JP4177677B2 - X-ray equipment - Google Patents

X-ray equipment Download PDF

Info

Publication number
JP4177677B2
JP4177677B2 JP2003010197A JP2003010197A JP4177677B2 JP 4177677 B2 JP4177677 B2 JP 4177677B2 JP 2003010197 A JP2003010197 A JP 2003010197A JP 2003010197 A JP2003010197 A JP 2003010197A JP 4177677 B2 JP4177677 B2 JP 4177677B2
Authority
JP
Japan
Prior art keywords
ray
gas
light element
float
helium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003010197A
Other languages
Japanese (ja)
Other versions
JP2004219388A (en
Inventor
慎一 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technos Co Ltd
Original Assignee
Technos Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technos Co Ltd filed Critical Technos Co Ltd
Priority to JP2003010197A priority Critical patent/JP4177677B2/en
Publication of JP2004219388A publication Critical patent/JP2004219388A/en
Application granted granted Critical
Publication of JP4177677B2 publication Critical patent/JP4177677B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、X線光学系の雰囲気を軽元素ガスで置換したX線装置に関する。
【0002】
【従来の技術】
大気中でX線測定を行うと、空気中に含まれる元素によって僅かなX線吸収が生ずるため、微量元素分析等の高精度測定を妨げる要因になることがある。その対策として、X線光学系の雰囲気をX線吸収が少ない元素に置換した測定方法が考えられている。
【0003】
X線光学系が設置された測定室をヘリウムHeで置換する方法として、1)測定室を真空引きした後にヘリウムを注入する方法(たとえば、特許文献1参照)、2)測定室にヘリウムを徐々に注入して内部の空気を押し出す方法(たとえば、特許文献2参照)、等がある。
【0004】
【特許文献1】
特開昭60−173448号公報
【特許文献2】
特開平10−54810号公報
【0005】
【発明が解決しようとする課題】
上記1)の方法では、測定室内の空気を排気するため完全なヘリウム置換が実現する。しかし、測定室が真空を維持するには非常に高い気密性が要求され、特に液体試料を扱うことが困難になる。
【0006】
また、上記2)の方法では、空気とヘリウムとの置換が完了するまで長時間を要し、その間ヘリウムも空気と一緒に排出されるため大量のヘリウムガスを浪費してしまう。
【0007】
さらに、両者の方法では、ヘリウム置換後も測定室の隙間からヘリウムが徐々に流出するのを補償するために、常に少量のヘリウムを供給する必要がある。ヘリウムは一般に高価であるため、ヘリウム消費量が多いと測定コストの増加をもたらすことになる。
【0008】
本発明の目的は、軽元素ガスの利用効率を向上できるX線装置を提供することである。
【0009】
【課題を解決するための手段】
本発明は、X線が通過するX線光学系と、
X線光学系の周囲を密閉するための密閉部材と、
密閉部材の内部に、空気より小さい比重の軽元素ガスを供給するための軽元素ガス供給手段と、
密閉部材の内部ガスを外部に排出するための排気手段と、
密閉部材の内部に設けられ、空気の比重より小さい比重を持つフロート部材と、
フロート部材の変位に応じて、軽元素ガスの供給量を調整するためのガス供給量調整手段とを備え
前記軽元素ガスがヘリウムガスであることを特徴とするX線装置である。
【0010】
本発明に従えば、軽元素ガスを密閉部材の内部に供給すると、密閉部材内の上部に軽元素ガスが滞留し、下部に空気が滞留するため、フロート部材は軽元素ガスと空気との境界付近に位置するようになる。軽元素ガスが次第に外部にリークして減少すると、フロート部材は徐々に上昇する。すると、フロート部材の変位に応じて動作するガス供給量調整手段が軽元素ガスの供給量を増加させて、減少した分のガスを補給する。逆に、軽元素ガスの滞留量が増加すると、フロート部材は徐々に下降するため、軽元素ガスの供給量を減少させる。こうしてフロート部材が軽元素ガスの滞留量を検出するセンサとして機能し、ガス供給量調整手段と連動させることによって、軽元素ガスの自動流量制御を実現でき、軽元素ガスの消費を節約できる。
また、X線光学系の雰囲気ガスとしてヘリウムガスを使用することによって、雰囲気ガスに起因するX線の吸収、散乱等を低減できるため、高感度、高精度の測定が可能になる。
【0011】
また本発明は、密閉部材に、X線が通過可能なX線窓部材が取り付けられていることを特徴とする。
【0012】
本発明に従えば、X線窓部材を密閉部材に設けることによって、外部に設置されたX線装置(たとえばX線源)から密閉部材の内部にX線を導入したり、あるいは密閉部材の内部から外部のX線装置(たとえばX線検出器)へ導出したり、X線光学系の全体配置の自由度を高くできる。X線窓部材として、X線吸収の小さい材料、たとえばベリリウムBe板や高分子膜などが好ましい。
【0014】
【発明の実施の形態】
図1は、本発明の第1実施形態を示す構成図である。X線装置1は、X線管、回折素子、スリット、X線フィルタ、X線検出器等のX線光学素子を組み合わせたX線光学系3と、X線光学系3の周囲を密閉するための密閉箱2などで構成される。
【0015】
密閉箱2には、箱内部にヘリウムガスを導入するための導入管15と、密閉箱2の内部に残留する空気を外部に排出するための排気管16が設置される。導入管15には、ヘリウムガスを貯留したガスボンベや流量安定化用のレギュレータ等が接続され、途中にガス流量を制御するための流量制御弁14が接続されている。排気管16の排気口16aは、ヘリウムガスより比重の大きい空気が先に排出されるように、密閉箱2の底部付近に設置される。
【0016】
さらに密閉箱2の内部には、空気の比重より小さい比重を持つフロート10が設けられる。フロート10は、プラスチックや軽金属等から成る中空容器の内部を真空にしたり、水素ガスやヘリウムガスで充填したもので構成される。あるいはフロート10の中空容器と導入管15との間を可撓性の管で接続し、中空容器に排気穴を形成して、フロート10の内部が常にヘリウムガスで充満するような構成でも可能である。
【0017】
こうした構成によって、フロート10は、ヘリウムガスが滞留する上部空間Aと空気が滞留する下部空間Bとの間の境界面C付近に位置するようになる。そのため、フロート10の高さがヘリウムガスの滞留量を反映する。
【0018】
フロート10は、支点12の回りに角変位自在に支持されたリンク部材11に取り付けられ、リンク部材11と連結したリンク部材13は流量制御弁14の操作部に連結している。こうしたリンク部材11、13によって、ヘリウムガスの滞留量が減少してフロート10が上昇すると、流量制御弁14の開度が小さくなり、逆にヘリウムガスの滞留量が増加してフロート10が下降すると、流量制御弁14の開度が大きくなるように動作する。そのため、ヘリウムガスのリーク量と供給量とが均衡した状態で、フロート10が所望の高さとなるように調整することによって、ヘリウムガスの自動流量制御を実現できる。
【0019】
密閉箱2の開口に、X線が通過可能なX線窓部材4を取り付けることによって、ヘリウムガスの漏出を防止しつつ、外部のX線装置20との間でX線の導入または導出が可能になる。こうした構成は、X線装置20が大規模である場合やヘリウムとは別の雰囲気ガスに保ちたい場合、密閉箱2の容積を可及的に小さくしたい場合に好適となる。
【0020】
なお、上記の説明では、フロート10と流量制御弁14とがリンク部材11、13によって機械的に連動する例を示したが、フロート10の変位を光学的変化、電気的変化、磁気的変化などとして検出するセンサを用いて、流量制御弁14を電気的に動作する構成でも構わない。あるいは、フロート10に作用する浮力の変化を検出して、流量制御弁14を調整しても構わない。
【0021】
また、ヘリウムガスは上部に滞留するため、密閉箱2の底部の全部または一部が開放していても構わない。
