JP2003254919A - Fluorescent x-ray analyzer - Google Patents
Fluorescent x-ray analyzerInfo
- Publication number
- JP2003254919A JP2003254919A JP2002056800A JP2002056800A JP2003254919A JP 2003254919 A JP2003254919 A JP 2003254919A JP 2002056800 A JP2002056800 A JP 2002056800A JP 2002056800 A JP2002056800 A JP 2002056800A JP 2003254919 A JP2003254919 A JP 2003254919A
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- sample
- helium
- space
- spectroscopic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/223—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/07—Investigating materials by wave or particle radiation secondary emission
- G01N2223/076—X-ray fluorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/30—Accessories, mechanical or electrical features
- G01N2223/307—Accessories, mechanical or electrical features cuvettes-sample holders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/637—Specific applications or type of materials liquid
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ヘリウム雰囲気で
分析を行う蛍光X線分析装置に関する。TECHNICAL FIELD The present invention relates to an X-ray fluorescence analyzer for analysis in a helium atmosphere.
【0002】[0002]
【従来の技術】従来、図8に示すような、ヘリウム雰囲
気で分析を行う(X線光路がヘリウム雰囲気にある)蛍
光X線分析装置がある。この装置は、試料1の下方から
1次X線6が照射される下面照射型で、大気雰囲気で試
料1が交換可能に収納される試料室3の下方に、X線源
7が収納される照射室8と、その照射室8と連通して分
光素子11および検出器13が収納される分光室14と
を備えている。そして、照射室8および分光室14がヘ
リウム置換されるので、大気雰囲気よりも蛍光X線1
0,12の吸収が少なくなり、空気中では減衰の著しい
軽元素の蛍光X線10や微弱な蛍光X線10でも検出し
やすい。ここで、X線6,10を通過させる隔壁膜9
が、大気雰囲気の試料室3とヘリウム雰囲気の照射室8
とを仕切るように配置されている。2. Description of the Related Art Conventionally, as shown in FIG. 8, there is a fluorescent X-ray analyzer for performing analysis in a helium atmosphere (the X-ray optical path is in a helium atmosphere). This apparatus is a bottom irradiation type in which primary X-rays 6 are irradiated from below the sample 1, and an X-ray source 7 is housed below a sample chamber 3 in which the sample 1 is replaceably housed in an air atmosphere. The irradiation chamber 8 and a spectroscopic chamber 14 that communicates with the irradiation chamber 8 and accommodates the spectroscopic element 11 and the detector 13 are provided. Since the irradiation chamber 8 and the spectroscopic chamber 14 are replaced with helium, the fluorescent X-rays 1
The absorption of 0 and 12 is small, and it is easy to detect even the fluorescent X-rays 10 of light elements and the weak fluorescent X-rays 10 that are significantly attenuated in the air. Here, the partition wall film 9 that allows the X-rays 6 and 10 to pass therethrough.
However, the sample chamber 3 in the atmosphere and the irradiation chamber 8 in the helium atmosphere
It is arranged so as to separate the and.
【0003】ヘリウム雰囲気で分析されるものとして、
液体の試料1aがあるが、その場合、液体試料1aは、
底部にX線6,10を通過させる照射窓2aを有する液
体試料ホルダ2に入れられて、全体1a,2で試料1と
して扱われ、大気雰囲気の試料室3内で隔壁膜9の上に
載置される。液体試料ホルダ2の照射窓2aの外側に
は、染み出した液体試料1aが付着することなどがあ
り、それが隔壁膜9に付着して汚染しないように、照射
窓2aと隔壁膜9との間、つまり試料1と隔壁膜9との
間には、1mm程度の隙間、つまり厚さ1mm程度の空
間18が設けられている。As analyzed in a helium atmosphere,
There is a liquid sample 1a. In that case, the liquid sample 1a is
It is placed in a liquid sample holder 2 having an irradiation window 2a that allows X-rays 6 and 10 to pass therethrough, and is treated as a sample 1 by the whole 1a and 2 and mounted on a partition film 9 in a sample chamber 3 in an air atmosphere. Placed. The exuded liquid sample 1a may be attached to the outside of the irradiation window 2a of the liquid sample holder 2, and the irradiation window 2a and the partition film 9 are prevented from adhering to the partition film 9 and contaminating it. A space of about 1 mm, that is, a space 18 having a thickness of about 1 mm is provided between the sample 1, that is, between the sample 1 and the partition film 9.
【0004】[0004]
【発明が解決しようとする課題】この空間18は、大気
雰囲気の試料室3の一部であるから空気で満たされてお
り、試料1から発生する蛍光X線10を吸収して減衰さ
せてしまう。しかも、薄い隔壁膜9にはしわやたわみが
生じやすく、それにより空間18の厚さが変化するの
で、蛍光X線10の減衰の度合いも変化してしまう。し
たがって、強度が低下し、しかも不安定な蛍光X線10
を分析することになり、高精度の分析ができない。Since this space 18 is a part of the sample chamber 3 in the atmosphere, it is filled with air and absorbs and attenuates the fluorescent X-rays 10 generated from the sample 1. . Moreover, since the thin partition wall film 9 is likely to be wrinkled or bent, and the thickness of the space 18 changes accordingly, the degree of attenuation of the fluorescent X-ray 10 also changes. Therefore, the intensity of the fluorescent X-ray 10 is reduced and unstable.
Therefore, high precision analysis cannot be performed.
【0005】本発明は前記従来の問題に鑑みてなされた
もので、ヘリウム雰囲気で分析を行う蛍光X線分析装置
において、試料と隔壁膜との間に形成される空間での吸
収による蛍光X線の減衰や変動の問題を解消して、高精
度の分析ができるものを提供することを目的とする。The present invention has been made in view of the above-mentioned conventional problems, and in a fluorescent X-ray analyzer for analyzing in a helium atmosphere, fluorescent X-rays due to absorption in a space formed between a sample and a partition film. It is an object of the present invention to solve the problems of attenuation and fluctuation of and to provide the one capable of highly accurate analysis.
【0006】[0006]
【課題を解決するための手段】前記目的を達成するため
に、本願発明は、まず、大気雰囲気で試料が交換可能に
収納される試料室と、試料に1次X線を照射するX線源
が収納される照射室と、前記試料室と照射室とを仕切る
ように配置されてX線を通過させる隔壁膜と、試料から
発生する蛍光X線を分光して検出する検出手段が収納さ
れ、前記照射室と連通する分光室とを備え、前記照射室
および分光室がヘリウム置換される蛍光X線分析装置で
ある。そして、試料と前記隔壁膜との間に形成される空
間にヘリウムを導入する流路を備えたことを特徴とす
る。In order to achieve the above object, the present invention is as follows. First, a sample chamber in which a sample is replaceably housed in an air atmosphere, and an X-ray source for irradiating the sample with primary X-rays. An irradiation chamber in which is stored, a partition wall film which is arranged so as to partition the sample chamber and the irradiation chamber and which allows passage of X-rays, and a detection unit which disperses and detects fluorescent X-rays generated from the sample, A fluorescence X-ray analysis apparatus comprising a spectroscopic chamber communicating with the irradiation chamber, and the irradiation chamber and the spectroscopic chamber being replaced with helium. A flow path for introducing helium is provided in a space formed between the sample and the partition film.
【0007】本願発明の蛍光X線分析装置によれば、試
料と隔壁膜との間に形成される空間も、蛍光X線の吸収
が少ないヘリウムで置換されるので、そこでの蛍光X線
の減衰や変動の問題が解消され、高精度の分析ができ
る。ここで、前記流路が、照射室および分光室にヘリウ
ム置換のために導入されたヘリウムを前記空間に導入す
ることが好ましい。また、前記流路は、隔壁膜の周辺部
をその厚み方向に挟持して支持するホルダに、湾曲また
は曲折して形成されるか、前記空間に連通して照射室に
延出する管を含むことにより、前記空間から照射室およ
び分光室へ空気が逆流するのを防止することがより好ま
しい。さらに、前記流路は、隔壁膜に設けられた孔であ
ってもよい。According to the X-ray fluorescence analyzer of the present invention, the space formed between the sample and the partition film is also replaced with helium, which absorbs less X-ray fluorescence, so that the X-ray fluorescence is attenuated there. The problem of fluctuations is eliminated, and highly accurate analysis is possible. Here, it is preferable that the flow path introduces helium introduced into the irradiation chamber and the spectroscopic chamber for helium replacement into the space. Further, the flow path includes a tube that is curved or bent in a holder that holds and supports the peripheral portion of the partition wall film in the thickness direction, or includes a tube that communicates with the space and extends to the irradiation chamber. Therefore, it is more preferable to prevent air from flowing back from the space to the irradiation chamber and the spectroscopic chamber. Furthermore, the flow path may be a hole provided in the partition wall film.
【0008】[0008]
【発明の実施の形態】以下、本発明の第1実施形態の蛍
光X線分析装置について、その構成から説明する。この
装置は、まず、従来の技術で説明した装置と同様、図8
に示すように、試料1の下方から1次X線6が照射され
る下面照射型で、以下の試料室3、照射室8、隔壁膜9
および分光室14を備え、照射室8および分光室14が
ヘリウム置換される蛍光X線分析装置である。試料室3
は、本体ケース4と、その上部にシール部材を介して開
閉自在に取り付けられた蓋体5とで囲まれた空間からな
り、大気雰囲気で試料1が交換可能に収納される。照射
室8は、試料1に1次X線6を照射するX線管などのX
線源7が収納される。隔壁膜9は、試料室3と照射室8
とを仕切るように配置されてX線6,10を通過させ
る。分光室14は、照射室8と連通しており、試料1か
ら発生する蛍光X線10を分光する分光素子11および
分光された蛍光X線12を検出する検出器13で構成さ
れる検出手段11,13が収納される。分光素子11と
検出器13は、図示しないゴニオメータなどの連動手段
により、一定の角度関係を保って回動される。BEST MODE FOR CARRYING OUT THE INVENTION The X-ray fluorescence analyzer according to the first embodiment of the present invention will be described below in terms of its configuration. This device, like the device described in the prior art, is shown in FIG.
As shown in FIG. 1, the sample chamber 3, the irradiation chamber 8, and the partition wall film 9 are of a bottom irradiation type in which the primary X-ray 6 is irradiated from below the sample 1.
Also, the fluorescent X-ray analyzer is provided with the spectroscopic chamber 14, and the irradiation chamber 8 and the spectroscopic chamber 14 are replaced with helium. Sample chamber 3
Is composed of a space surrounded by a main body case 4 and a lid body 5 which is attached to the upper portion of the main body case 4 via a seal member so as to be openable and closable, and the sample 1 is exchangeably accommodated in an air atmosphere. The irradiation chamber 8 is an X-ray tube or the like for irradiating the sample 1 with the primary X-rays 6.
The radiation source 7 is stored. The partition wall film 9 includes a sample chamber 3 and an irradiation chamber 8.
The X-rays 6 and 10 are arranged so as to partition and. The spectroscopic chamber 14 is in communication with the irradiation chamber 8 and includes a detection device 11 including a spectroscopic element 11 that disperses the fluorescent X-rays 10 generated from the sample 1 and a detector 13 that detects the dispersed fluorescent X-rays 12. , 13 are stored. The spectroscopic element 11 and the detector 13 are rotated with a constant angular relationship by an interlocking device such as a goniometer (not shown).
【0009】ここで、分析対象は、前述したように、例
えば液体の試料1aであり、液体試料1aは、底部にX
線6,10を通過させる照射窓2aを有する円筒状の液
体試料ホルダ2に入れられて、全体1a,2で試料1と
して扱われ、大気雰囲気の試料室3内で隔壁膜9の上に
載置される。照射窓2aと隔壁膜9との間、つまり試料
1と隔壁膜9との間には、1mm程度の隙間、つまり厚
さ1mm程度の空間18が設けられている。Here, as described above, the analysis target is, for example, the liquid sample 1a, and the liquid sample 1a has X at the bottom.
It is placed in a cylindrical liquid sample holder 2 having an irradiation window 2a that allows the lines 6 and 10 to pass therethrough, and the whole 1a, 2 is treated as a sample 1 and mounted on a partition film 9 in a sample chamber 3 in the air atmosphere. Placed. A gap of about 1 mm, that is, a space 18 having a thickness of about 1 mm is provided between the irradiation window 2a and the partition film 9, that is, between the sample 1 and the partition film 9.
【0010】この装置では、照射室8および分光室14
をヘリウム置換するために、以下のような配管、バルブ
およびポンプが備えられている。ヘリウムフロー配管1
5Aは、ヘリウムフローバルブ16Aを介して照射室8
および分光室14へ図示しないヘリウムタンクからヘリ
ウムを導入する。真空配管15Bは、真空ポンプ17に
より、真空バルブ16Bを介して照射室8および分光室
14を真空引きする。分光室リーク配管15Cは、分光
室リークバルブ16Cを介して照射室8および分光室1
4を大気雰囲気に開放する。試料室リーク配管15D
は、試料室リークバルブ16Dを介して試料室3を大気
雰囲気に開放する。バイパス配管15Eは、バイパスバ
ルブ16Eを介して、分光室リーク配管15Cと試料室
リーク配管15Dとを連通させる。In this apparatus, the irradiation chamber 8 and the spectroscopic chamber 14 are
In order to replace helium with helium, the following pipes, valves and pumps are provided. Helium flow pipe 1
5A is an irradiation chamber 8 via a helium flow valve 16A.
And helium is introduced into the spectroscopic chamber 14 from a helium tank (not shown). The vacuum pipe 15B evacuates the irradiation chamber 8 and the spectroscopic chamber 14 by the vacuum pump 17 via the vacuum valve 16B. The spectroscopic chamber leak pipe 15C is connected to the irradiation chamber 8 and the spectroscopic chamber 1 via the spectroscopic chamber leak valve 16C.
Open 4 to the atmosphere. Sample chamber leak piping 15D
Opens the sample chamber 3 to the atmosphere via the sample chamber leak valve 16D. The bypass pipe 15E connects the spectroscopic chamber leak pipe 15C and the sample chamber leak pipe 15D via the bypass valve 16E.
【0011】図8の前記空間18近傍の拡大図であり、
後述する図2ないし図4のI−I断面を含む図1に示す
ように、ホルダ20は、ホルダ上部23、ホルダ下部2
1、シール部材22およびOリング24を含み、隔壁膜
9の周辺部をその厚み方向(図1の上下方向)に挟持し
て支持している。なお、図1では、理解の容易のため、
紙面よりも奥に見える線は記載していない(この点は、
後述する図5ないし図7も同様である)。FIG. 9 is an enlarged view of the vicinity of the space 18 of FIG.
As shown in FIG. 1 including the I-I cross section of FIGS. 2 to 4 described later, the holder 20 includes a holder upper portion 23 and a holder lower portion 2.
1, including the seal member 22 and the O-ring 24, the peripheral portion of the partition wall film 9 is sandwiched and supported in the thickness direction (vertical direction in FIG. 1). In FIG. 1, for easy understanding,
The line that appears deeper than the page is not shown (this point is
The same applies to FIGS. 5 to 7 described later).
【0012】まず、ホルダ下部21は、その上面図を図
2(a)に、下面図を図2(b)に示すように、輪状の
金属板で、下面において、ホルダ下部21と同心円状の
Oリング24(図1)を嵌め込むための溝21bが形成
され、それよりも内側に、直径1mm程度の貫通孔21
aが設けられている。図1のように、Oリング24は、
ホルダ下部21とケース本体4との間をシールする。図
2(a)のホルダ下部21の上面では、同心円状に1対
の凸部21c,21dが形成されることにより、相対的
にそれらの間が凹部21eになっており、その凹部21
eに前記貫通孔21aが位置している。凹部21eに
は、輪状のゴム板であるシール部材22が図1のように
嵌め込まれるが、シール部材22にも貫通孔22aが設
けられ、ホルダ下部21の貫通孔21aと連通する。シ
ール部材22は、ホルダ下部21と隔壁膜9との間をシ
ールする。First, as shown in a top view of FIG. 2 (a) and a bottom view of FIG. 2 (b), the holder lower part 21 is a ring-shaped metal plate and is concentric with the holder lower part 21 on the lower surface. A groove 21b for fitting the O-ring 24 (FIG. 1) is formed, and a through hole 21 having a diameter of about 1 mm is formed inside the groove 21b.
a is provided. As shown in FIG. 1, the O-ring 24 is
The lower part 21 of the holder and the case body 4 are sealed. On the upper surface of the holder lower portion 21 of FIG. 2A, a pair of convex portions 21c and 21d are formed concentrically so that a concave portion 21e is relatively formed between them.
The through hole 21a is located at e. A seal member 22 which is a ring-shaped rubber plate is fitted in the recess 21e as shown in FIG. 1. The seal member 22 is also provided with a through hole 22a and communicates with the through hole 21a of the lower holder portion 21. The seal member 22 seals between the holder lower portion 21 and the partition wall film 9.
【0013】隔壁膜9は、その上面図を図3(a)に、
下面図を図3(b)に示すように、ポリイミドやポリエ
ステルなどからなる厚さ数μm程度の円形のフィルムで
あって、輪状の金属板である支持板19に貼り付けて扱
われる。隔壁膜9と支持板19には、連通する貫通孔9
a,19aが、それぞれ設けられている。The partition film 9 has a top view as shown in FIG.
As shown in the bottom view of FIG. 3B, a circular film made of polyimide, polyester, or the like having a thickness of about several μm is attached to a support plate 19 which is a ring-shaped metal plate and handled. The partition film 9 and the support plate 19 communicate with the through hole 9
a and 19a are provided respectively.
【0014】ホルダ上部23は、その上面図を図4
(a)に、下面図を図4(b)に示すように、輪状の金
属板で、下面の内周部に凹部23aが形成されており、
図1のように、この凹部23aに、支持板19、隔壁膜
9の外周部、ホルダ下部21の凸部21c,21dおよ
びシール部材22が嵌まり込んで、ホルダ上部23とホ
ルダ下部21が外周部においてねじ止めなどにより連結
され、一体化された全体20,19,9が隔壁膜カート
リッジとなる。図4(b)のホルダ上部23の下面の凹
部23aの中央部は、さらに凹入して、周方向に1回り
足らずの溝23bが形成されている。溝の一端部23b
aは、支持板19の貫通孔19a(図1)に連通し、他
端部23bbは、ホルダ上部23の内周まで径方向に延
びている。一方、上面には、径方向に延びて内周と外周
を連通させる溝23cが形成されている。The holder upper portion 23 is shown in a top view in FIG.
As shown in the bottom view of FIG. 4B, a ring-shaped metal plate is provided with a recess 23a in the inner peripheral portion of the lower surface.
As shown in FIG. 1, the support plate 19, the outer peripheral portion of the partition wall film 9, the convex portions 21c and 21d of the holder lower portion 21 and the seal member 22 are fitted into the concave portion 23a so that the holder upper portion 23 and the holder lower portion 21 have the outer periphery. The whole parts 20, 19, and 9 which are connected by screwing or the like in the part and integrated into one form a partition membrane cartridge. The central portion of the recess 23a on the lower surface of the holder upper portion 23 in FIG. 4B is further recessed to form a groove 23b which is less than one turn in the circumferential direction. One end 23b of the groove
a communicates with the through hole 19a (FIG. 1) of the support plate 19, and the other end 23bb extends to the inner circumference of the holder upper portion 23 in the radial direction. On the other hand, a groove 23c that extends in the radial direction and connects the inner circumference and the outer circumference is formed on the upper surface.
【0015】以上のようなホルダ20、隔壁膜9および
支持板19の構成により、図1での下方からいうと、ホ
ルダ下部21の貫通孔21a、シール部材22の貫通孔
22a、隔壁膜9の貫通孔9a、支持板19の貫通孔1
9a、および、ホルダ上部23の下面において一端部2
3baから他端部23bbへ延びる溝23bが連通する
ことにより、1つの流路を形成している。この流路は、
照射室8および分光室14(図8)にヘリウム置換のた
めに導入されたヘリウムを、試料1と隔壁膜9との間に
形成される空間18に導入するものである。また、この
流路は、ホルダ20、隔壁膜9および支持板19に形成
されるが、ホルダ上部23の下面においては溝23bと
して湾曲および曲折して形成されることにより(図4
(b))、流路全体の長さを確保して、前記空間18か
ら照射室8および分光室14(図8)へ空気が逆流する
のを防止する。With the structure of the holder 20, the partition wall film 9 and the support plate 19 as described above, the through hole 21a of the lower holder portion 21, the through hole 22a of the seal member 22 and the partition wall film 9 are viewed from below in FIG. Through hole 9a, through hole 1 of support plate 19
9a and one end portion 2 on the lower surface of the holder upper portion 23
One channel is formed by communicating the groove 23b extending from 3ba to the other end portion 23bb. This channel is
Helium introduced into the irradiation chamber 8 and the spectroscopic chamber 14 (FIG. 8) for helium substitution is introduced into the space 18 formed between the sample 1 and the partition film 9. Further, this flow path is formed in the holder 20, the partition film 9 and the support plate 19, but is formed by bending and bending as a groove 23b on the lower surface of the holder upper portion 23 (FIG. 4).
(B)) The entire length of the flow path is secured to prevent air from flowing back from the space 18 to the irradiation chamber 8 and the spectroscopic chamber 14 (FIG. 8).
【0016】なお、空間18の円滑なヘリウム置換のた
め、空間18からの空気の出口として、ホルダ上部23
の上面の溝23c(図4(a))が機能する。このよう
な溝を形成する代わりに、例えば、ホルダ上部23の上
面の一部にテープを貼ることにより、液体試料ホルダ2
の底面との間に隙間を設けて、その隙間から空間18中
の空気を逃がしてもよい。In order to smoothly replace helium in the space 18, the holder upper part 23 serves as an outlet for air from the space 18.
The groove 23c (FIG. 4 (a)) on the upper surface of the device functions. Instead of forming such a groove, for example, a tape is attached to a part of the upper surface of the holder upper portion 23, so that the liquid sample holder 2
A space may be provided between the space and the bottom surface to allow the air in the space 18 to escape from the space.
【0017】次に、この装置の動作について説明する。
まず、図8において、試料室3に試料1を入れる前に、
ヘリウムフローバルブ16A、分光室リークバルブ16
Cおよび試料室リークバルブ16Dを閉じ、真空バルブ
16Bおよびバイパスバルブ16Eを開け、真空ポンプ
17により、照射室8および分光室14ならびに試料室
3を真空引きする。所定の真空度に到達したら、真空バ
ルブ16Bを閉じ、真空ポンプ17を停止して、ヘリウ
ムフローバルブ16Aを開けて、照射室8および分光室
14ならびに試料室3にヘリウムを導入する。そして、
バイパスバルブ16Eを閉じ、分光室リークバルブ16
Cを開いて低流量で照射室8および分光室14にヘリウ
ムを流す。これで、照射室8および分光室14のヘリウ
ム置換が完了する。なお、試料室3をも真空引きした
り、ヘリウムを導入したりするのは、試料室3と照射室
8および分光室14との圧力差により、隔壁膜9が破損
するのを防止するためである。Next, the operation of this device will be described.
First, in FIG. 8, before putting the sample 1 into the sample chamber 3,
Helium flow valve 16A, spectroscopic chamber leak valve 16
C and the sample chamber leak valve 16D are closed, the vacuum valve 16B and the bypass valve 16E are opened, and the irradiation chamber 8 and the spectroscopic chamber 14 and the sample chamber 3 are evacuated by the vacuum pump 17. When the predetermined degree of vacuum is reached, the vacuum valve 16B is closed, the vacuum pump 17 is stopped, the helium flow valve 16A is opened, and helium is introduced into the irradiation chamber 8, the spectroscopic chamber 14, and the sample chamber 3. And
The bypass valve 16E is closed, and the spectroscopic chamber leak valve 16 is closed.
Helium is flown into the irradiation chamber 8 and the spectroscopic chamber 14 at a low flow rate by opening C. This completes the helium replacement of the irradiation chamber 8 and the spectroscopic chamber 14. Note that the sample chamber 3 is also evacuated and helium is introduced in order to prevent the partition film 9 from being damaged due to the pressure difference between the sample chamber 3 and the irradiation chamber 8 and the spectroscopic chamber 14. is there.
【0018】一方、試料室リークバルブ16Dを開け、
蓋体5を開けることにより、試料室3は、大気雰囲気で
試料1が交換可能となるので、最初の試料1を隔壁膜9
の上方、より具体的には試料ホルダ上部23(図1)の
上に載置して、蓋体5を閉じる。以降は、試料室3は大
気雰囲気に、照射室8および分光室14はそれよりもわ
ずかに圧力の高いヘリウム雰囲気に維持されるので、蓋
体5を開閉するのみで、試料1の交換が可能である。On the other hand, the sample chamber leak valve 16D is opened,
When the lid 5 is opened, the sample 1 can be replaced in the sample chamber 3 in the air atmosphere.
On the sample holder upper part 23 (FIG. 1), and the lid 5 is closed. After that, the sample chamber 3 is maintained in the atmospheric atmosphere, and the irradiation chamber 8 and the spectroscopic chamber 14 are maintained in the helium atmosphere having a slightly higher pressure than that, so that the sample 1 can be exchanged only by opening and closing the lid 5. Is.
【0019】さて、図1のように、試料1を試料ホルダ
上部23の上に載置することにより、従来の技術で説明
したのと同様に、照射窓2aと隔壁膜9との間に、厚さ
1mm程度の円板状の空間18が形成される。従来は、
この空間18は空気が入ったままであったが、この第1
実施形態の装置では、前記流路21a,22a,9a,
19a,23bにより、空間18も、蛍光X線の吸収が
少ないヘリウムで置換されるので、そこでの蛍光X線の
減衰や変動の問題が解消され、高精度の分析ができる。
しかも、空間18に導入するヘリウムとして、照射室8
および分光室14(図8)に導入されたヘリウムを再利
用するので、ヘリウムが節約される。また、流路が、ホ
ルダ上部23の下面においては溝23bとして湾曲およ
び曲折して形成されることにより(図4(b))、流路
全体の長さが確保され、空間18から照射室8および分
光室14(図8)へ空気が逆流するのが防止される。し
たがって、照射室8および分光室14(図8)内のヘリ
ウム雰囲気が、より長時間より高いレベルで維持され、
より長時間より高精度の分析ができる。Now, as shown in FIG. 1, by mounting the sample 1 on the sample holder upper portion 23, as described in the prior art, between the irradiation window 2a and the partition film 9, A disk-shaped space 18 having a thickness of about 1 mm is formed. conventionally,
This space 18 was still filled with air,
In the apparatus of the embodiment, the flow paths 21a, 22a, 9a,
Since the space 18 is also replaced by helium, which absorbs less fluorescent X-rays by 19a and 23b, the problem of attenuation and fluctuation of fluorescent X-rays there is solved, and highly accurate analysis can be performed.
Moreover, as the helium introduced into the space 18, the irradiation chamber 8
And helium is saved because it is reused for the helium introduced into the spectroscopic chamber 14 (FIG. 8). In addition, since the flow path is formed by bending and bending as the groove 23b on the lower surface of the holder upper portion 23 (FIG. 4B), the entire length of the flow path is ensured, and the space 18 to the irradiation chamber 8 is secured. And, backflow of air into the spectroscopic chamber 14 (FIG. 8) is prevented. Therefore, the helium atmosphere in the irradiation chamber 8 and the spectroscopic chamber 14 (FIG. 8) is maintained at a higher level for a longer time,
More accurate analysis can be performed for a longer time.
【0020】次に、本発明の第2実施形態の蛍光X線分
析装置について説明する。この装置のホルダ30以外の
構成は、前記第1実施形態の装置と同様であるので、説
明を省略する。ホルダ30については、図5に示すよう
に、ホルダ上部33の下面の凹部33aに、第1実施形
態のような周方向に長く延びた溝23b(図4(b))
はなく、支持板19の貫通孔19aに連通してそのまま
ホルダ上部33の内周まで径方向に延びる短い溝33b
が形成されている。一方、ホルダ下部31の貫通孔32
aに、例えば内径0.2mm、長さ150mm程度の管
35が取り付けられ、照射室8内に垂れ下がっている。Next, an X-ray fluorescence analyzer according to the second embodiment of the present invention will be described. The configuration of the device other than the holder 30 is the same as that of the device of the first embodiment, and therefore the description thereof is omitted. As for the holder 30, as shown in FIG. 5, in the recess 33a on the lower surface of the holder upper portion 33, a groove 23b elongated in the circumferential direction as in the first embodiment (FIG. 4B).
Instead, a short groove 33b communicating with the through hole 19a of the support plate 19 and extending in the radial direction to the inner circumference of the holder upper portion 33 as it is.
Are formed. On the other hand, the through hole 32 of the holder lower portion 31
A tube 35 having an inner diameter of 0.2 mm and a length of about 150 mm is attached to a, and hangs down inside the irradiation chamber 8.
【0021】つまり、第2実施形態の装置では、図5で
の下方からいうと、管35、ホルダ下部21の貫通孔3
1a、シール部材32の貫通孔32a、隔壁膜9の貫通
孔9a、支持板19の貫通孔19a、および、ホルダ上
部33の下面の溝33bが連通することにより、流路を
形成している。この流路は、照射室8および分光室14
(図8)にヘリウム置換のために導入されたヘリウム
を、試料1と隔壁膜9との間に形成される空間18に導
入するものである。また、この流路は、空間18に連通
して照射室8に延出する細長い管35を含むことによ
り、流路全体の長さを確保して、空間18から照射室8
および分光室14(図8)へ空気が逆流するのを防止す
る。したがって、第2実施形態の装置によっても、第1
実施形態の装置と同様の作用効果がある。That is, in the apparatus of the second embodiment, when viewed from below in FIG. 5, the pipe 35 and the through hole 3 of the lower holder portion 21.
1a, the through hole 32a of the sealing member 32, the through hole 9a of the partition wall film 9, the through hole 19a of the support plate 19, and the groove 33b on the lower surface of the holder upper part 33 communicate with each other to form a flow path. This flow path is provided in the irradiation chamber 8 and the spectroscopic chamber 14.
Helium introduced for helium substitution in FIG. 8 is introduced into the space 18 formed between the sample 1 and the partition film 9. Further, this flow path includes a long and narrow tube 35 which communicates with the space 18 and extends to the irradiation chamber 8, so that the entire length of the flow path is ensured and the space 18 is irradiated with the irradiation chamber 8.
And preventing backflow of air into the spectroscopic chamber 14 (FIG. 8). Therefore, even with the device of the second embodiment, the first
The same effects as the device of the embodiment are obtained.
【0022】次に、本発明の第3実施形態の蛍光X線分
析装置について説明する。この装置のホルダ40以外の
構成は、前記第1、2実施形態の装置と同様であるの
で、説明を省略する。ホルダ40については、図6に示
すように、図1の第1実施形態で流路を形成した、ホル
ダ下部21の貫通孔21a、シール部材22の貫通孔2
2a、隔壁膜9の貫通孔9a、支持板19の貫通孔19
a、および、ホルダ上部23の下面の溝23bがなく、
代わりに、ホルダ40に支持されない部分(支持板19
が当接しない部分)で隔壁膜9に設けられた直径0.1
mm程度の孔9aが、流路を形成している。この流路9
aも、照射室8および分光室14(図8)にヘリウム置
換のために導入されたヘリウムを、試料1と隔壁膜9と
の間に形成される空間18に導入するものである。しか
し、流路9aがきわめて短いので、空間18から照射室
8および分光室14(図8)へ空気が逆流するのを十分
に防止することはできない。したがって、第3実施形態
の装置によれば、簡単な構成で第1、2実施形態の装置
に近似する作用効果がある。Next, an X-ray fluorescence analyzer according to the third embodiment of the present invention will be described. The configuration of this device other than the holder 40 is the same as that of the devices of the first and second embodiments, and therefore the description thereof is omitted. As for the holder 40, as shown in FIG. 6, the through hole 21 a of the lower holder 21 and the through hole 2 of the seal member 22 in which the flow path is formed in the first embodiment of FIG.
2a, through hole 9a of partition wall film 9, through hole 19 of support plate 19
a, and there is no groove 23b on the lower surface of the holder upper part 23,
Instead, the portion not supported by the holder 40 (support plate 19
(The part which does not abut) has a diameter of 0.1
A hole 9a of about mm forms a flow path. This channel 9
Also in a, helium introduced into the irradiation chamber 8 and the spectroscopic chamber 14 (FIG. 8) for helium substitution is introduced into the space 18 formed between the sample 1 and the partition film 9. However, since the flow path 9a is extremely short, it is not possible to sufficiently prevent the air from flowing back from the space 18 to the irradiation chamber 8 and the spectroscopic chamber 14 (FIG. 8). Therefore, according to the device of the third embodiment, there is an effect similar to those of the devices of the first and second embodiments with a simple configuration.
【0023】次に、本発明の第4実施形態の蛍光X線分
析装置について説明する。この装置のホルダ50以外の
構成は、前記第1、2、3実施形態の装置と同様である
ので、説明を省略する。ホルダ50については、図7に
示すように、図1の第1実施形態で流路を形成した、ホ
ルダ下部21の貫通孔21a、シール部材22の貫通孔
22a、隔壁膜9の貫通孔9a、支持板19の貫通孔1
9a、および、ホルダ上部23の下面の溝23bがな
く、代わりに、ホルダ上部53の上面に形成された径方
向の溝53bに管55が埋め込まれ、その管55が、分
光室リークバルブ16Cと連通している。Next, an X-ray fluorescence analyzer according to the fourth embodiment of the present invention will be described. The configuration of this device other than the holder 50 is the same as that of the devices of the first, second, and third embodiments, and a description thereof will be omitted. As for the holder 50, as shown in FIG. 7, the through hole 21a of the holder lower portion 21, the through hole 22a of the seal member 22, the through hole 9a of the partition wall film 9 in which the flow path is formed in the first embodiment of FIG. Through hole 1 of support plate 19
9a and the groove 23b on the lower surface of the holder upper part 23 are not provided, but instead, the tube 55 is embedded in the radial groove 53b formed on the upper surface of the holder upper part 53, and the tube 55 is connected to the spectroscopic chamber leak valve 16C. It is in communication.
【0024】つまり、第4実施形態の装置では、図8の
真空配管15B、分光室リーク配管15C、分光室リー
クバルブ16Cおよび図7の管55が連通することによ
り、流路を形成している。この流路も、照射室8および
分光室14(図8)にヘリウム置換のために導入された
ヘリウムを、試料1と隔壁膜9との間に形成される空間
18に導入するものである。また、この流路は、第1、
2実施形態の流路よりもさらに長く形成されることによ
り、空間18から照射室8および分光室14(図8)へ
空気が逆流するのを防止する。したがって、第4実施形
態の装置によっても、第1、2実施形態の装置と同様の
作用効果がある。That is, in the apparatus of the fourth embodiment, the flow path is formed by the vacuum pipe 15B of FIG. 8, the spectroscopic chamber leak pipe 15C, the spectroscopic chamber leak valve 16C and the pipe 55 of FIG. 7 communicating with each other. . This channel also introduces the helium introduced into the irradiation chamber 8 and the spectroscopic chamber 14 (FIG. 8) for replacing helium into the space 18 formed between the sample 1 and the partition film 9. In addition, this flow path is
By being formed longer than the flow path of the second embodiment, backflow of air from the space 18 to the irradiation chamber 8 and the spectroscopic chamber 14 (FIG. 8) is prevented. Therefore, the device of the fourth embodiment also has the same effects as the devices of the first and second embodiments.
【0025】以上の実施形態の装置の流路では、図8の
照射室8および分光室14にヘリウム置換のために導入
されたヘリウムを、試料1と隔壁膜9との間に形成され
る空間18に導入したが、ヘリウムフロー配管15Aと
は別に第2のヘリウムフロー配管を流路として設けて、
その配管からのヘリウムを空間18に直接導入してもよ
い。In the flow path of the apparatus of the above embodiment, the helium introduced for helium substitution into the irradiation chamber 8 and the spectroscopic chamber 14 of FIG. 8 is a space formed between the sample 1 and the partition film 9. Although it was introduced into 18, a second helium flow pipe is provided as a flow path separately from the helium flow pipe 15A,
Helium from the pipe may be directly introduced into the space 18.
【0026】また、以上の実施形態の装置では、照射室
8および分光室14のヘリウム置換を早く完了させるた
めに真空引きを行ったが、真空引きせずに、ヘリウムを
高流量で大量に流して空気を追い出してから、低流量で
流すことにより、ヘリウム置換を行ってもよい。この場
合には、ヘリウム置換が完了する(空気の追い出しが限
界に達して、X線の吸収が安定する)のに時間を要する
が、照射室8および分光室14の真空引きをせず、それ
ゆえ、試料室3の真空引きやヘリウム置換も不要となる
ので、手順が簡単である。Further, in the apparatus of the above-mentioned embodiment, the evacuation was performed in order to quickly complete the helium replacement of the irradiation chamber 8 and the spectroscopic chamber 14. However, a large amount of helium was caused to flow at a high flow rate without evacuation. The helium may be replaced by expelling the air and then flowing it at a low flow rate. In this case, it takes time to complete the helium replacement (air ejection reaches the limit and X-ray absorption is stabilized), but the irradiation chamber 8 and the spectroscopic chamber 14 are not evacuated, and Therefore, the vacuuming of the sample chamber 3 and the replacement of helium are unnecessary, and the procedure is simple.
【0027】なお、以上の実施形態では、検出手段1
1,13が分光素子11と検出器13で構成される波長
分散型の蛍光X線分析装置を例にとったが、本発明は、
検出手段がSSDなどの検出器で構成されて分光素子を
含まないエネルギー分散型の蛍光X線分析装置にも、同
様に適用できる。In the above embodiment, the detecting means 1
The wavelength dispersive X-ray fluorescence analyzers 1 and 13 are composed of the spectroscopic element 11 and the detector 13, but the present invention is
The same can be applied to an energy dispersive X-ray fluorescence analyzer in which the detection means is a detector such as SSD and does not include a spectroscopic element.
【0028】[0028]
【発明の効果】以上詳細に説明したように、本発明の蛍
光X線分析装置によれば、試料と隔壁膜との間に形成さ
れる空間も、蛍光X線の吸収が少ないヘリウムで置換さ
れるので、そこでの蛍光X線の減衰や変動の問題が解消
され、高精度の分析ができる。As described in detail above, according to the X-ray fluorescence analyzer of the present invention, the space formed between the sample and the partition film is also replaced with helium, which absorbs less X-ray fluorescence. Therefore, the problems of the attenuation and fluctuation of the fluorescent X-rays are solved, and highly accurate analysis can be performed.
【図1】本発明の第1実施形態の蛍光X線分析装置にお
ける、試料と隔壁膜との間に形成される空間近傍の拡大
図であり、図2ないし図4のI−I断面を含む図であ
る。FIG. 1 is an enlarged view of a vicinity of a space formed between a sample and a partition film in an X-ray fluorescence analyzer according to a first embodiment of the present invention, including a cross section taken along line I-I of FIGS. 2 to 4. It is a figure.
【図2】(a)は、同装置のホルダ下部の上面図、
(b)は、その下面図である。FIG. 2A is a top view of a lower portion of a holder of the device,
(B) is a bottom view.
【図3】(a)は、同装置の隔壁膜および支持板の上面
図、(b)は、その下面図である。FIG. 3A is a top view of a partition film and a support plate of the same device, and FIG. 3B is a bottom view thereof.
【図4】(a)は、同装置のホルダ上部の上面図、
(b)は、その下面図である。FIG. 4 (a) is a top view of a holder upper part of the device,
(B) is a bottom view.
【図5】本発明の第2実施形態の蛍光X線分析装置にお
ける、試料と隔壁膜との間に形成される空間近傍の拡大
図である。FIG. 5 is an enlarged view of the vicinity of a space formed between a sample and a partition film in the fluorescent X-ray analysis apparatus according to the second embodiment of the present invention.
【図6】本発明の第3実施形態の蛍光X線分析装置にお
ける、試料と隔壁膜との間に形成される空間近傍の拡大
図である。FIG. 6 is an enlarged view of a vicinity of a space formed between a sample and a partition film in a fluorescent X-ray analysis apparatus according to a third embodiment of the present invention.
【図7】本発明の第4実施形態の蛍光X線分析装置にお
ける、試料と隔壁膜との間に形成される空間近傍の拡大
図である。FIG. 7 is an enlarged view of the vicinity of a space formed between a sample and a partition film in an X-ray fluorescence analyzer according to a fourth embodiment of the present invention.
【図8】ヘリウム雰囲気で分析を行う蛍光X線分析装置
を示す概略図である。FIG. 8 is a schematic diagram showing a fluorescent X-ray analyzer for performing analysis in a helium atmosphere.
1…試料、3…試料室、6…1次X線、7…X線源、8
…照射室、9…隔壁膜、9a…隔壁膜に設けられた孔、
10…試料から発生する蛍光X線、11,13…検出手
段、12…分光された蛍光X線、14…分光室、18…
試料と隔壁膜との間に形成される空間、20,30,4
0,50…ホルダ、35…空間に連通して照射室に延出
する管。1 ... Sample, 3 ... Sample chamber, 6 ... Primary X-ray, 7 ... X-ray source, 8
... irradiation chamber, 9 ... partition film, 9a ... holes provided in the partition film,
10 ... Fluorescent X-ray generated from sample, 11, 13 ... Detecting means, 12 ... Spectral fluorescent X-ray, 14 ... Spectroscopic chamber, 18 ...
Space formed between the sample and the partition film, 20, 30, 4
0, 50 ... Holder, 35 ... Tubes communicating with the space and extending to the irradiation chamber.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 木元 克美 大阪府高槻市赤大路町14番8号 理学電機 工業株式会社内 (72)発明者 迫 幸雄 大阪府高槻市赤大路町14番8号 理学電機 工業株式会社内 Fターム(参考) 2G001 AA01 BA04 CA01 EA01 KA01 PA07 QA01 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Katsumi Kimoto 14-8 Akaoji-cho, Takatsuki-shi, Osaka Rigaku Denki Industry Co., Ltd. (72) Inventor Yukio Sako 14-8 Akaoji-cho, Takatsuki-shi, Osaka Rigaku Denki Industry Co., Ltd. F-term (reference) 2G001 AA01 BA04 CA01 EA01 KA01 PA07 QA01
Claims (5)
る試料室と、 試料に1次X線を照射するX線源が収納される照射室
と、 前記試料室と照射室とを仕切るように配置されてX線を
通過させる隔壁膜と、 試料から発生する蛍光X線を分光して検出する検出手段
が収納され、前記照射室と連通する分光室とを備え、 前記照射室および分光室がヘリウム置換される蛍光X線
分析装置において、 試料と前記隔壁膜との間に形成される空間にヘリウムを
導入する流路を備えたことを特徴とする蛍光X線分析装
置。1. A sample chamber in which the sample is exchangeably housed in an air atmosphere, an irradiation chamber in which an X-ray source for irradiating the sample with primary X-rays is housed, and the sample chamber and the irradiation chamber are partitioned from each other. An irradiation chamber and a spectroscopic chamber, each of which is provided with a partition wall film that transmits X-rays, and a spectroscopic chamber that accommodates a detection unit that spectroscopically detects fluorescent X-rays generated from a sample and that communicates with the irradiation chamber. In the fluorescent X-ray analysis apparatus in which helium is replaced with helium, a flow path for introducing helium is provided in a space formed between the sample and the partition film.
ために導入されたヘリウムを前記空間に導入する蛍光X
線分析装置。2. The fluorescent X according to claim 1, wherein the flow path introduces helium introduced into the irradiation chamber and the spectroscopic chamber for helium replacement into the space.
Line analyzer.
して支持するホルダに、湾曲または曲折して形成され、
前記空間から前記照射室および分光室へ空気が逆流する
のを防止する蛍光X線分析装置。3. The holder according to claim 2, wherein the flow path is formed by bending or bending a holder that holds and supports the peripheral portion of the partition wall film in the thickness direction thereof.
An X-ray fluorescence analyzer for preventing air from flowing back from the space to the irradiation chamber and the spectroscopic chamber.
管を含み、前記空間から前記照射室および分光室へ空気
が逆流するのを防止する蛍光X線分析装置。4. The flow path according to claim 2, wherein the flow path includes a pipe that communicates with the space and extends to the irradiation chamber, and prevents air from flowing back from the space to the irradiation chamber and the spectroscopic chamber. X-ray fluorescence analyzer.
分析装置。5. The X-ray fluorescence analyzer according to claim 2, wherein the flow path is a hole provided in the partition film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002056800A JP3629539B2 (en) | 2002-03-04 | 2002-03-04 | X-ray fluorescence analyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002056800A JP3629539B2 (en) | 2002-03-04 | 2002-03-04 | X-ray fluorescence analyzer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003254919A true JP2003254919A (en) | 2003-09-10 |
JP3629539B2 JP3629539B2 (en) | 2005-03-16 |
Family
ID=28667225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002056800A Expired - Fee Related JP3629539B2 (en) | 2002-03-04 | 2002-03-04 | X-ray fluorescence analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3629539B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008050321A2 (en) | 2006-10-24 | 2008-05-02 | B-Nano Ltd. | An interface, a methof for observing an object within a non-vacuum environment and a scanning electron microscope |
EP2270479A2 (en) * | 2009-06-30 | 2011-01-05 | HORIBA, Ltd. | Fluorescent X-ray analyzer and fluorescent X-ray analysis method |
JP2011013029A (en) * | 2009-06-30 | 2011-01-20 | Horiba Ltd | Fluorescent x-ray analyzer |
JP2011013027A (en) * | 2009-06-30 | 2011-01-20 | Horiba Ltd | Fluorescent x-ray analyzer |
RU2444004C2 (en) * | 2010-12-15 | 2012-02-27 | Общество с ограниченной ответственностью "АНАЛИТНАУЧЦЕНТР" (ООО "АНАЛИТНАУЧЦЕНТР") | Apparatus for x-ray radiometric analysis of composition of pulp and solutions |
JP2014130169A (en) * | 2014-04-10 | 2014-07-10 | Horiba Ltd | X-ray fluorescence analyzer |
EP2998730A4 (en) * | 2013-05-27 | 2016-05-04 | Shimadzu Corp | X-ray fluorescence analyzer |
US9431213B2 (en) | 2008-07-03 | 2016-08-30 | B-Nano Ltd. | Scanning electron microscope, an interface and a method for observing an object within a non-vacuum environment |
US9466458B2 (en) | 2013-02-20 | 2016-10-11 | B-Nano Ltd. | Scanning electron microscope |
RU2619400C2 (en) * | 2015-03-13 | 2017-05-15 | Валерий Валентинович Морозов | Method for automatic analysis of pulp composition in grinding and flotation operations and device for its implementation |
RU2714223C2 (en) * | 2019-06-17 | 2020-02-13 | Общество с ограниченной ответственностью "АНАЛИТНАУЧЦЕНТР" (ООО "АНАЛИТНАУЧЦЕНТР") | Multi-element x-ray radiometric analyzer of composition of substance |
EP4174479A4 (en) * | 2020-06-30 | 2024-08-14 | Shimadzu Corp | X-ray fluorescence analysis device |
JP7562603B2 (en) | 2022-06-20 | 2024-10-07 | 日本電子株式会社 | X-ray fluorescence analysis device and measurement method |
-
2002
- 2002-03-04 JP JP2002056800A patent/JP3629539B2/en not_active Expired - Fee Related
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2080014A2 (en) * | 2006-10-24 | 2009-07-22 | B-Nano Ltd. | An interface, a methof for observing an object within a non-vacuum environment and a scanning electron microscope |
EP2080014B1 (en) * | 2006-10-24 | 2016-08-31 | B-Nano Ltd. | An interface, a method for observing an object within a non-vacuum environment and a scanning electron microscope |
WO2008050321A2 (en) | 2006-10-24 | 2008-05-02 | B-Nano Ltd. | An interface, a methof for observing an object within a non-vacuum environment and a scanning electron microscope |
US9431213B2 (en) | 2008-07-03 | 2016-08-30 | B-Nano Ltd. | Scanning electron microscope, an interface and a method for observing an object within a non-vacuum environment |
JP2011013029A (en) * | 2009-06-30 | 2011-01-20 | Horiba Ltd | Fluorescent x-ray analyzer |
JP2011013027A (en) * | 2009-06-30 | 2011-01-20 | Horiba Ltd | Fluorescent x-ray analyzer |
EP2270479A2 (en) * | 2009-06-30 | 2011-01-05 | HORIBA, Ltd. | Fluorescent X-ray analyzer and fluorescent X-ray analysis method |
RU2444004C2 (en) * | 2010-12-15 | 2012-02-27 | Общество с ограниченной ответственностью "АНАЛИТНАУЧЦЕНТР" (ООО "АНАЛИТНАУЧЦЕНТР") | Apparatus for x-ray radiometric analysis of composition of pulp and solutions |
US9466458B2 (en) | 2013-02-20 | 2016-10-11 | B-Nano Ltd. | Scanning electron microscope |
EP2998730A4 (en) * | 2013-05-27 | 2016-05-04 | Shimadzu Corp | X-ray fluorescence analyzer |
JP2014130169A (en) * | 2014-04-10 | 2014-07-10 | Horiba Ltd | X-ray fluorescence analyzer |
RU2619400C2 (en) * | 2015-03-13 | 2017-05-15 | Валерий Валентинович Морозов | Method for automatic analysis of pulp composition in grinding and flotation operations and device for its implementation |
RU2714223C2 (en) * | 2019-06-17 | 2020-02-13 | Общество с ограниченной ответственностью "АНАЛИТНАУЧЦЕНТР" (ООО "АНАЛИТНАУЧЦЕНТР") | Multi-element x-ray radiometric analyzer of composition of substance |
EP4174479A4 (en) * | 2020-06-30 | 2024-08-14 | Shimadzu Corp | X-ray fluorescence analysis device |
JP7562603B2 (en) | 2022-06-20 | 2024-10-07 | 日本電子株式会社 | X-ray fluorescence analysis device and measurement method |
Also Published As
Publication number | Publication date |
---|---|
JP3629539B2 (en) | 2005-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003254919A (en) | Fluorescent x-ray analyzer | |
US8064570B2 (en) | Hand-held XRF analyzer | |
US5832054A (en) | Fluorescent x-ray analyzer with quickly evacuable cover cases | |
CN109239117B (en) | Analytical device and method for directly measuring trace aluminum, silicon, phosphorus, sulfur and chlorine content in sample | |
JP3726161B2 (en) | X-ray fluorescence analyzer | |
AU2010252922B2 (en) | Arrangement of analyzer measuring window | |
EP2998730B1 (en) | X-ray fluorescence analyzer | |
JP2011203102A (en) | Sample holder and sample analysis method | |
EP2116842B1 (en) | An X-ray fluorescence analyzer with gas-filled chamber | |
JP5517506B2 (en) | X-ray fluorescence analyzer | |
US20030133536A1 (en) | X-ray fluorescence spectrometer | |
JP5782154B2 (en) | X-ray fluorescence analyzer | |
US6590955B2 (en) | Open chamber-type X-ray analysis apparatus | |
WO2022004000A1 (en) | X-ray fluorescence analysis device | |
JPH05256803A (en) | Instrument for x-ray fluorescence analysis | |
JP2000162161A (en) | Fluorescent x-ray analyzing device | |
CN104502386B (en) | X fluorescent x ray spectroscopy x instrument | |
JP2010066085A (en) | Cell of fluorescent x-ray analyzer and fluorescent x-ray analyzer | |
JP5524521B2 (en) | X-ray fluorescence analyzer | |
JP2003215073A (en) | Wavelength scattering fluorescent x-ray analyzer | |
JP2011013028A (en) | Fluorescent x-ray analyzer and fluorescent x-ray analysis method | |
JPH10206357A (en) | X-ray analysis device | |
JP2004037409A (en) | Cell for optical absorption spectrum analysis, and measuring method for silanol group concentration using it | |
JP2001289802A (en) | X-ray fluorescence analyzer and x-ray detector used therefor | |
JP7562603B2 (en) | X-ray fluorescence analysis device and measurement method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040720 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040915 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041116 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041118 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3629539 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071224 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081224 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081224 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091224 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091224 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091224 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101224 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111224 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121224 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131224 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |