WO2004088296A1 - Fluorescent x-ray analyzer - Google Patents

Fluorescent x-ray analyzer Download PDF

Info

Publication number
WO2004088296A1
WO2004088296A1 PCT/JP2004/003229 JP2004003229W WO2004088296A1 WO 2004088296 A1 WO2004088296 A1 WO 2004088296A1 JP 2004003229 W JP2004003229 W JP 2004003229W WO 2004088296 A1 WO2004088296 A1 WO 2004088296A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
window
chamber
sample
film
Prior art date
Application number
PCT/JP2004/003229
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Ayukawa
Megumi Ono
Yukio Sako
Original Assignee
Rigaku Industrial Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Industrial Corporation filed Critical Rigaku Industrial Corporation
Priority to JP2005504147A priority Critical patent/JP3726161B2/en
Publication of WO2004088296A1 publication Critical patent/WO2004088296A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence

Definitions

  • the present invention relates to an X-ray fluorescence spectrometer that performs analysis in a helium atmosphere.
  • a fluorescent X-ray analyzer that performs analysis in a helium atmosphere (the X-ray optical path is in a helium atmosphere) as shown in Fig. 2.
  • This device is a bottom-illuminated type in which primary X-rays 6 are irradiated from below sample 1, and an X-ray source 7 is stored below sample room 3 in which sample 1 is exchangeably stored in the atmosphere.
  • An irradiation chamber 8 is provided, and a spectroscopic chamber 14 in which the light separating element 11 and the detector 13 are housed in communication with the irradiation chamber 8 is provided.
  • a partition wall film 9 that allows X-rays 6 and 10 to pass through is provided in a window 4 provided in a wall section 4 that separates a sample chamber 3 in an air atmosphere and an irradiation chamber 8 in a helium atmosphere (hereinafter, window means an opening). However, in this case, it means a hole formed in the wall 4).
  • the partition film 9 a thin polymer film such as a polyimide film is used so that absorption of X-rays 6 and 10 is small.
  • a liquid sample la is analyzed in a helium atmosphere.
  • the liquid sample 1a is supplied to the liquid sample holder 2 having a window member 2a at the bottom through which X-rays 6 and 10 pass.
  • the sample is put into a sample 1 in the whole 1a, 2 and placed on the partition film 9 in the sample room 3 in the atmosphere.
  • the liquid sample 1a leaking to the outside of the window member 2a of the liquid sample holder 2 and the contaminants in the air may adhere to the partition wall film 9, and in this case, the partition wall film 9 is thin and easily broken. It is not really possible to clean the parts without damaging them, so they need to be replaced.
  • the partition wall film is handled by being attached to a ring-shaped support plate, and further, the peripheral portion is sandwiched in the thickness direction by the upper portion and the lower portion of the ring-shaped holder, so that the whole is a partition wall film cartridge.
  • Upper part of holder And the lower part of the holder are connected by screws or the like. Therefore, it is necessary to prepare a new partition membrane by attaching it to the support plate in advance for the replacement of the partition membrane.
  • the sample cell table including the partition wall is detachable from the measurement site of the bench, and the sample cell table itself can be easily assembled and disassembled. Therefore, it is easy to exchange the partition film.
  • the irradiation room and the spectroscopy room will be replaced by a space, and the entire sample cell table is simply placed on the measurement site of the bench, and there is no particular seal between the two. If this is done, the air in the sample chamber may flow into the irradiation chamber and the spectroscopic chamber during analysis, and X-ray absorption may increase. Disclosure of the invention
  • the present invention has been made in view of the above-mentioned conventional problems, and in a fluorescent X-ray analyzer that performs analysis in a helicopter atmosphere, a diaphragm for separating a sample chamber and an irradiation chamber and allowing X-rays to pass therethrough is easily replaced. Air in the sample chamber flows to the irradiation chamber and the spectroscopy chamber during analysis. The purpose is to provide something that is unlikely to enter.
  • the present invention provides a sample chamber in which a sample is exchangeably stored in an air atmosphere, an irradiation chamber in which an X-ray source for irradiating a sample with primary X-rays is stored. It houses a partition wall film that is arranged so as to cover the window provided on the wall that separates the sample chamber and the irradiation chamber and allows X-rays to pass through, and a detection means for spectrally detecting and detecting fluorescent X-rays generated from the sample.
  • An X-ray fluorescence spectrometer comprising: a spectroscopic chamber communicating with the irradiation chamber, wherein the irradiation chamber and the spectroscopic chamber are replaced by a helm.
  • a first frame having a window is hermetically attached to the wall so that the window overlaps the window of the wall, and covers the window of the first frame overlapping the window of the wall.
  • the partition film is arranged as described above, and the second frame having a window is arranged such that the window overlaps the window of the first frame with the partition film interposed therebetween.
  • one of the first frame and the second frame is made of a permanent magnet, and the other is made of a material that is attracted to the permanent magnet, so that the first frame and the second frame are The peripheral portion of the partition wall film is sandwiched in the thickness direction, and the second frame is detachable from the first frame hermetically attached to the wall.
  • the partition wall film is sandwiched between the first frame and the second frame, but the first frame is airtight to the wall separating the sample chamber and the irradiation chamber. Since the second frame is detachable from the first frame, the partition membrane can be easily replaced, and the air in the sample chamber is transferred to the irradiation chamber and the spectroscopic chamber during analysis. There is no danger of inflow.
  • the first frame and the second frame are plate-shaped, one of which is made of a magnet sheet, and the other is made of iron. Further, it is preferable that the partition film is made of polyester.
  • FIG. 1 is an enlarged view of the vicinity of a partition film in an X-ray fluorescence spectrometer according to one embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing an X-ray fluorescence spectrometer that performs analysis in a helium atmosphere.
  • BEST MODE FOR CARRYING OUT THE INVENTION a configuration of the X-ray fluorescence analyzer according to one embodiment of the present invention will be described.
  • this device is a bottom-illuminated type in which primary X-rays 6 are irradiated from below the sample 1, as in the device described in the prior art.
  • An X-ray fluorescence spectrometer comprising a partition film 9 and a spectroscopic chamber 14, wherein the irradiation chamber 8 and the spectroscopic chamber 14 are replaced with helium.
  • the sample chamber 3 is formed of a space surrounded by a wall 4 that separates the sample chamber 3 from the irradiation chamber 8 and a lid 5 that is openably and closably mounted on the upper part of the sample chamber 3 via a seal member.
  • Sample 1 is exchangeably stored.
  • the irradiation chamber 8 accommodates an X-ray source 7 such as an X-ray tube for irradiating the sample 1 with primary X-rays 6.
  • the partition wall film 9 is a polyester film having a thickness of 1.5 m.
  • the partition wall film 9 is arranged so as to cover the circular window 4 a provided on the wall portion 4 and allows the X-rays 6 and 10 to pass therethrough.
  • the spectroscopic chamber 14 communicates with the irradiation chamber 8 and includes a spectroscopic element 11 for separating the fluorescent X-rays 10 generated from the sample 1 and a detector 13 for detecting the separated fluorescent X-rays 12. Detection means 11 and 13 are stored. The spectroscopic element 11 and the detector 13 are rotated while maintaining a fixed angular relationship by an interlocking means such as a goniometer (not shown).
  • an interlocking means such as a goniometer (not shown).
  • the analysis target is, for example, a liquid sample 1a
  • the liquid sample 1a is a liquid sample holder 2 having a window member 2a at the bottom portion through which X-rays 6 and 10 pass.
  • the sample is put in the whole la, 2 and is displayed as a sample 1, and is placed on the partition film 9 in the sample chamber 3 in the atmosphere.
  • the liquid sample holder 2 has a cylindrical main body 2b, two window members 2a arranged to cover the upper and lower openings thereof, and a window member 2a which is fitted into the upper and lower outer peripheries of the main body 2b, respectively. It is composed of two ring-shaped mounting members 2c that sandwich the peripheral portion.
  • the first frame 21 having a circular window 21 a and a first frame 21 having a circular window 21 a is configured as shown in FIG. 1 which is an enlarged view.
  • a partition wall film 9 is arranged so as to cover the window 21 a of the first frame body 21, and further, a second plate having a circular shape having a thickness of 0.5 mm and having a circular window 23 a is provided.
  • the second frame 23 is arranged such that the window 23 a overlaps the circular window 21 a of the first frame 21 with the partition wall 9 interposed therebetween.
  • First frame 2 The outer diameters of the first and second frame members 23 are the same, and each of the windows 21a and 23a is the same circle as the outer circumference.
  • the first frame 21 is made of a permanent magnet, for example, a magnet sheet (a permanent magnet made by dispersing a magnetic material in a flexible sheet of rubber or synthetic resin), and the second frame 23 is made of a permanent magnet. Since the first frame 21 and the second frame 23 are made of a material adsorbed to the permanent magnet, for example, iron, the first frame 21 and the second frame 23 sandwich the peripheral portion of the partition wall film 9 in the thickness direction thereof and the second frame. The body 23 is detachable from the first frame 21 airtightly attached to the wall 4. Conversely, the second frame 23 may be made of a permanent magnet, and the first frame may be made of a material that is attracted to the permanent magnet. Note that in FIGS. 1 and 2, the lines visible behind the paper are not shown for ease of understanding.
  • the following pipes, valves and pumps are provided to replace the irradiation chamber 8 and the spectroscopic chamber 14 with helium.
  • Helium is introduced from the helium tank (not shown) to the irradiation chamber 8 and the spectroscopic chamber 14 through the helium flow valve 16 A through the helium flow valve 16 A.
  • the vacuum pipe 17B is evacuated to the irradiation chamber 8 and the spectroscopic chamber 14 by the vacuum pump 17 through the vacuum valve 16B.
  • the spectroscopic chamber leak pipe 15 C opens the irradiation chamber 8 and the spectroscopic chamber 14 to the atmosphere via the spectroscopic chamber leak valve 16 C.
  • the sample chamber leak pipe 15D opens the sample chamber 3 to the atmosphere via the sample chamber leak valve 16D.
  • the bypass pipe 15E connects the spectroscopic chamber leak pipe 15C and the sample chamber leak pipe 15D via a bypass valve 16E.
  • Fig. 2 Before placing sample 1 in sample chamber 3, the helium flow valve 16A, the spectroscopic chamber leak valve 16C and the sample chamber leak valve 16D are closed, and the vacuum valve 16B and Open the bypass valve 16 E and evacuate the irradiation chamber 8, the spectroscopic chamber 14 and the sample chamber 3 by the vacuum pump 17.
  • the vacuum valve 16 B When the specified degree of vacuum is reached, the vacuum valve 16 B is closed, the vacuum pump 17 is stopped, the helium flow valve 16 A is opened, and the irradiation chamber 8 and the spectroscopic chamber 14 and the sample chamber 3 are opened.
  • the bypass valve 16E is closed, and the spectroscopic chamber leak valve 16C is opened, and helium flows into the irradiation chamber 8 and the spectroscopic chamber 14 at a low flow rate.
  • the helium substitution in the irradiation chamber 8 and the spectroscopic chamber 14 was Complete.
  • the sample chamber 3 is also evacuated or helium is introduced in order to prevent the partition wall film 9 from being damaged by a pressure difference between the sample chamber 3 and the irradiation chamber 8 and the spectroscopic chamber 14. It is.
  • the sample chamber 3 can exchange the sample 1 in the air atmosphere. Specifically, it is placed on the second frame 23 (FIG. 1), and the lid 5 is closed. Thereafter, the sample chamber 3 is maintained in the atmosphere, and the irradiation chamber 8 and the spectroscopy chamber 14 are maintained in a helium atmosphere with a slightly higher pressure. Can be exchanged for analysis.
  • partition wall membrane 9 is contaminated for the reasons described above and needs to be replaced, stop the device, stop the flow of helium, open the lid 5 and remove the sample 1 from the device.
  • the second frame 23 of 1 is taken out of the device against the suction force from the first frame 21. If the contaminated partition film 9 comes under the second frame 23, peel off the partition film 9 and remove it if it remains on the first frame 21. Peel off membrane 9 and remove from device.
  • an end portion is cut out into a substantially square shape from a polyester film having a width larger than the outer diameter of the first and second frames 21 and 23 to form a new partition wall film 9.
  • the second frame 23 is placed thereon so that the outer periphery of the second frame 23 is aligned with the outer periphery of the first frame 21, and the partition wall film 9 is held by the attraction force from the first frame 21. .
  • the sandwiched partition wall film 9 is wrinkled, the peripheral portion of the partition wall film 9 that protrudes outside the first and second frames 21 and 23 is pulled and extended. Now that the replacement of the partition film 9 has been completed, the helium substitution described above is performed, and the test is performed. The analysis can be continued with room 3 as the air atmosphere.
  • the partition film 9 is sandwiched between the first frame 21 and the second frame 23, but the first frame 21 is the sample. Since the second frame 23 is detachably attached to the first frame 21 and the second frame 23 is mounted airtightly on the wall 4 separating the chamber 3 and the irradiation chamber 8, the partition wall film 9 can be easily replaced. In addition, there is no possibility that the air in the sample chamber 3 flows into the irradiation chamber 8 and the spectroscopic chamber 14 (FIG. 2) during the analysis. Also, the first frame 21 and the second frame 23 are plate-shaped, one of which is a magnet seater, and the other is made of iron, so that it can be configured simply and inexpensively.
  • the liquid sample 1a leaked to the outside of the window member 2a is formed on the partition wall film 9.
  • a certain amount of space is required so that adhesion and contamination are small.
  • this space is a part of the sample chamber 3 in the atmosphere, it is usually filled with air, and absorbs and attenuates the fluorescent X-rays 10 (FIG. 2) generated from the sample 1, so from this viewpoint, Thinner is better.
  • the thickness of this space should be adjusted to about 0.5 mm, but in this embodiment, since this space is the window 23 a of the second frame 23, The thickness of the plate-shaped second frame 23 can be adjusted easily and accurately.
  • an inexpensive polyester film can be used for the partition wall film 9.
  • expensive polyimide films resistant to X-ray exposure were often used, but in practice, they had to be replaced due to contamination before the end of their life. Therefore, if the partition film 9 can be easily replaced as in the present embodiment, it is more reasonable to use a material that is not so strong against X-ray exposure but is inexpensive, for example, a polyester film for the partition film 9. And preferred.
  • the wavelength dispersive X-ray fluorescence analyzer in which the detecting means 11 and 13 in FIG. 2 are composed of the spectroscopic element 11 and the detector 13 is taken as an example.
  • the present invention can be similarly applied to an energy dispersive X-ray fluorescence spectrometer in which the detecting means is constituted by a detector such as an SSD and does not include a spectroscopic element.

Abstract

A fluorescent X-ray analyzer adapted for helium replacement, which is easy to replace a partition film between a sample chamber and an irradiation chamber, and prevents air in the sample chamber from flowing into the irradiation chamber during analysis. A first frame body (21) is hermetically attached to a wall (4) so that its window (21a) lies over the window (4a) of the wall (4) between a sample chamber (3) and an irradiation chamber (8), with a partition film (9) disposed to cover the window (21a) of the first frame body. A second frame body (23) is disposed so that its window (23a) lies over the window (21a) of the first frame body with a partition film (9) held therebetween. And one the frame bodies (21, 23) is a permanent magnet, and the other is made of a material which can be attracted thereby. The frame bodies (21, 23) hold the periphery of the partition film (9) therebetween, and the second frame body (23) is removably attachable to the first frame body (21).

Description

蛍光 X線分析装置  X-ray fluorescence analyzer
技術分野  Technical field
本発明は、 ヘリゥム雰囲気で分析を行う蛍光 X線分析装置に関する。 背景技術  The present invention relates to an X-ray fluorescence spectrometer that performs analysis in a helium atmosphere. Background art
従来、 図 2に示すような、 ヘリウム雰囲気で分析を行う (X線光路がヘリウム 雰囲気にある) 蛍光 X線分析装置がある。 この装置は、 試料 1の下方から 1次 X 線 6が照射される下面照射型で、 大気雰囲気で試料 1が交換可能に収納される試 料室 3の下方に、 X線源 7が収納される照射室 8と、 その照射室 8と連通して分 光素子 1 1および検出器 1 3が収納される分光室 1 4とを備えている。 そして、 照射室 8および分光室 1 4がヘリウム置換されるので、 大気雰囲気よりも蛍光 X 線 1 0 , 1 2の吸収が少なくなり、 空気中では減衰の著しい軽元素の蛍光 X線 1 0や微弱な蛍光 X線 1 0でも検出しゃすい。 ここで、 X線 6, 1 0を通過させる 隔壁膜 9が、 大気雰囲気の試料室 3とヘリウム雰囲気の照射室 8とを仕切る壁部 4に設けられた窓 (以下、 窓とは開口を意味し、 この場合は壁部 4に開けられた 孔を意味する) 4 aを覆うように配置されている。 隔壁膜 9には、 X線 6, 1 0 の吸収が少ないように、 ポリイミドフィルムなどの薄い高分子膜が用いられる。 へリゥム雰囲気で分析されるものとして、 液体の試料 l aがあるが、 その場合 、 液体試料 1 aは、 底部に X線 6 , 1 0を通過させる窓部材 2 aを有する液体試 料ホルダ 2に入れられて、 全体 1 a , 2で試料 1として极われ、 大気雰囲気の試 料室 3内で隔壁膜 9の上に載置される。 このような液体試料ホルダ 2の窓部材 2 aの外側に漏洩した液体試料 1 aや、 大気中の汚染物質が、 隔壁膜 9に付着する ことがあり、 その場合、 薄くて破れやすい隔壁膜 9を損傷せずにクリーニングす ることは実際には不可能であるから、 新しいものに交換する必要がある。  Conventionally, there is a fluorescent X-ray analyzer that performs analysis in a helium atmosphere (the X-ray optical path is in a helium atmosphere) as shown in Fig. 2. This device is a bottom-illuminated type in which primary X-rays 6 are irradiated from below sample 1, and an X-ray source 7 is stored below sample room 3 in which sample 1 is exchangeably stored in the atmosphere. An irradiation chamber 8 is provided, and a spectroscopic chamber 14 in which the light separating element 11 and the detector 13 are housed in communication with the irradiation chamber 8 is provided. Since the irradiation chamber 8 and the spectroscopic chamber 14 are replaced with helium, the absorption of the fluorescent X-rays 10 and 12 is smaller than that in the air atmosphere, and the fluorescent X-rays 10 and Weak detection even with weak X-ray fluorescence. Here, a partition wall film 9 that allows X-rays 6 and 10 to pass through is provided in a window 4 provided in a wall section 4 that separates a sample chamber 3 in an air atmosphere and an irradiation chamber 8 in a helium atmosphere (hereinafter, window means an opening). However, in this case, it means a hole formed in the wall 4). As the partition film 9, a thin polymer film such as a polyimide film is used so that absorption of X-rays 6 and 10 is small. A liquid sample la is analyzed in a helium atmosphere. In this case, the liquid sample 1a is supplied to the liquid sample holder 2 having a window member 2a at the bottom through which X-rays 6 and 10 pass. The sample is put into a sample 1 in the whole 1a, 2 and placed on the partition film 9 in the sample room 3 in the atmosphere. The liquid sample 1a leaking to the outside of the window member 2a of the liquid sample holder 2 and the contaminants in the air may adhere to the partition wall film 9, and in this case, the partition wall film 9 is thin and easily broken. It is not really possible to clean the parts without damaging them, so they need to be replaced.
隔壁膜の交換に対応した第 1の従来の蛍光 X線分析装置として、 特開 2 0 0 3 - 2 5 4 9 1 9号公報に記載のものがある。 この装置では、 隔壁膜は、 輪状の支 持板に貼り付けて扱われ、 さらに、 輪状のホルダ上部とホルダ下部により周辺部 を厚み方向に挟持されて、 全体が隔壁膜カートリッジとなっており、 ホルダ上部 とホルダ下部は、 ねじ止めなどにより連結されている。 したがって、 隔壁膜交換 のために、 あらかじめ新しい隔壁膜を支持板に貼り付けて用意しておく必要があ る。 そして、 交換の際には、 隔壁膜カートリッジ全体を装置から取り外し、 ねじ を外すことなどによりホルダ上部とホルダ下部の連結を解き、 隔壁膜を支持板ご と新しいものと交換して、 ねじ止めなどによりホルダ上部とホルダ下部で挟持し 、 できた隔壁膜カートリッジを装置に装着する。 なお、 隔壁膜力一トリッジは、 試料室と照射室とを仕切る壁部に設けられた窓を覆うように装着されるが、 その 際、 隔壁膜カートリッジ (ホルダ下部) と壁部との間は、 〇リングでシールされ る。 As a first conventional X-ray fluorescence analyzer corresponding to the exchange of the partition membrane, there is one described in JP-A-2003-254919. In this device, the partition wall film is handled by being attached to a ring-shaped support plate, and further, the peripheral portion is sandwiched in the thickness direction by the upper portion and the lower portion of the ring-shaped holder, so that the whole is a partition wall film cartridge. Upper part of holder And the lower part of the holder are connected by screws or the like. Therefore, it is necessary to prepare a new partition membrane by attaching it to the support plate in advance for the replacement of the partition membrane. At the time of replacement, remove the entire partition membrane cartridge from the device, remove the screws, disconnect the connection between the upper and lower holders, replace the partition membrane with a new one for the support plate, and screw down. Then, the obtained partition membrane cartridge is sandwiched between the upper and lower holders, and the resulting partition membrane cartridge is mounted on the apparatus. The partition membrane force cartridge is mounted so as to cover the window provided on the wall section separating the sample chamber and the irradiation chamber. At this time, the space between the partition membrane cartridge (the lower part of the holder) and the wall section is provided. Sealed with 〇 ring.
隔壁膜の交換に対応した第 2の従来の蛍光 X線分析装置として、 特許第 2 9 4 3 0 6 3号公報に記載のものがある。 この装置では、 隔壁膜に相当する X線透過 性シートは、 環状体に形成された台外枠と台内枠により挟持されて、 全体が試料 セル台となっており、 台内枠は台外枠に対して単に嵌め込まれるので着脱自在で ある。 また、 試料セル台全体も、 それが配置されるべきベンチの測定部位に対し て単に載置されるので着脱自在である。  As a second conventional fluorescent X-ray analyzer corresponding to the replacement of the partition membrane, there is one described in Japanese Patent No. 2943033. In this apparatus, the X-ray permeable sheet corresponding to the partition wall film is sandwiched between the outer frame and the inner frame formed in the annular body, and the whole becomes a sample cell table. Since it is simply fitted into the frame, it is removable. In addition, the entire sample cell table is simply placed on the measurement site of the bench on which it is to be placed, so it is removable.
前記第 1の従来の蛍光 X線分析装置では、 隔壁膜を含む隔壁膜力一トリッジの 構造が複雑で $且立て、 分解が容易でないため、 隔壁膜の交換も容易でない。 こ れに対し、 前記第 2の従来の蛍光 X線分析装置では、 隔壁膜を含む試料セル台が ベンチの測定部位に対して着脱自在であるとともに、 試料セル台自体の組立て、 分解が容易なため、 隔壁膜の交換も容易である。 しかし、 照射室および分光室が へリゥム置換されることを想定しておらず、 試料セル台全体はベンチの測定部位 に単に載置されるだけで両者間は特にシールされていないため、 ヘリゥム置換を 行うと分析時に試料室の空気が照射室および分光室へ流入して X線の吸収が大き くなるおそれがある。 発明の開示  In the first conventional X-ray fluorescence spectrometer, since the structure of the partition membrane force cartridge including the partition membrane is complicated and difficult to disassemble, it is not easy to replace the partition membrane. On the other hand, in the second conventional X-ray fluorescence spectrometer, the sample cell table including the partition wall is detachable from the measurement site of the bench, and the sample cell table itself can be easily assembled and disassembled. Therefore, it is easy to exchange the partition film. However, it is not assumed that the irradiation room and the spectroscopy room will be replaced by a space, and the entire sample cell table is simply placed on the measurement site of the bench, and there is no particular seal between the two. If this is done, the air in the sample chamber may flow into the irradiation chamber and the spectroscopic chamber during analysis, and X-ray absorption may increase. Disclosure of the invention
本発明は前記従来の問題に鑑みてなされたもので、 ヘリゥム雰囲気で分析を行 う蛍光 X線分析装置において、 試料室と照射室とを仕切って X線を通過させる隔 壁膜を容易に交換でき、 しかも分析時に試料室の空気が照射室および分光室へ流 入するおそれのないものを提供することを目的とする。 The present invention has been made in view of the above-mentioned conventional problems, and in a fluorescent X-ray analyzer that performs analysis in a helicopter atmosphere, a diaphragm for separating a sample chamber and an irradiation chamber and allowing X-rays to pass therethrough is easily replaced. Air in the sample chamber flows to the irradiation chamber and the spectroscopy chamber during analysis. The purpose is to provide something that is unlikely to enter.
前記目的を達成するために、 本願発明は、 まず、 大気雰囲気で試料が交換可能 に収納される試料室と、 試料に 1次 X線を照射する X線源が収納される照射室と 、 前記試料室と照射室とを仕切る壁部に設けられた窓を覆うように配置されて X 線を通過させる隔壁膜と、 試料から発生する蛍光 X線を分光して検出する検出手 段が収納され、 前記照射室と連通する分光室とを備え、 前記照射室および分光室 がヘリゥム置換される蛍光 X線分析装置である。  In order to achieve the above object, the present invention provides a sample chamber in which a sample is exchangeably stored in an air atmosphere, an irradiation chamber in which an X-ray source for irradiating a sample with primary X-rays is stored. It houses a partition wall film that is arranged so as to cover the window provided on the wall that separates the sample chamber and the irradiation chamber and allows X-rays to pass through, and a detection means for spectrally detecting and detecting fluorescent X-rays generated from the sample. An X-ray fluorescence spectrometer, comprising: a spectroscopic chamber communicating with the irradiation chamber, wherein the irradiation chamber and the spectroscopic chamber are replaced by a helm.
そして、 窓を有する第 1の枠体が、 その窓が前記壁部の窓に重なるように壁部 に気密に取り付けられ、 前記壁部の窓に重なつた第 1の枠体の窓を覆うように前 記隔壁膜が配置され、 窓を有する第 2の枠体が、 その窓が前記隔壁膜を挟んで前 記第 1の枠体の窓に重なるように配置される。 さらに、 前記第 1の枠体および第 2の枠体の一方が永久磁石からなり、 他方が永久磁石に吸着される材料からなる ことにより、 前記第 1の枠体および第 2の枠体が、 前記隔壁膜の周辺部をその厚 み方向に挾持するとともに、 前記第 2の枠体が、 前記壁部に気密に取り付けられ た第 1の枠体に対して着脱自在である。  A first frame having a window is hermetically attached to the wall so that the window overlaps the window of the wall, and covers the window of the first frame overlapping the window of the wall. The partition film is arranged as described above, and the second frame having a window is arranged such that the window overlaps the window of the first frame with the partition film interposed therebetween. Further, one of the first frame and the second frame is made of a permanent magnet, and the other is made of a material that is attracted to the permanent magnet, so that the first frame and the second frame are The peripheral portion of the partition wall film is sandwiched in the thickness direction, and the second frame is detachable from the first frame hermetically attached to the wall.
本願発明の蛍光 X線分析装置においては、 隔壁膜は第 1の枠体と第 2の枠体に より挾持されるが、 第 1の枠体が試料室と照射室とを仕切る壁部に気密に取り付 けられ、 その第 1の枠体に対して第 2の枠体が着脱自在であるので、 隔壁膜を容 易に交換でき、 しかも分析時に試料室の空気が照射室および分光室へ流入するお それがない。 ここで、 前記第 1の枠体および第 2の枠体が板状で、 一方がマグネ ットシ一トからなり、 他方が鉄からなることが好ましい。 また、 前記隔壁膜がポ リエステルからなることが好ましい。 図面の簡単な説明  In the X-ray fluorescence spectrometer according to the present invention, the partition wall film is sandwiched between the first frame and the second frame, but the first frame is airtight to the wall separating the sample chamber and the irradiation chamber. Since the second frame is detachable from the first frame, the partition membrane can be easily replaced, and the air in the sample chamber is transferred to the irradiation chamber and the spectroscopic chamber during analysis. There is no danger of inflow. Here, it is preferable that the first frame and the second frame are plate-shaped, one of which is made of a magnet sheet, and the other is made of iron. Further, it is preferable that the partition film is made of polyester. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の一実施形態の蛍光 X線分析装置における隔壁膜近傍の拡大図 である。  FIG. 1 is an enlarged view of the vicinity of a partition film in an X-ray fluorescence spectrometer according to one embodiment of the present invention.
図 2は、 ヘリゥム雰囲気で分析を行う蛍光 X線分析装置を示す概略図である。 発明を実施するための最良の形態 以下、 本発明の一実施形態の蛍光 X線分析装置について、 その構成から説明す る。 この装置は、 まず、 従来の技術で説明した装置と同様、 図 2に示すように、 試料 1の下方から 1次 X線 6が照射される下面照射型で、 以下の試料室 3、 照射 室 8、 隔壁膜 9および分光室 1 4を備え、 照射室 8および分光室 1 4がへリウム 置換される蛍光 X線分析装置である。 試料室 3は、 試料室 3と照射室 8とを仕切 る壁部 4と、 その上部にシール部材を介して開閉自在に取り付けられた盖体 5と で囲まれた空間からなり、 大気雰囲気で試料 1が交換可能に収納される。 照射室 8は、 試料 1に 1次 X線 6を照射する X線管などの X線源 7が収納される。 隔壁膜 9は、 ここでは厚さ 1 . 5 mのポリエステルフィルムであり、 前記壁 部 4に設けられた円形の窓 4 aを覆うように配置されて X線 6, 1 0を通過させ る。 分光室 1 4は、 照射室 8と連通しており、 試料 1から発生する蛍光 X線 1 0 を分光する分光素子 1 1および分光された蛍光 X線 1 2を検出する検出器 1 3で 構成される検出手段 1 1, 1 3が収納される。 分光素子 1 1と検出器 1 3は、 図 示しないゴニォメータなどの連動手段により、 一定の角度関係を保って回動され る。 FIG. 2 is a schematic diagram showing an X-ray fluorescence spectrometer that performs analysis in a helium atmosphere. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a configuration of the X-ray fluorescence analyzer according to one embodiment of the present invention will be described. First, as shown in Fig. 2, this device is a bottom-illuminated type in which primary X-rays 6 are irradiated from below the sample 1, as in the device described in the prior art. 8. An X-ray fluorescence spectrometer comprising a partition film 9 and a spectroscopic chamber 14, wherein the irradiation chamber 8 and the spectroscopic chamber 14 are replaced with helium. The sample chamber 3 is formed of a space surrounded by a wall 4 that separates the sample chamber 3 from the irradiation chamber 8 and a lid 5 that is openably and closably mounted on the upper part of the sample chamber 3 via a seal member. Sample 1 is exchangeably stored. The irradiation chamber 8 accommodates an X-ray source 7 such as an X-ray tube for irradiating the sample 1 with primary X-rays 6. Here, the partition wall film 9 is a polyester film having a thickness of 1.5 m. The partition wall film 9 is arranged so as to cover the circular window 4 a provided on the wall portion 4 and allows the X-rays 6 and 10 to pass therethrough. The spectroscopic chamber 14 communicates with the irradiation chamber 8 and includes a spectroscopic element 11 for separating the fluorescent X-rays 10 generated from the sample 1 and a detector 13 for detecting the separated fluorescent X-rays 12. Detection means 11 and 13 are stored. The spectroscopic element 11 and the detector 13 are rotated while maintaining a fixed angular relationship by an interlocking means such as a goniometer (not shown).
ここで、 分析対象は、 前述したように、 例えば液体の試料 1 aであり、 液体試 料 1 aは、 底部に X線 6 , 1 0を通過させる窓部材 2 aを有する液体試料ホルダ 2に入れられて、 全体 l a , 2で試料 1として极われ、 大気棼囲気の試料室 3内 で隔壁膜 9の上に載置される。 液体試料ホルダ 2は、 円筒状の本体 2 bと、 その 上下の開口を塞ぐように配置される 2つの窓部材 2 aと、 本体 2 bの上下の外周 にそれぞれ嵌め込まれて窓部材 2 aの周辺部を挟持する 2つの輪状の取付部材 2 cとで構成される。  Here, as described above, the analysis target is, for example, a liquid sample 1a, and the liquid sample 1a is a liquid sample holder 2 having a window member 2a at the bottom portion through which X-rays 6 and 10 pass. The sample is put in the whole la, 2 and is displayed as a sample 1, and is placed on the partition film 9 in the sample chamber 3 in the atmosphere. The liquid sample holder 2 has a cylindrical main body 2b, two window members 2a arranged to cover the upper and lower openings thereof, and a window member 2a which is fitted into the upper and lower outer peripheries of the main body 2b, respectively. It is composed of two ring-shaped mounting members 2c that sandwich the peripheral portion.
隔壁膜 9近傍の構成については、 拡大図である図 1に示すように、 まず、 輪状 の板であり、 円形の窓 2 1 aを有する第 1の枠体 2 1が、 その窓 2 1 aが前記壁 部 4の円形の窓 4 aに重なるように (上下方向に開口が連なるように) 壁部 4に 例えば接着により気密に取り付けられている。 そして、 その第 1の枠体 2 1の窓 2 1 aを覆うように隔壁膜 9が配置され、 さらに、 厚さ 0 . 5 mmの輪状の板で あり、 円形の窓 2 3 aを有する第 2の枠体 2 3が、 その窓 2 3 aが隔壁膜 9を挟 んで第 1の枠体 2 1の円形の窓 2 1 aに重なるように配置される。 第 1の枠体 2 1と第 2の枠体 2 3の外径は同じであり、 各窓 2 1 a, 2 3 aは、 外周の円と同 、円である。 As shown in FIG. 1 which is an enlarged view, the first frame 21 having a circular window 21 a and a first frame 21 having a circular window 21 a is configured as shown in FIG. 1 which is an enlarged view. Is air-tightly attached to the wall portion 4 by, for example, bonding so as to overlap the circular window 4a of the wall portion 4 (so that the openings are connected in the vertical direction). Then, a partition wall film 9 is arranged so as to cover the window 21 a of the first frame body 21, and further, a second plate having a circular shape having a thickness of 0.5 mm and having a circular window 23 a is provided. The second frame 23 is arranged such that the window 23 a overlaps the circular window 21 a of the first frame 21 with the partition wall 9 interposed therebetween. First frame 2 The outer diameters of the first and second frame members 23 are the same, and each of the windows 21a and 23a is the same circle as the outer circumference.
ここで、 第 1の枠体 2 1が永久磁石例えばマグネットシート (柔軟なシート状 のゴムや合成樹脂に磁性材料を分散させて永久磁石としたもの) からなり、 第 2 の枠体 2 3が永久磁石に吸着される材料例えば鉄からなることにより、 第 1の枠 体 2 1および第 2の枠体 2 3が、 隔壁膜 9の周辺部をその厚み方向に挟持すると ともに、 第 2の枠体 2 3が、 壁部 4に気密に取り付けられた第 1の枠体 2 1に対 して着脱自在である。 逆に、 2 1第 2の枠体 2 3が永久磁石からなり、 第 1の枠 体が永久磁石に吸着される材料からなっていてもよい。 なお、 図 1、 2では、 理 解の容易のため、 紙面よりも奥に見える線は記載していない。  Here, the first frame 21 is made of a permanent magnet, for example, a magnet sheet (a permanent magnet made by dispersing a magnetic material in a flexible sheet of rubber or synthetic resin), and the second frame 23 is made of a permanent magnet. Since the first frame 21 and the second frame 23 are made of a material adsorbed to the permanent magnet, for example, iron, the first frame 21 and the second frame 23 sandwich the peripheral portion of the partition wall film 9 in the thickness direction thereof and the second frame. The body 23 is detachable from the first frame 21 airtightly attached to the wall 4. Conversely, the second frame 23 may be made of a permanent magnet, and the first frame may be made of a material that is attracted to the permanent magnet. Note that in FIGS. 1 and 2, the lines visible behind the paper are not shown for ease of understanding.
この装置では、 図 2に示すように、 照射室 8および分光室 1 4をヘリウム置換 するために、 以下のような配管、 バルブおよびポンプが備えられている。 へリウ ムフ口一配管 1 5 Aは、 ヘリウムフローバルブ 1 6 Aを介して照射室 8および分 光室 1 4へ図示しないヘリウムタンクからヘリウムを導入する。 真空配管 1 5 B は、 真空ポンプ 1 7により、 真空バルブ 1 6 Bを介して照射室 8および分光室 1 4を真空引きする。 分光室リーク配管 1 5 Cは、 分光室リ一クバルブ 1 6 Cを介 して照射室 8および分光室 1 4を大気雰囲気に開放する。 試料室リーク配管 1 5 Dは、 試料室リ一クバルブ 1 6 Dを介して試料室 3を大気雰囲気に開放する。 バ ィパス配管 1 5 Eは、 バイパスバルブ 1 6 Eを介して、 分光室リーク配管 1 5 C と試料室リーク配管 1 5 Dとを連通させる。  In this apparatus, as shown in FIG. 2, the following pipes, valves and pumps are provided to replace the irradiation chamber 8 and the spectroscopic chamber 14 with helium. Helium is introduced from the helium tank (not shown) to the irradiation chamber 8 and the spectroscopic chamber 14 through the helium flow valve 16 A through the helium flow valve 16 A. The vacuum pipe 17B is evacuated to the irradiation chamber 8 and the spectroscopic chamber 14 by the vacuum pump 17 through the vacuum valve 16B. The spectroscopic chamber leak pipe 15 C opens the irradiation chamber 8 and the spectroscopic chamber 14 to the atmosphere via the spectroscopic chamber leak valve 16 C. The sample chamber leak pipe 15D opens the sample chamber 3 to the atmosphere via the sample chamber leak valve 16D. The bypass pipe 15E connects the spectroscopic chamber leak pipe 15C and the sample chamber leak pipe 15D via a bypass valve 16E.
次に、 この装置の動作について説明する。 まず、 図 2において、 試料室 3に試 料 1を入れる前に、 ヘリウムフローバルブ 1 6 A、 分光室リークバルブ 1 6 Cお よび試料室リークバルブ 1 6 Dを閉じ、 真空バルブ 1 6 Bおよびパイパスバルブ 1 6 Eを開け、 真空ポンプ 1 7により、 照射室 8および分光室 1 4ならびに試料 室 3を真空引きする。 所定の真空度に到達したら、 真空バルブ 1 6 Bを閉じ、 真 空ポンプ 1 7を停止して、 ヘリウムフロ一バルブ 1 6 Aを開けて、 照射室 8およ び分光室 1 4ならびに試料室 3にヘリゥムを導入する。 そして、 バイパスバルブ 1 6 Eを閉じ、 分光室リークバルブ 1 6 Cを開いて低流量で照射室 8および分光 室 1 4にヘリウムを流す。 これで、 照射室 8および分光室 1 4のヘリウム置換が 完了する。 なお、 試料室 3をも真空引きしたり、 ヘリウムを導入したりするのは 、 試料室 3と照射室 8および分光室 1 4との圧力差により、 隔壁膜 9が破損する のを防止するためである。 Next, the operation of this device will be described. First, in Fig. 2, before placing sample 1 in sample chamber 3, the helium flow valve 16A, the spectroscopic chamber leak valve 16C and the sample chamber leak valve 16D are closed, and the vacuum valve 16B and Open the bypass valve 16 E and evacuate the irradiation chamber 8, the spectroscopic chamber 14 and the sample chamber 3 by the vacuum pump 17. When the specified degree of vacuum is reached, the vacuum valve 16 B is closed, the vacuum pump 17 is stopped, the helium flow valve 16 A is opened, and the irradiation chamber 8 and the spectroscopic chamber 14 and the sample chamber 3 are opened. Introduce a helm to Then, the bypass valve 16E is closed, and the spectroscopic chamber leak valve 16C is opened, and helium flows into the irradiation chamber 8 and the spectroscopic chamber 14 at a low flow rate. With this, the helium substitution in the irradiation chamber 8 and the spectroscopic chamber 14 was Complete. In addition, the sample chamber 3 is also evacuated or helium is introduced in order to prevent the partition wall film 9 from being damaged by a pressure difference between the sample chamber 3 and the irradiation chamber 8 and the spectroscopic chamber 14. It is.
一方、 試料室リークバルブ 1 6 Dを開け、 蓋体 5を開けることにより、 試料室 3は、 大気雰囲気で試料 1が交換可能となるので、 最初の試料 1を隔壁膜 9の上 方、 より具体的には第 2の枠体 2 3 (図 1 ) の上に載置して、 蓋体 5を閉じる。 以降は、 試料室 3は大気雰囲気に、 照射室 8および分光室 1 4はそれよりもわず かに圧力の高いヘリウム雰囲気に維持されるので、 蓋体 5を開閉するのみで、 試 料 1を交換して分析することできる。  On the other hand, by opening the sample chamber leak valve 16 D and opening the lid 5, the sample chamber 3 can exchange the sample 1 in the air atmosphere. Specifically, it is placed on the second frame 23 (FIG. 1), and the lid 5 is closed. Thereafter, the sample chamber 3 is maintained in the atmosphere, and the irradiation chamber 8 and the spectroscopy chamber 14 are maintained in a helium atmosphere with a slightly higher pressure. Can be exchanged for analysis.
なお、 照射室 8および分光室 1 4のヘリウム置換を早く完了させるために真空 引きを行ったが、 真空引きせずに、 ヘリウムを高流量で大量に流して空気を追い 出してから、 低流量で流すことにより、 ヘリゥム置換を行ってもよい。 この場合 には、 ヘリウム置換が完了する (空気の追い出しが限界に達して、 X線の吸収が 安定する) のに時間を要するが、 照射室 8および分光室 1 4の真空引きをせず、 それゆえ、 試料室 3の真空引きやヘリウム置換も不要となるので、 手順が簡単で ある。  In order to quickly complete the helium replacement in the irradiation chamber 8 and the spectroscopic chamber 14, vacuum was drawn.However, without vacuuming, a large amount of helium was flowed at a high flow rate to expel air, and then a low flow rate was obtained. Helium replacement may be carried out by flowing in In this case, it takes time for the helium substitution to be completed (the displacement of air reaches the limit and the absorption of X-rays stabilizes), but without evacuating the irradiation chamber 8 and the spectroscopic chamber 14, Therefore, the procedure is simple because the evacuation of the sample chamber 3 and the replacement of helium are not required.
さて 前述したような原因で隔壁膜 9が汚染されて交換が必要となった場合に は、 装置を停止してヘリウムを流すのを止め、 蓋体 5を開けて装置から試料 1を 取り出し、 図 1の第 2の枠体 2 3を第 1の枠体 2 1からの吸着力に逆らつて装置 から取り出す。 汚染された隔壁膜 9が、 第 2の枠体 2 3の下に付いてくる場合に はその隔壁膜 9をはがして取り除き、 第 1の枠体 2 1の上に残る場合にはその隔 壁膜 9をはがして装置から取り出す。  If the partition wall membrane 9 is contaminated for the reasons described above and needs to be replaced, stop the device, stop the flow of helium, open the lid 5 and remove the sample 1 from the device. The second frame 23 of 1 is taken out of the device against the suction force from the first frame 21. If the contaminated partition film 9 comes under the second frame 23, peel off the partition film 9 and remove it if it remains on the first frame 21. Peel off membrane 9 and remove from device.
そして、 例えば、 第 1、 第 2の枠体 2 1, 2 3の外径よりも大きい幅をもつ口 ール状のポリエステルフィルムから端部をほぼ正方形に切り取つて新たな隔壁膜 9とし、 第 1の枠体 2 1を覆うように載せる。 さらに、 その上に、 第 2の枠体 2 3を、 第 1の枠体 2 1と外周が合うように載せ、 第 1の枠体 2 1からの吸着力に よって、 隔壁膜 9を挟持する。 挟持された隔壁膜 9にしわが生じた場合には、 第 1、 第 2の枠体 2 1 , 2 3の外側にはみ出した隔壁膜 9の周辺部を引っ張って延 ばす。 これで、 隔壁膜 9の交換が完了したので、 上述のヘリウム置換を行い、 試 料室 3を大気雰囲気として、 分析を続けることができる。 Then, for example, an end portion is cut out into a substantially square shape from a polyester film having a width larger than the outer diameter of the first and second frames 21 and 23 to form a new partition wall film 9. Place so as to cover 1 frame 2 1. Further, the second frame 23 is placed thereon so that the outer periphery of the second frame 23 is aligned with the outer periphery of the first frame 21, and the partition wall film 9 is held by the attraction force from the first frame 21. . When the sandwiched partition wall film 9 is wrinkled, the peripheral portion of the partition wall film 9 that protrudes outside the first and second frames 21 and 23 is pulled and extended. Now that the replacement of the partition film 9 has been completed, the helium substitution described above is performed, and the test is performed. The analysis can be continued with room 3 as the air atmosphere.
このように、 本実施形態の蛍光 X線分析装置においては、 隔壁膜 9は第 1の枠 体 2 1と第 2の枠体 2 3により挟持されるが、 第 1の枠体 2 1が試料室 3と照射 室 8とを仕切る壁部 4に気密に取り付けられ、 その第 1の枠 2 1体に対して第 2 の枠体 2 3が着脱自在であるので、 隔壁膜 9を容易に交換でき、 しかも分析時に 試料室 3の空気が照射室 8および分光室 1 4 (図 2 ) へ流入するおそれがない。 また、 第 1の枠体 2 1および第 2の枠体 2 3が板状で、 一方がマグネットシー トカ、らなり、 他方が鉄からなるものなので、 簡単で安価に構成できる。 ここで、 試料 1と隔壁膜 9との間、 つまり下側の窓部材 2 aと隔壁膜 9との間には、 窓部 材 2 aの外側に漏出した液体試料 1 aが隔壁膜 9に付着したりして汚染すること が少ないように、 ある程度の厚さの空間が必要である。 一方、 この空間は、 大気 雰囲気の試料室 3の一部であるから通常は空気で満たされ、 試料 1から発生する 蛍光 X線 1 0 (図 2 ) を吸収して減衰させるので、 その観点では薄い方がよい。 総合勘案すると、 この空間の厚さは 0 . 5 mm程度に調整されるべきであるが、 本実施形態においては、 この空間は第 2の枠体 2 3の窓 2 3 aそのものであるの で、 板状である第 2の枠体 2 3の厚さにより簡単かつ正確に調整できる。  As described above, in the X-ray fluorescence spectrometer of the present embodiment, the partition film 9 is sandwiched between the first frame 21 and the second frame 23, but the first frame 21 is the sample. Since the second frame 23 is detachably attached to the first frame 21 and the second frame 23 is mounted airtightly on the wall 4 separating the chamber 3 and the irradiation chamber 8, the partition wall film 9 can be easily replaced. In addition, there is no possibility that the air in the sample chamber 3 flows into the irradiation chamber 8 and the spectroscopic chamber 14 (FIG. 2) during the analysis. Also, the first frame 21 and the second frame 23 are plate-shaped, one of which is a magnet seater, and the other is made of iron, so that it can be configured simply and inexpensively. Here, between the sample 1 and the partition wall film 9, that is, between the lower window member 2a and the partition wall film 9, the liquid sample 1a leaked to the outside of the window member 2a is formed on the partition wall film 9. A certain amount of space is required so that adhesion and contamination are small. On the other hand, since this space is a part of the sample chamber 3 in the atmosphere, it is usually filled with air, and absorbs and attenuates the fluorescent X-rays 10 (FIG. 2) generated from the sample 1, so from this viewpoint, Thinner is better. Considering the overall consideration, the thickness of this space should be adjusted to about 0.5 mm, but in this embodiment, since this space is the window 23 a of the second frame 23, The thickness of the plate-shaped second frame 23 can be adjusted easily and accurately.
さらに、 本実施形態では、 隔壁膜 9に安価なポリエステルフィルムを用いるこ とができる。 従来は、 X線の被爆に強い高価なボリイミドフィルムが用いられる ことが多かったが、 実際には、 被爆による寿命が来る前に、 汚染が原因で交換が 必要となっていた。 したがって、 本実施形態のように隔壁膜 9の交換が容易にで きるのであれば、 X線の被爆にそれほど強くなくても安価である材料、 例えばポ リエステルフィルムを隔壁膜 9に用いる方が合理的で好ましい。  Further, in the present embodiment, an inexpensive polyester film can be used for the partition wall film 9. In the past, expensive polyimide films resistant to X-ray exposure were often used, but in practice, they had to be replaced due to contamination before the end of their life. Therefore, if the partition film 9 can be easily replaced as in the present embodiment, it is more reasonable to use a material that is not so strong against X-ray exposure but is inexpensive, for example, a polyester film for the partition film 9. And preferred.
なお、 以上の実施形態では、 図 2の検出手段 1 1 , 1 3が分光素子 1 1と検出 器 1 3で構成される波長分散型の蛍光 X線分析装置を例にとったが、 本発明は、 検出手段が S S Dなどの検出器で構成されて分光素子を含まないエネルギー分散 型の蛍光 X線分析装置にも、 同様に適用できる。  In the above embodiment, the wavelength dispersive X-ray fluorescence analyzer in which the detecting means 11 and 13 in FIG. 2 are composed of the spectroscopic element 11 and the detector 13 is taken as an example. The present invention can be similarly applied to an energy dispersive X-ray fluorescence spectrometer in which the detecting means is constituted by a detector such as an SSD and does not include a spectroscopic element.

Claims

請求の範囲 The scope of the claims
1 . 大気雰囲気で試料が交換可能に収納される試料室と、  1. A sample chamber in which samples are exchangeably stored in the atmosphere
試料に 1次 X線を照射する X線源が収納される照射室と、  An irradiation chamber for accommodating an X-ray source for irradiating the sample with primary X-rays,
前記試料室と照射室とを仕切る壁部に設けられた窓を覆うように配置されて X 線を通過させる隔壁膜と、  A partition wall film that is arranged so as to cover a window provided in a wall part that separates the sample chamber and the irradiation chamber and that allows X-rays to pass therethrough;
試料から発生する蛍光 X線を分光して検出する検出手段が収納され、 前記照射 室と連通する分光室とを備え、  A detection unit for spectrally detecting and detecting fluorescent X-rays generated from the sample, and comprising a spectroscopic chamber communicating with the irradiation chamber;
前記照射室および分光室がヘリゥム置換される蛍光 X線分析装置において、 窓を有する第 1の枠体が、 その窓が前記壁部の窓に重なるように壁部に気密に 取り付けられ、  In the fluorescent X-ray analyzer in which the irradiation room and the spectroscopic room are replaced by a helm, a first frame having a window is hermetically attached to a wall so that the window overlaps a window of the wall,
前記壁部の窓に重なった第 1の枠体の窓を覆うように前記隔壁膜が配置され、 窓を有する第 2の枠体が、 その窓が前記隔壁膜を挟んで前記第 1の枠体の窓に 重なるように配置され、  The partition film is arranged so as to cover a window of a first frame body overlapping a window of the wall portion, and a second frame body having a window is provided in the first frame with the window sandwiching the partition film. It is placed so that it overlaps the body window,
前記第 1の枠体および第 2の枠体の一方が永久磁石からなり、 他方が永久磁石 に吸着される材料からなることにより、 前記第 1の枠体および第 2の枠体が、 前 記隔壁膜の周辺部をその厚み方向に挟持するとともに、 前記第 2の枠体が、 前記 壁部に気密に取り付けられた第 1の枠体に対して着脱自在であることを特徴とす る蛍光 X線分析装置。  One of the first frame and the second frame is made of a permanent magnet, and the other is made of a material that is attracted to the permanent magnet, so that the first frame and the second frame are A fluorescent material, which sandwiches a peripheral portion of the partition wall film in a thickness direction thereof, and wherein the second frame is detachably attached to a first frame hermetically attached to the wall. X-ray analyzer.
2 . 請求項 1において、  2. In Claim 1,
前記第 1の枠体および第 2の枠体が板状で、 一方がマグネットシートからなり 、 他方が鉄からなる蛍光 X線分析装置。  An X-ray fluorescence spectrometer wherein the first frame and the second frame are plate-like, one of which is made of a magnet sheet, and the other is made of iron.
3 . 請求項 1において、  3. In claim 1,
前記隔壁膜がポリエステルからなる蛍光 X線分析装置。  An X-ray fluorescence analyzer in which the partition wall film is made of polyester.
PCT/JP2004/003229 2003-03-28 2004-03-11 Fluorescent x-ray analyzer WO2004088296A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005504147A JP3726161B2 (en) 2003-03-28 2004-03-11 X-ray fluorescence analyzer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-091965 2003-03-28
JP2003091965 2003-03-28

Publications (1)

Publication Number Publication Date
WO2004088296A1 true WO2004088296A1 (en) 2004-10-14

Family

ID=33127299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003229 WO2004088296A1 (en) 2003-03-28 2004-03-11 Fluorescent x-ray analyzer

Country Status (3)

Country Link
JP (1) JP3726161B2 (en)
CN (1) CN100464182C (en)
WO (1) WO2004088296A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058055A (en) * 2006-08-30 2008-03-13 Horiba Ltd X-ray analyzer
EP2270479A3 (en) * 2009-06-30 2012-02-22 HORIBA, Ltd. Fluorescent X-ray analyzer and fluorescent X-ray analysis method
JP2014130169A (en) * 2014-04-10 2014-07-10 Horiba Ltd X-ray fluorescence analyzer
CN113552157A (en) * 2020-04-23 2021-10-26 北京安科慧生科技有限公司 X-ray fluorescence spectrometer and sample cup protection piece thereof
WO2022003850A1 (en) * 2020-07-01 2022-01-06 株式会社島津製作所 X-ray analysis apparatus
JP7377890B2 (en) 2019-12-02 2023-11-10 株式会社 堀場アドバンスドテクノ Fluorescent X-ray analyzer
EP4296658A1 (en) * 2022-06-20 2023-12-27 Jeol Ltd. Sample container and measuring method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4880077B1 (en) * 2011-02-16 2012-02-22 株式会社リガク X-ray detection signal processing apparatus and method
WO2014192173A1 (en) * 2013-05-27 2014-12-04 株式会社島津製作所 X-ray fluorescence analyzer
CN104007048B (en) * 2014-06-06 2016-08-24 北京中晟泰科环境科技发展有限责任公司 Step-by-step movement Beta ray method particle monitoring instrument
CN111954820A (en) * 2018-04-12 2020-11-17 株式会社日立高新技术 Electrolyte analysis device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04331349A (en) * 1991-05-03 1992-11-19 Horiba Ltd Fluorescence x-ray analysis device
JP2000329712A (en) * 1999-05-20 2000-11-30 Shimadzu Corp Data processor for x-ray fluorescence analysis

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3889113A (en) * 1973-05-03 1975-06-10 Columbia Scient Ind Inc Radioisotope-excited, energy-dispersive x-ray fluorescence apparatus
RU2180439C2 (en) * 2000-02-11 2002-03-10 Кумахов Мурадин Абубекирович Process of generation of image of internal structure of object with use of x-rays and device for its realization
JP4646418B2 (en) * 2000-04-06 2011-03-09 エスアイアイ・ナノテクノロジー株式会社 X-ray fluorescence analyzer
CN1166935C (en) * 2002-01-07 2004-09-15 中国科学院长春光学精密机械与物理研究所 Sample preparing apparatus for glancing emitted X-ray fluorescent sanalysis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04331349A (en) * 1991-05-03 1992-11-19 Horiba Ltd Fluorescence x-ray analysis device
JP2000329712A (en) * 1999-05-20 2000-11-30 Shimadzu Corp Data processor for x-ray fluorescence analysis

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058055A (en) * 2006-08-30 2008-03-13 Horiba Ltd X-ray analyzer
EP2270479A3 (en) * 2009-06-30 2012-02-22 HORIBA, Ltd. Fluorescent X-ray analyzer and fluorescent X-ray analysis method
JP2014130169A (en) * 2014-04-10 2014-07-10 Horiba Ltd X-ray fluorescence analyzer
JP7377890B2 (en) 2019-12-02 2023-11-10 株式会社 堀場アドバンスドテクノ Fluorescent X-ray analyzer
CN113552157A (en) * 2020-04-23 2021-10-26 北京安科慧生科技有限公司 X-ray fluorescence spectrometer and sample cup protection piece thereof
WO2022003850A1 (en) * 2020-07-01 2022-01-06 株式会社島津製作所 X-ray analysis apparatus
EP4177600A4 (en) * 2020-07-01 2024-03-06 Shimadzu Corp X-ray analysis apparatus
EP4296658A1 (en) * 2022-06-20 2023-12-27 Jeol Ltd. Sample container and measuring method

Also Published As

Publication number Publication date
CN100464182C (en) 2009-02-25
CN1739022A (en) 2006-02-22
JPWO2004088296A1 (en) 2006-07-06
JP3726161B2 (en) 2005-12-14

Similar Documents

Publication Publication Date Title
WO2004088296A1 (en) Fluorescent x-ray analyzer
US5832054A (en) Fluorescent x-ray analyzer with quickly evacuable cover cases
CA2790016C (en) Containers for fluids with composite agile walls
US11422070B2 (en) Sampling probe, automatic sampling device, and container detection system
SG189688A1 (en) Apparatus and method for the integrity testing of flexible containers
JP3629539B2 (en) X-ray fluorescence analyzer
JP6337293B2 (en) Gas permeability measuring device
JP2011203102A (en) Sample holder and sample analysis method
US20210146370A1 (en) Rack for a filtration device
JP2943063B2 (en) X-ray fluorescence analyzer
JP6305615B1 (en) Radioactive iodine sampling container, sampling device and sampling method
JP5517506B2 (en) X-ray fluorescence analyzer
JP5782154B2 (en) X-ray fluorescence analyzer
JP5523805B2 (en) Sample cell assembly tool
CN108452683A (en) Filter membrane leaks point detection device
JPH09230056A (en) Filter paper for dust sampler
JP2010066085A (en) Cell of fluorescent x-ray analyzer and fluorescent x-ray analyzer
JP5524521B2 (en) X-ray fluorescence analyzer
JP2006518534A5 (en)
CN116670484A (en) Membrane chamber and method including carrier gas supply
JP4177677B2 (en) X-ray equipment
JPH05107400A (en) Sample holder which can be easily positioned for use in x-ray microscope
JP3100889U (en) Decompression container
JP2003215073A (en) Wavelength scattering fluorescent x-ray analyzer
JP2024000191A (en) Specimen container and measurement method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005504147

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20048022062

Country of ref document: CN

122 Ep: pct application non-entry in european phase