【0022】
図2は、本発明の第2実施形態を示す構成図である。蛍光X線分析装置は、X線を発生するX線管30と、X線管30から発生したX線の中から単一の特性X線を分離するための分光結晶31と、分光結晶31で所定方向に回折したX線を取出すためのスリット32と、X線を外部信号によって遮断するためのシャッタ33と、試料SPの位置や姿勢を調整するための移動ステージ34と、移動ステージ34の上を通過するX線の通過位置を制限するスリット35と、スリット35を通過したX線の強度を検出するX線検出器36と、試料SPから発生する蛍光X線を検出するX線検出器37と、X線検出器37を冷却するための液体窒素等を貯留する冷却容器38などで構成される。
【0023】
このうち試料SP、移動ステージ34、X線検出器37が密閉箱2の内部に設置されてX線装置1を構成し、残りは密閉箱2の外部に設置される。密閉箱2には、図1に示したように、密閉箱内部にヘリウムガスを導入するための導入管15と、密閉箱2の内部に残留する空気を外部に排出するための排気管16と、ヘリウムガスの流量を制御するための流量制御弁14と、流量制御弁14を操作するためのフロート10などが設置される。
【0024】
一方のX線窓部材4を経由して密閉箱2の内部に導入されたX線は、試料SPの表面に対して全反射角度で入射する。試料SPに対するX線入射角度は、移動ステージ34が試料SPの姿勢を調整することによって、微調整される。試料SPで反射したX線は、他方のX線窓部材4を経由して外部に取り出され、スリット35を介してX線検出器36に到達する。試料SPはX線励起によって蛍光X線を発生し、X線検出器37によって検出される。
【0025】
こうしたX線装置において、X線の通過する距離が長くなる部分を密閉箱2で密閉して、ヘリウムガスで置換することによって、高精度、高感度の測定を実現できる。
【0026】
図3は、本発明の第3実施形態を示す構成図である。本装置の構成は、図2の構成と同様であるが、X線管30からX線検出器36までのX線光学系を同一の密閉箱2に収納して、X線窓部材4を省略している。こうしたX線装置において、導入管15から密閉箱2の内部にヘリウムガスを導入することによって、X線光学系が位置する上部空間Aがヘリウムガスで置換され、高精度、高感度の測定を実現できる。
【0027】
図4は、本発明の第4実施形態を示す構成図である。本装置の構成は、図2の構成と同様であるが、X線管30から試料SPまでのX線光学系を同一の密閉箱2に収納して、スリット35やX線検出器36を密閉箱2の外側に設置している。こうしたX線装置において、導入管15から密閉箱2の内部にヘリウムガスを導入することによって、X線光学系が位置する上部空間Aがヘリウムガスで置換され、高精度、高感度の測定を実現できる。
【0028】
図5は、本発明の第5実施形態を示す構成図である。本装置の構成は、図2の構成と同様であるが、試料SPからX線検出器36までのX線光学系を同一の密閉箱2に収納して、X線管30、分光結晶31、スリット32、シャッタ33を密閉箱2の外側に設置している。こうしたX線装置において、導入管15から密閉箱2の内部にヘリウムガスを導入することによって、X線光学系が位置する上部空間Aがヘリウムガスで置換され、高精度、高感度の測定を実現できる。
【0029】
なお以上の説明では、適用可能なX線装置として蛍光X線分析装置の例を示したが、その他のX線回折装置、および拡張X線吸収微細構造解析(Extended
X-ray Absorption Fine Structure;略称EXAFS)装置等にも適用できる。
【0030】
【発明の効果】
以上詳説したように本発明によれば、フロート部材とガス供給量調整手段の動作とを連動させることによって、軽元素ガスの自動流量制御を実現でき、軽元素ガスの消費を節約できる。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示す構成図である。
【図2】本発明の第2実施形態を示す構成図である。
【図3】本発明の第3実施形態を示す構成図である。
【図4】本発明の第4実施形態を示す構成図である。
【図5】本発明の第5実施形態を示す構成図である。
【符号の説明】
1 X線装置
2 密閉箱
3 X線光学系
4 X線窓部材
10 フロート
11 リンク部材
12 支点
14 流量制御弁
15 導入管
16 排気管
20 X線装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an X-ray apparatus in which the atmosphere of an X-ray optical system is replaced with a light element gas.
[0002]
[Prior art]
When X-ray measurement is performed in the atmosphere, slight X-ray absorption occurs due to elements contained in the air, which may be a factor that hinders high-precision measurement such as trace element analysis. As a countermeasure, a measurement method in which the atmosphere of the X-ray optical system is replaced with an element having little X-ray absorption is considered.
[0003]
As a method of replacing the measurement chamber in which the X-ray optical system is installed with helium He, 1) a method of injecting helium after evacuating the measurement chamber (for example, refer to Patent Document 1), and 2) gradually introducing helium into the measurement chamber. There is a method (for example, refer to Patent Document 2) for extruding the air and pushing out the air inside.
[0004]
[Patent Document 1]
JP-A-60-173448 [Patent Document 2]
Japanese Patent Laid-Open No. 10-54810
[Problems to be solved by the invention]
In the method 1), complete helium replacement is realized because the air in the measurement chamber is exhausted. However, in order to maintain a vacuum in the measurement chamber, very high airtightness is required, and it becomes difficult to handle a liquid sample in particular.
[0006]
In the method 2), it takes a long time until the replacement of air and helium is completed. During that time, helium is also discharged together with air, so that a large amount of helium gas is wasted.
[0007]
Furthermore, in both methods, it is necessary to always supply a small amount of helium in order to compensate for the gradual outflow of helium from the gap in the measurement chamber even after helium replacement. Since helium is generally expensive, a large amount of helium consumption leads to an increase in measurement cost.
[0008]
The objective of this invention is providing the X-ray apparatus which can improve the utilization efficiency of light element gas.
[0009]
[Means for Solving the Problems]
The present invention includes an X-ray optical system through which X-rays pass,
A sealing member for sealing the periphery of the X-ray optical system;
A light element gas supply means for supplying a light element gas having a specific gravity smaller than air into the sealing member;
Exhaust means for exhausting the internal gas of the sealing member to the outside;
A float member provided inside the sealing member and having a specific gravity smaller than that of air;
Gas supply amount adjusting means for adjusting the supply amount of the light element gas according to the displacement of the float member ,
The light element gas is an X-ray apparatus according to claim helium gas der Rukoto.
[0010]
According to the present invention, when the light element gas is supplied to the inside of the sealing member, the light element gas stays in the upper part of the sealing member and the air stays in the lower part, so that the float member has a boundary between the light element gas and air. It will be located nearby. As the light element gas gradually leaks to the outside and decreases, the float member gradually rises. Then, the gas supply amount adjusting means that operates according to the displacement of the float member increases the supply amount of the light element gas and replenishes the reduced amount of gas. On the contrary, when the retention amount of the light element gas is increased, the float member is gradually lowered, so that the supply amount of the light element gas is decreased. In this way, the float member functions as a sensor for detecting the retention amount of the light element gas, and by interlocking with the gas supply amount adjusting means, automatic flow control of the light element gas can be realized and consumption of the light element gas can be saved.
Further, by using helium gas as the atmospheric gas of the X-ray optical system, X-ray absorption and scattering caused by the atmospheric gas can be reduced, so that highly sensitive and accurate measurement can be performed.
[0011]
Further, the present invention is characterized in that an X-ray window member capable of passing X-rays is attached to the sealing member.
[0012]
According to the present invention, by providing an X-ray window member on the sealing member, X-rays are introduced into the sealing member from an X-ray apparatus (for example, an X-ray source) installed outside, or inside the sealing member. To an external X-ray apparatus (for example, an X-ray detector), and the degree of freedom of the overall arrangement of the X-ray optical system can be increased. As the X-ray window member, a material having low X-ray absorption, such as a beryllium Be plate or a polymer film, is preferable.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a configuration diagram showing a first embodiment of the present invention. The X-ray apparatus 1 seals the periphery of the X-ray optical system 3 and the X-ray optical system 3 combining X-ray optical elements such as an X-ray tube, a diffraction element, a slit, an X-ray filter, and an X-ray detector. The closed box 2 or the like.
[0015]
The sealed box 2 is provided with an introduction pipe 15 for introducing helium gas into the box and an exhaust pipe 16 for discharging the air remaining in the sealed box 2 to the outside. A gas cylinder storing helium gas, a regulator for stabilizing the flow rate, and the like are connected to the introduction pipe 15, and a flow rate control valve 14 for controlling the gas flow rate is connected in the middle. The exhaust port 16a of the exhaust pipe 16 is installed near the bottom of the sealed box 2 so that air having a specific gravity greater than that of helium gas is discharged first.
[0016]
Furthermore, a float 10 having a specific gravity smaller than that of air is provided inside the sealed box 2. The float 10 is configured such that the inside of a hollow container made of plastic, light metal, or the like is evacuated or filled with hydrogen gas or helium gas. Alternatively, a configuration in which the hollow container of the float 10 and the introduction pipe 15 are connected by a flexible pipe, an exhaust hole is formed in the hollow container, and the inside of the float 10 is always filled with helium gas is possible. is there.
[0017]
With such a configuration, the float 10 is positioned near the boundary surface C between the upper space A in which helium gas stays and the lower space B in which air stays. Therefore, the height of the float 10 reflects the residence amount of helium gas.
[0018]
The float 10 is attached to a link member 11 supported so as to be angularly displaceable around a fulcrum 12, and a link member 13 connected to the link member 11 is connected to an operation portion of the flow control valve 14. When the helium gas retention amount decreases and the float 10 rises due to the link members 11 and 13, the opening degree of the flow control valve 14 decreases, and conversely, when the helium gas retention amount increases and the float 10 descends. The flow control valve 14 operates to increase the opening degree. Therefore, automatic flow rate control of helium gas can be realized by adjusting the float 10 to a desired height in a state where the leak amount and supply amount of the helium gas are balanced.
[0019]
By installing the X-ray window member 4 that allows X-rays to pass through the opening of the sealed box 2, introduction or extraction of X-rays can be performed with the external X-ray device 20 while preventing leakage of helium gas. become. Such a configuration is suitable when the X-ray apparatus 20 is large-scale, when it is desired to keep the atmosphere gas different from helium, or when the volume of the sealed box 2 is desired to be as small as possible.
[0020]
In the above description, the example in which the float 10 and the flow control valve 14 are mechanically linked by the link members 11 and 13 has been described. However, the displacement of the float 10 is changed optically, electrically, magnetically, and the like. The flow control valve 14 may be configured to electrically operate using a sensor that detects as follows. Alternatively, the flow control valve 14 may be adjusted by detecting a change in buoyancy acting on the float 10.
[0021]
Moreover, since helium gas stays in the upper part, all or part of the bottom part of the sealed box 2 may be open.
[0022]
FIG. 2 is a block diagram showing a second embodiment of the present invention. The X-ray fluorescence analyzer includes an X-ray tube 30 for generating X-rays, a spectroscopic crystal 31 for separating a single characteristic X-ray from the X-rays generated from the X-ray tube 30, and a spectroscopic crystal 31. A slit 32 for extracting X-rays diffracted in a predetermined direction, a shutter 33 for blocking the X-rays by an external signal, a moving stage 34 for adjusting the position and posture of the sample SP, and an upper part of the moving stage 34 A slit 35 for limiting the passage position of the X-rays passing through the X-ray, an X-ray detector 36 for detecting the intensity of the X-rays that have passed through the slit 35, and an X-ray detector 37 for detecting the fluorescent X-rays generated from the sample SP. And a cooling container 38 for storing liquid nitrogen or the like for cooling the X-ray detector 37.
[0023]
Among these, the sample SP, the moving stage 34, and the X-ray detector 37 are installed inside the sealed box 2 to constitute the X-ray apparatus 1, and the rest are installed outside the sealed box 2. As shown in FIG. 1, the sealed box 2 includes an introduction pipe 15 for introducing helium gas into the sealed box, and an exhaust pipe 16 for discharging the air remaining inside the sealed box 2 to the outside. A flow rate control valve 14 for controlling the flow rate of helium gas and a float 10 for operating the flow rate control valve 14 are installed.
[0024]
X-rays introduced into the sealed box 2 via one X-ray window member 4 are incident on the surface of the sample SP at a total reflection angle. The X-ray incident angle with respect to the sample SP is finely adjusted by the moving stage 34 adjusting the posture of the sample SP. The X-ray reflected by the sample SP is taken out through the other X-ray window member 4 and reaches the X-ray detector 36 through the slit 35. The sample SP generates fluorescent X-rays by X-ray excitation and is detected by the X-ray detector 37.
[0025]
In such an X-ray apparatus, high-accuracy and high-sensitivity measurement can be realized by sealing a portion where the X-ray passes through a sealed box 2 and replacing it with helium gas.
[0026]
FIG. 3 is a block diagram showing a third embodiment of the present invention. The configuration of this apparatus is the same as the configuration of FIG. 2, but the X-ray optical system from the X-ray tube 30 to the X-ray detector 36 is housed in the same sealed box 2 and the X-ray window member 4 is omitted. is doing. In such an X-ray apparatus, by introducing helium gas from the introduction tube 15 into the sealed box 2, the upper space A where the X-ray optical system is located is replaced with helium gas, thereby realizing high-precision and high-sensitivity measurement. it can.
[0027]
FIG. 4 is a block diagram showing a fourth embodiment of the present invention. The configuration of this apparatus is the same as the configuration of FIG. 2, but the X-ray optical system from the X-ray tube 30 to the sample SP is housed in the same sealed box 2, and the slit 35 and the X-ray detector 36 are sealed. It is installed outside the box 2. In such an X-ray apparatus, by introducing helium gas from the introduction tube 15 into the sealed box 2, the upper space A where the X-ray optical system is located is replaced with helium gas, thereby realizing high-precision and high-sensitivity measurement. it can.
[0028]
FIG. 5 is a block diagram showing a fifth embodiment of the present invention. The configuration of this apparatus is the same as the configuration of FIG. 2, but the X-ray optical system from the sample SP to the X-ray detector 36 is housed in the same sealed box 2, and the X-ray tube 30, the spectroscopic crystal 31, A slit 32 and a shutter 33 are installed outside the sealed box 2. In such an X-ray apparatus, by introducing helium gas from the introduction tube 15 into the sealed box 2, the upper space A where the X-ray optical system is located is replaced with helium gas, thereby realizing high-precision and high-sensitivity measurement. it can.
[0029]
In the above description, an example of a fluorescent X-ray analyzer is shown as an applicable X-ray apparatus. However, other X-ray diffraction apparatuses and extended X-ray absorption fine structure analysis (Extended
X-ray Absorption Fine Structure (abbreviation EXAFS) apparatus can also be applied.
[0030]
【The invention's effect】
As described in detail above, according to the present invention, the automatic flow control of the light element gas can be realized by linking the operation of the float member and the gas supply amount adjusting means, and the consumption of the light element gas can be saved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a first embodiment of the present invention.
FIG. 2 is a configuration diagram showing a second embodiment of the present invention.
FIG. 3 is a block diagram showing a third embodiment of the present invention.
FIG. 4 is a configuration diagram showing a fourth embodiment of the present invention.
FIG. 5 is a configuration diagram showing a fifth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 X-ray apparatus 2 Sealed box 3 X-ray optical system 4 X-ray window member 10 Float 11 Link member 12 Support point 14 Flow control valve 15 Introducing pipe 16 Exhaust pipe 20 X-ray apparatus

Claims (2)

X線が通過するX線光学系と、
X線光学系の周囲を密閉するための密閉部材と、
密閉部材の内部に、空気より小さい比重の軽元素ガスを供給するための軽元素ガス供給手段と、
密閉部材の内部ガスを外部に排出するための排気手段と、
密閉部材の内部に設けられ、空気の比重より小さい比重を持つフロート部材と、
フロート部材の変位に応じて、軽元素ガスの供給量を調整するためのガス供給量調整手段とを備え
前記軽元素ガスがヘリウムガスであることを特徴とするX線装置。
An X-ray optical system through which X-rays pass;
A sealing member for sealing the periphery of the X-ray optical system;
A light element gas supply means for supplying a light element gas having a specific gravity smaller than air into the sealing member;
Exhaust means for exhausting the internal gas of the sealing member to the outside;
A float member provided inside the sealing member and having a specific gravity smaller than that of air;
Gas supply amount adjusting means for adjusting the supply amount of the light element gas according to the displacement of the float member ,
X-ray apparatus the light element gas and said helium gas der Rukoto.
密閉部材に、X線が通過可能なX線窓部材が取り付けられていることを特徴とする請求項1記載のX線装置。  The X-ray apparatus according to claim 1, wherein an X-ray window member capable of passing X-rays is attached to the sealing member.
JP2003010197A 2003-01-17 2003-01-17 X-ray equipment Expired - Fee Related JP4177677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003010197A JP4177677B2 (en) 2003-01-17 2003-01-17 X-ray equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003010197A JP4177677B2 (en) 2003-01-17 2003-01-17 X-ray equipment

Publications (2)

Publication Number Publication Date
JP2004219388A JP2004219388A (en) 2004-08-05
JP4177677B2 true JP4177677B2 (en) 2008-11-05

Family

ID=32899477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003010197A Expired - Fee Related JP4177677B2 (en) 2003-01-17 2003-01-17 X-ray equipment

Country Status (1)

Country Link
JP (1) JP4177677B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6317632B2 (en) * 2014-06-17 2018-04-25 アンリツインフィビス株式会社 X-ray inspection equipment

Also Published As

Publication number Publication date
JP2004219388A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
US6233307B1 (en) Compact X-ray spectrometer
US8064570B2 (en) Hand-held XRF analyzer
TWI752180B (en) Vacuum valve with optical sensor
US10157724B2 (en) Electron scanning microscope and image generation method
US9236217B2 (en) Inspection or observation apparatus and sample inspection or observation method
JP4787344B2 (en) Humidity control system for detection cell of specimen transmission inspection device
JPS61283843A (en) Method and device for detecting leakage from fluid vessel
KR20140047724A (en) Charged particle beam apparatus
JP2008513799A (en) Leak test method and leak test apparatus
KR20090029681A (en) Gas sorption tester for rapid screening of multiple samples
CN103197508A (en) Analogue means of optical surface contamination and cleaning under extreme ultraviolet irradiation
JP4177677B2 (en) X-ray equipment
KR102214258B1 (en) Sample holder and associated permeation device
EP2166345B1 (en) Device and method for introducing gas for analysis device
JP5151073B2 (en) Photometer
JP2005537488A (en) Gas supply adapter
CN1739022A (en) Fluorescent x-ray analyzer
JP2003254919A (en) Fluorescent x-ray analyzer
JPH11304633A (en) Air-leak detecting apparatus
JP3402431B2 (en) Gas detector
EP2116842B1 (en) An X-ray fluorescence analyzer with gas-filled chamber
JP5517506B2 (en) X-ray fluorescence analyzer
JP3521425B2 (en) X-ray analyzer
JP2000162161A (en) Fluorescent x-ray analyzing device
JP2011013028A (en) Fluorescent x-ray analyzer and fluorescent x-ray analysis method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041015

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041015

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071205

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees