只要是可利用氧聚合阻害之環境即可,—般可 15在大氣環境下進行。又,亦可根據以厚度方向之螺距控制為目 的之波長寬、聚合所需之速度,使氧濃度增減。又,在大氣環 境下,相對於聚合性液晶原化合物(A)與聚合性旋光劑(B) · 之合計100重量份,以1〜5重量份之添加量來使用彳A力、年二 7 184 '彳爪力、年二y 907 (皆為于〆女殳力 · 20 ΑΧ、社製)’可達到所要的目的,不過可能會因此使光聚合引 . 發劑(C)之需要量增加。 又’在第1紫外線照射之際,形成之聚合物/寡聚物之重量 平均分子量若過小,則擴散速度會過高。因此,要注意別因為 無法控制之擴散速度,使聚合物/寡聚物之濃度坡度均—化。不 23 1341928 僅要形成扭層螺距長之液晶層厚度方向之大變化,還必須能夠 將之維持。前述聚合物/募聚物若分子量過低則所形成之傾斜無 法維持’構造會因分子擴散消失。要使擴散速度滿足用工業條 件性來管理之條件,需在重量平均分子量丨〇〇〇〇〜500000之範 5 圍形成聚合物/寡聚物。聚合物/寡聚物之重量平均分子量以10 0000〜300000為佳。又,聚合物/寡聚物之重量平均分子量是以 GPC法來測定之值。又,重量平均分子量是利用聚乙烯氧化物 為標準試料算出。本體:東V—製之HLC-8120GPC、管柱:東 、)一製之 SuperAWM-H+SuperAWM-H+SuperAW3000 (各 6mm 10 4 X 15cm,計 45cm)、管枉溫度·· 40°C、溶離液:〗0mM-LiBr /NMP、流速:0.4ml/min、入口壓:8,5MPa、樣本j農度:〇·ι% NMP溶液、檢出器:示差折射計(RI)。 將步驟(1 )之第1紫外線照射所形成之濃度分布直接固 定化時,則只能得到與特開2002-286935號公報等相同水準之 15 反射波長帶。 因此,步驟(2)中’在使液晶層與含氧氣體接觸之狀態 下,在使前述液晶層接觸含氧氣體之狀態下,以升溫速度2。匚/ 秒以上,達到高於步驟(1 )且在60°C以上之到達溫度為止, 且以低於步驟(1 )之紫外線照射強度,從定向基材側照射紫 20 外線1 〇秒鐘以上。藉該步驟(2 )中之第2紫外線照射,可使 因從氧界面側浸透之氧導致之聚合阻害之有效深度深於步驟 (1),又,由於在步驟(1)中,使聚合物/寡聚物在厚度方向 以濃度傾斜形成,故相反地可使所形成之未聚合單體成分之濃 度傾斜坡度均一化。同時,藉由僅使定向基材側之長螺距領域 24 1341928 之反應進行,可使定向基材側之長螺距化更加增大。 液晶組成層之分子量之增大與擴散速度低劣,相較於步驟 (1 )中之第1紫外線照射時差異很大,故減低了每單位時間 產生之自由基量,使聚合進行速度降低,而可更寬頻化。 5 特許第3272668號明細書中,改變第!次紫外線照射與第 2次紫外線照射之溫度條件,並在暗處另外安置使组成比在厚 度方向變化所需之時間,然而若要以該方法涵蓋實質可見光全 域,由該溫度變化造成之物質移動之等待時間需要12()分鐘。 另一方面,本發明之製造方法,並不特別需要暗處。且可在i 10分鐘以内之短時間内完成步驟,因此可產生實用性高之高效率 生產速度。 步驟(2)中,一面升溫到預定之到達溫度,一面進行第2 务、外線照射。步驟(2)中,第2紫外線照射時之開始溫度是 與步驟⑴相同之溫度。亦即,在2(rc以上。若開始溫度低 15於20C ’則聚合性液晶原化合物⑴之擴散速度非常慢要 花很長時間來寬頻化。X,到達溫度乃是設定為高於步驟⑴ 且在60C以上之溫度。當達溫度若低於6(rc,則聚合性液晶 原化合物(a)之擴散無法充分產生,而無法充分寬頻化。到達 溫度之上限並無特別限制,不過以在14(rc以下為佳。到達溫 20度更以8〇°C〜120°C為佳。到達溫度若高於M〇〇c。則擴散速度 過快,難以管理。 又’第2紫外線照射時,從第1紫外線照射結束起,以2 C/秒以上之升溫速度,使之急速升溫到到達溫度。升溫速度若 低於2口秒,則聚合性液晶原化合物⑷之擴散無法充分產 25 生而變得無法充分寬頻化。升溫速度以2〜2〇t /秒為佳。在 到達預疋之到達溫度後’通常,可保持在該到達溫度之狀態下 進行第2紫外線照射。又,若在14〇t以下之範圍,則亦可在 到達預定溫度後徐徐升溫。第2紫外線照射是以照射強度低於 第1紫外線照射之紫外線照射強度來進行照射。藉由照度低於 第1备'外線照射時,可使氧聚合阻害深度深於第j紫外線照射 時之氧阻害深度’使在空氣界面側形成之短波長帶幾乎不變 化’而使基材側之長波長帶寬頻化。χ,第2紫外線照射強度 是低於第1紫外線照射強度之範圍,以為佳。 1〇 帛2紫外線照射時間是依據照度而不同,一般以在丨〇秒 以上為佳。第2紫外線照射時間是將急遽升溫至到達溫度為止 之照射時間與達到到達溫度後之照射時間之合計。又,紫外線 照射時間從作業時間這點來看,以12〇秒鐘以下為佳,更以6 〇秒鐘以上為佳。如前述地以步驟⑺達到寬頻化,可實現後 】5述實施例所示之宽頻化,因傾斜八射光線之藍移造成著色、脫 色產生之視角角度變得非常大,可顯著降低因視角造成之著 色。 接著,在步驟⑴在氧不存在下,照射紫外線。藉 該第3紫外線照射,可使在步驟⑴、⑺中業經擴張之扭層 2〇反射帶不低劣且硬化。藉此,可使螺距變化構造不會變低劣並 且將之固定。 氧不存在下,係例如可在不活性氣體環境下。不活性氣體 只要是對前述液晶混合物之紫外線聚合不造成影響者即可並 無特別限制。該不活性氣趙可舉例如氮H、氮氣氪 26 1341928 等。這當中又以II最為常用,很適宜。又,亦可藉由在扭層液 晶層上貼合透明基材,使之成為氡不存在下。 步驟(3 )中’紫外線照射可從定向基材側、業已塗布液 晶混合物側之任一側來進行。 5 紮外線照射條件只要是液晶混合物硬化之條件即可,並無 特別限制。通常以40〜30〇mW/cm2之照射強度,照射卜6〇秒為 佳。照射溫度為20〜loot。 藉此,可藉液晶層交聯密度之提昇、分子量 昇可靠性。本發明中,步驟⑴之第】紫外線照射、步顯驟= H)之第2紫外線照射為了積極活用氧阻害,故從定向基材面側進 行紫外線照射。因此,反應率上在厚度方向可形成大坡度,但 問題是,由於空氣界面側之聚合率低,可能會產生膜表面之硬 度、強度之不足 '或長期可靠性不足等問題。因此,步驟⑴ 中,於氧不存在環境下進行第3紫外線照射,使殘存單體聚合 15完結’進行膜質之強化。這種情況,在空氣環境下(氧存在下) 表面之反應率不會充分提高,反應率很難提高到9〇%。因此, 為了得到充分之可靠性,最好在氧不存在下進行紫外線照射。 照射方向並無特別限制。以從液晶層側照射較佳,不過在氣環 境下’即使從基材側照射,表面反應也可充分地進行。 20 如此得到之扭層液晶膜,不需從基材剝離即可使用,或亦 可從基材剝離後使用。 本發明之寬頻扭層液晶膜可作為圓偏光板使用。圓偏光板 上可積層;W4板來作為直線偏光子。圓偏光板亦即扭層液晶膜 最好是以使螺距長連續地變狹窄之狀態來積層於λ/4板。 27 1341928 λ/4板並無特別限制,可適當使用如聚碳酸酯、聚乙烯對 笨二甲酸、聚笨乙烯、聚颯、聚乙烯醇、聚甲基甲基丙烯酸酯 等以延伸產生相位差之泛用透明樹脂膜、或如JSR社製ARTON 膜之去甲莰系樹脂膜等。更,若使用進行2軸延伸、補償因入 5 射角造成的相位差值變化之相位差板,則可改善視角特性,故 很適宜。又’除藉樹脂延伸展現相位差以外,亦可使用藉由固 定以例如使液晶定向而得到之又/4層所獲得之;U4板。這時, 可大幅減低;1/4板之厚度。又/4波長板之厚度通常以〇.5〜2〇〇 /z m為佳,尤以1〜1 〇〇 μ m為佳。 10 在可見光域等之廣波長範圍中作為λ/4波長板來發揮功能 之相位差板,可藉由例如將相對於波長55〇nm之淡色光作為λ /4波長片發揮功能之相位差層,與顯示其他相位差特性之相位 差層例如作為Λ /2波長板發揮功能之相位差層兩者重疊之方式 等得到。因此,配置於偏光板與亮度提升膜之間之相位差板亦 15可以是由丨層或2層以上之相位差層形成者。 可將吸收型偏光子對齊前述直線偏光子之透過軸方向貼 合於該透過轴上來使用。 偏光子並無特別限制,可使用各種。作為偏光子者可舉例 如使聚乙稀醇系膜、部分甲縮裕化聚乙稀醇系膜、乙稀.乙稀 20乙酸共聚合物系部分4化膜等親水性高分子膜内吸著破或二 色f生木料等—色性物質單袖延伸者、聚乙烤醇之脫水處理物或 聚氣乙稀之脫氣醆處理物等多婦系定向膜等。這當令又以聚乙 稀醇系膜與峨等之二色性物質形成之偏光子為佳。這些偏光子 之厚度並無特別限定,—般為5〜叫m。 28 將聚乙婦醇系膜以蛾染色之單抽延伸之偏光子,可以例如 藉由將聚乙烯醇浸漬於埃水溶液中來染色,並延伸為原長之 7倍來製作。亦可因應需要使浸漬於含有蝴酸或硫酸辞氣 化鋅等之块化卸等水溶液中。更可因應需要於染色前將聚乙 5稀醇系膜浸潰於水中水洗。藉由水洗聚乙稀醇系膜,不僅可洗 夺聚乙稀醇系膜表面之污垢或阻塞防止劑,且有使聚乙烯醇系 膜膨服來防止染色斑駁等不均之效果。延伸係可在以破染色後 進行,或於染色之同時進行延伸,或於延伸後再以碘染色皆 可。也可在硼酸或碘化鉀等水溶液中或於水浴^延伸。 1〇 則述偏光子通常作為單側或兩側設置有透明保護膜之偏光 板來使用。透明保護膜以透明性、機械性強度、熱安定性、水 分遮蔽性、各向同性性質等皆很優異者為佳。作為透明保護膜 者可舉例如聚乙烯對苯二甲酸酯、聚乙烯萘二甲酸酯等聚酯系 聚合物、雙乙醯纖維素、三乙醯纖維素等纖維素系聚合物、聚 15碳酸酯系聚合物、聚甲基丙烯酸酯等丙烯酸系聚合物等之透明 聚合物形成之膜。又,亦可舉聚笨乙烯、丙烯腈•苯乙烯共聚 合物荨之苯乙稀系聚合物、具有聚乙稀、聚丙稀、環系乃至去 曱莰構造之聚烯烴、乙烯•丙烯共聚合物之聚烯烴系聚合物、 氣乙烯系聚合物、耐給或芳香族聚醯胺等之醯胺系聚合物等透 20明聚合物所形成之膜。更可舉醯亞胺系聚合物、颯系聚合物、 聚醚颯系聚合物、聚醚醚酮系聚合物、聚伸笨基硫化物系聚合 物、乙稀醇系聚合物、偏氣乙稀系聚合物、聚乙缚醇縮丁裕系 聚合物、烯丙酯系聚合物、聚曱醛系聚合物、環氧系聚合物、 或前述聚合物之摻合物等之透明聚合物所形成之膜。特別是以 29 使用光學性上複折射少者為佳。從偏光板之保護膜之觀點來 看,以二乙醞纖維素、聚碳酸酯、丙烯酸系聚合物、環聚烯烴 系樹脂、具有去甲莰構造之聚烯烴等適合。 又’特開2001-343529號公報(WOO 1/37007)中所記載之 5聚合物膜,可舉例如含有(A)側鏈上具有取代及/或非取代醯 胺基之熱可塑性樹脂、及(B)側鏈上具有取代及/或非取代笨 基以及腈基之熱可塑性樹脂之樹脂組成物。具體例可舉含有由 異丁烯與N_甲基順丁烯二醯亞胺形成之交互共聚合物及丙烯 賸•笨乙烯共聚合物之樹脂組成物之膜。膜可使用由樹脂組成 10物之混合押出品等所形成之膜。 基於偏光特性或耐久性等點,尤其適合之透明保護膜為表 面以鹼等皂化處理之三乙醯纖維素膜。透明保護膜之厚度玎適 當決定,而一般以強度或處理性等作業性、薄層性等觀點來 看,為10〜500"m,尤以2〇〜3〇〇"m為佳,更以3〇〜2〇〇"m 15 為佳。 又,透明保護膜以盡可能沒有著色為佳。因此,宜使用: 以Rth=[ ( nx+ny ) /2-nz].d (唯,nx、ny為膜平面内之主折射率、 nz為膜厚度方向之折射率、d為膜厚)所表示之膜厚度方向之相 位差值為-90nm〜+75nm之保護膜。藉由使用該種厚度方向之相 2〇位差值為-90nm〜+75nm者,可幾乎消除起因於保護膜之偏光板 之著色(光學性染色)。厚度方向之相位差值(Rth )又以 -80nm〜+60nm為佳,尤其以_7〇nm〜+45nm為佳》 前述透明保護膜可在表裡使用由相同聚合物材料所形成 之透明保護膜,亦可使用由不同聚合物材料等形成之透明保護 30 1341928 膜。 前述透明保護膜之未接著偏光子之面,亦可施行以硬罩層 或反射防止處理、黏結防止或擴散乃至抗眩光為目的之處理。 硬罩處理係以防止偏光板表面之損失為目的所施行者可 5藉由將藉丙稀酸系 '聚石夕氧系等適宜之紫外線硬化型樹脂形成 之硬度或β動特性上彳艮優異之硬化皮膜附加於透明保護膜表 面之方式來形成。反射防止處理係以防止偏光板表面之外光之 反射為目的而施行者,可按照習知之反射防止臈等之形成來達 成。又,黏結防止處理係以防止與鄰接層之密著為目的而施行 10 者。 又,抗眩光處理係為了防止外光在偏光板之表面反射而阻 礙偏光板透過光之目視辨認等目的而施行者,可藉由例如藉喷 石·>方式或壓紋加工方式等之粗面化方式、或透明微粒子之配合 方式等適宜之方式於透明保護膜表面賦予微細凹凸構造來形 15成。前述表面微細凹凸構造之形成中,作為其中所含之微粒 子,可使用例如平均粒子徑〇 5〜50 μ m之二氧化矽、氧化鋁、 一氧化鈦、氧化酷、氧化錫、氧化銦 '氡化鎘、氧化銻等所形 成之具導電性之無機系微粒子,及交聯或未交聯之聚合物等形 成之有機系微粒子等之透明微粒子 '形成表面微細凹凸構造 2〇時,微粒子之使用量係相對於形成表面微細凹凸構造之透明樹 脂100重量部,一般為2〜5〇重量部,又以5〜25重量部為佳。亦 可使杬眩光層兼作擴散層(擴大可視角機能等),使偏光板透 過光擴散來擴大可視角等。 又,前述反射防止層、黏結防止層 '擴散層或抗眩光層等 31 1341928 係可設於透明保護膜,此外亦可作為其他用途光學層而與透明 保護膜作為不同個體來設置。The compound represented (wherein RcRu may be the same or different, and represents -F, -H, -CH3, -C2H5 or -〇CH3, and Ri3 represents -Η or -CH3, X, which represents the general formula (2): - ( CH2CH20) a- (CH2) b- (〇) c-, χ2 means ~(^ or -17. Only, 3 in the general formula (2) is an integer of 0 to 3, 1) is an integer of 0 to 1 2 , c is 0 or 1, and when a=l~3, b=0, c=0, when a=0, b=1~1 2 , c=〇~1) 聚合 is expressed by the general formula (1) Specific examples of the liquid crystal original compound (Α) are shown in Table 1. 17 1341928 Table 1 fri shows R, R4 Rs «6 R7 r4 Rs R ι〇Rn R.3 XI ί 匕 r a 2 abci Η Η Η Η Η Η F Η Η Η Η Η Η CN 1 0 0 2 Η 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Η Η Η Η 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 CN 0 Η Η 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Η z z Η Η Η Z Z Z Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Η 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 CN 0 Η 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 , , i , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 2 Η 2 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 F 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ^ 2 2 2 2 2 2 2 ^ 2 ^ ^ 2 ^ ^ 2 2 2 ^ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ^ ^ 2 F 0 30 2 30 30 FF FF 2 2 2 FF FF 2 2 2 2 2 2 F 2 0 0 40 F" ? Η Η Η Η Η Η Η Η 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2聚合 0 Η Η 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A) is not limited to these exemplified compounds. Further, the polymerizable optical agent (B) is, for example, LC756 manufactured by BASF Corporation. The amount of the polymerizable optically active agent (B) is preferably from -20 parts by weight to 3 parts by weight based on the total amount of the polymerizable liquid crystal raw material 5 compound (A) and the polymerizable optically active agent (B). ί is better. The helical torsional force (ΗΤρ) can be controlled by the ratio of the polymerizable liquid crystal original compound (4) to the polymerizable optically active agent (Β). By making the aforementioned ratio within the foregoing range by 18 1341928, the reflection band can be selected so that the reflection spectrum of the obtained torsion layer liquid crystal film covers the long wavelength region. Further, the liquid crystal mixture usually contains a photopolymerization initiator (c). The photopolymerization initiator (c) can be used in various kinds without particular limitation. For example, it can be exemplified in the heart of the eight 5 Μ ... ... ... ... ... ... ... 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二The amount of the photopolymerization initiator to be mixed is preferably from 1 to 1 part by weight, based on 100 parts by weight of the total of the polymerizable liquid crystal original compound (Α) and the polymerizable optical agent (〇〇), and is 5 to 5 parts by weight. Better. 1〇 In the above mixture, in order to broaden the bandwidth of the obtained twisted layer liquid crystal film, an ultraviolet absorber may be mixed to increase the difference in ultraviolet exposure intensity in the thickness direction. Further, the same effect can be obtained by using a photoreaction initiator having a large molar extinction coefficient. The foregoing mixture can be used as a solution. The solvent used in the preparation of the solution 'usually can be used, three gas methane, two gas crater, two gas ethane, four gas ethane, three 15 gas ethylene, four gas ethylene, gas stupid and other functional hydrocarbons, stupid phenol And aromatic phenols such as phenol, benzene, hydrazine, xylene, methoxy stupid, 1,2-dimethoxy stupid, etc., other such as acetone, mercaptoethyl ketone, ethyl acetate Ester, tert-butanol, propylene glycol, ethylene glycol, triethylene glycol, ethylene glycol monomethyl ether, diethylene glycol dimercapto, acetoin, butyl quercetin, 2-pyrrole Pyridone, Ν-methyl-2-0 than bite 20 _, ° pyridine, triethylamine 'tetrahydrofuran, dimethyl carbamide 'dimethylamine, dimethyl hydrazine, acetonitrile, butyl Nitrile, carbon disulfide, cyclohexanone, cyclopentanone, and the like. The solvent to be used is not particularly limited, and methyl ethyl ketone, cyclohexanone, cyclohexanone or the like is preferred. The concentration of the solution may not be generalized due to the solubility of the thermonic liquid crystalline compound or the thickness of the twisted liquid crystal layer of the final purpose, and is usually preferably from 1 to 341,928 to 35% by weight. The production of the wide-frequency twisted-layer liquid crystal film of the present invention comprises the steps of applying the liquid crystal mixture to the oriented substrate, and subjecting the liquid crystal mixture to ultraviolet irradiation to cause polymerization hardening. 5 Oriented substrate can be known, for example, a film formed by forming a film formed of polyimide or polyvinyl alcohol on a substrate and rubbing it with rayon cloth or the like; An oblique vapor deposition film; a light-oriented film irradiated with a polarized ultraviolet ray on a polymer having a photocrosslinking group such as cinnamic acid or azobenzene; or a polyimide film; a stretched film or the like. In addition, it can be oriented by magnetic field, electric field orientation, and frictional stress operation 10. The type of the substrate is not particularly limited, and a method of irradiating the irradiation line (ultraviolet rays) from the substrate side is preferable to use a material having a high transmittance. For example, the substrate preferably has a transmittance of 10% or more, particularly 20% or more, in an ultraviolet region of 200 nm or more and 400 nm or less, particularly 300 nm or more and 400 nm or less. Specifically, a plastic film having a transmittance of ultraviolet rays having a wavelength of 15 365 nm of 10% or more and even 20% or more is preferable. Further, the transmittance is a value measured by a HITACHI U-4100 Spectrophotometer. Further, as the substrate, polyethylene terephthalate, triethyl hydrazine cellulose, normethazine resin, polyvinyl alcohol, polyimine, polyallyl ester, polycarbonate 20, polyfluorene or poly can be used. A film made of plastic such as ether oxime, a glass plate, or a quartz plate. For example, Fuji Photograph 7 彳 厶 厶 三 三 三 或 或 或 或 或 或 或 或 或 ART ART ART ART ART ART ART ART ART ART ART ART ART ART ART ART ART ART ART ART Further, the polymer film described in JP-A-2001-343529 (WOO 1/37007) may, for example, contain a thermoplastic resin having a substituted and/or unsubstituted oxime 20 1341928 amine group in the side chain (A). And (B) a resin composition of a thermoplastic resin having a substituted and/or unsubstituted phenyl group and an eye group on the side chain. Specific examples thereof include a film comprising a cross-polymer of isobutylene and N-methyl cis-butanediamine and a resin composition of a propylene bromide copolymer. As the film, a film formed of a mixed product of a resin composition, or the like can be used. The substrate can be used in a state of being adhered to the liquid crystal layer of the twisted layer, or can be removed by peeling off. When used in a fitted state, a material having a very small phase difference in practical use is used. When it is used in combination with a substrate, it is preferable to use a substrate which does not decompose, deteriorate, or yellow even if it is irradiated with ultraviolet rays. For example, mixing a light stabilizer or the like in the aforementioned substrate can achieve the desired purpose. Light stabilizers can be used as appropriate. Less force / by company, only 匕,, > 12〇, 144, etc. When the wavelength is removed from the exposure light by 3 〇〇 nm or less, the coloring, deterioration, and yellowing can be reduced. The coating thickness of the liquid crystal mixture (in the case of a solution, the coating thickness after solvent drying) is preferably 1 to 2 Å/m. If the coating thickness is thinner than 丨^, the reflection bandwidth can be secured, but the degree of polarization tends to be inferior, which is not preferable. The coating thickness is preferably 2/zm or more, or even 3ym or more. On the other hand, if it is thicker than 2 〇 - ', the reflection bandwidth and the degree of polarization are not significantly improved, but the cost is increased, so it is not suitable. The coating thickness is preferably 15 or less, and more preferably 1 or less. 20 A method of applying the above-mentioned mixed solution to a substrate may be, for example, a roll coating method, a gravure coating method, a spin coating method, a wire coating method, or the like. After the coating of the mixed solution, the solvent is removed to form a liquid crystal layer on the substrate. The solvent removal conditions are not particularly limited as long as the solvent can be removed, and the liquid crystal layer does not flow or flow. Usually, the solvent is removed by drying at room temperature, drying in a drying oven, heating on a 21 1341928 hot plate, or the like. Next, the liquid crystal layer formed on the oriented substrate is in a liquid crystal state to orient the twist layer. For example, heat treatment is performed to make the liquid crystal layer a liquid crystal temperature range. The heat treatment method can be carried out in the same manner as the above drying method. The heat treatment temperature of 5 degrees varies with the type of liquid crystal material or oriented substrate, so it cannot be generalized, but is usually 60 to 300. (:, in the range of 70 to 200. (: The range is better. Also, the heat treatment time varies with the heat treatment temperature and the type of liquid crystal material or oriented substrate used), so it cannot be generalized, usually in 10 seconds~ It is preferable to select 'with a range of 20 seconds to 30 minutes in a range of 2 hours. 10 The step of applying the liquid crystal mixture to the oriented substrate and irradiating with ultraviolet rays comprises the above steps (1) to (3). Step (1) In the state in which the liquid crystal mixture is in contact with the oxygen-containing gas, the ultraviolet ray is irradiated with ultraviolet rays at a temperature of 2 Torr or more at a temperature of 20 to 200 mW/cm 2 for 0.2 to 5 seconds from the side of the oriented substrate. The mixture is polymerized, 15 forms a polymer/aggregate having an average molecular weight of about 5,000 to 500,000, and the difference in reaction rate due to oxygen inhibition and the amount of radical generation due to ultraviolet absorption of the liquid crystal composition A layer in which the amount of formation of the polymer/oligomer in the thickness direction is continuously distributed is generated in the thickness direction of the oriented substrate side and the opposite side (oxygen interface side). 2〇 In the step (1) When the liquid crystal mixture is polymerized and cured in a good orientation state, the temperature at the time of the first ultraviolet ray irradiation is 2 Å or more. In addition, the upper limit of the temperature is not particularly limited, but is 1 〇〇〇 c or less. Appropriate. If the temperature is lower than the loot: 'The radiation will cause diffusion and is difficult to manage. From these points, the above temperature is preferably 20 ° C ~ 50 eC. The first ultraviolet irradiation intensity is 2 〇 ~ 2 22 1341928 o 〇 Mw/cm ' is preferably 25~200mW/cm2, and 4〇~i5〇mw/cm2 is better. The ultraviolet irradiation intensity is purely 2Qmw/em2, which can not be completed in the direction of the thickness. When the ultraviolet irradiation intensity is higher than 200 mW/cm2, the polymerization reaction rate is higher than the diffusion rate, and it is not possible to complete the broadening, so it is not suitable. 4 Step (1) towel, the first ultraviolet irradiation time is 〇 2~5 seconds, preferably 〜3~3 seconds is better than 0.5~1.5 seconds. If it is shorter than 0 2 seconds, the polymerization of the monomer distribution in the thickness direction cannot be completed, and the frequency cannot be widened. After more than 5 seconds, the pitch of the twisted layer liquid crystal layer does not change. From the side of the oriented substrate to the side of the oxygen interface, it is a continuous change from ·10 to small, and it becomes discontinuous, so it is not suitable. If a discontinuous change is formed, the coloring becomes severe when viewed from an oblique direction. The exposure environment is carried out in a state where the liquid crystal mixture applied to the substrate is brought into contact with the oxygen-containing gas. The oxygen-containing gas preferably contains 5% or more of oxygen, and the environment can be used as long as it is resistant to oxygen polymerization. , generally, can be carried out in an atmospheric environment. In addition, the oxygen concentration can be increased or decreased according to the wavelength of the pitch control in the thickness direction and the speed required for the polymerization. Further, in the atmosphere, relative to the polymerization 100 parts by weight of the total of the liquid crystal original compound (A) and the polymerizable optically active agent (B), and the amount of the enthalpy is used in an amount of 1 to 5 parts by weight, the year 2 184 '彳 claw force, the year 2 y 907 (All of them are in the 〆 殳 · 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 Further, when the weight average molecular weight of the formed polymer/oligomer is too small at the time of the first ultraviolet ray irradiation, the diffusion rate is too high. Therefore, care should be taken to minimize the concentration gradient of the polymer/oligomer due to uncontrolled diffusion rates. No 23 1341928 It is only necessary to form a large change in the thickness direction of the liquid crystal layer with a long twist pitch, and it must be able to maintain it. If the molecular weight of the polymer/aggregate is too low, the formed tilt cannot be maintained. The structure disappears due to molecular diffusion. In order for the diffusion rate to satisfy the conditions governed by industrial conditions, it is necessary to form a polymer/oligomer in a weight average molecular weight of 丨〇〇〇〇 to 500,000. The weight average molecular weight of the polymer/oligomer is preferably from 10,000 to 300,000. Further, the weight average molecular weight of the polymer/oligomer is a value measured by a GPC method. Further, the weight average molecular weight was calculated using a polyethylene oxide as a standard sample. Main body: HLC-8120GPC made by Dong V-, pipe column: East,) SuperAWM-H+SuperAWM-H+SuperAW3000 (6mm 10 4 X 15cm, 45cm each), pipe temperature · 40°C, Dissolution: 〖0 mM-LiBr / NMP, flow rate: 0.4 ml/min, inlet pressure: 8, 5 MPa, sample j degree: 〇·ι% NMP solution, detector: differential refractometer (RI). When the concentration distribution formed by the first ultraviolet ray irradiation in the step (1) is directly fixed, only the reflection wavelength band of the same level as that of JP-A-2002-286935 or the like can be obtained. Therefore, in the step (2), the liquid crystal layer is brought into contact with the oxygen-containing gas, and the liquid crystal layer is brought into contact with the oxygen-containing gas at a temperature increase rate of 2.匚 / sec or more, reaching the temperature higher than the step (1 ) and above 60 ° C, and lowering the ultraviolet ray intensity lower than the step (1), illuminating the purple 20 outer line from the side of the oriented substrate for more than 1 second . By the second ultraviolet irradiation in the step (2), the effective depth of the polymerization inhibition caused by the oxygen permeated from the oxygen interface side is deeper than the step (1), and further, since the polymer is obtained in the step (1) The oligomer is formed to be inclined at a concentration in the thickness direction, so that the concentration gradient of the formed unpolymerized monomer component can be made uniform. At the same time, the long pitch of the oriented substrate side can be further increased by merely performing the reaction of the long pitch field 24 1341928 on the oriented substrate side. The increase in the molecular weight of the liquid crystal composition layer and the diffusion rate are inferior, and the difference is large compared to the first ultraviolet irradiation in the step (1), so that the amount of radicals generated per unit time is reduced, and the polymerization progress rate is lowered. Can be more broadband. 5 In the special book No. 3272668, change the number! The temperature conditions of the secondary ultraviolet irradiation and the second ultraviolet irradiation, and the time required for the composition ratio to vary in the thickness direction is additionally disposed in the dark, but if the whole visible light is covered by the method, the substance movement caused by the temperature change The waiting time takes 12 () minutes. On the other hand, in the manufacturing method of the present invention, dark places are not particularly required. And the steps can be completed in a short time within 10 minutes, so that a highly efficient and efficient production speed can be produced. In the step (2), the second and outer lines are irradiated while the temperature is raised to the predetermined reaching temperature. In the step (2), the starting temperature at the time of the second ultraviolet ray irradiation is the same as the temperature in the step (1). That is, at 2 (rc or more. If the starting temperature is lower than 15 CC', the diffusion rate of the polymerizable liquid crystal original compound (1) is very slow and takes a long time to be broadened. X, the reaching temperature is set higher than the step (1). In addition, when the temperature is lower than 6 (rc), the diffusion of the polymerizable liquid crystal original compound (a) is not sufficiently generated, and the frequency cannot be sufficiently broadened. The upper limit of the temperature is not particularly limited, but 14 (The following is better than rc. It is better to reach 20 °C to 120 °C when the temperature is 20 degrees. If the temperature is higher than M〇〇c, the diffusion speed is too fast and difficult to manage. From the end of the first ultraviolet irradiation, the temperature is rapidly increased to the reaching temperature at a temperature increase rate of 2 C/sec or more. If the temperature increase rate is less than 2 seconds, the diffusion of the polymerizable liquid crystal original compound (4) cannot be sufficiently produced. However, it is not possible to sufficiently widen the temperature. The temperature increase rate is preferably 2 to 2 〇t / sec. After reaching the arrival temperature of the pre-twist, 'normally, the second ultraviolet ray can be maintained while maintaining the temperature. In the range below 14〇t, it can also be When the temperature reaches a predetermined temperature, the temperature is gradually increased. The second ultraviolet ray is irradiated with an irradiation intensity lower than the ultraviolet ray intensity of the first ultraviolet ray. When the illuminance is lower than the first ray, the oxygen polymerization resistance depth is deeper than The oxygen resistance depth at the time of the th-th ultraviolet irradiation is such that the short-wavelength band formed on the air interface side hardly changes, and the long-wavelength bandwidth on the substrate side is frequency-divided. χ, the second ultraviolet ray irradiation intensity is lower than the first ultraviolet ray irradiation. The range of the intensity is preferably 1. The ultraviolet irradiation time varies depending on the illuminance, and is generally preferably in the case of leap seconds or more. The second ultraviolet irradiation time is the irradiation time and the reaching temperature at which the temperature is rapidly increased to reach the temperature. Further, the ultraviolet irradiation time is preferably 12 sec or less, more preferably 6 sec or more, from the viewpoint of the working time, and the widening is achieved by the step (7) as described above. After the realization of the wide frequency of the embodiment described in the fifth embodiment, the angle of view caused by the blue shift of the oblique eight-shot light causes coloring and discoloration to become very large, which can be significantly reduced. The coloring is caused by the angle of view. Next, in step (1), ultraviolet rays are irradiated in the absence of oxygen, and by the third ultraviolet irradiation, the torsion layer 2 〇 reflection band which is expanded in steps (1) and (7) can be made inferior and hardened. The pitch variation structure can be made inferior and fixed. In the absence of oxygen, for example, it can be in an inert gas atmosphere. The inert gas does not have any influence on the ultraviolet polymerization of the liquid crystal mixture. The inactive gas can be, for example, nitrogen H, nitrogen gas 氪 26 1341928, etc. Among them, II is most commonly used, and it is suitable, and the transparent substrate can be laminated on the twisted liquid crystal layer. In the step (3), the ultraviolet irradiation can be carried out from either the side of the oriented substrate or the side on which the liquid crystal mixture has been applied. 5 The external irradiation condition is not particularly limited as long as it is a condition that the liquid crystal mixture is hardened. Usually, the irradiation intensity of 40 to 30 〇 mW/cm 2 is preferably irradiated for 6 sec. The irradiation temperature is 20 toloot. Thereby, the crosslink density of the liquid crystal layer can be improved and the molecular weight can be improved. In the present invention, in the second step of the step (1), the ultraviolet ray irradiation and the second ultraviolet ray irradiation in the step (H) are irradiated with ultraviolet rays from the surface side of the oriented substrate in order to actively use oxygen. Therefore, a large gradient can be formed in the thickness direction in the reaction rate, but the problem is that the problem of insufficient hardness and strength of the film surface or insufficient long-term reliability may occur due to a low polymerization rate at the air interface side. Therefore, in the step (1), the third ultraviolet ray irradiation is performed in the absence of oxygen, and the residual monomer is polymerized 15 to complete the film quality enhancement. In this case, the reaction rate on the surface in an air environment (in the presence of oxygen) is not sufficiently increased, and the reaction rate is hardly increased to 9〇%. Therefore, in order to obtain sufficient reliability, it is preferred to perform ultraviolet irradiation in the absence of oxygen. The direction of irradiation is not particularly limited. It is preferred to irradiate from the liquid crystal layer side, but in the gas atmosphere, the surface reaction can be sufficiently performed even when irradiated from the substrate side. 20 The twisted-layer liquid crystal film thus obtained can be used without being peeled off from the substrate, or can be used after being peeled off from the substrate. The wide-band twisted layer liquid crystal film of the present invention can be used as a circularly polarizing plate. The circular polarizer can be laminated; the W4 plate acts as a linear polarizer. The circularly polarizing plate, that is, the twisted-layer liquid crystal film, is preferably laminated on the λ/4 plate in a state in which the pitch length is continuously narrowed. 27 1341928 λ/4 plate is not particularly limited, and may be suitably used such as polycarbonate, polyethylene, stearic acid, polystyrene, polyfluorene, polyvinyl alcohol, polymethyl methacrylate, etc. to extend the phase difference. A general-purpose transparent resin film or a normidine-based resin film such as an ARTON film manufactured by JSR Corporation. Further, it is preferable to use a phase difference plate that performs two-axis extension and compensates for a change in phase difference due to a 5-angle angle, thereby improving viewing angle characteristics. Further, in addition to exhibiting a phase difference by the resin extension, it is also possible to use a U4 plate obtained by fixing, for example, another layer obtained by orienting the liquid crystal; At this time, it can be greatly reduced; the thickness of 1/4 plate. The thickness of the /4 wavelength plate is usually preferably 〇5~2〇〇 /z m, particularly preferably 1~1 〇〇 μ m. (10) A phase difference plate that functions as a λ/4 wavelength plate in a wide wavelength range such as the visible light region, for example, a phase difference layer that functions as a λ /4 wavelength plate with pale light having a wavelength of 55 〇 nm. It is obtained by overlapping a phase difference layer which exhibits other phase difference characteristics, for example, a phase difference layer functioning as a Λ/2 wavelength plate. Therefore, the phase difference plate 15 disposed between the polarizing plate and the brightness enhancement film may be formed of a germanium layer or a retardation layer of two or more layers. The absorbing polarizer can be used by being aligned on the transmission axis in the direction of the transmission axis of the linear polarizer. The polarizer is not particularly limited and various types can be used. As a polarizer, for example, a hydrophilic polymer film such as a polyethylene glycol film, a partial methylation polyethylene film, or an ethylene/ethylene 20 acetic acid copolymer portion 4 film can be used. Broken or two-color f-raw wood, etc.—a single-strand stretcher of a coloring material, a dehydrated material of polyethylidene alcohol, or a degassing treatment of a gas-deficient sputum, and the like. This is preferable to a polarizer formed of a dichroic alcohol film and a dichroic substance such as ruthenium. The thickness of these polarizers is not particularly limited, and is generally 5 to m. The polarizer which is a single-stretched stretch of the polyephthyl alcohol film by moth dyeing can be produced, for example, by immersing polyvinyl alcohol in an aqueous solution of eucalyptus, and extending it to 7 times the original length. It may be immersed in an aqueous solution containing a sulphuric acid or a sulphuric acid such as zinc sulphate or the like as needed. It is also necessary to immerse the polyethylene glycol film in water for washing before the dyeing. By washing the polyethylene glycol film by water, it is possible to wash not only the dirt or the blocking preventive agent on the surface of the polyethylene film, but also the effect of swelling the polyvinyl alcohol film to prevent unevenness such as dyeing mottle. The extension can be carried out after dyeing, or by dyeing, or by iodine after stretching. It can also be extended in an aqueous solution such as boric acid or potassium iodide or in a water bath. 1〇 The polarizer is usually used as a polarizing plate provided with a transparent protective film on one side or both sides. The transparent protective film is excellent in transparency, mechanical strength, thermal stability, moisture shielding property, isotropic property, and the like. The transparent protective film may, for example, be a polyester polymer such as polyethylene terephthalate or polyethylene naphthalate, a cellulose polymer such as bisacetyl cellulose or triacetyl cellulose, or a poly A film formed of a transparent polymer such as a carbonate polymer or an acrylic polymer such as polymethacrylate. Further, a polystyrene, an acrylonitrile/styrene copolymer styrene styrene polymer, a polyolefin having a polyethylene, a polypropylene, a ring system or a deuterium structure, and an ethylene/propylene copolymerization may be mentioned. A film formed of a polyolefin polymer such as a polyolefin polymer, a gas-ethylene polymer, or a ruthenium-based polymer such as a donor or an aromatic polyamide. Further, an imine-based polymer, a fluorene-based polymer, a polyether fluorene-based polymer, a polyetheretherketone-based polymer, a poly-extension-based sulfide-based polymer, a glycol-based polymer, and a biased gas B A transparent polymer of a rare polymer, a polyglycol condensate polymer, an allyl ester polymer, a polyfurfural polymer, an epoxy polymer, or a blend of the foregoing polymers The film formed. In particular, it is better to use less optical refraction at 29. From the viewpoint of the protective film of the polarizing plate, it is suitable to use a polyethylene glycol, a polycarbonate, an acrylic polymer, a cycloolefin resin, a polyolefin having a norform structure, and the like. Further, the polymer film of the fifth embodiment described in JP-A-2001-343529 (WOO 1/37007) may, for example, contain a thermoplastic resin having a substituted and/or unsubstituted guanamine group in the side chain of (A), and (B) A resin composition of a thermoplastic resin having a substituted and/or unsubstituted base group and a nitrile group in a side chain. Specific examples thereof include a film comprising a cross-polymer of isobutylene and N-methylbutyleneimine and a resin composition of a propylene residual ethylene copolymer. As the film, a film formed of a mixture of 10 substances and the like can be used. A transparent protective film is preferably a triacetyl cellulose film which is saponified with a base or the like based on a polarizing property or durability. The thickness of the transparent protective film is appropriately determined, and it is generally 10 to 500 " m, especially 2 〇 to 3 〇〇 " m, from the viewpoints of workability such as strength and handleability, and thin layer properties. It is better to use 3〇~2〇〇"m 15. Further, the transparent protective film is preferably not colored as much as possible. Therefore, it is preferable to use: Rth=[ ( nx+ny ) /2-nz].d (only, nx, ny is the main refractive index in the film plane, nz is the refractive index in the film thickness direction, and d is the film thickness) The phase difference in the film thickness direction indicated is a protective film of -90 nm to +75 nm. By using the phase difference of the thickness direction of the thickness direction of -90 nm to +75 nm, the coloring (optical dyeing) of the polarizing plate caused by the protective film can be almost eliminated. The phase difference (Rth) in the thickness direction is preferably -80 nm to +60 nm, especially _7 〇 nm to +45 nm. The transparent protective film can be transparently protected by the same polymer material in the surface. The film may also be a transparent protective 30 1341928 film formed of a different polymer material or the like. The surface of the transparent protective film which is not followed by the polarizer may be subjected to a treatment for the purpose of a hard coat layer, reflection preventing treatment, adhesion prevention or diffusion, or even anti-glare. In order to prevent the loss of the surface of the polarizing plate, the hard mask treatment can be performed by using a suitable ultraviolet curable resin such as a polyacrylic acid-based polysulfide resin. The hardened film is formed by attaching it to the surface of the transparent protective film. The reflection preventing treatment is carried out for the purpose of preventing reflection of light outside the surface of the polarizing plate, and can be achieved by the formation of a conventional reflection preventing flaw or the like. Further, the adhesion prevention treatment is performed for the purpose of preventing adhesion to the adjacent layer. Further, the anti-glare treatment can be carried out for the purpose of preventing external light from being reflected on the surface of the polarizing plate and obstructing the visual observation of the light transmitted through the polarizing plate, and can be performed by, for example, a blasting method or an embossing method. A suitable method such as a surface-forming method or a method of blending transparent fine particles is applied to the surface of the transparent protective film to form a fine uneven structure. In the formation of the surface fine concavo-convex structure, as the fine particles contained therein, for example, ceria, alumina, titania, oxidized tin, tin oxide, indium oxide 氡 having an average particle diameter of 5 to 50 μm can be used. When the transparent fine particles such as organic fine particles formed by cadmium or cerium oxide and the organic fine particles formed by crosslinking or uncrosslinked polymer form a surface fine uneven structure 2, the use of fine particles The amount is preferably 2 to 5 Å by weight, and preferably 5 to 25 parts by weight, based on 100 parts by weight of the transparent resin forming the surface fine uneven structure. The glare layer can also serve as a diffusion layer (expanding the viewing angle function, etc.), and the polarizing plate can be diffused by light to expand the viewing angle. Further, the anti-reflection layer, the adhesion preventing layer 'diffusion layer or the anti-glare layer 31 31341928 may be provided on the transparent protective film, or may be provided as a separate transparent layer from the transparent protective film.

前述直線偏光子上可設置用以與液晶晶胞等其他構件接 著之黏著層。形成黏著層之黏著劑並無特別限制,例如可適當 5 選擇丙烯酸系聚合物、聚矽氧系聚合物、聚酯、聚胺甲酸酯、 聚醯胺、聚醚、氟原子系或橡膠系等之聚合物為基質聚合物者 來使用。特別是丙烯酸系黏著劑,其光學性透明性優異,展顯 出適度之可濕潤性、凝集性與接著性之黏著特性,在耐氣候性 或耐熱性等方面優異,尤適宜使用。 10 又,除上述之外,再加上基於防止因吸濕等造成之發泡現 象或剝離現象、防止因熱膨脹等造成之光學特性降低或液晶晶 胞翹曲、進而有高品質且耐久性優異之液晶顯示裝置之形成性 等點,以使用吸濕率低且耐熱性優異之黏著層為佳。An adhesive layer for attaching to other members such as a liquid crystal cell may be disposed on the linear polarizer. The adhesive for forming the adhesive layer is not particularly limited. For example, an acrylic polymer, a polyoxymethylene polymer, a polyester, a polyurethane, a polyamide, a polyether, a fluorine atom or a rubber may be appropriately selected. The polymer is used as a matrix polymer. In particular, an acrylic pressure-sensitive adhesive is excellent in optical transparency, exhibits moderate wettability, cohesiveness and adhesion property, and is excellent in weather resistance and heat resistance, and is particularly preferably used. 10 In addition to the above, it is based on the prevention of foaming or peeling due to moisture absorption, prevention of deterioration of optical properties due to thermal expansion, or warpage of liquid crystal cells, and high quality and excellent durability. In order to form the liquid crystal display device, it is preferable to use an adhesive layer having a low moisture absorption rate and excellent heat resistance.

黏著劑層可含有例如天然物或合成物之樹脂類、特別是如 15 黏著性賦予樹脂、玻璃纖維、玻璃珠、金屬粉、由其他無機粉 末等形成之充填劑、顏料、著色劑或抗氧化劑等可添加於黏著 層之添加劑。又,亦可使其為含有微粒子而顯示光擴散性之黏 著劑層等。 黏著劑層之附設,可以適當之方式進行。例如,可舉調製 20 使基質聚合物或其組成物溶解或分散於由曱苯或乙酸乙酯等 適宜之溶劑之單獨物或混合物所形成之溶劑中而成之10〜40重 量%左右之黏著劑溶液,將之以延流方式或塗工方式等適宜之 展開方式直接附設於偏光板上或光學膜上這種方式,或依據前 述於脫模膜上形成黏著層,再將之移著到偏光板上或光學膜上 32 之方式等。黏著層亦可作為不同組成或種類等之重疊層設於偏 光板或光學膜之單面或雙面。又,設於雙面之情況,亦可在偏 光板或光學臈之表裡作成不同組成、種類或厚度等之黏著層。 黏著層之厚度可因應使用目的或黏著力等適宜地決定,一般為 1〜500/zm,又以5〜200"m為佳,尤以1〇〜1〇〇"m為佳。 在供於實用之前,以防止其污染等為目的,對黏著層之露 出面暫時貼附脫模膜覆蓋卩。藉此,錢例之處理狀態下可防 止接觸黏著層。脫模膜除了上述厚度條件外,可使用例如將塑 膠膜、橡膠薄片、紙、布、不織布、網、發泡薄片或金屬薄月、 這些薄片的積層體等之適宜之薄片,因應需要而㈣氧系、長 鏈坑基系、氟元素或硫化纟目等適宜之剝離#丨施行塗層處理者等 依據習知之適宜者。 又,在黏著層等各層上,可藉例如柳酸醋系化合物或苯紛 系化口物¥并二氮唾系化合物或氰基丙稀酸系化合物、鎮錯 鹽系化合物等之紫外線吸收劑來處理之方式等方式使其具有 紫外線吸收能等。 本發明之直線偏光子可適當地使用在液晶顯示裝置等各 種裝置之形成等。液晶顯示裝置之形成可以習知為基準來進 行。亦即’液晶顯示裝置一般是藉由將液晶晶胞與黏著型光學 膜及因應需要之照明系統等之構成零件適當地組合並裝入驅 動電路等來形成’本發明中,除了使用藉本發明形成之偏光板 〆光予膜這點外’並無特別限定,可依據習知之方法。有關液 晶晶胞也可使用例如TN型、STN型或π型等任意類型者。 可幵/成在液晶晶胞之單側4兩側西己置偏光板或光學膜之 1341928 液晶顯不裝置、或於照明系統中使用後照燈或反射板者等之適 宜之液晶顯示裝置。這時,藉本發明形成之偏光板或光學膜可 設置於液晶晶胞之單側或兩侧。於兩側設置偏光板或光學膜 時,該等可以相同,也可以不同。更,在液晶顯示裝置形成之 5際,可於適宜之位置將例如擴散板、抗眩光層、反射防止骐、 保護板、稜鏡陣列、透鏡陣列薄膜、光擴散板、背光等適宜之 零件配置1層或2層以上。 又,利用前述扭層液晶膜之圓偏光板(反射偏光子)係用 於下述偏光元件系統1亦即在偏光之選擇反射之波長帶相互重 10疊之至少2層反射偏光子(a )之間,配置有正面相位差(法線 方向)幾乎為零且對於以相對於法線方向3〇。以上傾斜入射之 入射光具有λ/8以上之相位差層(b)者。又,扭層液晶膜可 以螺旋狀扭曲分子構造之最大螺距與最小螺距之任一側為相 位差層(b)側,不過由視角(視角佳且著色小)之觀點來看, 15右將反射偏光子(a)以(最大螺距/最小螺距)表示,則以配 置成最大螺距/最小螺距/相位差層(b) /最大螺距/最小螺距為 佳。又’如第6圖所示,組合λ/4板時,以配置成反射偏光子 (a)之最小螺距側為又/4板侧為佳。 前述偏光元件系統亦即具有寬頻選擇反射機能之杻層液 20晶積層體,正面方向具有圓偏光反射/透過機能,可將之作為寬 頻圓偏光板用於液晶顯示裝置。這種情況,可藉由配置於圓偏 光型式之液晶晶胞;例如具有多領域之透過型VA型式液晶晶 胞之光源側來作為圓偏光板使用。 相位差層(b )係正面方向之相位差幾乎為零且對於從法 34 1341928 線方向30°之角度之入射光具有λ/8以上之相位差者。正面相 位差之目的在於保持垂直入射之偏光,故宜在λ/10以下。 對於來自斜方向之入射光可依據可有效率地將之偏光變 換而使之全反射之角度等來適當決定。例如,要在從法線成角 5 60 °使之完全全反射,則以60 °測定時之相位差成為λ /2來決The adhesive layer may contain, for example, a resin of a natural product or a composition, particularly, for example, an adhesive property-imparting resin, a glass fiber, a glass bead, a metal powder, a filler formed of other inorganic powder or the like, a pigment, a colorant or an antioxidant. An additive that can be added to the adhesive layer. Further, it may be an adhesive layer containing fine particles and exhibiting light diffusibility. The attachment of the adhesive layer can be carried out in an appropriate manner. For example, it can be prepared by dissolving or dispersing a matrix polymer or a composition thereof in a solvent formed by a single substance or a mixture of a suitable solvent such as toluene or ethyl acetate to form an adhesive of about 10 to 40% by weight. The solution solution is directly attached to the polarizing plate or the optical film by a suitable expansion method such as a flow-through method or a coating method, or an adhesive layer is formed on the release film according to the above, and then moved to The manner of 32 on the polarizing plate or on the optical film. The adhesive layer may be provided on one or both sides of the polarizing plate or the optical film as an overlapping layer of different compositions or types. Further, in the case of double-sided, an adhesive layer of a different composition, type, thickness or the like may be formed in the surface of the polarizing plate or the optical iridium. The thickness of the adhesive layer can be appropriately determined depending on the purpose of use or adhesion, etc., generally 1 to 500/zm, and preferably 5 to 200 " m, especially 1 〇 to 1 〇〇 " m is preferred. Before the application for practical use, the release film is temporarily attached to the exposed surface of the adhesive layer for the purpose of preventing contamination thereof. Thereby, the handling of the money can prevent contact with the adhesive layer. In addition to the above-mentioned thickness conditions, the release film may be, for example, a suitable sheet of a plastic film, a rubber sheet, a paper, a cloth, a non-woven fabric, a mesh, a foamed sheet or a metal thin layer, a laminate of these sheets, etc., if necessary (4) Suitable stripping such as oxygen-based, long-chain pit system, fluorine element or sulphide, etc., is suitable according to the conventional application of the coating agent. Further, in each layer such as an adhesive layer, for example, an ultraviolet absorber such as a salicylic acid vinegar compound or a benzene sulfonate compound, a diazonium salt compound, a cyanoacrylic acid compound, or a morphological salt compound can be used. The method of treatment, etc., such that it has ultraviolet absorption energy and the like. The linear polarizer of the present invention can be suitably used for formation of various devices such as a liquid crystal display device. The formation of the liquid crystal display device can be conventionally carried out as a reference. In other words, the liquid crystal display device is generally formed by appropriately combining a liquid crystal cell, an adhesive optical film, and a component such as an illumination system as needed, into a driving circuit, etc., in addition to the use of the present invention. The formation of the polarizing plate before the film is not particularly limited, and can be carried out according to a conventional method. As the liquid crystal cell, any type such as TN type, STN type or π type can also be used. It can be made into a suitable liquid crystal display device such as a polarizer or an optical film on the one side 4 of the liquid crystal cell, or a backlight or a reflector for use in an illumination system. At this time, the polarizing plate or the optical film formed by the present invention may be disposed on one side or both sides of the liquid crystal cell. When a polarizing plate or an optical film is provided on both sides, the same may be the same or different. Further, in the case where the liquid crystal display device is formed, suitable components such as a diffusion plate, an anti-glare layer, a reflection preventing cymbal, a protective plate, a ruthenium array, a lens array film, a light diffusing plate, and a backlight can be disposed at appropriate positions. 1 or more layers. Further, a circularly polarizing plate (reflecting polarizer) using the twisted-layer liquid crystal film is used for the polarizing element system 1 described below, that is, at least two layers of reflective polarizers (a) which are mutually overlapped in a wavelength band of selective reflection of polarized light. Between them, the front phase difference (normal direction) is arranged to be almost zero and is 3 相对 with respect to the normal direction. The incident light obliquely incident above has a retardation layer (b) of λ/8 or more. Further, the twisted layer liquid crystal film may have a spiral pitch twisted molecular structure on either side of the maximum pitch and the minimum pitch as the phase difference layer (b) side, but from the viewpoint of a viewing angle (good viewing angle and small coloration), 15 right will reflect The polarizer (a) is expressed by (maximum pitch/minimum pitch), and is preferably configured to have a maximum pitch/minimum pitch/phase difference layer (b) / maximum pitch / minimum pitch. Further, as shown in Fig. 6, when the λ/4 plate is combined, it is preferable that the minimum pitch side of the reflected polarizer (a) is set to be /4 plate side. The polarizing element system, that is, a layered liquid 20-layer laminate having a wide-band selective reflection function, has a circular polarization reflection/transmission function in the front direction, and can be used as a wide-frequency circular polarizing plate for a liquid crystal display device. In this case, it can be used as a circularly polarizing plate by a liquid crystal cell arranged in a circularly polarized type; for example, a light source side of a multi-domain transmissive VA type liquid crystal cell. The phase difference layer (b) has a phase difference of almost zero in the front direction and a phase difference of λ/8 or more with respect to incident light at an angle of 30 from the line direction of the method 34 1341928. The purpose of the front phase difference is to maintain the polarization of the normal incidence, so it is preferably below λ/10. The incident light from the oblique direction can be appropriately determined in accordance with the angle at which the polarized light can be efficiently converted and totally reflected. For example, to make a total total reflection at an angle of 5 60 ° from the normal, the phase difference at 60 ° is λ /2.

定即可。唯,由於藉反射偏光子(a)之透過光,偏光狀態也會 依據反射偏光子本身的C板性之複折射性而變化,故使通常插 入之C板在該角度測定時之相位差值小於λ /2即可。由於C板 之相位差係入射光愈傾斜則愈增加單調,故以相對於30°之角 10 度之入射光具有λ/8以上來作為在傾斜30°以上之某角度時 引起有效果之全反射之標準即可。Just fine. However, since the transmitted light is reflected by the reflected photon (a), the polarization state changes depending on the birefringence of the C-plate property of the reflected polarizer itself, so that the phase difference of the normally inserted C plate at the angle is determined. Less than λ /2. Since the phase difference of the C plate is more monotonous when the incident light is inclined, the incident light having an angle of 10 degrees with respect to 30° has λ/8 or more as an effect at an angle of 30° or more. The standard of reflection can be.

相位差層(b)之材質只要是具有如上所述之光學特性者 即可,並無特別限制。例如,可舉:固定在可見光領域 (380nm〜780nm )以外具有選擇反射波長之扭層液晶之平面定 15 向狀態者、或固定棒狀液晶之垂直定向狀態者、利用盤狀液晶 之管束相定向或相列相定向者、在面内使負之1軸性結晶定向 者、2軸性定向之聚合物膜等。 本發明中,固定在可見光領域( 380nm〜780nm)以外具有 選擇反射波長之扭層液晶之平面定向狀態之C板,最好以在可 20 見光領域不著色來作為扭層液晶之選擇反射波長。因此,選擇 反射光必須不在可見光領域。選擇反射係藉由扭層液晶之旋光 螺距與液晶之折射率來單一涵義地決定。選擇反射之中心波長 之值亦可在紅外線領域,但由於受到旋光之影響等而會產生稍 微複雜之現象,故以在350nm以下之紫外線部更佳。關於扭層 35 1341928 液晶層之形成,可與前述反射偏光子之扭層層形成同時進行。 本發明中’固定垂直定向狀態之c板係使用藉電子射線或 紫外線等電離放射線照射、或藉熱,使在高溫下顯示向列液晶 性之液晶性熱可塑樹脂或液晶單體'與因應必要之定向助劑聚 5合之聚合性液晶、或該等之混合物。液晶性可以是向液性或向 熱性,不過以控制之簡便性或單鳴之形成容易性之觀點來看, 以向熱性液晶為佳。垂直定向係例如在形成有垂直定向膜(長 鍵坑基石夕坑等)之膜上塗設前述複折射材料,展現液晶狀態並 固定而獲得。 10 作為利用盤狀液晶之C板係以如在面内具有分子擴大之畎 菁類或聯伸二苯類化合物這種具有負之】軸性之盤狀液晶材 料,使之展現向列相或管柱相並固定,來作為液晶材料。負之 1軸性無機層狀化合物可詳見例如特開平6_82777號。 利用聚合物膜之2轴性定向之C板,可藉由將具有正折射 15率各向異性之高分子膜以平衡良好地2軸延伸之方法、將熱可 塑樹脂加壓之方法、從平行定向結晶體切出之方法等來獲得。 各層之積層可僅是重疊放置,而從作業性、光之利用效率 之觀點來看,以利用接著劑或黏著劑將各層積層為佳。這種情 況,接著劑或黏著劑為透明’在可見光域不具吸收,而基於抑 2〇制表面反射之觀點’折射率以與各層之折射率盡可能接近為 佳。從該觀點,可適當使用例如丙烯酸系黏著劑等。各層可採 用各自用途不同之定向膜狀等形成單疇,再藉轉寫於透光性基 材等方法來依序積層之方法,或不設接著層,適當形成定向膜 等用以定向,再依序直接形成各層來進行。 36 各層及(黏)接著層可因應必要更添加粒子作為擴散程度 調整用,來畎予等向性,或適當添加紫外線吸收劑、抗氧化劑、 以賦予製骐時之調整性為目的之界面活性劑等。 本發明之偏光元件(扭層液晶積層體)具有圓偏光反射/ 透過機此,而可藉由組合λ /4,來作為將透過光線變換為直線 偏光之直綠偏光子來使用。可例示與前述相同者來作為λ/4板。 λ /4板若是由單一材料形成之單層,則僅對特定之波長有 良好機能,对其他波長則在波長分散特性上會有作為λ/4而言 機忐低劣之問題。因此,若規定λ /2板與軸角度來積層,則可 以實用上無障礙之程度範圍,在可見光全域作為寬頻λ/4板發 揮機能。這種情況下,各λ/4板、λ/2板可以是相同材料,或 亦可組合與上述λ/4板相同方法所得到之藉另一材料製作者。 例如’在寬頻圓偏光板積層;1/4板(Ι4〇ηη〇,相對於該袖 角度以11入5度配置又/2板(270ηπ〇。這種情況的透過偏光軸 相對於λ/4板之軸而為1〇度。該貼合角度乃是藉各相位差板 之相位差值而變動,故並不限定於上述貼合角度。 將吸收型偏光子對齊上述直線偏光子之透過軸方向貼合 於該透過軸上來使用。 (擴散反射板之配置) 光源之導光板下側(液晶晶胞配置面之相反側)上宜配置 擴散反射板。由平行光化膜反射之光線之主成分是傾斜入射成 分,在平行光化膜被正反射而回到背光方向。在此,當背面側 之反射板其正反射性报高時,則反射角度被保持,無法射出正 面方向,而成為損失光。因此,為了不保持反射回光線之反射 1341928 角度而使散亂反射成分朝正面方向擴大,故最好配置擴散反射 板。 (擴散板之配置) 本發明中之平行光化膜與背光光源間,宜設置適當的擴散 5 板。因為藉由使傾斜入射而被反射之光線在背光導光體附近散 亂,使其一部份朝垂直入射方向散亂,可提高光之再利用效率。 所使用之擴散板除藉表面凹凸形狀者外,可以於樹脂中包 埋折射率不同之微粒子等方法獲得。該擴散板可夾入平行光化 膜與背光間,亦可貼合於平行光化膜。 10 將貼合平行光化膜之液晶晶胞配置於接近背光時,膜表面 與背光之空隙間可能會產生牛頓環,本發明當中的光平行化膜 之導光板側表面配置有具有表面凹凸之擴散板,藉此可抑制牛 頓環之發生。又,亦可在本發明的平行光化膜表面形成兼具凹 凸構造與光擴散構造之層。 15 (視角擴大膜之配置) 本發明之液晶顯示裝置中的視角擴大係使與業經平行光 化之背光組合、得自液晶顯示裝置之正面附近且具有良好顯示 特性之光線擴散,藉使該光線擴散而在全視角内得到均一且良 好的顯示特性來獲得。 20 在此所使用的視角擴大膜係使用實質上不具後方散亂之 擴散板。擴散板可作為擴散黏著材來設置。設置場所為液晶顯 示裝置之目視側,偏光板之上下任一者皆可使用。唯,為了防 止因像素之滲潤等影響或少許殘留之後方散亂所導致之對比 低劣,偏光板〜液晶晶胞之間等,以盡可能設於接近晶胞之層 38 為佳。又’這時’以實質上不解消偏光之膜為佳。可適當使用 例如特開2000-347006號公報、特開2000-347007號公報中所 揭示之微粒子分散型擴散板。 當視角擴大膜位於比偏光板外側時,液晶層-到偏光板之業 經平行光化之光線會透過,因此若為TN液晶晶胞,則不需特 地使用視角補償相位差板。若為STN液晶晶胞,則只需使用僅 正面特性可良好地補償之相位差膜。這種情況下,視角擴大膜 具有空氣表面’故亦可採用藉表面形狀造成折射效果之類型。 另一方面,在偏光板與液晶層間插入視角擴大膜時,在透 1〇 過偏光板之階段成為擴散光線。TN液晶之情況,偏光子本身 之視角特性需要補償。這種情況下,必須將補償偏光子之視角 特性之相位差板插入偏光子與視角擴大膜之間。STN液晶之情 况’除了 STN液晶之正面相位差補償外,還需插入補償偏光子 之視角特性之相位差板。 15 ^ 若如以往即存在之微透鏡陣列膜或全像片膜般内部具有 規則性構造體之視角擴大膜’則會與液晶顯示裝置之黑矩陣 (black matrix)、或以往之具有背光平行光化系統之微透鏡陣 列/稜鏡陣列/柵格(louver) /微面鏡陣列等細微構造相互干涉 而容易產生雲紋。然而,本發明之平行光化膜在面内看不出規 2〇則性構造,出射光線沒有規則性變調,故不需考慮與視角擴大 膜之配合度或配置順序。因此’視角擴大膜只要不發生與液a 顯示裝置之像素黑矩陣相干涉/雲紋’皆不需特別限制,選擇很 廣。 本發明中,視角擴大膜可適當使用實質上沒有後方散此、 39 1341928 不解消偏光、如特開2000-347006號公報、特開2000-347007 號公報所記載之光散亂板,霾度80%〜90%者。其他,全像片薄 片、微稜鏡矩陣、微透鏡陣列等,即使内部具有規則性構造, 只要不形成與液晶顯示裝置之像素黑矩陣干涉/雲紋,即可使 5 用。 又,可於液晶顯示裝置依據常法適當使用各種光學層等來 製作。 實施例 以下舉實施例、比較例來說明本發明,但本發明並不受這 10 些實施例之限制。 實施例1 以光聚合性液晶原化合物(利用聚合性向列液晶單體,上 述表1之化合物20 ’莫耳消光係數為、 2100(^311101^01'@33411111、ΒόΟίΚΜη^πιοίΛιη-^βΜηηι。純度 15 >99%者)94.8重量份、聚合性旋光劑(BASF社製LC756) 5.2 重量份及溶劑(環戊酮)’調製混合成選擇反射中心波長55〇nm 之溶液,於該溶液中,相對於固體成分,添加3重量%之光聚 合引發劑(于,只Xシ亇爪亍γS力爪乂社製,彳少方年二 7 907),調製塗工液(固體含有量3〇重量%)。利用線錠將該 20塗工液塗設於延伸聚乙烯對笨二曱酸δ|膜(定向基材),使乾 燥後之厚度為7/zm,使溶劑在i〇〇°c乾燥2分鐘,於所得到之 骐上,在40。(:之空氣環境下,從定向基材側以4〇mW/cm2進行 第1紫外線照射1.2秒鐘。接著,一面以3»c/秒之升溫速度使 之升溫而達到到達溫度9(rc (到達後保持於9〇χ:),一面在空 40 1341928 氣環境下以4mW/cm2進行第2紫外線照射60秒鐘。接著在50 °C之氮氣環境下,從定向基材側以60mW/cm2進行第3紫外線 照射10秒,得到選擇波長為425〜900nm之寬頻扭層液晶膜。 該寬頻扭層液晶膜之反射光譜顯示於第4圖。 5 利用透光性之接著劑,朝所得到之寬頻杻層液晶膜(圓偏 光反射板)上部複印負之2軸性相位差板。該負之2軸性相位 差板係藉下述方法得到。亦即,於光聚合性向列液晶單體(BASF 社製’ LC242)们重量份、聚合性旋光劑(BASF社製LC756) 7重量份中添加環戊酮作為溶劑,使該溶液成為30重量。/〇濃 10 度,並調整泥合成選擇反射中心波長為350nm後,相對於前述 固體成分’添加5重量%之光聚合引發劑彳少力、年Λ 了 907, 調製塗工液’利用線錠將上述溶液塗設於延伸聚乙烯對苯二甲 酸酯基材,使乾燥後之厚度為4/zm,以100°C2分鐘使溶劑乾 燥。然後’使溫度一度上升到該液晶單體之等向性轉移溫度 15 後,將之緩緩冷卻,形成具有均一之定向狀態之層。對所得到 之層進行50mW/cm2紫外線照射5秒鐘固定定向狀態,得到該 相位差板。測定該負之2軸性相位差板之相位差,相對於550nm 之波長之光’在正面方向為2nm,使其傾斜30。測定時之相位 差值為120nm °又’相位差之測定係藉〇jj Scentific Instruments 20 社製之K0BRA-2IADH來進行。 更在該上部同樣地利用透光性接著劑,複印積層與上述相 同之圓偏光反射板,得到偏光元件。於得到之偏光元件上接著 以一軸延伸聚碳酸酯膜所得到又/4板(正面相位差i4〇nm), 得到直線偏光元件。於該直線偏光元件上貼合偏光板(曰東電 41 1341928 工製,TEG1465DU)使其透過軸方向一致,得到偏光板一體型 偏光元件。 實施例2The material of the retardation layer (b) is not particularly limited as long as it has the optical characteristics as described above. For example, it is possible to fix the direction of the plane of the twisted layer liquid crystal having a selective reflection wavelength other than the visible light region (380 nm to 780 nm) or the vertical alignment state of the fixed rod-shaped liquid crystal, and to orient the tube bundle phase using the discotic liquid crystal. Or a phase-aligned person, a negative one-axis crystal orientation in the plane, a biaxially oriented polymer film, or the like. In the present invention, a C-plate having a plane-oriented state of a twisted-layer liquid crystal having a selective reflection wavelength, which is fixed in the visible light region (380 nm to 780 nm), is preferably used as a selective reflection wavelength of the twisted-layer liquid crystal in the visible light field. . Therefore, the choice of reflected light must not be in the visible light field. The selective reflection is determined by a single meaning of the optical pitch of the twisted layer liquid crystal and the refractive index of the liquid crystal. The value of the center wavelength of the selective reflection may be in the infrared field, but it may be slightly complicated due to the influence of the optical rotation, so that the ultraviolet portion of 350 nm or less is more preferable. About the twisted layer 35 1341928 The formation of the liquid crystal layer can be performed simultaneously with the formation of the twisted layer of the reflective polarizer. In the present invention, the c-plate in the fixed vertical orientation state uses a liquid crystal thermoplastic resin or a liquid crystal monomer which exhibits nematic liquid crystal at a high temperature by irradiation with ionizing radiation such as electron beam or ultraviolet rays, or by heat. The alignment aid is a combination of a polymeric liquid crystal, or a mixture thereof. The liquid crystal property may be liquid or thermal, but it is preferably a thermal liquid crystal from the viewpoint of ease of control or ease of formation of a single sound. The vertical alignment system is obtained by, for example, coating the above-mentioned birefringent material on a film on which a vertically oriented film (long-hole pit base, etc.) is formed, exhibiting a liquid crystal state and being fixed. 10 As a C-plate using discotic liquid crystal, a discotic liquid crystal material having a negative axis such as a phthalocyanine or a biphenyl compound having a molecular enlargement in a plane, exhibiting a nematic phase or tube The column phase is fixed and used as a liquid crystal material. The negative 1-axis inorganic layered compound can be found, for example, in JP-A-6-82777. By using a biaxially oriented C plate of a polymer film, a method of pressurizing a thermoplastic resin with a polymer film having a positive refractive index anisotropy in a well-balanced two-axis manner can be parallelized. A method of directional crystal cutting and the like is obtained. The laminate of the respective layers may be placed only in an overlapping manner, and it is preferable to laminate the layers by using an adhesive or an adhesive from the viewpoint of workability and light use efficiency. In this case, the adhesive or the adhesive is transparent. 'There is no absorption in the visible light region, and the refractive index based on the surface reflection of the substrate is preferably as close as possible to the refractive index of each layer. From this viewpoint, for example, an acrylic adhesive or the like can be suitably used. Each layer may be formed into a single domain by using a different orientation film or the like, and then sequentially stacked by a method such as transcribing a light-transmissive substrate, or an adhesive layer may be formed to form an orientation film or the like for orientation. The layers are directly formed in order. 36 Each layer and (adhesive) layer may be added as necessary for the degree of diffusion adjustment, to impart isotropic properties, or to appropriately add a UV absorber, an antioxidant, and an interface activity for the purpose of imparting adjustability to the crucible. Agents, etc. The polarizing element (twist layer liquid crystal layered body) of the present invention has a circularly polarized light reflecting/transmitting machine, and can be used as a straight green polarized photo which converts transmitted light into linearly polarized light by combining λ /4. The same as the above can be exemplified as the λ/4 plate. If the λ / 4 plate is a single layer formed of a single material, it has a good function only for a specific wavelength, and for other wavelengths, there is a problem that the wavelength dispersion characteristic is inferior as λ/4. Therefore, if the λ/2 plate is laminated with the shaft angle, it is practically unobstructed, and it functions as a wide-band λ/4 plate in the entire visible light range. In this case, each of the λ/4 plates and the λ/2 plates may be the same material, or may be produced by a combination of another material obtained by the same method as the above λ/4 plate. For example, 'in a wide-band circular polarizer layer; 1/4 plate (Ι4〇ηη〇, with an angle of 11 into 5 degrees with respect to the sleeve angle and 2 plates (270ηπ〇. In this case, the transmission polarization axis is relative to λ/4) The axis of the plate is 1 degree. The bonding angle varies by the phase difference of each phase difference plate, and is not limited to the above-mentioned bonding angle. The absorption type polarizer is aligned with the transmission axis of the linear polarizer. The direction is applied to the transmission shaft. (Distribution of the diffuse reflector) The diffuser reflector should be disposed on the lower side of the light guide plate (opposite side of the liquid crystal cell arrangement surface). The light reflected by the parallel actin film The component is an oblique incident component, and the parallel actinic film is reflected back to the backlight direction. When the specular reflection of the reflector on the back side is high, the reflection angle is maintained and the front direction cannot be emitted. Therefore, in order to prevent the scattered reflection component from expanding toward the front direction without maintaining the angle of reflection 1341928 reflected back, it is preferable to dispose the diffuse reflection plate. (Distribution of Dispersion Plate) Parallel actin film and backlight in the present invention Between the light sources, it is advisable to set a suitable diffusion plate. Because the light reflected by oblique incidence is scattered near the backlight light guide, and a part of it is scattered in the vertical incident direction, the light reuse efficiency can be improved. The diffusing plate used may be obtained by embedding a fine particle having a different refractive index in a resin, etc. The diffusing plate may be sandwiched between the parallel actinic film and the backlight, or may be bonded to the parallel light. When the liquid crystal cell to which the parallel actinic film is attached is disposed close to the backlight, a Newton ring may be generated between the surface of the film and the gap of the backlight, and the side surface of the light guide plate of the light parallelizing film in the present invention is configured to have The diffusing plate having the surface unevenness can suppress the occurrence of the Newton's ring. Further, a layer having both the uneven structure and the light diffusing structure may be formed on the surface of the parallel actinic film of the present invention. 15 (Arrangement of the viewing angle widening film) The present invention The viewing angle expansion in the liquid crystal display device is such that the backlight combined with the parallelized light is combined, and the light obtained from the vicinity of the front surface of the liquid crystal display device and having good display characteristics is diffused. The line is diffused to obtain uniform and good display characteristics in the entire viewing angle. 20 The viewing angle-expanding film used herein uses a diffusing plate which is substantially free from the rear. The diffusing plate can be provided as a diffusion adhesive. For the visual side of the liquid crystal display device, any one of the polarizing plate can be used. However, in order to prevent the contrast caused by the infiltration of the pixels or the slightest residual, the polarizing plate to the liquid crystal cell For example, it is preferable to set it as close as possible to the layer 38 close to the unit cell. Further, it is preferable to use a film which does not substantially depolarize the light at this time. For example, JP-A-2000-347006 and JP-A-2000-347007 can be suitably used. The microparticle dispersion type diffusion plate disclosed in the publication. When the viewing angle expansion film is located outside the polarizing plate, the liquid crystal layer-to the polarizing plate is transmitted through the collimated light, so if it is a TN liquid crystal cell, it is not necessary to specifically Use the viewing angle to compensate the phase difference plate. In the case of an STN liquid crystal cell, it is only necessary to use a retardation film which can be well compensated only with the front side characteristics. In this case, the viewing angle widening film has an air surface, so that the type of refraction effect by the surface shape can also be employed. On the other hand, when the viewing angle widening film is inserted between the polarizing plate and the liquid crystal layer, it diffuses light at the stage of passing through the polarizing plate. In the case of TN liquid crystal, the viewing angle characteristics of the polarizer itself need to be compensated. In this case, it is necessary to insert a phase difference plate for compensating for the viewing angle characteristic of the polarizer between the polarizer and the viewing angle widening film. In the case of the STN liquid crystal, in addition to the front phase difference compensation of the STN liquid crystal, it is necessary to insert a phase difference plate which compensates for the viewing angle characteristic of the polarizer. 15 ^ If the microlens array film or the holographic film-like film having a regular structure as in the past has a viewing angle expansion film, it will be parallel to the black matrix of the liquid crystal display device or the conventional backlight. Fine structures such as microlens arrays/稜鏡 arrays/louver/micro-mirror arrays of the system interfere with each other to easily generate moiré. However, the parallel actinic film of the present invention does not have a regular structure in the plane, and the emitted light does not have a regular tone change, so that it is not necessary to consider the degree of matching or arrangement with the viewing angle expanding film. Therefore, the viewing angle widening film is not particularly limited as long as it does not interfere with the pixel black matrix of the liquid a display device, and the selection is wide. In the present invention, the viewing angle widening film can be used as it is, and the optical scattering plate described in Japanese Laid-Open Patent Publication No. 2000-347006, No. 2000-347007, and the like. %~90%. Others, all-image sheets, micro-turn matrices, microlens arrays, etc., even if they have a regular internal structure, can be used as long as they do not form a pixel black matrix interference/moire with the liquid crystal display device. Further, the liquid crystal display device can be produced by appropriately using various optical layers or the like according to a usual method. EXAMPLES Hereinafter, the present invention will be described by way of Examples and Comparative Examples, but the present invention is not limited by these Examples. Example 1 Photopolymerizable liquid crystal original compound (using a polymerizable nematic liquid crystal monomer, the compound 20 of the above Table 1 'More extinction coefficient was 2100 (^311101^01'@33411111, ΒόΟίΚΜη^πιοίΛιη-^βΜηηι. Purity 15 > 99%) 94.8 parts by weight of a polymerizable optically active agent (LC756 manufactured by BASF Corporation) 5.2 parts by weight and a solvent (cyclopentanone) 'mixed and mixed into a solution having a reflection center wavelength of 55 〇 nm, in which the solution 3% by weight of a photopolymerization initiator was added to the solid content (manufactured by X シ亇 亍 亍 力 力 7 7 7 7 7 7 7 7 7 7 , , , , , , , , , , , , , , , , , , , 调制 调制 调制 调制 ( %). The 20 coating liquid is applied to the extended polyethylene p-triconic acid δ| film (oriented substrate) by using a wire ingot, so that the thickness after drying is 7/zm, so that the solvent is in i〇〇°c. After drying for 2 minutes, the first ultraviolet ray was irradiated for 1.2 seconds from the oriented substrate side at 4 〇mW/cm 2 on the obtained crucible. Then, one side was 3»c/sec. The heating rate is increased to reach the temperature of 9 (rc (maintained at 9 到达 after arrival), while The second ultraviolet ray was irradiated for 60 seconds at 4 mW/cm 2 in an air atmosphere of 40 1341 928. Then, the third ultraviolet ray was irradiated for 10 seconds at 60 mW/cm 2 from the oriented substrate side in a nitrogen atmosphere at 50 ° C to obtain a selected wavelength. Wide-band torsion layer liquid crystal film of 425 to 900 nm. The reflection spectrum of the wide-band torsion layer liquid crystal film is shown in Fig. 4. 5 Using a light-transmitting adhesive, the upper portion of the obtained wide-band 杻 layer liquid crystal film (circular polarized reflection plate) is obtained. Copying a negative two-axis phase difference plate. The negative two-axis phase difference plate is obtained by the following method, that is, the photopolymerizable nematic liquid crystal monomer ("LC242" manufactured by BASF Corporation). The optically active agent (LC756, manufactured by BASF Corporation) was added with cyclopentanone as a solvent in 7 parts by weight, and the solution was made up to 30% by weight, and the concentration of the reflection center was 350 nm, and the solid content was adjusted with respect to the solid content. Adding 5% by weight of a photopolymerization initiator, reducing the force, and aging 907, preparing a coating liquid, using a wire ingot to apply the above solution to an extended polyethylene terephthalate substrate, so that the thickness after drying is 4/zm, dry the solvent at 100 ° C for 2 minutes Then, 'the temperature is once raised to the isotropic transfer temperature 15 of the liquid crystal monomer, and then slowly cooled to form a layer having a uniform orientation state. The obtained layer is irradiated with ultraviolet rays of 50 mW/cm 2 for 5 seconds. The phase difference plate was obtained in a fixed orientation state, and the phase difference of the negative two-axis phase difference plate was measured, and the light with respect to the wavelength of 550 nm was 2 nm in the front direction, and tilted by 30. The phase difference value during the measurement was The measurement of the phase difference of 120 nm ° and 'phase difference' was carried out by K0BRA-2IADH manufactured by JJ Scentific Instruments 20 Corporation. Further, in the upper portion, a light-transmitting adhesive was used in the same manner, and a circular polarizing reflector was laminated in the same manner as described above to obtain a polarizing element. On the obtained polarizing element, a further 4 sheets (front surface retardation i4 〇 nm) obtained by stretching a polycarbonate film on one axis were obtained to obtain a linear polarizing element. A polarizing plate (TEG1465DU manufactured by Tosoh Corporation 41 1341928) was attached to the linear polarizing element so that the direction of the transmission axis was uniform, and a polarizing plate-integrated polarizing element was obtained. Example 2

將實施例1中所調製之塗工液,利用線錠塗設於延伸聚乙 5 烯對笨二甲酸酯膜(定向基材),使乾燥後之厚度為7#m,使 溶劑在100°C2分鐘乾燥。於所得到之膜上,在40°C之空氣環 境下,從定向基材側以40mW/cm2進行第1紫外線照射1.2秒 鐘,接著,一面l〇°C/秒之升溫速度使之升溫到90°C (到達後 保持於90°C ),一面在空氣環境下以4mW/cm2進行第2紫外線 10 照射60秒鐘。接著,在50°C之氮氣環境下,從定向基材側以 60mW/cm2進行紫外線照射10秒,得到選擇波長為430〜900nm 之寬頻扭層液晶膜。該寬頻扭層液晶膜之反射光譜顯示於第5 圖。 利用透光性之接著劑,朝所得到之寬頻扭層液晶膜(圓偏 15 光反射板)上部,複印與實施例1相同之負之2軸性相位差板。The coating liquid prepared in Example 1 was applied to the extended polyethylene terephthalate film (oriented substrate) by a wire ingot to have a thickness of 7#m after drying, and the solvent was 100. Dry at °C for 2 minutes. On the obtained film, the first ultraviolet ray was irradiated for 120 seconds from the oriented substrate side at 40 mW/cm 2 in an air atmosphere of 40 ° C, and then the temperature was raised to a temperature increase rate of 10 ° C / sec. After 90 ° C (maintained at 90 ° C after arrival), the second ultraviolet light 10 was irradiated for 60 seconds at 4 mW/cm 2 in an air atmosphere. Subsequently, ultraviolet irradiation was carried out at 60 mW/cm 2 for 10 seconds from the oriented substrate side under a nitrogen atmosphere of 50 ° C to obtain a wide-band twisted layer liquid crystal film having a selected wavelength of 430 to 900 nm. The reflection spectrum of the wide-band twisted layer liquid crystal film is shown in Fig. 5. A negative two-axis phase difference plate similar to that of Example 1 was produced by using a light-transmitting adhesive to the upper portion of the obtained wide-band twisted layer liquid crystal film (circularly polarized light-reflecting plate).

更在其上部同樣地利用透光性接著劑,複印積層與上述相同之 圓偏光反射板,得到偏光元件。於得到之偏光元件上接著以一 軸延伸聚碳酸酯膜所得到之;1/4板(正面相位差140nm),得 到直線偏光元件。更在該λ/4板上,接著將聚碳酸酯膜一軸延 20 伸所得到之λ/2板(正面相位差270nm),得到直線偏光元件。 於該直線偏光元件上貼合偏光板(日東電工製,TEG1465DU), 使其透過軸方向一致,得到偏光板一體型偏光元件。該等積層 係以;1/4板、;1/2板之延伸軸(相位滯延軸)與偏光板之延伸 軸(吸收軸)之角度如第3圖所示地來進行。第3圖中,PL為 42 1341928 吸收型偏光板、Cl為;W4板(正面相位差MOnm)、C2為Λ/2 板(正面相位差270nm )。PL之箭頭表示延伸轴(長邊方向), 0 1 為 17_5。,02 為 80° 。 實施例3 5 以光聚合性液晶原化合物(利用聚合性向列液晶單體,上Further, in the upper portion, a light-transmitting adhesive was used in the same manner, and a circularly polarizing reflector similar to the above was laminated, and a polarizing element was obtained. The obtained polarizing element was obtained by extending a polycarbonate film on one axis, and a quarter plate (front surface difference of 140 nm) was obtained to obtain a linear polarizing element. Further, on the λ/4 plate, a λ/2 plate (front surface retardation of 270 nm) obtained by stretching the polycarbonate film by 20 was obtained to obtain a linear polarizing element. A polarizing plate (TEG1465DU, manufactured by Nitto Denko Corporation) was bonded to the linear polarizing element, and the direction of the transmission axis was aligned to obtain a polarizing plate-integrated polarizing element. The layers are formed by the angle of the extension axis (phase retardation axis) of the 1/4 plate, the 1/2 plate, and the extension axis (absorption axis) of the polarizing plate as shown in Fig. 3. In Fig. 3, PL is 42 1341928 absorption type polarizing plate, Cl is; W4 board (front surface difference MOnm), and C2 is Λ/2 plate (front surface difference 270 nm). The arrow of PL indicates the extension axis (longitudinal direction), and 0 1 is 17_5. , 02 is 80°. Example 3 5 Photopolymerizable liquid crystal original compound (using a polymerizable nematic liquid crystal monomer,

述表1之化合物20 ’莫耳消光係數為、 2100dm3mol km 丨@33411111、36000(31113111〇1“<:111-1@31411111。純度 >99%者)94.8重量份、聚合性旋光劑(BASF社製LC756) 5.2 重量份及溶劑(環戊酮),調製混合成選擇反射中心波長550nm 10 之溶液,於該溶液中’相對於固體成分,添加0.3重量%之光 聚合引發劑(亇小亍彳夂S力少乂社製,彳少力、年 二7 369),調製塗工液(固體含有量30重量0/〇)。利用線錠將 該塗工液塗設於延伸聚乙烯對苯二f酸酯膜(定向基材),使 乾燥後之厚度為m,使溶劑在100°C乾燥2分鐘。於所得到 15 之膜上,在40°C之空氣環境下,從定向基材側以40mW/cm2進 行第1紫外線照射丨·2秒鐘。接著,一面以3°C/秒之升溫速度 使之升溫到90°C (到達後保持於90°C ),一面在空氣環境下以 4mW/cm2進行第2紫外線照射30秒鍾。接著在50°C之氮氣環 境下,從定向基材側以6〇mW/cm2進行第3紫外線照射10秒, 20 得到選擇波長為420〜925nm之寬頻扭層液晶膜。該寬頻扭層液 晶膜之反射光譜顯示於第6圖。 利用透光性之接著劑,朝所得到之寬頻扭層液晶膜(圓偏 光反射板)上部,複印與實施例1相同之負之2軸性相位差板。 更在其上部同樣地利用透光性接著劑,複印積層與上述相同之 43 1341928 圓偏光反射板,得到偏光元件。於得到之偏光元件上接著以二 軸延伸聚碳酸酯膜所得到之λ/4板(正面相位差125nm,Nz 係數-L0),得到直線偏光元件。於該直線偏光元件上貼合偏光 板(日東電工製,TEG1465DU),使其透過轴方向一致,得到 5 偏光板一體型偏光元件。 實施例4The compound 20 of Table 1 has a molar extinction coefficient of 2100 dm 3 mol km 丨@33411111, 36000 (31113111〇1 "<:111-1@31411111. purity> 99%), 94.8 parts by weight, a polymeric optically active agent ( LC756) manufactured by BASF Co., Ltd. 5.2 parts by weight and a solvent (cyclopentanone) were mixed and mixed into a solution having a selective reflection center wavelength of 550 nm 10 , and 0.3% by weight of a photopolymerization initiator was added to the solid content in the solution.亍彳夂S 力 乂 乂 乂 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , a benzoic acid ester film (oriented substrate), the thickness after drying was m, and the solvent was dried at 100 ° C for 2 minutes. On the obtained film of 15 at 40 ° C in an air environment, from the orientation group On the material side, the first ultraviolet ray was irradiated at 40 mW/cm 2 for 2 seconds, and then the temperature was raised to 90 ° C at a temperature increase rate of 3 ° C / sec (maintained at 90 ° C after arrival) while being in an air atmosphere. The second ultraviolet ray was irradiated at 4 mW/cm 2 for 30 seconds, and then under a nitrogen atmosphere of 50 ° C, from the side of the oriented substrate to 6 mW/cm2 is subjected to the third ultraviolet irradiation for 10 seconds, 20 to obtain a wide-band twisted-layer liquid crystal film having a wavelength of 420 to 925 nm. The reflection spectrum of the wide-band twisted-layer liquid crystal film is shown in Fig. 6. Using a light-transmitting adhesive, On the upper portion of the obtained wide-frequency twisted-layer liquid crystal film (circular polarizing reflector), a negative two-axis phase difference plate similar to that of Example 1 was reproduced. Further, a translucent adhesive was used in the upper portion, and the copy laminate was the same as described above. 43 1341928 circular polarizing reflector, obtaining a polarizing element. On the obtained polarizing element, a λ/4 plate obtained by biaxially stretching a polycarbonate film (front phase difference 125 nm, Nz coefficient - L0) is obtained to obtain a linear polarizing element. A polarizing plate (TEG1465DU, manufactured by Nitto Denko Corporation) was bonded to the linear polarizing element so that the transmission axis direction was uniform, and a polarizing plate-integrated polarizing element was obtained.

以光聚合性液晶原化合物(利用聚合性向列液晶單體,上 述表1之化合物3,莫耳消光係數為、 2200dm3m〇rlcm'1@334nm ' 37000dm3m〇r1cm'1@314nm ) 94.8 10 重量份、聚合性旋光劑(BASF社製LC756) 5.2重量份及溶劑 (環戊酮),調製混合成選擇反射中心波長550nm之溶液,於 該溶液中,相對於固體成分,添加3重量%之光聚合引發劑(于 パスパシ亇/レテ < 夂殳力少乂社製,彳少力、年二7 907),調製 塗工液(固體含有量30重量%)。利用線錠將該塗工液塗設於 15 延伸聚乙烯對笨二曱酸酯膜(定向基材),使乾燥後之厚度為7A photopolymerizable liquid crystal original compound (using a polymerizable nematic liquid crystal monomer, the compound 3 of the above Table 1, a molar extinction coefficient of 2200 dm3m〇rlcm'1@334 nm '37000dm3m〇r1cm'1@314nm) 94.8 10 parts by weight, Polymeric optical rotator (LC756, manufactured by BASF Corporation) 5.2 parts by weight and a solvent (cyclopentanone) were mixed and mixed into a solution having a selective reflection center wavelength of 550 nm, and 3% by weight of photopolymerization was added to the solid content in the solution. The agent (Yu パスパシ亇 / レテ &; 夂殳 乂 乂 乂 彳 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Applying the coating liquid to the 15 extended polyethylene p-phthalate film (oriented substrate) by using a wire ingot, so that the thickness after drying is 7

’使溶劑在l〇〇°C乾燥2分鐘。於所得到之膜上,在4〇t 之空氣環境下,從定向基材側以50mW/cm2進行第1紫外線照 射2.2秒鐘。接著,一面以3°C/秒之升溫速度使之升溫到9〇°C (到達後保持於90°C ),一面在空氣環境下以4mW/cm2進行第 20 2紫外線照射60秒鐘。接著在50°C之氮氣環境下,從定向基 材側以60m W/cm2進行第3紫外線照射10秒,得到選擇波長為 455〜930nm之寬頻扭層液晶膜。該寬頻杻層液晶膜之反射光譜 顯示於第7圖。 比較例1 44 1341928 將實施例1中所調製之塗工液,利用線錠塗設於延伸聚乙 烯對笨二曱酸酯膜(定向基材),使乾燥後之厚度為5以m,使 溶劑在l〇〇°C2分鐘乾燥《於所得到之膜上,在6(Tc之空氣環 境下’從定向基材側以50mW/cm2進行第1紫外線照射1 〇秒 5鐘’接著,在50°c之氮氣環境下,從定向基材側以60mW/cm2 進行兔外線照射10秒,得到選擇波長為435〜835nm之寬頻扭 層液晶膜。該寬頻扭層液晶膜之反射光譜顯示於第8圖。 利用透光性之接著劑,朝所得到之寬頻扭層液晶膜(圓偏 光反射板)上部,複印與實施例丨相同之負之2轴性相位差板。 10更在其上部同樣地利用透光性接著劑,複印積層與上述相同之 圓偏光反射板,得到偏光元件。於得到之偏光元件上接著以— 轴延伸聚碳酸酯膜所得到之λ/4板(正面相位差14〇nm),得 到直線偏光元件。於該直線偏光元件上貼合偏光板(日東電工 製’ TEG1465DU) ’使其透過轴方向一致,得到偏光板一體型 15 偏光元件。 比較例2 將實施例1令所調製之塗工液,利用線錠塗設於延伸聚乙 稀對笨二甲酸賴(定向基材),使乾燥後之厚度為7/zm,使 洛劑在100C2分鐘乾燥。於所得到之膜上在桃之空氣環 2〇境下,從疋向基材铡以4〇mW/cm2進行第1紫外線照射1.2秒 鐘’接著 面3 C/秒之升溫速度使之升溫到9〇°C,到達90 c後即在90c下在空氣環境下進行2〇秒處理。接著,在 C之氮氣%丨兄下從定向基材側以60mW/cm2進行紫外線照射 10和付到選擇攻長為仍〜則⑽之寬頻扭層液晶膜 。該寬 45 1341928 頻扭層液晶膜之反射光譜顯示於第9圖。 利用透光性之接著劑,朝所得到之寬頻扭層液晶膜(圓偏 光反射板)上部,複印與實施例1相同之負之2軸性相位差板。 更在其上部同樣地利用透光性接著劑,複印積層與上述相同之 5 圓偏光反射板,得到偏光元件。於得到之偏光元件上接著以一 轴延伸聚碳酸酯膜所得到之λ/4板(正面相位差140nm),得 到直線偏光元件。於該直線偏光元件上貼合偏光板(日東電工 製,TEG1465DU),使其透過軸方向一致,得到偏光板一體型 偏光元件。 10 比較例3 將實施例1中所調製之塗工液,利用線錠塗設於延伸聚乙 烯對苯二曱酸酯膜(定向基材),使乾燥後之厚度為7/zm,使 溶劑在100°C2分鐘乾燥。於所得到之膜上,在40°C之空氣環 境下,從定向基材側以40mW/cm2進行第1紫外線照射1.2秒 15 鐘,接著,一面3°C/秒之升溫速度使之升溫到90°C (到達後保 持於90°C ),一面在空氣環境下以4mW/cm2進行第2紫外線照 射60秒鐘,得到選擇波長為425〜900nm之寬頻扭層液晶膜。 該寬頻扭層液晶膜之反射光譜顯示於第10圖。 利用透光性之接著劑,朝所得到之寬頻扭層液晶膜(圓偏 20 光反射板)上部,複印與實施例1相同之負之2軸性相位差板。 更在其上部同樣地利用透光性接著劑,複印積層與上述相同之 圓偏光反射板,得到偏光元件。於得到之偏光元件上接著以一 軸延伸聚碳酸酯膜所得到之λ/4板(正面相位差140nm),得 到直線偏光元件。於該直線偏光元件上貼合偏光板(日東電工 46 1341928 製’ TEG1465DU),使其透過轴方向一致,得到偏光板一體型 偏光元件。 (液晶顯示裝置) 將上述各例中所得到之偏光板一體型偏光元件用做 5 TFT-LCD之下板’另-方面’利用丙稀酸系黏著材(厚度25 "m,折射率1.47)中包埋有球狀二氧化矽粒子(折射率144, 直徑m,)20重量%之光散亂性黏著材(霾度8〇%)作為 上板側’積層偏光板(日東電工社製,TEG1465DU)。 又,將直徑約3mm之冷陰極管配置於下面具有細微稜鏡 10 構造之導光體之側面,以由銀蒸鍍聚乙烯對苯二曱酸酯膜形成 之光源座覆蓋。導光板之下面配置銀蒸鍍聚乙烯對苯二曱酸酯 膜反射板,導光板上面配置表面形成有由笨乙烯泡形成之散亂 層之聚乙烯對苯二曱酸酯膜。將之作為光源配置在偏光板一體 型偏光元件之下側。 15 利用實施例1、3、比較例1〜3之偏光板一體型偏光元件之 情況為第1圖,利用實施例2之偏光板一體型偏光元件之情況 為第2圖。第1圖、第2圖中,PL為吸收型偏光板、D為視角 擴大膜(擴散黏著材)、LC為液晶晶胞、C1為λ/4板、C2為 入/2板、Α為反射偏光子(a):圓偏光板、Β為相位差板(b): 20 C板、S為側光型導光板、R為擴散反射板。又,X為偏光元 件、Y為直線偏光元件、Z為偏光一體型直線偏光元件。又, 實施例4係僅就選擇反射波長帶、帶寬(△ λ )、及螺距變化 來作評價。 <評價方法> 47 針對上述所得之寬頻扭層液晶膜(圓偏光反射板)、偏光 板-體型偏光it件進行下述評價。結果顯示於表2。又,實施 例及比較例之各步驟條件亦顯示於表2。 (選擇反射波長帶及帶寬(△久)) 以分光光度4 (大緣電子株式會社製,瞬間多測光系統 MCPD2_測定寬頻扭層液晶膜之反射光譜,求得選擇反射 波長帶及半值帶寬Δλ。半值帶寬Δλ係作為在最大反射率之 一半反射率之反射帶寬。 (螺距變化) 藉載面ΤΕΜ照片來測定寬頻扭層液晶膜在紫外線照射面 附近(從紫外線照射面起1/zm下層)與在空氣界面附近(從 空氣界面起下層)及其中間之螺距長。 (可靠性) 將寬頻杻層液晶膜分別投入8〇艺、及6〇<>c之9〇%RH之可 靠I1生《式驗500小時’评價其表面是否可看出粉狀物質之析出。 〇:無析出物。 x :有析出物。 (正面亮度) 將偏光板一體型偏光元件配置於網點印刷型背光上,並使 其偏光板側在上,藉亮度計(TOPCON製,BM-7)評價。 (傾斜之色調變化) 藉ELDIM社製視野角測定器EZ-CONTRAST以下述基準 來評價液晶顯示裝置之傾斜之色調變化。 △xy= ((Χ〇、χ丨)2+ (y〇—y丨)2) 0.5 1341928 正面色度(x〇,y〇)、從傾斜± 60°之色度(Xi,y!) 良好:在視角60°之色調變化Axy小於〇.〇4。 不良:在視角60°之色調變化Axy在0.04以上。 表2 實施例 1 實施例 2 實施例 3 實施例 4 比較例 比較例 2 比較例 3 步驟 (1) 紫外線照度 (mW/cm2) 40 40 40 50 50 40 40 溫度(°c ) 40 40 40 40 60 40 40 時間(秒) 1.2 1.2 1.2 2.2 10 1.2 1.2 環境 氧 氧 氧 氡 氧 氧 氡 步驟 (2) 紫外線照度 (mW/cm2) 4 4 4 4 - - 4 升溫溫度(°c /秒) 3 10 3 3 - 3 3 到達溫度 (°C ) 90 90 90 90 - 90 90 時間(秒) 60 60 30 60 - 20 60 環境 氧 氧 氧 氧 - 氧 氧 步驟 (3) 紫外線照度 (mW/cm2) 60 60 60 60 60 60 暑 溫度rc) 50 50 50 50 50 50 - 時間(秒) 10 10 10 10 10 10 - 環境 齔 氮 氮 釓 氮 氮 • __ 1 平價 選擇反射帶(nm) 425-900 430-900 420-925 450-930 435-835 415-710 425-900 選擇反射帶寬 (半值帶寬Δλ : nm) 475 470 505 480 400 295 475 螺距 變化 基材側— 空氣界面側 大—*>小 大—小 大—小 大—小 中-大 —小 大-> 小 大—小 基材惻(nm) 0.54 0.54 0.56 0.56 0.38 0.42 0.54 中間(nm) 0.40 0.40 0.41 0.41 0.50 0.33 0.40 空氣界面側 (nm) 0.26 0.26 0.26 0.27 0.27 0.25 0.26 可靠性 〇 〇 〇 - 〇 〇 X 正面亮度(cd/cm2 ) 138 140 142 • 135 110 138 傾斜之色調變化 良好 良好 良好 - 不良 不良 良好The solvent was dried at 1 ° C for 2 minutes. On the obtained film, the first ultraviolet ray was irradiated for 2.2 seconds from the oriented substrate side at 50 mW/cm 2 in an air atmosphere of 4 Torr. Subsequently, the temperature was raised to 9 ° C (at 90 ° C after arrival) at a temperature elevation rate of 3 ° C / sec, and the ultraviolet ray was irradiated for 20 seconds at 4 mW/cm 2 in an air atmosphere. Subsequently, the third ultraviolet ray was irradiated from the oriented substrate side at 60 mW/cm 2 for 10 seconds in a nitrogen atmosphere at 50 ° C to obtain a wide-band twisted layer liquid crystal film having a selected wavelength of 455 to 930 nm. The reflection spectrum of the wide-band 杻 liquid crystal film is shown in Fig. 7. Comparative Example 1 44 1341928 The coating liquid prepared in Example 1 was applied to an extended polyethylene p-phthalate film (oriented substrate) by a wire ingot to have a thickness of 5 m after drying. The solvent was dried at 1 ° C for 2 minutes on the obtained film, and under the air environment of Tc, 'the first ultraviolet irradiation was performed at 50 mW/cm 2 from the oriented substrate side for 1 sec 5 seconds'. Then, at 50 Under the nitrogen environment of °c, the external irradiation of rabbits was carried out at 60 mW/cm2 for 10 seconds from the side of the oriented substrate to obtain a wide-band twisted-layer liquid crystal film with a selected wavelength of 435 to 835 nm. The reflection spectrum of the wide-band twisted-layer liquid crystal film was shown in the eighth. In the upper portion of the obtained wide-band twisted-layer liquid crystal film (circular polarized light-reflecting sheet), a negative two-axis phase difference plate similar to that of Example 复印 was used, and the same was applied to the upper portion thereof. The polarizing element was laminated on the same circular polarizing reflector as described above to obtain a polarizing element. The obtained polarizing element was then subjected to a λ/4 plate obtained by stretching the polycarbonate film in the axial direction (the front phase difference was 14 〇). Nm), a linear polarizing element is obtained. The linear polarizing element The polarizing plate ("TEG1465DU" manufactured by Nitto Denko Corporation" was bonded to the direction of the axis to obtain a polarizing plate-integrated type 15 polarizing element. Comparative Example 2 The coating liquid prepared in the first embodiment was coated with a wire ingot. Extending the polyethylene to the benzoic acid lysate (orienting substrate) so that the thickness after drying is 7/zm, and the granules are dried at 100 C2 minutes. On the obtained film, under the air ring of the peach, The first ultraviolet ray was irradiated to the substrate 铡 at 4 〇 mW/cm 2 for 1.2 seconds. Then, the temperature was raised to 9 〇 ° C at a temperature of 3 C / sec. After reaching 90 c, it was at 90 c in an air atmosphere. The treatment was carried out for 2 sec. Next, ultraviolet irradiation was carried out at 60 mW/cm 2 from the side of the oriented substrate under the nitrogen gas of C, and a wide-band twisted-layer liquid crystal film having a selected attack length of still (10) was applied. 1341928 The reflection spectrum of the frequency twisted layer liquid crystal film is shown in Fig. 9. Using the light-transmitting adhesive, the upper part of the wide-band twisted-layer liquid crystal film (circular polarized reflection plate) obtained is copied in the same manner as in the first embodiment. Axial phase difference plate. Also in the upper part of the same, using a light-transmitting adhesive, A 5-polar polarizing reflector was laminated to obtain a polarizing element, and a λ/4 plate (front surface retardation of 140 nm) obtained by stretching a polycarbonate film on one axis was obtained on the obtained polarizing element to obtain a linear polarizing element. A polarizing plate (TEG1465DU, manufactured by Nitto Denko Corporation) was bonded to the linear polarizing element to obtain a polarizing plate-integrated polarizing element. The comparative example 3 used the coating liquid prepared in the first embodiment. The ingot was coated on an extended polyethylene terephthalate film (oriented substrate) so that the thickness after drying was 7/zm, and the solvent was dried at 100 ° C for 2 minutes. On the obtained film, at 40 ° C In the air environment, the first ultraviolet ray was irradiated for 120 seconds at a temperature of 40 mW/cm 2 for 15 seconds from the direction of the oriented substrate, and then the temperature was raised to 90 ° C at a temperature increase rate of 3 ° C / sec (maintained at 90 ° C after arrival). The second ultraviolet ray was irradiated for 60 seconds at 4 mW/cm 2 in an air atmosphere to obtain a wide-band twisted layer liquid crystal film having a selected wavelength of 425 to 900 nm. The reflection spectrum of the wide-band twisted layer liquid crystal film is shown in Fig. 10. A negative two-axis phase difference plate similar to that of Example 1 was produced by using a light-transmitting adhesive to the upper portion of the obtained wide-band twisted-layer liquid crystal film (circularly polarized light-reflecting plate). Further, in the upper portion, a light-transmitting adhesive was used in the same manner, and a circularly polarizing reflector similar to the above was laminated, and a polarizing element was obtained. On the obtained polarizing element, a λ/4 plate (front surface retardation of 140 nm) obtained by stretching a polycarbonate film on one axis was used to obtain a linear polarizing element. A polarizing plate ("TEG1465DU" manufactured by Nitto Denko 46 1341928) was attached to the linear polarizing element, and the polarizing plate-integrated polarizing element was obtained by matching the axial direction. (Liquid crystal display device) The polarizing plate-integrated polarizing element obtained in each of the above examples was used as a 5 TFT-LCD lower plate, and the acrylic-based adhesive material (thickness 25 "m, refractive index 1.47) was used. ) A light-scattering adhesive (20% by weight) of spherical cerium oxide particles (refractive index 144, diameter m,) is embedded in the upper plate side as a laminated polarizing plate (manufactured by Nitto Denko Corporation) , TEG1465DU). Further, a cold cathode tube having a diameter of about 3 mm was placed on the side surface of the light guide body having a fine 稜鏡 10 structure, and was covered with a light source holder formed of a silver-deposited polyethylene terephthalate film. A silver vapor-deposited polyethylene terephthalate film reflector is disposed under the light guide plate, and a polyethylene terephthalate film having a disordered layer formed of stupid ethylene bubbles is formed on the surface of the light guide plate. This is disposed as a light source on the lower side of the polarizing plate-integrated polarizing element. In the case of the polarizing plate-integrated polarizing element of the first and third embodiments and the comparative examples 1 to 3, the case of the polarizing plate-integrated polarizing element of the second embodiment is shown in Fig. 2 . In Fig. 1 and Fig. 2, PL is an absorbing polarizing plate, D is a viewing angle widening film (diffusion bonding material), LC is a liquid crystal cell, C1 is a λ/4 plate, C2 is a /2 plate, and Α is a reflection. Polarized photon (a): circular polarizing plate, Β is a phase difference plate (b): 20 C plate, S is a side light type light guide plate, and R is a diffuse reflection plate. Further, X is a polarizing element, Y is a linear polarizing element, and Z is a polarizing-integrated linear polarizing element. Further, in the fourth embodiment, only the reflection wavelength band, the bandwidth (??), and the pitch variation were selected for evaluation. <Evaluation method> 47 The following evaluation was performed on the wide-band torsion layer liquid crystal film (circularly polarized light-reflecting sheet) and the polarizing plate-body type polarizing element obtained above. The results are shown in Table 2. Further, the respective step conditions of the examples and comparative examples are also shown in Table 2. (Selecting the reflection wavelength band and the bandwidth (△ long)) The spectrophotometric 4 (manufactured by Dayuan Electronics Co., Ltd., the instantaneous multi-photometry system MCPD2_ measures the reflection spectrum of the wide-band torsion layer liquid crystal film, and obtains the selected reflection wavelength band and the half-value bandwidth. Δλ. The half-valued bandwidth Δλ is used as the reflection bandwidth of the semi-reflectivity at one of the maximum reflectances. (Pitch change) The wide-band torsion layer liquid crystal film is measured near the ultraviolet ray irradiation surface by the surface ΤΕΜ photograph (1/zm from the ultraviolet ray irradiation surface) The lower layer is longer than the pitch near the air interface (the lower layer from the air interface) and the middle thereof. (Reliability) The wide-band 杻 layer liquid crystal film is put into 8〇, and 6〇<>>9〇%RH Reliable I1 students "Test 500 hours" to evaluate whether the surface of the powder can be seen. The 〇: no precipitates. x: There are precipitates. (Front brightness) Place the polarizing plate-integrated polarizing element on the dots. In the printed backlight, the polarizing plate was placed on the side of the polarizing plate, and it was evaluated by a luminance meter (manufactured by TOPCON, BM-7). (Twisting change in color tone) The liquid crystal was evaluated by ELDIM's viewing angle measuring device EZ-CONTRAST with the following criteria. Display The color change of the tilt of the device. △xy= ((Χ〇,χ丨)2+ (y〇—y丨)2) 0.5 1341928 Front color (x〇, y〇), chromaticity from tilt ± 60° (Xi, y!) Good: the color change Axy at a viewing angle of 60° is less than 〇.〇4. Poor: the hue change Axy at a viewing angle of 60° is 0.04 or more. Table 2 Example 1 Example 2 Example 3 Example 4 Comparative Example Comparative Example 2 Comparative Example 3 Step (1) Ultraviolet illuminance (mW/cm2) 40 40 40 50 50 40 40 Temperature (°c) 40 40 40 40 60 40 40 Time (seconds) 1.2 1.2 1.2 2.2 10 1.2 1.2 Environment Oxygen Oxygen Oxygen Oxygen Oxide Step (2) Ultraviolet Illumination (mW/cm2) 4 4 4 4 - - 4 Heating Temperature (°c / sec) 3 10 3 3 - 3 3 Arrival Temperature (°C) 90 90 90 90 - 90 90 Time (seconds) 60 60 30 60 - 20 60 Ambient Oxygen Oxygen - Oxygen Oxygen Step (3) Ultraviolet Illumination (mW/cm2) 60 60 60 60 60 60 Heat Temperature rc) 50 50 50 50 50 50 - Time (seconds) 10 10 10 10 10 10 - Environment 龀 Nitro nitrogen, Nitrogen, Nitrogen • __ 1 Equivalent reflection band (nm) 425-900 430-900 420-925 450-930 435-835 415-710 425- 900 Selecting the reflection bandwidth (half-value bandwidth Δλ : nm) 475 470 505 480 400 295 475 Pitch change substrate side - air interface side large - * > small - small - small - small - large - small - > Small - small substrate 恻 (nm) 0.54 0.54 0.56 0.56 0.38 0.42 0.54 Intermediate (nm) 0.40 0.40 0.41 0.41 0.50 0.33 0.40 Air interface side (nm) 0.26 0.26 0.26 0.27 0.27 0.25 0.26 Reliability 〇〇〇 - 〇 〇X Front brightness (cd/cm2) 138 140 142 • 135 110 138 The color tone of the tilt changes well and is good - bad and bad

實施例中’可得到在包含長波長域之寬頻中具有選擇反射 波長之扭層液晶膜。該扭層液晶膜可靠性高,且以之作為圓偏 光板來使用之偏光元件在亮度提昇特性上也很優異。又,利用 S玄偏光元件之液晶顯示裝置在傾斜方向將無諧調反轉之領域 49 1341928 之顯示資訊以光擴散而分開,故難以產生來自傾斜方向之色調 變化或諧調反轉,可得到視角寬廣之液晶顯示裝置。 產業上可利用性 藉本發明之製造方法得到之寬頻扭層液晶膜可作為圓偏 5 光板(反射型偏光子),該圓偏光板可利用於直線偏光元件、 照明裝置及液晶顯示裝置等。 L闽式簡單說明3 第1圖是利用實施例1、3、比較例1〜3之偏光板一體型偏 光元件之視角擴大液晶顯示裝置之概念圖。 10 第2圖是利用實施例2之偏光板一體型偏光元件之視角擴 大液晶顯示裝置之概念圖。 第3圖是顯示實施例2之偏光板一體型偏光元件當中各層 之軸角度之圖。 第4圖是實施例1中製作之扭層液晶膜之反射光譜。 15 第5圖是實施例2中製作之扭層液晶膜之反射光譜。 第6圖是實施例3中製作之扭層液晶膜之反射光譜。 第7圖是實施例4中製作之扭層液晶膜之反射光譜。 第8圖是比較例1中製作之杻層液晶膜之反射光譜。 第9圖是比較例2中製作之扭層液晶膜之反射光譜。 20 第10圖是比較例3中製作之扭層液晶膜之反射光譜。 【圖式之主要元件代表符號表】 PL…吸收型偏光板 C1…λ/4板 D…視角擴大膜(擴散黏著材) C2"a/2板 LC…液晶晶胞 A…反射偏光子(a):圓偏光板 50 1341928 B···相位差板(b) : C板 Y…直線偏光元件 S···側光型導光板 Ζ…偏光一體型直線偏光元件 R···擴散反射板 X…偏光元件 51In the embodiment, a twisted layer liquid crystal film having a selective reflection wavelength in a wide frequency band including a long wavelength region can be obtained. The twisted layer liquid crystal film is highly reliable, and the polarizing element used as a circular polarizing plate is also excellent in brightness enhancement characteristics. In addition, the liquid crystal display device using the S-transparent element separates the display information of the field of the unpolarized inversion in the oblique direction by light diffusion, so that it is difficult to generate a hue change or a harmonic inversion from the oblique direction, and a wide viewing angle can be obtained. Liquid crystal display device. INDUSTRIAL APPLICABILITY A wide-frequency twisted-layer liquid crystal film obtained by the production method of the present invention can be used as a circularly polarizing five-light plate (reflective polarizer), which can be used for a linear polarizing element, an illumination device, a liquid crystal display device, or the like. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a conceptual view showing an enlarged liquid crystal display device using the viewing angles of the polarizing plate-integrated polarizing elements of Examples 1 and 3 and Comparative Examples 1 to 3. Fig. 2 is a conceptual view showing an enlarged liquid crystal display device by the viewing angle of the polarizing plate-integrated polarizing element of the second embodiment. Fig. 3 is a view showing the axial angles of the respective layers in the polarizing plate-integrated polarizing element of the second embodiment. Fig. 4 is a reflection spectrum of the twisted layer liquid crystal film produced in Example 1. 15 Fig. 5 is a reflection spectrum of a twisted layer liquid crystal film produced in Example 2. Fig. 6 is a reflection spectrum of the twisted layer liquid crystal film produced in Example 3. Fig. 7 is a reflection spectrum of the twisted layer liquid crystal film produced in Example 4. Fig. 8 is a reflection spectrum of a bismuth liquid crystal film produced in Comparative Example 1. Fig. 9 is a reflection spectrum of the twisted layer liquid crystal film produced in Comparative Example 2. 20 Fig. 10 is a reflection spectrum of the twisted layer liquid crystal film produced in Comparative Example 3. [The main components of the diagram represent the symbol table] PL... Absorptive polarizing plate C1...λ/4 plate D...Viewing angle expansion film (diffusion bonding material) C2"a/2 plate LC...liquid crystal cell A...reflecting polarizer (a ): circular polarizing plate 50 1341928 B···phase difference plate (b) : C plate Y... linear polarizing element S··· side light type light guide plate 偏...polarizing integrated linear polarizing element R···diffusion reflector X ...polarizing element 51

Claims (1)

1341928 第93107989號專利申請案申請專利範圍修正本 修正曰期:100年1月28曰 拾、申請專利範圍: 1. 一種寬頻扭層液晶膜之製造方法,包含有將含有聚合性液 晶原化合物(A)及聚合性旋光劑(B)之液晶混合物塗布 於定向基材之步驟,及對該液晶混合物進行紫外線照射使 5 之聚合硬化之步驟,以製造出具有反射帶寬在200nm以上之 寬頻扭層液晶膜,其中前述紫外線聚合步驟包含: 在使前述液晶混合物接觸含氧氣體之狀態下,於20°C 以上之溫度下,以20〜200mW/cm2之紫外線照射強度,從前 述定向基材側進行紫外線照射0.2〜5秒之步驟(1 ); 10 接著,在使前述液晶層接觸含氧氣體之狀態下,以升 溫速度2°c/秒以上,達到高於步驟(1 )且在60°C以上之到 達溫度為止,且以低於步驟(1 )之紫外線照射強度,從定 向基材側照射紫外線10秒鐘以上之步驟(2);及 接著,在不存在氧下,進行紫外線照射之步驟(3)。 15 2.如申請專利範圍第1項之寬頻扭層液晶膜之製造方法,其中 該寬頻杻層液晶膜之螺距長變化係從定向基材側起連續地 變狹窄。 3. 如申請專利範圍第1項之寬頻扭層液晶膜之製造方法,其中 該聚合性液晶原化合物(A)具有1個聚合性官能基,且該 20 聚合性旋光劑(B)具有2個以上之聚合性官能基。 4. 如申請專利範圍第1項之寬頻扭層液晶膜之製造方法,其中 該聚合性液晶原化合物(A)之莫耳消光係數為: O.l-SOOdn^mol-icnr^SGSnm, 10〜,且 52 1341928 j_^31〇7989號專利申請案申請專利範圍修正本 修正日期:10〇年夏月28日 lOOO-lOOOOOdn^mol-'ciTr^SMnm。 5.如申請專利範圍第1項之寬頻扭層液晶膜之製造方法,其中 該聚合性液晶原化合物(A)係以下述一般式(1):1341928 Patent Application No. 93107989 Patent Application Revision This revision period: January 28, 100, the patent application scope: 1. A method for manufacturing a wide-band twisted-layer liquid crystal film, comprising a polymerizable liquid crystal original compound ( A) a step of applying a liquid crystal mixture of the polymerizable optical agent (B) to the oriented substrate, and irradiating the liquid crystal mixture with ultraviolet rays to cure the polymerization of 5 to produce a broadband twist layer having a reflection bandwidth of 200 nm or more. In the liquid crystal film, the ultraviolet polymerization step includes: irradiating the ultraviolet ray at a temperature of 20 ° C or higher with a UV irradiation intensity of 20 to 200 mW/cm 2 in a state where the liquid crystal mixture is brought into contact with the oxygen-containing gas, from the side of the oriented substrate Step (1) of ultraviolet irradiation for 0.2 to 5 seconds; 10 Next, in a state where the liquid crystal layer is brought into contact with the oxygen-containing gas, the temperature increase rate is 2 ° C / sec or more, and is higher than the step (1 ) and at 60 ° C a step (2) of irradiating the ultraviolet ray for 10 seconds or more from the side of the oriented substrate at a temperature lower than the reaching temperature of the step (1); and then In the absence of oxygen, step (3) of UV irradiation. The method of producing a wide-band twisted-layer liquid crystal film according to the first aspect of the invention, wherein the pitch length change of the wide-band 杻 liquid crystal film is continuously narrowed from the side of the oriented substrate. 3. The method for producing a wide-band twisted-layer liquid crystal film according to the first aspect of the invention, wherein the polymerizable liquid crystal original compound (A) has one polymerizable functional group, and the 20 polymerizable optically active agent (B) has two The above polymerizable functional group. 4. The method for producing a wide-band twisted-layer liquid crystal film according to claim 1, wherein the molecular extinction coefficient of the polymerizable liquid crystal original compound (A) is: Ol-SOOdn^mol-icnr^SGSnm, 10~, and 52 1341928 j_^31〇7989 Patent Application Revision Patent Revision Amendment Date: October 20th, summer 10th, lOOOO-lOOOOOdn^mol-'ciTr^SMnm. 5. The method for producing a wide-band twisted layer liquid crystal film according to claim 1, wherein the polymerizable liquid crystal original compound (A) is represented by the following general formula (1): 表示之化合物(式中,|^〜尺12可相同或相異,表示_F、一 Η、一 CH3、一 C2H5或一〇CH3,Rl3表示一Η 或 ~ CH3,X, 表示一般式(2): — (CH2CH20) a— (CH2) b— (〇) c—、 X2表示一CN或一F ’唯’ 一般式(2)中之a為0〜3之整數, b為0~12之整數、c為〇或1,且當a=i〜3時1>=0、c=〇,a=〇時 10 , b=l〜12、c=0〜1 ) 〇 6· _種偏光元件,係在偏光之選擇反射之波長帶相互重疊之 至少2層反射偏光子(a)之間,配置有正面相位差(法線 方向)幾乎為零且對於以相對於法線方向3〇。以上傾斜入射 之入射光具有;1/8以上的相位差之相位差層(b)者,其中 15 ^ 、 該反射偏光子(a )為一種圓偏光板,其係使用以申請專利 範圍第1項之製造方法製得之寬頻杻層液晶祺者。 7·如申请專利範圍第6項之偏光元件,其中前述至少2層之反 射偏光子(a)之選擇反射波長在5SOnm±i〇nm之波長範圍 中互相重疊。 20 8 心如申請專利範圍第6項之偏光元件,其中該相位差層(b) 係: μ 53 1341928 修正曰期:100年1月28曰 專射請f巾請專職圍修正本 用以固定在可見光領域以外具有選擇反射波長域之扭 層液晶相之平面定向者, 用以固定棒狀液晶之垂直定向狀態者, 用以固定盤狀液晶之相列相或管束相定向狀態者, 5 用以將聚合物膜2轴定向者,或 將具有負之1轴性之無機層狀化合物定向固定,使面之 法線方向構成光抽。 9· 一種直線偏光元件,係於申請專利範圍第ό項之偏光元件上 積層λ/4板,以透過得到直線偏光者。 1〇 l〇.如申請專利範圍第9項之直線偏光元件,其係積層圓偏光板 之扭層液晶膜於Λ/4板以使螺距長連續地變狹窄而得者。 11.如申請專利範圍第9項之直線偏光元件,其中該λ/4板係進 行2軸延伸傾斜入射光線之相位差補正,以改善視角之相位 差板。 15 12‘如申請專利範圍第9項之直線偏光元件,其中該λ/4板係塗 布並固定向列液晶或矩列液晶而得之液晶聚合物型相位差 板0 13. 如申請專利範圍第9項之直線偏光元件,其中該λ/4板係當 以面内之主折射率為nx、ny’厚度方向之主折射率為ηζ時, 以式(nx —nz) / ( ηχ — ny)定義之Νζ係數滿足-0.5~-2·5者。 14. 一種直線偏光元件,係於申請專利範圍第9項之直線偏光元 件之λ/4板上再積層λ/2板者。 15· 一種直線偏光元件,係使吸收型偏光子之透過軸方向對齊 申請專利範圍第9項之直線偏光元件之透過軸,而於直線偏 54 丄 ~~~~案申請專利範圍修正本 修正日期:100年1月28曰 光元件之λ/4板側積層該吸收型偏光子者。 種照明S S,係在裡面側具有反射層之面光源之表面側 上,具有申請專利範圍第9項之直線偏光元件。 ’ 17 .—種液晶顯示裝置,係在申請專利範圍第16項之照明裝置 5 之光射出側具有液晶晶胞者。 18·—種視角擴大液晶顯示裝置,係在申請專利範圍第丨7項之 液晶顯示裝置上,在相對於液晶晶胞之目視側配置使透過 液晶晶胞之目視側之光線擴散之視角擴大膜而成者。 · 19.如申請專利範圍第18項之視角擴大液晶顯示裝置其係使 〇 用實質上沒有後方散亂、偏光消解之擴散板作為視角擴大 膜。 55The compound represented (wherein, |^~12 can be the same or different, representing _F, Η, CH3, C2H5 or 〇CH3, Rl3 represents a Η or ~CH3, X, represents the general formula (2 ): — (CH2CH20) a—(CH2) b—(〇) c—, X2 represents a CN or an F′ 'only'. In the general formula (2), a is an integer from 0 to 3, and b is 0 to 12. Integer, c is 〇 or 1, and when a=i~3, 1>=0, c=〇, a=〇10, b=l~12, c=0~1) 〇6· _ kinds of polarizing elements Between the at least two reflective polarizers (a) in which the wavelength bands of the selective reflection of the polarized light overlap each other, the front phase difference (normal direction) is almost zero and is approximately 3 相对 with respect to the normal direction. The obliquely incident incident light has a phase difference layer (b) of a phase difference of 1/8 or more, wherein 15 ^ , the reflective polarizer (a) is a circular polarizing plate, which is used for the patent application range 1 The wide-band 杻 liquid crystal 制 obtained by the method of manufacture. 7. The polarizing element according to claim 6, wherein the selective reflection wavelengths of the at least two layers of the reflective polarizers (a) overlap each other in a wavelength range of 5 SOnm ± i 〇 nm. 20 8 The polarizing element of the sixth application of the patent scope, wherein the phase difference layer (b) is: μ 53 1341928. The revised period: January 28, 100, special shot, please use the full-length correction to fix it. A plane orientation of a liquid crystal phase of a twisted layer having a selective reflection wavelength range outside the visible light region, for fixing the vertical alignment state of the rod-shaped liquid crystal, for fixing the phase of the phase of the discotic liquid crystal or the orientation state of the tube bundle phase, 5 The orientation of the polymer film 2 is oriented or the inorganic layered compound having a negative one-axis property is oriented and fixed, so that the normal direction of the surface constitutes light extraction. 9. A linear polarizing element which is laminated on a polarizing element of the scope of the patent application of the λ/4 plate to obtain a linear polarizer. In the linear polarizing element of claim 9, the twisted layer liquid crystal film of the laminated circular polarizing plate is formed on the Λ/4 plate so that the pitch length is continuously narrowed. 11. The linear polarizing element of claim 9, wherein the λ/4 plate is phase-corrected by a 2-axis extended oblique incident light to improve the phase difference plate of the viewing angle. 15 12' The linear polarizing element of claim 9, wherein the λ/4 plate is a liquid crystal polymer type retardation plate obtained by coating and fixing a nematic liquid crystal or a matrix liquid crystal. a linear linear polarizing element of 9th, wherein the λ/4 plate is expressed by the formula (nx - nz) / ( η χ - ny) when the principal refractive index in the in-plane is nx and the main refractive index in the thickness direction is η , The coefficient of definition is equal to -0.5~-2·5. A linear polarizing element which is laminated on a λ/4 plate of a linear polarizing element of claim 9 of the patent application. 15· A linear polarizing element that aligns the transmission axis direction of the absorbing polarizer with the transmission axis of the linear polarizing element of claim 9 and the patent range revision of the correction range of the linear deviation 54 丄~~~~ : On January 28, 100, the λ/4 plate side of the illuminating element is laminated with the absorbing type photon. The illumination S S is a linear polarizing element of claim 9 in the surface side of the surface light source having the reflective layer on the inner side. A liquid crystal display device having a liquid crystal cell on the light emitting side of the illumination device 5 of claim 16 of the patent application. 18. The viewing angle-enhancing liquid crystal display device is provided on a liquid crystal display device of the seventh aspect of the patent application, wherein a viewing angle expansion film that diffuses light passing through a visual side of the liquid crystal cell is disposed on a visual side of the liquid crystal cell. Founder. 19. The liquid crystal display device is expanded from the viewpoint of the application of the ninth aspect of the patent application, and the diffusion plate having substantially no rear scattered and polarized light is used as the viewing angle expansion film. 55
TW093107989A 2003-03-31 2004-03-24 Process for producing wideband cholesteric liquid crystal film, circular polarization plate, linear polarizer, lighting apparatus and liquid crystal display (1) TW200428041A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003094605 2003-03-31
JP2003365759A JP4293882B2 (en) 2003-03-31 2003-10-27 Broadband cholesteric liquid crystal film manufacturing method, circularly polarizing plate, linearly polarizing element, illumination device, and liquid crystal display device

Publications (2)

Publication Number Publication Date
TW200428041A TW200428041A (en) 2004-12-16
TWI341928B true TWI341928B (en) 2011-05-11

Family

ID=33134318

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093107989A TW200428041A (en) 2003-03-31 2004-03-24 Process for producing wideband cholesteric liquid crystal film, circular polarization plate, linear polarizer, lighting apparatus and liquid crystal display (1)

Country Status (3)

Country Link
JP (1) JP4293882B2 (en)
TW (1) TW200428041A (en)
WO (1) WO2004088366A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9557609B2 (en) 2013-05-24 2017-01-31 Boe Technology Group Co., Ltd. Method for manufacturing polymer dispersed liquid crystal (PDLC) panel

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4931167B2 (en) * 2004-06-14 2012-05-16 日東電工株式会社 Colored reflective material, colored reflective filler and applications using these
KR101349483B1 (en) * 2006-07-13 2014-01-08 니폰 제온 가부시키가이샤 Method for producing circularly polarized light isolation sheet, and apparatus for coating film formation
EP2128223B1 (en) * 2007-02-22 2015-11-18 Zeon Corporation Cholesteric liquid-crystal composition, circularly polarizing separation sheet, and production process
JP4888853B2 (en) 2009-11-12 2012-02-29 学校法人慶應義塾 Method for improving visibility of liquid crystal display device, and liquid crystal display device using the same
EP2587304B1 (en) 2010-06-22 2019-12-18 Toyobo Co., Ltd. Liquid crystal display device, polarizer and protective film
EP2711748A4 (en) 2011-05-18 2014-12-03 Toyo Boseki Polarizing plate suitable for liquid crystal display device capable of displaying three-dimensional images, and liquid crystal display device
WO2012157663A1 (en) 2011-05-18 2012-11-22 東洋紡株式会社 Liquid crystal display device, polarizing plate, and polarizer protection film
KR101909074B1 (en) * 2013-08-26 2018-10-18 후지필름 가부시키가이샤 Luminance-enhancing film, optical sheet member, and liquid crystal display device
KR102508041B1 (en) * 2014-08-29 2023-03-08 스미또모 가가꾸 가부시키가이샤 Process for producing optical film
WO2019093446A1 (en) * 2017-11-08 2019-05-16 富士フイルム株式会社 Optical laminate film, and organic electroluminescent display device
KR102532379B1 (en) * 2018-06-12 2023-05-12 후지필름 가부시키가이샤 Manufacturing method of optically anisotropic layer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW289095B (en) * 1993-01-11 1996-10-21
DE19726051A1 (en) * 1997-06-19 1998-12-24 Consortium Elektrochem Ind Process and broadening of cholesteric reflection bands of photopolymerizable cholesteric liquid crystals and optical elements produced by this process
JP3513494B2 (en) * 2001-03-28 2004-03-31 大日本印刷株式会社 Manufacturing method of circular polarization controlling optical element
JP4058481B2 (en) * 2001-04-12 2008-03-12 日東電工株式会社 Polymerizable liquid crystal compound and optical film
JP3811465B2 (en) * 2002-04-23 2006-08-23 日東電工株式会社 Polarizing element, polarized light source, and image display apparatus using them

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9557609B2 (en) 2013-05-24 2017-01-31 Boe Technology Group Co., Ltd. Method for manufacturing polymer dispersed liquid crystal (PDLC) panel

Also Published As

Publication number Publication date
JP4293882B2 (en) 2009-07-08
JP2004318062A (en) 2004-11-11
TW200428041A (en) 2004-12-16
WO2004088366A1 (en) 2004-10-14

Similar Documents

Publication Publication Date Title
TWI289690B (en) Broadband-cholesteric liquid crystal film, process for producing the same, circularly polarizing plate, linearly polarizing element, illuminator, and liquid-crystal display
TW499574B (en) Method for manufacturing homeotropic alignment liquid crystal film, homeotropic alignment liquid crystalline composition and homeotropic alignment liquid crystal film
TWI292492B (en)
TWI383181B (en) Method for manufacturing a wide-frequency twisted layer liquid crystal film, a circularly polarizing plate, a linear polarizing element, a lighting device, and a liquid crystal display device (2)
US20070064168A1 (en) Optical element, light condensation backlight system, and liquid crystal display
TWI341928B (en)
JP4416119B2 (en) Method for producing broadband cholesteric liquid crystal film
JP2005128216A (en) Optical rotation board, optical element, condensing backlight system and liquid crystal display device
JP4008417B2 (en) Broadband cholesteric liquid crystal film, manufacturing method thereof, circularly polarizing plate, linear polarizer, illumination device, and liquid crystal display device
JP2006011281A (en) Polarizing filter and polarizing sunglasses
JP2004302075A (en) Method for manufacturing wideband cholesteric liquid crystal film, circularly polarizing plate, linearly polarizing element, lighting device and liquid crystal display
JP2006133385A (en) Light collimating system, condensing backlight system, and liquid crystal display apparatus
US7746421B2 (en) Optical element, light condensation backlight system, and liquid crystal display
JP2005308988A (en) Circularly polarized reflection polarizing plate, optical element, convergent back light system, and liquid crystal display apparatus
JP2005258192A (en) Manufacturing method of wide-band cholesteric liquid crystal film
JP2006098946A (en) Optical element, polarizing element, lighting device, and liquid crystal display
JP2004233987A (en) Wide-band cholesteric liquid crystal film, its manufacturing method, circular polarizing plate, linear polarizer, illumination apparatus and liquid crystal display device
JP2004212911A (en) Method of manufacturing wide band cholesteric liquid crystal film, circular polarizing plate, linear polarizer, lighting device and liquid crystal display device
JP2005351956A (en) Optical device, condensing backlight system, and liquid crystal display device
JP2004219559A (en) Polarizing element and liquid crystal display device
JP2004219522A (en) Wide band cholesteric liquid crystal film, its manufacture method, circularly polarizing plate, linear polarizer, illuminator and liquid crystal display device
TW200419197A (en) Broad-band-cholesteric liquid-crystal film and process for producing the same, circularly polarizing plate, linearly polarizing element, illuminator, and liquid-crystal display
JP4397757B2 (en) Optical element, condensing backlight system, and liquid crystal display device
JP2006024518A (en) Direct backlight and liquid crystal display
JP2006047950A (en) Optical element, condensing back-light system and liquid crystal display device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees