WO2004088217A1 - Pulse tube refrigerator - Google Patents

Pulse tube refrigerator Download PDF

Info

Publication number
WO2004088217A1
WO2004088217A1 PCT/JP2004/004253 JP2004004253W WO2004088217A1 WO 2004088217 A1 WO2004088217 A1 WO 2004088217A1 JP 2004004253 W JP2004004253 W JP 2004004253W WO 2004088217 A1 WO2004088217 A1 WO 2004088217A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse tube
heat
temperature side
tube
regenerator
Prior art date
Application number
PCT/JP2004/004253
Other languages
French (fr)
Japanese (ja)
Inventor
Yoichi Matsubara
Hiroyuki Sugita
Akihiro Kushino
Original Assignee
Japan Aerospace Exploration Agency
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency, Nihon University filed Critical Japan Aerospace Exploration Agency
Priority to JP2005504195A priority Critical patent/JP4362632B2/en
Priority to US10/551,372 priority patent/US20060277925A1/en
Priority to EP04723753A priority patent/EP1610075A1/en
Publication of WO2004088217A1 publication Critical patent/WO2004088217A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1403Pulse-tube cycles with heat input into acoustic driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1407Pulse-tube cycles with pulse tube having in-line geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1411Pulse-tube cycles characterised by control details, e.g. tuning, phase shifting or general control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1413Pulse-tube cycles characterised by performance, geometry or theory
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir

Definitions

  • the present invention relates to a pulse tube refrigerator, and more particularly, to a pulse tube refrigerator provided with a pressure vibration generator that generates pressure vibration by heat.
  • the pulse tube refrigerator is a refrigerator including a pulse tube, a regenerator connected to a low temperature side of the pulse tube, and a compressor connected to a high temperature side of the regenerator.
  • Pulse tube refrigerators have no low-temperature moving parts.
  • a high-pressure valve and a low-pressure valve provided between the compressor and the regenerator are alternately opened and closed to generate pressure oscillation in the pulse tube.
  • Gifford's basic pulse tube refrigerator utilizes the surface heat-pumping effect.
  • a buffer (reservoir tank) is connected to the high temperature side of the pulse tube via an orifice.
  • the cooling action occurs based on the phase difference between the pressure oscillation in the pulse tube and the displacement of the gas column (virtual gas piston formed in the pulse tube) in the pulse tube.
  • the flow path between the orifice and the pulse pipe and the flow path between the regenerator and the compressor are connected via a bypass path having another orifice.
  • FIG. 9 shows the energy flow pattern in a device that converts thermal energy into gas pressure energy using a regenerator. It shows what the energy flow looks like by changing the boundary conditions at both ends of the regenerator.
  • (b) and (C) do not require input work at the cold end of the regenerator.
  • a large sweep volume is required on the low temperature side.
  • (C) is a more realistic condition, and (b) is an ideal condition.
  • a conventional orifice type pulse tube refrigerator will be described with reference to FIG.
  • the pulse tube refrigerator has a pulse tube and a regenerator connected to the low-temperature side of the pulse tube. And a buffer tank connected to the high-temperature end of the pulse tube.
  • a compressor is connected to the high temperature side (room temperature side) of the regenerator.
  • a cold station that generates extremely low temperatures is formed between the pulse tube and the regenerator.
  • the regenerator is made by punching a mesh of braided copper wire into a disk shape, and stacking a plurality of such disk-shaped nets in a metal cylinder. If necessary, additional spheres such as lead may be added.
  • a gas piston is a gas that is always present in a pulse tube, and it is named after it acts as a solid biston that expands and contracts. Note the energy flow change caused by the gas passing through the orifice due to the pressure oscillation.
  • the entropy increases because the pressure drops and the fluid flows into the buffer in an equal-enthalpy manner. Even when the pressure inside the pulse tube is low, the entropy also increases because it flows out of the buffer with a pressure drop in an isenthalpic manner.
  • the entropy continues to increase as long as the vibration continues, so that continuous work is absorbed (or consumed) in this part.
  • the enthalpy flow in the orifice is zero on the cycle average.
  • gas biston acts like an expander, lowering the temperature of the junction between the pulse tube and the regenerator, and as a refrigerator. Function. Therefore, the mechanism of refrigeration generation is different from that of the basic pulse tube refrigerator, but rather follows that of the GM cycle or Stirling cycle.
  • An ideal regenerator is an infinite space with limited heat and infinite heat transfer surface area.
  • the most popular type of actual regenerator is a thin stainless steel tube with many fine-grained wire meshes laminated in a circle.
  • the enthalpy flow is the value obtained by integrating the product of the low pressure specific heat of the fluid, the temperature, and the flow rate for one cycle, and is indicated by ⁇ >.
  • the only way to improve the efficiency of a given regenerator, in other words to reduce ⁇ , is to reduce the flow rate.
  • a decrease in flow rate also leads to a reduction in work load. The key is how to increase the work per unit flow.
  • the reason for lowering the temperature better than a basic pulse tube is that the work absorbed by the orifice is significantly greater than the direct heat transport through the pulse tube wall.
  • the surface heat-pumping effect is limited by the compression ratio, but in the case of the orifice type, even at a low compression ratio, the flow rate can be controlled by adjusting the orifice opening to increase the work absorption. That's why. Entropy increases because the enthalpy flow through the orifice is zero, and the work flow decreases. The increased entropy is released as heat in the heat exchanger. In other words, work was converted to heat. On the other hand, the actual amount of refrigeration is, as evident from Fig.
  • Fig. 11 shows a pressure vibration generator proposed in Japanese Patent Application No. 2002-179141.
  • this pressure vibration generator the heat input section is heated to generate self-excited vibration in the work transmission tube.
  • this work is amplified through the heat exchanger.
  • the work is transmitted to the work transmission tube and output to the output unit.
  • the output work can be larger than the input work.
  • a part of the output work is used as energy for driving the cylinder.
  • the pressure vibration generator can be driven continuously.
  • the pressure vibration generator can be made much smaller.
  • the “pulse tube refrigerator” disclosed in Japanese Patent Application Laid-Open No. 11-182958 is a pulse tube refrigerator that is reduced in size and size by shortening the length of a resonance tube of a heat driven compressor.
  • a self-excited vibration is generated in the working gas by heating and cooling the working gas sealed in the resonance tube of the heat driven compressor.
  • the pressure amplitude of the working gas from the heat-driven compressor is applied to the pulse tube and regenerator of the refrigerator to cool and liquefy the fluid in the container such as hydrogen.
  • a mixed gas of He and Xe is used as the mixed gas.
  • the present invention provides a pulse tube, a regenerator connected to a low-temperature side of the pulse tube, a vibration generator connected to a high-temperature side of the regenerator, and a high-temperature side of the pulse tube.
  • a vibration generator for a pulse tube refrigerator equipped with a connected orifice-equipped reservoir is provided by a heat drive tube comprising a heat storage unit, a heat exchanger for heating, a heat exchanger for heat dissipation, and a work transfer tube; and a heat drive tube.
  • the heat-driven pressure wave generator is provided with a phase shifter having one end connected to the output end of the heat-driven tube, and a return path connecting the other end of the phase shifter and the input end of the heat-driven tube.
  • FIG. 1 is a conceptual diagram of a heat-driven pressure wave generator used for a pulse tube refrigerator in a first embodiment of the present invention
  • FIG. 2 is a conceptual diagram of a heat-driven pressure wave generator used for a pulse tube refrigerator according to a second embodiment of the present invention
  • FIG. 3 is a conceptual diagram of a heat-driven pressure wave generator used in a pulse tube refrigerator according to a third embodiment of the present invention
  • FIG. 4 is a conceptual diagram of a heat-driven pressure wave generator used in a pulse tube refrigerator according to a fourth embodiment of the present invention
  • FIG. 5 is a conceptual diagram of a resonator used in a pulse tube refrigerator according to a fifth embodiment of the present invention.
  • FIG. 6 is a conceptual diagram of a phase shifter used in a pulse tube refrigerator according to a sixth embodiment of the present invention.
  • FIG. 7 is a conceptual diagram of a leaky phase shifter used in a pulse tube refrigerator according to a seventh embodiment of the present invention.
  • FIG. 8 is a diagram showing an operation experiment result of the heat-driven pressure wave generator used in the pulse tube refrigerator in the third and fourth embodiments of the present invention.
  • FIG. 9 is a diagram showing an energy flow pattern in a heat-driven pressure wave generator
  • FIG. 10 is a diagram showing an energy flow pattern in a conventional pulse tube refrigerator
  • FIG. 11 is a conceptual diagram of a heat-driven pressure wave generator used in a conventional pulse tube refrigerator.
  • a first embodiment of the present invention is a pulse tube refrigerator driven by a heat driven pressure wave generator including a heat driven tube, a phase shifter, and a return path.
  • FIG. 1 is a conceptual diagram showing a configuration of a pulse tube refrigerator according to a first embodiment of the present invention.
  • a pulse tube refrigerator 1 is an orifice type pulse tube refrigerator.
  • This pulse tube refrigerator has a pulse tube, a regenerator connected to the low temperature side of the pulse tube, a vibration generator connected to the high temperature side of the regenerator, and an orifice connected to the high temperature side of the pulse tube. And a reservoir.
  • the regenerator 2 is a means for forming an isothermal space having a constant temperature gradient. It is also called a regenerator. Addition
  • the heat exchanger for heat 3 is a means for supplying heat to the high-temperature side of the regenerator 2.
  • the heat exchanger 4 for heat radiation is a means for cooling the low temperature side of the heat storage unit 2 to about room temperature.
  • the work transmission pipe 5 is an adiabatic space, and is a pipe that transmits work by the pressure wave of the working gas.
  • the return path 6 is a tube that returns work from the phase shifter 7 to the regenerator 2.
  • the phase shifter 7 is means for delaying the phase shift of the pressure wave of the working gas by a piston that freely reciprocates in the cylinder.
  • the heat-exchanging heat exchanger 4a is a means for cooling the work output side of the work transfer pipe 5 to about room temperature.
  • the heat exchanger 4 for heat dissipation, the heat storage unit 2, the heat exchanger 3 for heating, the work transfer tube 5, and the heat exchanger 4 for heat dissipation constitute a heat driven tube.
  • the heat drive tube is a device that heats the high-temperature part of the regenerator 2 and cools the low-temperature part to form a constant temperature gradient in the regenerator 2 and amplify the work due to the pressure wave of the working gas. is there.
  • the heat driven tube, the return path 6 and the phase shifter 7 constitute a heat driven pressure wave generator.
  • the work flow goes from the heat-dissipating heat exchanger 4 at the temperature Ta to the heating heat exchanger 3 at the temperature Th. In other words, it is characterized by flowing in the opposite direction to the heat flow.
  • the work flow is amplified in the process of passing through the regenerator 2. A part of the amplified work flow is supplied from the return path 6 to the heat exchanger 4 for radiating the temperature Ta via the phase shifter 7 (displacer).
  • the remaining work is supplied as a drive source for the pulse tube refrigerator 1. Initially, the vibration of the phase shifter 7 (displacer) was assumed, but if the temperature difference between the heating temperature Th and the heat radiation temperature Ta is sufficiently large, it is necessary to drive the phase shifter 7 (displacer) continuously. Even if work is consumed, work to be supplied to the pulse tube refrigerator 1 is left, so self-excited vibration is obtained, and work required for driving is supplied from outside Need not be. .
  • the piston in the cylinder vibrates.
  • the returned work is converted into a pressure wave having a phase different from that of the input pressure wave in the phase shifter 7 (displacer), and is returned to the low temperature side of the regenerator 2.
  • the returned work is amplified by the regenerator 2, transmitted to the work transfer pipe 5, and output as a traveling wave.
  • the heat driven tube functions as an amplifier that amplifies and outputs the input work.
  • a part of the output work is returned to the phase shifter 7 (displacer) again, and the heat driven tube continuously generates a pressure wave.
  • This heat-driven pressure wave generator can be applied to an inertance type pulse tube refrigerator, and can also be used as a generator.
  • the pulse tube refrigerator is driven by the heat driven pressure wave generator including the heat driven tube, the phase shifter, and the return path.
  • the heat driven pressure wave generator including the heat driven tube, the phase shifter, and the return path.
  • the second embodiment of the present invention is a pulse tube refrigerator driven by a heat driven pressure wave generator including a heat driven tube, a resonator, a phase shifter, and a return path.
  • the heat-driven pressure wave generator is a Stirling engine type.
  • FIG. 2 is a conceptual diagram showing a configuration of a pulse tube refrigerator according to a second embodiment of the present invention.
  • a resonator 8 is a gas spring resonator provided on the work output side of the heat driven tube.
  • Other configurations are the same as those of the first embodiment.
  • the basic configuration of this pulse tube refrigerator is the same as the conventional pulse tube refrigerator shown in FIG. The difference is that the piston of the phase shifter can reciprocate freely.
  • the heat-driven pressure wave generator is composed of the heat-driven tube, the return path 6, the phase shifter 7, and the resonator 8.
  • the pulse tube refrigerator according to the second embodiment of the present invention configured as described above will be described.
  • the heating heat exchanger 3 When the heating heat exchanger 3 is sufficiently heated, self-excited vibration occurs in the work transfer tube 5, and the resonator 8 resonates with a predetermined phase difference with respect to the self-excited vibration.
  • the pressure wave of the working gas resonates in the resonator 8 provided on the output side of the heat drive tube, and a standing wave is generated. Since the pressure wave generated by the resonance in the resonator 8 is a standing wave, it cannot be taken out as work.
  • the exchange of work with the resonator 8 is zero in one cycle.
  • the amplitude of the working gas moving in the heat driven tube increases, and the work amplified by the heat driven tube is sent to the pulse tube refrigerator 1.
  • the work generated in the regenerator 2 flows in the opposite direction to the heat flow.
  • the operation of the phase shifter 7 is the same as in the first embodiment.
  • This heat-driven pressure wave generator is a gas-driven self-excited Stirling engine.
  • the state of the energy flow of the Stirling cycle engine is as shown in Fig. 9 (a).
  • the heat Q in is supplied from the high temperature side of the regenerator 2 and is removed from the low temperature side of the regenerator 2 as heat Q out.
  • the phase shifter 7 is used as the acoustic inertia of the return path.
  • the phase shifter 7 and the resonator 8 are symmetrically arranged to reduce mechanical vibration.
  • a flexible bearing is used to support the piston in a floating state.
  • the diameter of the piston is 52 mm.
  • the movable mass is 1.85kg.
  • the size of the regenerator 2 is 52 mm in diameter. It is 57mm long and is filled with a 200 mesh screen.
  • the clearance between the piston and cylinder is about 15 ⁇ .
  • the heating temperature is 580580, the average pressure is 1.5Mpa, the driving frequency is 24.5Hz, and the minimum work amplification factor is 1.57.
  • the driving frequency is higher than the resonance frequency of the piston, 23.5 Hz.
  • This heat-driven pressure wave generator can be applied to an inertance type pulse tube refrigerator, and can also be used for a generator.
  • the pulse tube refrigerator is driven by the heat driven pressure wave generator including the heat driven tube, the resonator, the phase shifter, and the return path.
  • the heat driven pressure wave generator including the heat driven tube, the resonator, the phase shifter, and the return path.
  • the third embodiment of the present invention is a pulse tube refrigerator driven by a heat driven pressure wave generator including a heat driven tube and a resonator.
  • the heat-driven pressure wave generator is a standing wave type.
  • FIG. 3 is a conceptual diagram showing a configuration of a pulse tube refrigerator according to a third embodiment of the present invention.
  • a regenerator 2 is a means for forming an isothermal space having a constant temperature gradient.
  • the heat exchanger for heating 3 is a means for supplying heat to the high-temperature side of the regenerator 2.
  • the heat radiation heat exchanger 4 is means for cooling the low temperature side of the heat storage unit 2 to about room temperature.
  • the high temperature buffer 16 is a tube that reflects a pressure wave and generates a standing wave in the heat driven tube.
  • the heat storage tube 2, the heat exchanger 3 for heating, the heat exchanger 4 for heat radiation, and the high-temperature buffer 16 constitute a heat driven tube.
  • the resonator 8 is a gas spring resonator provided at a connection between the heat driven tube and the pulse tube refrigerator 1.
  • the thermally driven tube and the resonator 8 constitute a thermally driven pressure wave generator.
  • the operation of the pulse tube refrigerator according to the third embodiment of the present invention configured as described above will be described.
  • the pressure wave of the working gas resonates in the resonator 8, and a standing wave is generated.
  • the closed end of the high-temperature puffer 16 is the node of the standing wave gas displacement.
  • the connection of the resonator 8 is the antinode of the standing wave.
  • the amplitude of the working gas moving in the heat driven tube increases, and the work amplified by the heat driven tube is sent to the pulse tube refrigerator 1.
  • the exchange of work with the resonator 8 is zero in one cycle.
  • This heat-driven pressure wave generator is a standing wave thermoacoustic engine.
  • a rough net regenerator 2 called a stack is used.
  • the direction of work flow is the same as the direction of heat flow. As shown in Fig. 9 (d), energy flows.
  • the resonator 8 increases the amplitude of the antinode of the standing wave even when the length of the thermally driven tube is short, so that the pressure wave can be generated efficiently even in a small size.
  • This heat-driven pressure wave generator can be applied to an inertance-type pulse tube refrigerator, and can also be used as a generator.
  • the pulse tube refrigerator is driven by the heat-driven pressure wave generator including the heat-driven tube and the resonator.
  • a pulse tube refrigerator without electric noise can be realized, and the cooling efficiency can be increased with a simple configuration.
  • the fourth embodiment of the present invention is a pulse tube refrigerator driven by a heat driven pressure wave generator having a resonator on the side opposite to the output side of the heat driven tube.
  • FIG. 4 is a conceptual diagram showing a configuration of a pulse tube refrigerator according to a fourth embodiment of the present invention.
  • a pulse tube refrigerator 1 is an orifice type pulse tube refrigerator.
  • the heat storage unit 2 is a means for forming an isothermal space having a constant temperature gradient.
  • the heating heat exchanger 3 is a means for supplying heat to the high-temperature side of the regenerator 2.
  • the heat-dissipating heat exchanger 4 is means for cooling the low-temperature side of the heat storage unit 2 to about room temperature.
  • the work transmission pipe 5 is an adiabatic space, and is a pipe that transmits work by a pressure wave of the working gas.
  • the heat-exchanging heat exchanger 4a is means for cooling the work output side of the work transfer pipe 5 to about room temperature.
  • the heat-dissipating heat exchanger 4, the heat storage unit 2, the heating heat exchanger 3, the work transfer tube 5, and the heat-dissipating heat exchanger 4 constitute a heat driven tube.
  • the heat drive tube is a device that heats a high-temperature portion of the heat storage device 2 and cools the low-temperature portion, thereby forming a constant temperature gradient in the heat storage device 2 and amplifying work due to the pressure wave of the working gas.
  • Resonator 8 is a gas spring resonator provided on the opposite side of the connection between the heat driven tube and pulse tube refrigerator 1.
  • the heat driven tube and the resonator 8 constitute a heat driven pressure wave generator.
  • a pair of left and right opposed resonators 8 (displacers) is mounted on the heat exchanger 4 for heat radiation at the temperature Ta. Part of the heat flow from the heating heat exchanger 3 at the temperature Th is converted to a work flow. Further, a part thereof is taken out from the heat-radiating heat exchanger 4 side at the temperature Ta and used to drive the resonator 8 (displacer). The remaining work is taken out from the heating heat exchanger 3 at the temperature Th and supplied to the pulse tube refrigerator 1 via the work transfer pipe 5. Since no loop is formed, there is no need to worry about instability due to circulation.
  • the pressure wave of the working gas resonates by the resonator 8, and a standing wave is generated in the resonator 8.
  • the amplitude of the working gas moving in the heat driven tube increases, and the work amplified by the heat driven tube is sent to the pulse tube refrigerator 1.
  • the exchange of work with the resonator 8 is 0 in one cycle.
  • oscillation was performed at a resonance frequency of 31.5 Hz using the working gas as the healing gas. With an average pressure of 2.3 Mpa suitable for driving a pulse tube refrigerator, a pressure ratio of 1.1 or more was obtained.
  • the heating temperature Th is 723 K and the cooling temperature Ta is 290 K. Once the pressure oscillation started, the oscillation continued until the heating temperature fell below 450 K.
  • the experimental results are shown in FIG.
  • This heat-driven pressure wave generator can be applied to an inertance type pulse tube refrigerator, and can also be used for a generator.
  • the pulse tube refrigerator is driven by the heat driven pressure wave generator including the resonator on the side opposite to the output side of the heat driven tube. Therefore, a compact pulse tube refrigerator free from vibration and electric noise can be realized, and the cooling efficiency can be increased with a simple configuration.
  • the fifth embodiment of the present invention is a pulse tube refrigerator including a gas spring resonator between a pulse tube and an orifice.
  • FIG. 5 is a conceptual diagram showing a configuration of a pulse tube refrigerator according to a fifth embodiment of the present invention.
  • a resonator 8a is a resonator in which biston reciprocates using a closed gas as a spring.
  • the reservoir 13 is a buffer tank for storing the working gas.
  • the orifice 14 is a passage through which the working gas passes with resistance.
  • Other configurations are the same as those of the fourth embodiment.
  • the ideal resonance condition means that the phase difference between the gas displacement and the pressure oscillation at the hot end of the pulse tube exceeds 90 degrees.
  • the pressure vibration generator can be of any type.
  • the pulse tube refrigerator is provided with the gas spring resonator between the pulse tube and the orifice, so that a long resonance tube is not used.
  • a compact pulse tube refrigerator free from vibration and electrical noise can be realized, and the cooling efficiency can be increased with a simple configuration.
  • a sixth embodiment of the present invention is a pulse tube refrigerator including a phase shifter between a pulse tube and an orifice.
  • FIG. 6 is a conceptual diagram showing a configuration of a pulse tube refrigerator according to a sixth embodiment of the present invention.
  • a phase shifter 7 is means for delaying the moving phase of the working gas.
  • Other configurations are the same as those of the fourth embodiment.
  • the operation of the pulse tube refrigerator according to the sixth embodiment of the present invention configured as described above will be described.
  • the phase shifter 7 provided between the pulse tube 15 and the orifice 14 delays the moving phase of the working gas, thereby increasing the cooling efficiency.
  • the phase shifter 7 can increase the amount of phase shift of the gas displacement with respect to the pressure wave, thereby increasing the cooling efficiency. Assuming that the phase without the orifice 14 is 0 degrees, the phase difference becomes 90 degrees when the orifice 14 is provided. Further, when the phase shifter 7 is provided, the phase difference becomes about 110 degrees.
  • Any type of pressure vibration generator for driving the pulse tube refrigerator can be used.
  • the pulse tube refrigerator is provided with the phase shifter between the pulse tube and the orifice. It is possible to realize a pulse tube refrigerator that does not have a simple configuration and increase the cooling efficiency with a simple configuration.
  • a seventh embodiment of the present invention is a pulse tube refrigerator including a leakage phase shifter between a pulse tube and a reservoir.
  • FIG. 7 is a conceptual diagram showing a configuration of a pulse tube refrigerator according to a seventh embodiment of the present invention.
  • the leak phase shifter 12 is a displacer having a gap through which a working gas passes between the cylinder and the piston. There are no orifices.
  • the leaky phase shifter 12 provided between the pulse tube 15 and the reservoir 13 has a function of both a displacer and an orifice. Functionally, it is almost the same as the sixth embodiment.
  • the phase shifter and the orifice are connected in series, whereas in this example, the phase shifter and the orifice are functionally connected in parallel.
  • the pressure vibration generator may be of any type.
  • the pulse tube refrigerator has the configuration in which the leakage phase shifter is provided between the pulse tube and the reservoir. realizable. Industrial applicability
  • the present invention provides a pulse tube, a regenerator connected to the low-temperature side of the pulse tube, a vibration generator connected to the high-temperature side of the regenerator, and a pulse generator.
  • the vibration generator of the pulse tube refrigerator equipped with a reservoir with an orifice connected to the high-temperature side of the heat pipe is a heat-driven pipe consisting of a heat storage unit, a heat exchanger for heating, a heat exchanger for heat dissipation, and a work transfer tube.
  • a phase shifter having one end connected to the output end of the heat driven tube, and a feedback path connecting the other end of the phase shifter and the input end of the heat driven tube. Therefore, a compact pulse tube refrigerator free from vibration and noise can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Reciprocating Pumps (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

A pulse tube refrigerator that is small in size and free from vibration and electric noise. A pulse tube refrigerator (1) has a pulse tube, a cool storage unit connected to the low- temperature side of the pulse tube, a vibration generator connected to the high-temperature side of the cool storage unit, and a reservoir with an orifice, connected to the high-temperature side of the pulse tube. The vibration generator is a thermally driven pressure wave generator having thermal drive tubes (heat exchangers (4-4a) for heat radiation), a phase shifter (7), and a return path (6). Sufficiently heating a heat exchanger (3) for heating causes self-exciting vibration to be generated in a work transmission tube (5), and work is returned to the thermal drive tubes through the phase shifter (7) and the return path (6) arranged on the work output side of the work transmission tube (5). The work is amplified by the thermal drive tubes, and is then outputted from the work transmission tube (5) and fed to the pulse tube refrigerator (1). A vibration generator for a pulse tube refrigerator that is small in size and free from vibration and noise can be realized.

Description

明 細 書 パルス管冷凍機 技術分野  Description Pulse tube refrigerator Technical field
本発明は、 パルス管冷凍機に関し、 特に、 熱により圧力振動を発生する圧力 振動発生装置を備えたパルス管冷凍機に関する。 背景技術  The present invention relates to a pulse tube refrigerator, and more particularly, to a pulse tube refrigerator provided with a pressure vibration generator that generates pressure vibration by heat. Background art
パルス管冷凍機は、 パルス管と、 パルス管の低温側に接続された蓄冷器と、 蓄冷器の高温側に接続された圧縮機とを備えた構成の冷凍機である。 パルス管 冷凍機には、 低温の可動部が無い。 モータ駆動の圧縮機を用いるパルス管冷凍 機では、 圧縮機と蓄冷器の間に設けられた高圧バルブと低圧バルブを交互に開 閉することにより、 パルス管内に圧力振動を生じさせている。 Gifford による基 本型パルス管冷凍機では、 surface heat-pumping effectを利用している。 オリフィ ス型パルス管冷凍機では、 パルス管の高温側には、 オリフィスを介してパッフ ァ (リザーバタンク) が接続されている。 パルス管内の圧力振動とパルス管内 でのガス柱 (パルス管内に形成される仮想のガスピス トン) の変位との位相差 に基づいて、 冷却作用が生じる。 ダブルインレット型では、 オリフィスとパル ス管の間の流路と、 蓄冷器と圧縮機の間の流路を、 別のオリフィスを有するバ ィパス流路を介して接続している。  The pulse tube refrigerator is a refrigerator including a pulse tube, a regenerator connected to a low temperature side of the pulse tube, and a compressor connected to a high temperature side of the regenerator. Pulse tube refrigerators have no low-temperature moving parts. In a pulse tube refrigerator using a motor-driven compressor, a high-pressure valve and a low-pressure valve provided between the compressor and the regenerator are alternately opened and closed to generate pressure oscillation in the pulse tube. Gifford's basic pulse tube refrigerator utilizes the surface heat-pumping effect. In the orifice type pulse tube refrigerator, a buffer (reservoir tank) is connected to the high temperature side of the pulse tube via an orifice. The cooling action occurs based on the phase difference between the pressure oscillation in the pulse tube and the displacement of the gas column (virtual gas piston formed in the pulse tube) in the pulse tube. In the double inlet type, the flow path between the orifice and the pulse pipe and the flow path between the regenerator and the compressor are connected via a bypass path having another orifice.
スターリングエンジンなどの熱機関について、 第 9図に、 蓄熱器を使って熱 エネルギーをガスの圧力エネルギーに変換する装置におけるエネルギー流のパ ターンを示す。 蓄熱器の両端の境界条件を変えて、 エネルギー流がどのように なるかを示したものである。 これらのパターンのうち、 ( b ) と ( C ) は、 蓄熱 器の低温側の端で入力仕事を要求しない。 他方、 低温側で大きな掃引体積を必 要とする。 (C ) がより現実的な条件であり、 (b ) は、 理想的な条件である。 第 1 0図を参照しながら、 従来のオリフィス型パルス管冷凍機について説明 する。 パルス管冷凍機は、 パルス管と、 パルス管の低温側に接続された蓄冷器 と、 パルス管の高温端に接続されたバッファタンクとを備える。 蓄冷器の高温 側 (室温側).に、 圧縮機が接続される。 パルス管と蓄冷器の間の部分に、 極低 温を発生するコールドステーションが形成されている。 蓄冷器は、 銅線をメッ シュ状に編んだ網体を円板状に打ち抜き、 この円板状の網体を複数枚重ねるよ うにして、 金属製の筒体内に収容したものである。 必要に応じて、 鉛等の球体 を追加充填することもある。 For a heat engine such as a Stirling engine, Fig. 9 shows the energy flow pattern in a device that converts thermal energy into gas pressure energy using a regenerator. It shows what the energy flow looks like by changing the boundary conditions at both ends of the regenerator. Of these patterns, (b) and (C) do not require input work at the cold end of the regenerator. On the other hand, a large sweep volume is required on the low temperature side. (C) is a more realistic condition, and (b) is an ideal condition. A conventional orifice type pulse tube refrigerator will be described with reference to FIG. The pulse tube refrigerator has a pulse tube and a regenerator connected to the low-temperature side of the pulse tube. And a buffer tank connected to the high-temperature end of the pulse tube. A compressor is connected to the high temperature side (room temperature side) of the regenerator. A cold station that generates extremely low temperatures is formed between the pulse tube and the regenerator. The regenerator is made by punching a mesh of braided copper wire into a disk shape, and stacking a plurality of such disk-shaped nets in a metal cylinder. If necessary, additional spheres such as lead may be added.
パルス管内に、 点線で示されるような 'ガスピス トン, を想定することによ り、 その基本的動作原理を容易に説明することができる。 ガスピス トンとは、 パルス管内に常に存在しているガスのことで、 あたかも伸縮する固体ビス トン のように作用することから、 この名前が付けられた。 圧力振動によってオリフ イスを通過するガスのもたらすエネルギー流変化に注目する。 パルス管内が高 圧のとき、 圧力降下を伴って、 バッファに等ェンタルピー的に流入するから、 エントロピーが増加する。 パルス管内が低圧のときも、 圧力降下を伴ってバッ ファから等ェンタルピー的に流出するから、 エントロピーも増加する。  By assuming a 'gas piston' as shown by the dotted line in the pulse tube, its basic operating principle can be easily explained. A gas piston is a gas that is always present in a pulse tube, and it is named after it acts as a solid biston that expands and contracts. Note the energy flow change caused by the gas passing through the orifice due to the pressure oscillation. When the pressure inside the pulse tube is high, the entropy increases because the pressure drops and the fluid flows into the buffer in an equal-enthalpy manner. Even when the pressure inside the pulse tube is low, the entropy also increases because it flows out of the buffer with a pressure drop in an isenthalpic manner.
すなわち、 振動が続く限りエントロピーが増大し続けるので、 この部分で連 続した仕事の吸収 (あるいは消費) が行われていることになる。 ただし、 オリ フィス内でのェンタルピー流は、 サイクル平均ではゼロである。 その結果、 パ ルス管内を一定の仕事が通過していることになり、 ガスビストンがあたかも膨 張機のように作用して、 パルス管と蓄冷器との接合部の温度が低下し、 冷凍機 として機能する。 したがって、 冷凍発生のメカニズムは、 基本型パルス管冷凍 機とは異なり、 むしろ GMサイクルやスターリングサイクルの冷凍発生機構に 準ずるものである。  In other words, the entropy continues to increase as long as the vibration continues, so that continuous work is absorbed (or consumed) in this part. However, the enthalpy flow in the orifice is zero on the cycle average. As a result, a certain amount of work passes through the pulse tube, and gas biston acts like an expander, lowering the temperature of the junction between the pulse tube and the regenerator, and as a refrigerator. Function. Therefore, the mechanism of refrigeration generation is different from that of the basic pulse tube refrigerator, but rather follows that of the GM cycle or Stirling cycle.
オリフィス型パルス管冷凍機では、 原理的に臨界温度勾配の制限を受けない ので、 基本型パルス管冷凍機では到達し得なかった低温度に達成できる。 しか し、 効率に関しては問題がある。 膨張仕事が全て熱に変換されるため、 仕事と して回収することができないので、 大容量の冷凍システムには適さない。 スタ 一リングサイクルや GM サイクルの場合に比較して、 蓄冷器を通過するェンタ ルビー流が大きく、 冷凍効率が悪くて大きい蓄冷器を必要とする。  Since the orifice type pulse tube refrigerator is not restricted in principle by the critical temperature gradient, it is possible to achieve a low temperature that could not be reached with the basic type pulse tube refrigerator. However, there is a problem with efficiency. Since all expanded work is converted to heat, it cannot be recovered as work and is not suitable for large-capacity refrigeration systems. Compared with the stirrer cycle and GM cycle, the large amount of enthalby flows through the regenerator and the refrigeration efficiency is poor, requiring a large regenerator.
理想的な蓄冷器とは、 無限大の比熱と無限大の熱伝達表面積とを限られた空 間内に有しており、 しかも流れの軸方向に無限小、 径方向に無限大の熱伝導率 を持っているような構造体をいう。 例えば、 蓄冷器の両端から流入するガス温 度がそれぞれ 300K、 30Κで、 蓄冷器が一定の温度勾配を保っていれば、 300Κ で流入したガスは 30Κで流出し、 30Κで流入したガスは 300Κで流出する。 つ まり流れ方向の任意の位置でのガスは温度振動していないことになる。 An ideal regenerator is an infinite space with limited heat and infinite heat transfer surface area. A structure that has a thermal conductivity of infinity in the axial direction of the flow and infinity in the radial direction. For example, if the temperature of the gas flowing in from both ends of the regenerator is 300K and 30 そ れ ぞ れ, respectively, and if the regenerator keeps a constant temperature gradient, the gas flowing in at 300 流出 will flow out at 30Κ and the gas flowing at 30Κ will flow at 300Κ. Leaked at That is, the gas at any position in the flow direction does not oscillate in temperature.
一方、 実際の蓄冷器で最もポピュラーなのは、 円形に打ち抜いた目の細かい 金網を薄肉ステンレス管に多数枚積層したものである。 当然、 理想状態から遠 く離れているので、 ガスは温度振動し、 その結果としてェンタルピーの流れが 生じ、 実質冷凍量を低減させる。 ェンタルピーの流れとは、 流体の低圧比熱と 温度と流量の積を 1サイクル周積分した値で、 <Η〉で示す。 与えられた蓄冷器 の効率を向上させるためには、 つまりく Η>を減少させるためには、 流量を減少 させるほか無い。 しかし、 流量の減少は仕事量の減少にもつながる。 重要なの は、 いかにして単位流量あたりの仕事量を増大させるかである。  On the other hand, the most popular type of actual regenerator is a thin stainless steel tube with many fine-grained wire meshes laminated in a circle. Of course, far from the ideal state, the gas oscillates with temperature, resulting in enthalpy flow, reducing the actual refrigeration. The enthalpy flow is the value obtained by integrating the product of the low pressure specific heat of the fluid, the temperature, and the flow rate for one cycle, and is indicated by <Η>. The only way to improve the efficiency of a given regenerator, in other words to reduce Η, is to reduce the flow rate. However, a decrease in flow rate also leads to a reduction in work load. The key is how to increase the work per unit flow.
基本型パルス管では、 理想的な蓄冷器を想定しているので、 蓄冷器内のェン タルピー流く H〉Rはゼロになっている。 エネルギー流の添え字 Rは蓄冷器内、 P はパルス管内を表す。 第 1 0図には、 蓄冷器の非効率が、 実質冷凍量の減少に どのようにかかわっているかを同時に示してある。 まず、 パルス管内でのエネ ルギ一流に注目すると、 基本型パルス管の場合と異なり、 冷凍の元となる右向 きの熱流く Q >pが全く無い。 もし、パルス管内壁が完全断熱ならば、熱流は無く、 く Q>p = 0であり、 したがって、 く W>p = <H>pであるが、 実際には、 むしろわ ずかに左向きのく Q >Pが存在している。 Since the basic pulse tube assumes an ideal regenerator, the enthalpy flowing H> R in the regenerator is zero. The suffix R of the energy flow is inside the regenerator and P is inside the pulse tube. Figure 10 also shows how the inefficiency of the regenerator contributes to the reduction of the actual amount of refrigeration. First, focusing on the energy flow in the pulse tube, there is no right-sided heat flow Q> p, which is the source of freezing, unlike the basic type pulse tube. If the inner wall of the pulse tube is completely insulated, there is no heat flow, Q> p = 0, and thus W> p = <H> p, but in fact, it is rather slightly leftward Q> P exists.
それにもかかわらず、 基本型パルス管より更によく温度が下がる理由は、 ォ リフィスによって吸収される仕事量が、 パルス管壁を介しての直接的熱輸送量 より著しく大きいからである。 つまり、 surface heat-pumping effectは、 圧縮比の 制限を受けるが、 オリフィス型の場合は、 低圧縮比でも、 オリフィス開度の調 整で通過流量を制御し、 仕事吸収量を増大させることが可能だからである。 ォ リフィスを通過するェンタルピー流がゼロで、 仕事流が減少するわけだから、 エントロピーが増大する。 その増大したエントロピ一は、 熱交換器内で熱とし て放出される。 つまり、 仕事が熱に変換されたわけである。 一方、 実際の冷凍量は、 第 1 0図から明らかなように、 パルス管を通過するく H >Pから、 蓄冷器を通過するく H >Rを差し引いたものになる。 冷凍機に最低到 達温度が存在するのは、 入力が一定ならば温度の低下と共にく H>pが減少し、 同 時にく Ή>κが増大し、最終的に冷凍量 Qはく Η>ρ—く H >R = 0となるからである。 したがって、 少しでも最低到達温度を低下させたければ、 パルス管を通過する 仕事流を一定に保ちつつ流量を減少させ、 く H〉R を減少させることが重要とな る。 Nevertheless, the reason for lowering the temperature better than a basic pulse tube is that the work absorbed by the orifice is significantly greater than the direct heat transport through the pulse tube wall. In other words, the surface heat-pumping effect is limited by the compression ratio, but in the case of the orifice type, even at a low compression ratio, the flow rate can be controlled by adjusting the orifice opening to increase the work absorption. That's why. Entropy increases because the enthalpy flow through the orifice is zero, and the work flow decreases. The increased entropy is released as heat in the heat exchanger. In other words, work was converted to heat. On the other hand, the actual amount of refrigeration is, as evident from Fig. 10, the difference between H> P passing through the pulse tube and H> R passing through the regenerator. The minimum temperature reached in the refrigerator is that if the input is constant, H> p decreases as the temperature decreases, く> κ increases at the same time, and finally the refrigeration amount Q increases Η> This is because ρ—H> R = 0. Therefore, if it is desired to lower the minimum temperature at least, it is important to reduce the flow rate while keeping the work flow passing through the pulse tube constant, and to reduce H> R.
第 1 1図は、 特願 2002-179141号で提案した圧力振動発生装置である。 この圧 力振動発生装置では、 熱入力部を加熱して、 仕事伝達チューブ内に自励振動を 生じさせる。 共振器を共振させ、 熱交換器に仕事を入力すると、 この仕事が、 熱交換器を介して増幅される。 その仕事が、 仕事伝達チューブに伝達されて、 出力部に出力される。 出力される仕事を、 入力した仕事よりも大きくできる。 出力される仕事の一部を、 シリンダの駆動用のエネルギーとして用いる。 加熱 するだけで、 圧力振動発生装置を継続的に駆動できる。 圧力振動発生装置を格 段に小型化できる。  Fig. 11 shows a pressure vibration generator proposed in Japanese Patent Application No. 2002-179141. In this pressure vibration generator, the heat input section is heated to generate self-excited vibration in the work transmission tube. When the resonator is resonated and work is input to the heat exchanger, this work is amplified through the heat exchanger. The work is transmitted to the work transmission tube and output to the output unit. The output work can be larger than the input work. A part of the output work is used as energy for driving the cylinder. By simply heating, the pressure vibration generator can be driven continuously. The pressure vibration generator can be made much smaller.
特開平 11-182958号公報に開示された 「パルス管冷凍機」 は、 熱駆動型圧縮機 の共鳴管の長さを短縮することにより、 小型コンパクト化したパルス管冷凍機 である。 熱駆動型圧縮機の共鳴管内に封入された作動ガスを加熱 ·冷却するこ とにより、 作動ガスに自励振動を発生させる。 熱駆動型圧縮機からの作動ガス の圧力振幅を、 冷凍機本体のパルス管および蓄冷器に作用させて、 水素などの 容器内の流体を冷却液化する。 共鳴管内に封入される作動ガスに、 ヘリウムガ スと他の希ガスとの混合ガスを用い、 共鳴管長さを短縮する。 特に、 混合ガス として Heと Xeの混合ガスを用いる。  The “pulse tube refrigerator” disclosed in Japanese Patent Application Laid-Open No. 11-182958 is a pulse tube refrigerator that is reduced in size and size by shortening the length of a resonance tube of a heat driven compressor. A self-excited vibration is generated in the working gas by heating and cooling the working gas sealed in the resonance tube of the heat driven compressor. The pressure amplitude of the working gas from the heat-driven compressor is applied to the pulse tube and regenerator of the refrigerator to cool and liquefy the fluid in the container such as hydrogen. Use a mixed gas of helium gas and another rare gas as the working gas sealed in the resonance tube to shorten the length of the resonance tube. In particular, a mixed gas of He and Xe is used as the mixed gas.
しかし、 従来のパルス管冷凍機では、 モータで駆動する圧縮機を利用する場 合、 振動が大きくて電気ノイズも発生するという問題がある。 スターリングサ イタルなどを利用する圧縮機では、 共振管のサイズが大きくなるという問題が ある。 空洞共振器を利用するものでは、 振動が大きいという問題がある。 特許 文献 1に開示されたパルス管冷凍機の熱駆動型圧縮機でも、 このような問題'を 解決できない。 本発明は、 上記従来の問題を解決して、 小型で振動と電気ノイズのないパル ス管冷凍機を実現することを目的とする。 発明の開示 However, conventional pulse tube refrigerators have a problem that when using a compressor driven by a motor, vibration is large and electric noise is generated. Compressors that use a Stirling vitality, for example, have a problem that the size of the resonance tube increases. In the case of using a cavity resonator, there is a problem that vibration is large. Even the heat-driven compressor of the pulse tube refrigerator disclosed in Patent Document 1 cannot solve such a problem. An object of the present invention is to solve the conventional problems described above and to realize a compact pulse tube refrigerator free from vibration and electric noise. Disclosure of the invention
上記の課題を解決するために、 本発明では、 パルス管と、 パルス管の低温側 に接続された蓄冷器と、 蓄冷器の高温側に接続された振動発生装置と、 パルス 管の高温側に接続されたオリフィス付リザーパとを備えたパルス管冷凍機の振 動発生装置を、 蓄熱器と加熱用熱交換器と放熱用熱交換器と仕事伝達管とから なる熱駆動管と、 熱駆動管の出力端に一端が接続された移相器と、 移相器の他 端と熱駆動管の入力端を結ぶ帰還路とを備えた熱駆動圧力波発生装置とする構 成とした。 このように構成したことにより、 小型で振動とノイズのないパルス 管冷凍機を実現できる。  In order to solve the above problems, the present invention provides a pulse tube, a regenerator connected to a low-temperature side of the pulse tube, a vibration generator connected to a high-temperature side of the regenerator, and a high-temperature side of the pulse tube. A vibration generator for a pulse tube refrigerator equipped with a connected orifice-equipped reservoir is provided by a heat drive tube comprising a heat storage unit, a heat exchanger for heating, a heat exchanger for heat dissipation, and a work transfer tube; and a heat drive tube. The heat-driven pressure wave generator is provided with a phase shifter having one end connected to the output end of the heat-driven tube, and a return path connecting the other end of the phase shifter and the input end of the heat-driven tube. With this configuration, a compact pulse tube refrigerator free from vibration and noise can be realized.
すなわち、 振動発生装置の共振器や移相器に、 固体ディスプレーサを採用し、 それを対向型にすることにより、 振動の低減と小型化が実現できる。 従来の共 鳴管型の熱駆動圧力波発生装置では、 小さいと共鳴しないので、 大型にならざ るを得なかった。 小型にしょうとすると、 動作ガスと管壁との摩擦により、 効 率が非常に低くなり、 実用にならなかった。 固体ディスプレーサの共振器や移 相器を使うことで、 小型でも効率のよい熱駆動圧力波発生装置を実現すること ができる。 同様な理由で、 仕事を吸収する側に、 固体ディスプレーサの共振器 や移相器を設けることで、 小型でも効率のよいパルス管冷凍機を実現すること ができる。 図面の簡単な説明  In other words, by using a solid displacer for the resonator and phase shifter of the vibration generator and making it a facing type, vibration can be reduced and the size can be reduced. The conventional resonance tube-type heat-driven pressure wave generator would have to be large because it would not resonate if it was small. Attempting to reduce the size made the efficiency extremely low due to friction between the operating gas and the pipe wall, making it impractical. The use of a solid-state displacer resonator or phase shifter makes it possible to realize a compact and efficient heat-driven pressure wave generator. For the same reason, by providing a solid displacer resonator and phase shifter on the side that absorbs work, a compact and efficient pulse tube refrigerator can be realized. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の第 1の実施の形態におけるパルス管冷凍機に用いる熱駆 動圧力波発生装置の概念図、  FIG. 1 is a conceptual diagram of a heat-driven pressure wave generator used for a pulse tube refrigerator in a first embodiment of the present invention,
第 2図は、 本発明の第 2の実施の形態におけるパルス管冷凍機に用いる熱駆 動圧力波発生装置の概念図、  FIG. 2 is a conceptual diagram of a heat-driven pressure wave generator used for a pulse tube refrigerator according to a second embodiment of the present invention,
第 3図は、 本発明の第 3の実施の形態におけるパルス管冷凍機に用いる熱駆 動圧力波発生装置の概念図、 第 4図は、 本発明の第 4の実施の形態におけるパルス管冷凍機に用いる熱駆 動圧力波発生装置の概念図、 FIG. 3 is a conceptual diagram of a heat-driven pressure wave generator used in a pulse tube refrigerator according to a third embodiment of the present invention, FIG. 4 is a conceptual diagram of a heat-driven pressure wave generator used in a pulse tube refrigerator according to a fourth embodiment of the present invention,
第 5図は、 本発明の第 5の実施の形態におけるパルス管冷凍機に用いる共振 器の概念図、  FIG. 5 is a conceptual diagram of a resonator used in a pulse tube refrigerator according to a fifth embodiment of the present invention,
第 6図は、 本発明の第 6の実施の形態におけるパルス管冷凍機に用いる移相 器の概念図、  FIG. 6 is a conceptual diagram of a phase shifter used in a pulse tube refrigerator according to a sixth embodiment of the present invention,
第 7図は、 本発明の第 7の実施の形態におけるパルス管冷凍機に用いる漏洩 移相器の概念図、  FIG. 7 is a conceptual diagram of a leaky phase shifter used in a pulse tube refrigerator according to a seventh embodiment of the present invention,
第 8図は、 本発明の第 3、 4の実施の形態におけるパルス管冷凍機に用いる 熱駆動圧力波発生装置の動作実験結果を示す図、  FIG. 8 is a diagram showing an operation experiment result of the heat-driven pressure wave generator used in the pulse tube refrigerator in the third and fourth embodiments of the present invention,
第 9図は、熱駆動圧力波発生装置におけるエネルギー流のパターンを示す図、 第 1 0図は、 従来のパルス管冷凍機におけるエネルギー流のパターンを示す 図、  FIG. 9 is a diagram showing an energy flow pattern in a heat-driven pressure wave generator, FIG. 10 is a diagram showing an energy flow pattern in a conventional pulse tube refrigerator,
第 1 1図は、 従来のパルス管冷凍機に用いる熱駆動圧力波発生装置の概念図 である。 発明を実施するための最良の形態  FIG. 11 is a conceptual diagram of a heat-driven pressure wave generator used in a conventional pulse tube refrigerator. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について、 第 1図〜第 8図を参照しながら詳細に 説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 to 8.
(第 1の実施の形態)  (First Embodiment)
本発明の第 1の実施の形態は、 熱駆動管と移相器と帰還路とを備えた熱駆動 圧力波発生装置により駆動するパルス管冷凍機である。  A first embodiment of the present invention is a pulse tube refrigerator driven by a heat driven pressure wave generator including a heat driven tube, a phase shifter, and a return path.
第 1図は、 本発明の第 1の実施の形態におけるパルス管冷凍機の構成を示す 概念図である。 第 1図において、 パルス管冷凍機 1は、 オリフィス型パルス管 冷凍機である。 このパルス管冷凍機は、 パルス管と、 パルス管の低温側に接続 された蓄冷器と、 蓄冷器の高温側に接続された振動発生装置と、 パルス管の高 温側に接続されたオリフィス付リザーバとを備える。 図示は省略してあるが、 第 1 0図に示したものと同じである。 蓄熱器 2は、 一定の温度勾配をもつ等温 空間を形成する手段である。 再生器 (regenerator) とも呼ばれるものである。 加 熱用熱交換器 3は、 蓄熱器 2の高温側に熱を供給する手段である。 放熱用熱交 換器 4は、 蓄熱器 2の低温側を室温程度に冷却する手段である。 仕事伝達管 5 は、 断熱空間であり、 動作ガスの圧力波により仕事を伝達する管である。 帰還 路 6は、 移相器 7から蓄熱器 2に仕事を戻す管である。 移相器 7は、 シリンダ 内を自由に往復運動するピス トンにより、 動作ガスの圧力波の移相を遅らせる 手段である。 放熱用熱交換器 4 aは、 仕事伝達管 5の仕事出力側を室温程度に 冷却する手段である。 放熱用熱交換器 4と蓄熱器 2と加熱用熱交換器 3と仕事 伝達管 5と放熱用熱交換器 4とで、 熱駆動管を構成している。 熱駆動管は、 蓄 熱器 2の高温部を加熱し、 低温部を冷却することにより、 蓄熱器 2に一定の温 度勾配を形成して、 動作ガスの圧力波による仕事を増幅する装置である。 熱駆 動管と帰還路 6と移相器 7とで、 熱駆動圧力波発生装置を構成している。 FIG. 1 is a conceptual diagram showing a configuration of a pulse tube refrigerator according to a first embodiment of the present invention. In FIG. 1, a pulse tube refrigerator 1 is an orifice type pulse tube refrigerator. This pulse tube refrigerator has a pulse tube, a regenerator connected to the low temperature side of the pulse tube, a vibration generator connected to the high temperature side of the regenerator, and an orifice connected to the high temperature side of the pulse tube. And a reservoir. Although illustration is omitted, it is the same as that shown in FIG. The regenerator 2 is a means for forming an isothermal space having a constant temperature gradient. It is also called a regenerator. Addition The heat exchanger for heat 3 is a means for supplying heat to the high-temperature side of the regenerator 2. The heat exchanger 4 for heat radiation is a means for cooling the low temperature side of the heat storage unit 2 to about room temperature. The work transmission pipe 5 is an adiabatic space, and is a pipe that transmits work by the pressure wave of the working gas. The return path 6 is a tube that returns work from the phase shifter 7 to the regenerator 2. The phase shifter 7 is means for delaying the phase shift of the pressure wave of the working gas by a piston that freely reciprocates in the cylinder. The heat-exchanging heat exchanger 4a is a means for cooling the work output side of the work transfer pipe 5 to about room temperature. The heat exchanger 4 for heat dissipation, the heat storage unit 2, the heat exchanger 3 for heating, the work transfer tube 5, and the heat exchanger 4 for heat dissipation constitute a heat driven tube. The heat drive tube is a device that heats the high-temperature part of the regenerator 2 and cools the low-temperature part to form a constant temperature gradient in the regenerator 2 and amplify the work due to the pressure wave of the working gas. is there. The heat driven tube, the return path 6 and the phase shifter 7 constitute a heat driven pressure wave generator.
上記のように構成された本発明の第 1の実施の形態におけるパルス管冷凍機 の動作を説明する。 左右対称に設置された移相器 7 (ディスプレーサ) が対称 に振動すると、 動作ガスが振動する。 その結果、 温度 Thに加熱された加熱用熱 交換器 3から温度 Taに冷却された放熱用熱交換器 4に、 熱の流れが発生する。 その結果、 系内に圧力振動が発生する。 この圧力振動と動作ガスの変位との間 には特定の位相差があり、 それが仕事の流れになる。 この仕事の流れというェ ネルギ一は、 系に取り込まれた熱エネルギーの一部が仕事ェ'ネルギ一に変換さ れたことによるものである。 その証拠に、 系から排出される熱エネルギーは、 取り込まれた熱エネルギーより少ない。  The operation of the pulse tube refrigerator according to the first embodiment of the present invention configured as described above will be described. When the phase shifter 7 (displacer) installed symmetrically vibrates symmetrically, the working gas vibrates. As a result, a heat flow is generated from the heating heat exchanger 3 heated to the temperature Th to the heat dissipation heat exchanger 4 cooled to the temperature Ta. As a result, pressure oscillations occur in the system. There is a specific phase difference between this pressure oscillation and the displacement of the working gas, which becomes the work flow. The energy of this work flow is due to the conversion of a part of the heat energy taken into the system to the work energy. Evidence suggests that heat energy emitted from the system is less than heat energy captured.
仕事の流れは、 温度 Taの放熱用熱交換器 4から温度 Thの加熱用熱交換器 3 側に向かう。 つまり、 熱の流れとは反対方向に流れることが特徴である。 その 仕事の流れは、 蓄熱器 2を通過する過程で増幅される。 その増幅された仕事流 の一部は、 移相器 7 (ディスプレーサ) を介して帰還路 6から温度 Taの放熱用 熱交換器 4に供給される。 残りの仕事は、 パルス管冷凍機 1の駆動源として供 給される。 最初に移相器 7 (ディスプレーサ) の振動を仮定したが、加熱温度 Th と放熱温度 Ta との温度差が充分大きければ、 移相器 7 (ディスプレーサ) を連 続的に駆動させるのに必要な仕事を消費しても、 パルス管冷凍機 1に供給する 仕事が残されるので、 自励振動が得られ、 駆動に必要な仕事を外部から供給す る必要はない。 . The work flow goes from the heat-dissipating heat exchanger 4 at the temperature Ta to the heating heat exchanger 3 at the temperature Th. In other words, it is characterized by flowing in the opposite direction to the heat flow. The work flow is amplified in the process of passing through the regenerator 2. A part of the amplified work flow is supplied from the return path 6 to the heat exchanger 4 for radiating the temperature Ta via the phase shifter 7 (displacer). The remaining work is supplied as a drive source for the pulse tube refrigerator 1. Initially, the vibration of the phase shifter 7 (displacer) was assumed, but if the temperature difference between the heating temperature Th and the heat radiation temperature Ta is sufficiently large, it is necessary to drive the phase shifter 7 (displacer) continuously. Even if work is consumed, work to be supplied to the pulse tube refrigerator 1 is left, so self-excited vibration is obtained, and work required for driving is supplied from outside Need not be. .
仕事伝達管 5から出力された仕事の一部が、 移相器 7 (ディスプレーサ) に 戻されると、 シリンダ内のピストンを振動させる。 戻された仕事は、 移相器 7 (ディスプレーサ) で、 入力圧力波と位相の異なる圧力波に変換され、 蓄熱器 2の低温側に帰還される。 帰還された仕事は、 蓄熱器 2で増幅され、 仕事伝達 管 5に伝達された後、 進行波として出力される。 熱駆動管は、 入力された仕事 を増幅して出力する増幅器として機能する。 出力された仕事の一部は、 再度移 相器 7 (ディスプレ一サ) に戻されて、 熱駆動管は継続的に圧力波を発生する。 この熱駆動圧力波発生装置は、 イナータンス型パルス管冷凍機に適用すること もできるし、 発電機などにも使用できる。  When part of the work output from the work transfer pipe 5 is returned to the phase shifter 7 (displacer), the piston in the cylinder vibrates. The returned work is converted into a pressure wave having a phase different from that of the input pressure wave in the phase shifter 7 (displacer), and is returned to the low temperature side of the regenerator 2. The returned work is amplified by the regenerator 2, transmitted to the work transfer pipe 5, and output as a traveling wave. The heat driven tube functions as an amplifier that amplifies and outputs the input work. A part of the output work is returned to the phase shifter 7 (displacer) again, and the heat driven tube continuously generates a pressure wave. This heat-driven pressure wave generator can be applied to an inertance type pulse tube refrigerator, and can also be used as a generator.
上記のように、 本発明の第 1の実施の形態では、 パルス管冷凍機を、 熱駆動 管と移相器と帰還路とを備えた熱駆動圧力波発生装置により駆動する構成とし たので、 小型で振動と電気ノイズのないパルス管冷凍機が実現でき、 簡単な構 成で冷却効率を高めることができる。  As described above, in the first embodiment of the present invention, the pulse tube refrigerator is driven by the heat driven pressure wave generator including the heat driven tube, the phase shifter, and the return path. A compact pulse tube refrigerator free from vibration and electrical noise can be realized, and cooling efficiency can be increased with a simple configuration.
(第 2の実施の形態) (Second embodiment)
本発明の第 2の実施の形態は、 熱駆動管と、 共振器と移相器と帰還路とを備 えた熱駆動圧力波発生装置により駆動するパルス管冷凍機である。 熱駆動圧力 波発生装置は、 スターリングエンジン型である。  The second embodiment of the present invention is a pulse tube refrigerator driven by a heat driven pressure wave generator including a heat driven tube, a resonator, a phase shifter, and a return path. The heat-driven pressure wave generator is a Stirling engine type.
第 2図は、 本発明の第 2の実施の形態におけるパルス管冷凍機の構成を示す 概念図である。 第 2図において、 共振器 8は、 熱駆動管の仕事出力側に設けた ガススプリング共振器である。 その他の構成は、 第 1の実施の形態と同じであ る。 このパルス管冷凍機の基本的な構成は、 第 1 1図に示した従来のパルス管 冷凍機と同じである。 移相器のビストンが自由に往復運動できる点が異なる。 熱駆動管と帰還路 6と移相器 7と共振器 8で、 熱駆動圧力波発生装置を構成し ている。  FIG. 2 is a conceptual diagram showing a configuration of a pulse tube refrigerator according to a second embodiment of the present invention. In FIG. 2, a resonator 8 is a gas spring resonator provided on the work output side of the heat driven tube. Other configurations are the same as those of the first embodiment. The basic configuration of this pulse tube refrigerator is the same as the conventional pulse tube refrigerator shown in FIG. The difference is that the piston of the phase shifter can reciprocate freely. The heat-driven pressure wave generator is composed of the heat-driven tube, the return path 6, the phase shifter 7, and the resonator 8.
上記のように構成された本発明の第 2の実施の形態におけるパルス管冷凍機 の動作を説明する。 加熱用熱交換器 3が十分に加熱されると、 仕事伝達管 5内 に自励振動が生じ、 この自励振動に対して共振器 8が所定の位相差で共振する。 熱駆動管の出力側に設けた共振器 8に、 動作ガスの圧力波が共振して、 定在波 が発生する。 共振器 8での共振によって生じる圧力波は定在波であるために、 仕事として何ら取り出せるものではない。 共振器 8との仕事のやり取りは、 1 周期で差し引き 0である。 熱駆動管内を移動する動作ガスの振幅が大きくなり、 熱駆動管で増幅された仕事が、 パルス管冷凍機 1に送り出される。 蓄熱器 2内 で生成された仕事は、 熱の流れと逆方向に流れる。 移相器 7の動作は、 第 1の 実施の形態と同じである。 The operation of the pulse tube refrigerator according to the second embodiment of the present invention configured as described above will be described. When the heating heat exchanger 3 is sufficiently heated, self-excited vibration occurs in the work transfer tube 5, and the resonator 8 resonates with a predetermined phase difference with respect to the self-excited vibration. The pressure wave of the working gas resonates in the resonator 8 provided on the output side of the heat drive tube, and a standing wave is generated. Since the pressure wave generated by the resonance in the resonator 8 is a standing wave, it cannot be taken out as work. The exchange of work with the resonator 8 is zero in one cycle. The amplitude of the working gas moving in the heat driven tube increases, and the work amplified by the heat driven tube is sent to the pulse tube refrigerator 1. The work generated in the regenerator 2 flows in the opposite direction to the heat flow. The operation of the phase shifter 7 is the same as in the first embodiment.
この熱駆動圧力波発生装置は、 気体駆動自励スターリングエンジンである。 スターリングサイクルエンジンのエネルギー流の様子は、 第 9図 (a ) に示し た通りである。 熱 Q inは、 蓄熱器 2の高温側から供給され、 熱 Q out として蓄 熱器 2の低温側から除去される。 移相器 7は、 帰還路の音響慣性として用いら れている。 移相器 7と共振器 8は、 機械的な振動を減らすために対称的に配置 されている。 浮かした状態でピス トンを支持するために、 撓み軸受が用いられ ている。 ピス トンの直径は、 52mmである。 可動質量は、 1.85kgである。 蓄熱器 2の大きさは、 直径 52mmである。 長さ 57mmであり、 200メッシュのスクリー ンで満たされている。 ピス トンとシリンダの隙間は、 約 15 μ ιηである。 加熱温 度 580 Κ、 平均圧力 1.5Mpa、 駆動周波数 24.5Hzで、 最小仕事増幅率は、 1.57で ある。 駆動周波数は、 ピス トンの共振周波数 23.5Hz より高い。 この熱駆動圧力 波発生装置は、 イナ一タンス型パルス管冷凍機に適用することもできるし、 発 電機などにも使用できる。  This heat-driven pressure wave generator is a gas-driven self-excited Stirling engine. The state of the energy flow of the Stirling cycle engine is as shown in Fig. 9 (a). The heat Q in is supplied from the high temperature side of the regenerator 2 and is removed from the low temperature side of the regenerator 2 as heat Q out. The phase shifter 7 is used as the acoustic inertia of the return path. The phase shifter 7 and the resonator 8 are symmetrically arranged to reduce mechanical vibration. A flexible bearing is used to support the piston in a floating state. The diameter of the piston is 52 mm. The movable mass is 1.85kg. The size of the regenerator 2 is 52 mm in diameter. It is 57mm long and is filled with a 200 mesh screen. The clearance between the piston and cylinder is about 15 μιη. The heating temperature is 580580, the average pressure is 1.5Mpa, the driving frequency is 24.5Hz, and the minimum work amplification factor is 1.57. The driving frequency is higher than the resonance frequency of the piston, 23.5 Hz. This heat-driven pressure wave generator can be applied to an inertance type pulse tube refrigerator, and can also be used for a generator.
上記のように、 本発明の第 2の実施の形態では、 パルス管冷凍機を、 熱駆動 管と共振器と移相器と帰還路とを備えた熱駆動圧力波発生装置により駆動する 構成としたので、 小型で振動と電気ノイズのないパルス管冷凍機が実現でき、 簡単な構成で冷却効率を高めることができる。  As described above, in the second embodiment of the present invention, the pulse tube refrigerator is driven by the heat driven pressure wave generator including the heat driven tube, the resonator, the phase shifter, and the return path. As a result, a compact pulse tube refrigerator free from vibration and electrical noise can be realized, and the cooling efficiency can be increased with a simple configuration.
(第 3の実施の形態) (Third embodiment)
本発明の第 3の実施の形態は、 熱駆動管と共振器とを備えた熱駆動圧力波発 生装置により駆動するパルス管冷凍機である。 熱駆動圧力波発生装置は、 定在 波型である。 第 3図は、 本発明の第 3の実施の形態におけるパルス管冷凍機の構成を示す 概念図である。 第 3図において、 蓄熱器 2は、 一定の温度勾配をもつ等温空間 を形成する手段である。 加熱用熱交換器 3は、 蓄熱器 2の高温側に熱を供給す る手段である。 放熱用熱交換器 4は、 蓄熱器 2の低温側を室温程度に冷却する 手段である。 高温バッファ 16は、 圧力波を反射させて、 熱駆動管に定在波を発 生させる管である。 蓄熱器 2と加熱用熱交換器 3と放熱用熱交換器 4と高温バ ッファ 16 とで、 熱駆動管を構成している。 共振器 8は、 熱駆動管とパルス管冷 凍機 1との接続部に設けたガススプリング共振器である。 熱駆動管と共振器 8 とで、 熱駆動圧力波発生装置を構成している。 The third embodiment of the present invention is a pulse tube refrigerator driven by a heat driven pressure wave generator including a heat driven tube and a resonator. The heat-driven pressure wave generator is a standing wave type. FIG. 3 is a conceptual diagram showing a configuration of a pulse tube refrigerator according to a third embodiment of the present invention. In FIG. 3, a regenerator 2 is a means for forming an isothermal space having a constant temperature gradient. The heat exchanger for heating 3 is a means for supplying heat to the high-temperature side of the regenerator 2. The heat radiation heat exchanger 4 is means for cooling the low temperature side of the heat storage unit 2 to about room temperature. The high temperature buffer 16 is a tube that reflects a pressure wave and generates a standing wave in the heat driven tube. The heat storage tube 2, the heat exchanger 3 for heating, the heat exchanger 4 for heat radiation, and the high-temperature buffer 16 constitute a heat driven tube. The resonator 8 is a gas spring resonator provided at a connection between the heat driven tube and the pulse tube refrigerator 1. The thermally driven tube and the resonator 8 constitute a thermally driven pressure wave generator.
上記のよう 構成された本発明の第 3の実施の形態におけるパルス管冷凍機 の動作を説明する。 共振器 8に動作ガスの圧力波が共振して、 定在波が発生す る。  The operation of the pulse tube refrigerator according to the third embodiment of the present invention configured as described above will be described. The pressure wave of the working gas resonates in the resonator 8, and a standing wave is generated.
高温パッファ 16の閉じた端部が定在波のガス変位の節となる。 共振器 8の接 続部が定在波の腹となる。 熱駆動管内を移動する動作ガスの振幅が大きくなり、 熱駆動管で増幅された仕事が、 パルス管冷凍機 1に送り出される。 共振器 8と の仕事のやり取りは、 1周期で差し引き 0である。 この熱駆動圧力波発生装置 は、 定在波型の熱音響エンジンである。 スタックと呼ばれる荒い網の蓄熱器 2 を用いる。 この熱駆動管では、 第 1, 2の実施の形態と異なり、 仕事の流れの 方向は、 熱の流れの方向と同じである。 第 9図 (d ) に示したように、 ェネル ギ一が流れる。 圧力波による仕事は、 熱駆動管の低温側から入り、 高温パッフ ァ 16で反射され、 蓄熱器 2で増幅されて、 熱駆動管の低温側から出る。 したが つて、 熱駆動管の低温側は、 仕事の入出力端となっている。 共振器 8により、 熱駆動管の長さが短くても、 定在波の腹の振幅が大きくなるので、 小型でも圧 力波発生の効率がよくなる。 この熱駆動圧力波発生装置は、 イナ一タンス型パ ルス管冷凍機に適用することもできるし、 発電機などにも使用できる。  The closed end of the high-temperature puffer 16 is the node of the standing wave gas displacement. The connection of the resonator 8 is the antinode of the standing wave. The amplitude of the working gas moving in the heat driven tube increases, and the work amplified by the heat driven tube is sent to the pulse tube refrigerator 1. The exchange of work with the resonator 8 is zero in one cycle. This heat-driven pressure wave generator is a standing wave thermoacoustic engine. A rough net regenerator 2 called a stack is used. In this heat driven tube, unlike the first and second embodiments, the direction of work flow is the same as the direction of heat flow. As shown in Fig. 9 (d), energy flows. The work by the pressure wave enters from the cold side of the heat driven tube, is reflected by the high temperature buffer 16, is amplified by the regenerator 2, and exits from the cold side of the heat driven tube. Therefore, the low temperature side of the heat driven tube is the work input / output end. The resonator 8 increases the amplitude of the antinode of the standing wave even when the length of the thermally driven tube is short, so that the pressure wave can be generated efficiently even in a small size. This heat-driven pressure wave generator can be applied to an inertance-type pulse tube refrigerator, and can also be used as a generator.
上記のように、 本発明の第 3の実施の形態では、 パルス管冷凍機を、 熱駆動 管と共振器とを備えた熱駆動圧力波発生装置により駆動する構成としたので、 小型で振動と電気ノイズのないパルス管冷凍機が実現でき、 簡単な構成で冷却 効率を高めることができる。 (第 4の実施の形態) As described above, in the third embodiment of the present invention, the pulse tube refrigerator is driven by the heat-driven pressure wave generator including the heat-driven tube and the resonator. A pulse tube refrigerator without electric noise can be realized, and the cooling efficiency can be increased with a simple configuration. (Fourth embodiment)
本発明の第 4の実施の形態は、 熱駆動管の出力側と反対側に共振器を備えた 熱駆動圧力波発生装置により駆動するパルス管冷凍機である。  The fourth embodiment of the present invention is a pulse tube refrigerator driven by a heat driven pressure wave generator having a resonator on the side opposite to the output side of the heat driven tube.
第 4図は、 本発明の第 4の実施の形態におけるパルス管冷凍機の構成を示す 概念図である。 第 4図において、 パルス管冷凍機 1は、 オリフィス型パルス管 冷凍機である。 蓄熱器 2は、 一定の温度勾配をもつ等温空間を形成する手段で ある。 加熱用熱交換器 3は、 蓄熱器 2の高温側に熱を供給する手段である。 放 熱用熱交換器 4は、 蓄熱器 2の低温側を室温程度に冷却する手段である。 仕事 伝達管 5は、 断熱空間であり、 動作ガスの圧力波により仕事を伝達する管であ る。 放熱用熱交換器 4 aは、 仕事伝達管 5の仕事出力側を室温程度に冷却する 手段である。 放熱用熱交換器 4と蓄熱器 2と加熱用熱交換器 3と仕事伝達管 5 と放熱用熱交換器 4とで、 熱駆動管を構成している。 熱駆動管は、 蓄熱器 2の 高温部を加熱し、 低温部を冷却することにより、 蓄熱器 2に一定の温度勾配を 形成して、 動作ガスの圧力波による仕事を増幅する装置である。 共振器 8は、 熱駆動管とパルス管冷凍機 1との接続部の反対側に設けたガススプリング共振 器である。 熱駆動管と共振器 8とで、 熱駆動圧力波発生装置を構成している。 上記のように構成された本発明の第 4の実施の形態におけるパルス管冷凍機 の動作を説明する。 温度 Taの放熱用熱交換器 4側に、 左右対向型の一対の共振 器 8 (ディスプレーサ) を取り付ける。 温度 Thの加熱用熱交換器 3からの熱流 の一部が仕事流に変換される。 さらにその一部は、 温度 Taの放熱用熱交換器 4 側から取り出され、 共振器 8 (ディスプレーサ) を駆動するのに用いられる。 残りの仕事は、 温度 Thの加熱用熱交換器 3側から取り出され、 仕事伝達管 5を 介して、 パルス管冷凍機 1に供給される。 ループが形成されていないので、 循 環流の発生による不安定性の心配がない。  FIG. 4 is a conceptual diagram showing a configuration of a pulse tube refrigerator according to a fourth embodiment of the present invention. In FIG. 4, a pulse tube refrigerator 1 is an orifice type pulse tube refrigerator. The heat storage unit 2 is a means for forming an isothermal space having a constant temperature gradient. The heating heat exchanger 3 is a means for supplying heat to the high-temperature side of the regenerator 2. The heat-dissipating heat exchanger 4 is means for cooling the low-temperature side of the heat storage unit 2 to about room temperature. The work transmission pipe 5 is an adiabatic space, and is a pipe that transmits work by a pressure wave of the working gas. The heat-exchanging heat exchanger 4a is means for cooling the work output side of the work transfer pipe 5 to about room temperature. The heat-dissipating heat exchanger 4, the heat storage unit 2, the heating heat exchanger 3, the work transfer tube 5, and the heat-dissipating heat exchanger 4 constitute a heat driven tube. The heat drive tube is a device that heats a high-temperature portion of the heat storage device 2 and cools the low-temperature portion, thereby forming a constant temperature gradient in the heat storage device 2 and amplifying work due to the pressure wave of the working gas. Resonator 8 is a gas spring resonator provided on the opposite side of the connection between the heat driven tube and pulse tube refrigerator 1. The heat driven tube and the resonator 8 constitute a heat driven pressure wave generator. The operation of the pulse tube refrigerator according to the fourth embodiment of the present invention configured as described above will be described. A pair of left and right opposed resonators 8 (displacers) is mounted on the heat exchanger 4 for heat radiation at the temperature Ta. Part of the heat flow from the heating heat exchanger 3 at the temperature Th is converted to a work flow. Further, a part thereof is taken out from the heat-radiating heat exchanger 4 side at the temperature Ta and used to drive the resonator 8 (displacer). The remaining work is taken out from the heating heat exchanger 3 at the temperature Th and supplied to the pulse tube refrigerator 1 via the work transfer pipe 5. Since no loop is formed, there is no need to worry about instability due to circulation.
共振器 8により動作ガスの圧力波が共振して、 共振器 8に定在波が発生する。 熱駆動管内を移動する動作ガスの振幅が大きくなり、 熱駆動管で増幅された仕 事が、 パルス管冷凍機 1に送り出される。 共振器 8 との仕事のやり取りは、 1 周期で 0である。 熱駆動圧力波発生装置の実験では、 動作ガスをヘリゥムガスとして、 共振周 波数 31.5Hzで発振した。 パルス管冷凍機を駆動するのに適当な平均圧力 2.3Mpa で、 1.1以上の圧力比が得られた。 加熱温度 Thは 723 Kであり、 冷却温度 Taは 290 Kである。 ひとたび圧力振動が開始されると、 加熱温度が 450 K以下になる まで振動が継続した。 実験結果を、 第 8図に示す。 この熱駆動圧力波発生装置 は、 イナ一タンス型パルス管冷凍機に適用することもできるし、 発電機などに も使用できる。 The pressure wave of the working gas resonates by the resonator 8, and a standing wave is generated in the resonator 8. The amplitude of the working gas moving in the heat driven tube increases, and the work amplified by the heat driven tube is sent to the pulse tube refrigerator 1. The exchange of work with the resonator 8 is 0 in one cycle. In the experiment of the heat-driven pressure wave generator, oscillation was performed at a resonance frequency of 31.5 Hz using the working gas as the healing gas. With an average pressure of 2.3 Mpa suitable for driving a pulse tube refrigerator, a pressure ratio of 1.1 or more was obtained. The heating temperature Th is 723 K and the cooling temperature Ta is 290 K. Once the pressure oscillation started, the oscillation continued until the heating temperature fell below 450 K. The experimental results are shown in FIG. This heat-driven pressure wave generator can be applied to an inertance type pulse tube refrigerator, and can also be used for a generator.
上記のように、 本発明の第 4の実施の形態では、 パルス管冷凍機を、 熱駆動 管の出力側と反対側に共振器を備えた熱駆動圧力波発生装置により駆動する構 成としたので、 小型で振動と電気ノイズのないパルス管冷凍機が実現でき、 簡 単な構成で冷却効率を高めることができる。  As described above, in the fourth embodiment of the present invention, the pulse tube refrigerator is driven by the heat driven pressure wave generator including the resonator on the side opposite to the output side of the heat driven tube. Therefore, a compact pulse tube refrigerator free from vibration and electric noise can be realized, and the cooling efficiency can be increased with a simple configuration.
(第 5の実施の形態) (Fifth embodiment)
本発明の第 5の実施の形態は、 パルス管とオリフィスとの間にガススプリン グ共振器を備えたパルス管冷凍機である。  The fifth embodiment of the present invention is a pulse tube refrigerator including a gas spring resonator between a pulse tube and an orifice.
第 5図は、 本発明の第 5の実施の形態におけるパルス管冷凍機の構成を示す 概念図である。 第 5図において、 共振器 8 aは、 閉じたガスをスプリングとし てビストンが往復運動する共振器である。 リザーバ 13は、 動作ガスを溜めるパ ッファタンクである。 オリフィス 14は、 動作ガスに抵抗をかけて通過させる通 路である。 その他の構成は、 第 4の実施の形態と同じである。  FIG. 5 is a conceptual diagram showing a configuration of a pulse tube refrigerator according to a fifth embodiment of the present invention. In FIG. 5, a resonator 8a is a resonator in which biston reciprocates using a closed gas as a spring. The reservoir 13 is a buffer tank for storing the working gas. The orifice 14 is a passage through which the working gas passes with resistance. Other configurations are the same as those of the fourth embodiment.
上記のように構成された本発明の第 5の実施の形態におけるパルス管冷凍機 の動作を説明する。 一般に、 効率の良いパルス管冷凍機の位相制御機構として、 イナ一タンスチューブと呼ばれる長い管とリザーバ容器とを直列に接続した「ィ ナータンス位相制御機構」 が用いられている。 しかし、 この機構は、 小型のパ ルス管冷凍機には効率よく適用できない。 その理由は、 長い管の直径を小さく する必要があり、 その結果、 その管内部で振動する気体の圧力損失が増大し、 同時にそこに存在するガスの質量が減少することによって、 理想的な共鳴条件 が成立しなくなるからである。  The operation of the pulse tube refrigerator according to the fifth embodiment of the present invention configured as described above will be described. In general, as an efficient phase control mechanism of a pulse tube refrigerator, an “inertance phase control mechanism” in which a long tube called an inertance tube and a reservoir container are connected in series is used. However, this mechanism cannot be efficiently applied to small pulse tube refrigerators. The reason is that it is necessary to reduce the diameter of a long tube, and as a result, the pressure loss of the gas oscillating inside the tube increases, and at the same time, the mass of the gas existing there decreases, so that the ideal resonance This is because the condition no longer holds.
—方、 固体のピス トンとオリフィスとを併用した制御系を利用すれば、 いく ら小型化しても、 充分に理想的な共鳴条件が成立する。 理想的な共鳴条件とは、 パルス管温端部でのガスの変位と圧力振動との位相差が 90度を超える状態を実 現していることを言う。 最近のマイクロメカ二タスの技術進歩をもってすれば、 超小型ビス トンの製造は困難ではなくなつてきていることも、 この技術を実現 に近づけている要因の一つである。 この方式の位相制御機構は、 パルス管冷凍 機を小型化しようとするために重要なものである。 If you use a control system that uses both a solid piston and an orifice, Even if the size is reduced, the ideal resonance condition is satisfied. The ideal resonance condition means that the phase difference between the gas displacement and the pressure oscillation at the hot end of the pulse tube exceeds 90 degrees. With the recent advances in micromechanical technology, the production of ultra-small bistons is not difficult, which is another factor that makes this technology closer to realization. This type of phase control mechanism is important for miniaturizing the pulse tube refrigerator.
パルス管 15 とオリフィス 14 との間に設けた共振器 8 aにより、 短いパルス 管でも共振させることができる。 共振器 8 aが振動の腹になるので、 大きな振 幅でオリフィス 14 との間で動作ガスをやり取りできる。 小型で効率的な位相制 御機構ができる。 圧力振動発生装置は、 どの型のものでもよい。  Due to the resonator 8a provided between the pulse tube 15 and the orifice 14, even a short pulse tube can resonate. Since the resonator 8a is the antinode of the vibration, the working gas can be exchanged with the orifice 14 with a large amplitude. A compact and efficient phase control mechanism can be created. The pressure vibration generator can be of any type.
上記のように、 本発明の第 5の実施の形態では、 パルス管冷凍機を、 パルス 管とオリフィスとの間にガススプリング共振器を備えた構成としたので、 長い 共鳴管を用いることなく、 小型で振動と電気ノイズのないパルス管冷凍機が実 現でき、 簡単な構成で冷却効率を高めることができる。  As described above, in the fifth embodiment of the present invention, the pulse tube refrigerator is provided with the gas spring resonator between the pulse tube and the orifice, so that a long resonance tube is not used. A compact pulse tube refrigerator free from vibration and electrical noise can be realized, and the cooling efficiency can be increased with a simple configuration.
(第 6の実施の形態) (Sixth embodiment)
本発明の第 6の実施の形態は、 パルス管とオリフィスとの間に移相器を備え たパルス管冷凍機である。  A sixth embodiment of the present invention is a pulse tube refrigerator including a phase shifter between a pulse tube and an orifice.
第 6図は、 本発明の第 6の実施の形態におけるパルス管冷凍機の構成を示す 概念図である。 第 6図において、 移相器 7は、 動作ガスの移動位相を遅延させ る手段である。 その他の構成は、 第 4の実施の形態と同じである。  FIG. 6 is a conceptual diagram showing a configuration of a pulse tube refrigerator according to a sixth embodiment of the present invention. In FIG. 6, a phase shifter 7 is means for delaying the moving phase of the working gas. Other configurations are the same as those of the fourth embodiment.
上記のように構成された本発明の第 6の実施の形態におけるパルス管冷凍機 の動作を説明する。 パルス管 15 とオリフィス 14 との間に設けた移相器 7によ り、 動作ガスの移動位相を遅延させて、 冷却効率を高めることができる。 オリ フィス 14 のみの場合と比較して、 移相器 7で圧力波に対するガス変位の移相量 を大きくすることができ、 冷却効率が高まる。 オリフィス 14がない場合の位相 を 0度とすると、 オリフィス 14を設けると位相差は 90度となる。 さらに移相 器 7を設けると、 位相差は 110度程度になる。 また、 移相器 7の特性を目的に 合わせて設計することができるので、最適な動作特性を実現することができる。 なお、 パルス管冷凍機を駆動する圧力振動発生装置は、 どの型のものでも利用 できる。 The operation of the pulse tube refrigerator according to the sixth embodiment of the present invention configured as described above will be described. The phase shifter 7 provided between the pulse tube 15 and the orifice 14 delays the moving phase of the working gas, thereby increasing the cooling efficiency. Compared with the case where only the orifice 14 is used, the phase shifter 7 can increase the amount of phase shift of the gas displacement with respect to the pressure wave, thereby increasing the cooling efficiency. Assuming that the phase without the orifice 14 is 0 degrees, the phase difference becomes 90 degrees when the orifice 14 is provided. Further, when the phase shifter 7 is provided, the phase difference becomes about 110 degrees. In addition, since the characteristics of the phase shifter 7 can be designed according to the purpose, optimal operation characteristics can be realized. Any type of pressure vibration generator for driving the pulse tube refrigerator can be used.
上記のように、 本発明の第 6の実施の形態では、 パルス管冷凍機を、 パルス 管とオリフィスとの間に移相器を備えた構成としたので、 小型で振動と電気ノ ィズのないパルス管冷凍機が実現でき、 簡単な構成で冷却効率を高めることが できる。  As described above, in the sixth embodiment of the present invention, the pulse tube refrigerator is provided with the phase shifter between the pulse tube and the orifice. It is possible to realize a pulse tube refrigerator that does not have a simple configuration and increase the cooling efficiency with a simple configuration.
(第 7の実施の形態) (Seventh embodiment)
本発明の第 7の実施の形態は、 パルス管とリザーバとの間に漏洩移相器を備 えたパルス管冷凍機である。  A seventh embodiment of the present invention is a pulse tube refrigerator including a leakage phase shifter between a pulse tube and a reservoir.
第 7図は、 本発明の第 7の実施の形態におけるパルス管冷凍機の構成を示す 概念図である。第 7図において、漏洩移相器 12は、 シリンダとビストンの間に、 動作ガスが通る隙間があるディスプレーサである。 オリフィスはない。  FIG. 7 is a conceptual diagram showing a configuration of a pulse tube refrigerator according to a seventh embodiment of the present invention. In FIG. 7, the leak phase shifter 12 is a displacer having a gap through which a working gas passes between the cylinder and the piston. There are no orifices.
上記のように構成された本発明の第 7の実施の形態におけるパルス管冷凍機 の動作を説明する。パルス管 15とリザーバ 13との間に設けた漏洩移相器 12は、 ディスプレーサとオリフィスの機能を兼ね備えたものである。 機能的には、 第 6の実施の形態とほぼ同じである。 第 6の実施の形態では、 移相器とオリフィ スが直列に接続されていたのに対して、 この例では、 移相器とオリフィスが機 能的に並列に接続されていることになる。 漏洩移相器 12 のシリンダとビストン の間の隙間を、 オリフィスとして利用することにより、 オリフィスを別途設け る必要を無くして、 装置を小型化することができる。 圧力振動発生装置は、 ど の型のものでもよい。  The operation of the pulse tube refrigerator according to the seventh embodiment of the present invention configured as described above will be described. The leaky phase shifter 12 provided between the pulse tube 15 and the reservoir 13 has a function of both a displacer and an orifice. Functionally, it is almost the same as the sixth embodiment. In the sixth embodiment, the phase shifter and the orifice are connected in series, whereas in this example, the phase shifter and the orifice are functionally connected in parallel. By using the gap between the cylinder and the piston of the leak phase shifter 12 as an orifice, it is not necessary to separately provide an orifice, and the device can be downsized. The pressure vibration generator may be of any type.
上記のように、 本発明の第 7の実施の形態では、 パルス管冷凍機を、 パルス 管とリザーバとの間に漏洩移相器を備えた構成としたので、 簡単な構成で仕事 吸収手段を実現できる。 産業上の利用可能性  As described above, in the seventh embodiment of the present invention, the pulse tube refrigerator has the configuration in which the leakage phase shifter is provided between the pulse tube and the reservoir. realizable. Industrial applicability
以上の説明から明らかなように、 本発明では、 パルス管と、 パルス管の低温 側に接続された蓄冷器と、 蓄冷器の高温側に接続された振動発生装置と、 パル ス管の高温側に接続されたオリフィス付リザーバとを備えたパルス管冷凍機の 振動発生装置を、 蓄熱器と加熱用熱交換器と放熱用熱交換器と仕事伝達管とか らなる熱駆動管と、 熱駆動管の出力端に一端が接続された移相器と、 移相器の 他端と熱駆動管の入力端を結ぶ帰還路とを備えた熱駆動圧力波発生装置とする 構成としたので、 小型で振動とノイズのないパルス管冷凍機を実現できる。 As is apparent from the above description, the present invention provides a pulse tube, a regenerator connected to the low-temperature side of the pulse tube, a vibration generator connected to the high-temperature side of the regenerator, and a pulse generator. The vibration generator of the pulse tube refrigerator equipped with a reservoir with an orifice connected to the high-temperature side of the heat pipe is a heat-driven pipe consisting of a heat storage unit, a heat exchanger for heating, a heat exchanger for heat dissipation, and a work transfer tube. A phase shifter having one end connected to the output end of the heat driven tube, and a feedback path connecting the other end of the phase shifter and the input end of the heat driven tube. Therefore, a compact pulse tube refrigerator free from vibration and noise can be realized.

Claims

請 求 の 範 囲 The scope of the claims
1 . パルス管と、 前記パルス管の低温側に接続された蓄冷器と、 前記蓄冷器の 高温側に接続された振動発生装置と、 前記パルス管の高温側に接続されたオリ フィス付リザーパとを備えたパルス管冷凍機であって、 前記振動発生装置は、 蓄熱器と加熱用熱交換器と放熱用熱交換器と仕事伝達管とからなる熱駆動管と、 前記熱駆動管の出力端に一端が接続された移相器と、 前記移相器の他端と前記 熱駆動管の入力端を結ぶ帰還路とを備えた熱駆動圧力波発生装置であることを 特徴とするパルス管冷凍機。 1. A pulse tube, a regenerator connected to a low temperature side of the pulse tube, a vibration generator connected to a high temperature side of the regenerator, and a reservoir with an orifice connected to a high temperature side of the pulse tube. A pulse tube refrigerator comprising: a heat drive tube including a heat storage unit, a heat exchanger for heating, a heat exchanger for heat dissipation, and a work transfer tube; and an output end of the heat drive tube. A pulse tube refrigeration device comprising: a phase shifter having one end connected to the heat transfer pressure generator; and a return path connecting the other end of the phase shifter and an input end of the heat drive tube. Machine.
2 . パルス管と、 前記パルス管の低温側に接続された蓄冷器と、 前記蓄冷器の 高温側に接続された振動発生装置と、 '前記パルス管の高温側に接続されたオリ フィス付リザーバとを備えたパルス管冷凍機であって、 前記振動発生装置は、 蓄熱器と加熱用熱交換器と放熱用熱交換器と高温パッファとからなる熱駆動管 と、 前記熱駆動管の低温部端に接続された共振器とを備えた熱駆動圧力波発生 装置であることを特徴とするパルス管冷凍機。 2. A pulse tube, a regenerator connected to the low-temperature side of the pulse tube, a vibration generator connected to the high-temperature side of the regenerator, and a reservoir with an orifice connected to the high-temperature side of the pulse tube A pulse tube refrigerator comprising: a vibration generator, a heat drive tube including a heat storage device, a heat exchanger for heating, a heat exchanger for heat radiation, and a high-temperature puffer; and a low-temperature portion of the heat drive tube. A pulse tube refrigerator characterized by being a thermally driven pressure wave generator having a resonator connected to an end.
3 . パルス管と、 前記パルス管の低温側に接続された蓄冷器と、 前記蓄冷器の 高温側に接続された振動発生装置と、 前記パルス管の高温側に接続されたオリ フィス付リザーバとを備えたパルス管冷凍機であって、 前記振動発生装置は、 蓄熱器と加熱用熱交換器と放熱用熱交換器と仕事伝達管とからなる熱駆動管と、 前記熱駆動管の入力端に接続された共振器とを備えた熱駆動圧力波発生装置で あることを特徴とするパルス管冷凍機。  3. A pulse tube, a regenerator connected to a low temperature side of the pulse tube, a vibration generator connected to a high temperature side of the regenerator, and a reservoir with an orifice connected to a high temperature side of the pulse tube. A pulse tube refrigerator comprising: a heat drive tube including a heat storage device, a heat exchanger for heating, a heat exchanger for heat radiation, and a work transfer tube; and an input end of the heat drive tube. A pulse tube refrigerator characterized by being a heat driven pressure wave generator comprising a resonator connected to a pulse tube refrigerator.
4 . パルス管と、 前記パルス管の低温側に接続された蓄冷器と、 前記蓄冷器の 高温側に接続された振動発生装置と、 前記パルス管の高温側に接続されたオリ フィス付リザーパとを備えたパルス管冷凍機であって、 前記パルス管と前記ォ リフィスとの間にガススプリング共振器を備えたことを特徴とするパルス管冷 凍機。  4. A pulse tube, a regenerator connected to a low temperature side of the pulse tube, a vibration generator connected to a high temperature side of the regenerator, and a reservoir with an orifice connected to a high temperature side of the pulse tube. A pulse tube refrigerator comprising: a pulse tube refrigerator including a gas spring resonator between the pulse tube and the orifice.
5 . パルス管と、 前記パルス管の低温側に接続された蓄冷器と、 前記蓄冷器の 高温側に接続された振動発生装置と、 前記パルス管の高温側に接続されたオリ フィス付リザーパとを備えたパルス管冷凍機であって、 前記パルス管と前記ォ リフィスとの間に移相器を備えたことを特徵とするパルス管冷凍機。 5. A pulse tube, a regenerator connected to a low temperature side of the pulse tube, a vibration generator connected to a high temperature side of the regenerator, and a reservoir with an orifice connected to a high temperature side of the pulse tube. A pulse tube refrigerator comprising: the pulse tube; A pulse tube refrigerator characterized by having a phase shifter between the refill and the orifice.
6 . パルス管と、 前記パルス管の低温側に接続された蓄冷器と、 前記蓄冷器の 高温側に接続された振動発生装置と、 前記パルス管の高温側に接続されたリザ ーバとを備えたパルス管冷凍機であって、 前記パルス管と前記リザーバとの間 に漏洩移相器を備えたことを特徴とするパルス管冷凍機。 6. A pulse tube, a regenerator connected to a low temperature side of the pulse tube, a vibration generator connected to a high temperature side of the regenerator, and a reservoir connected to a high temperature side of the pulse tube. A pulse tube refrigerator comprising: a leakage phase shifter between the pulse tube and the reservoir.
PCT/JP2004/004253 2003-03-28 2004-03-26 Pulse tube refrigerator WO2004088217A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005504195A JP4362632B2 (en) 2003-03-28 2004-03-26 Pulse tube refrigerator
US10/551,372 US20060277925A1 (en) 2003-03-28 2004-03-26 Pulse tube refrigerator
EP04723753A EP1610075A1 (en) 2003-03-28 2004-03-26 Pulse tube refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003091376 2003-03-28
JP2003-091376 2003-03-28

Publications (1)

Publication Number Publication Date
WO2004088217A1 true WO2004088217A1 (en) 2004-10-14

Family

ID=33127280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004253 WO2004088217A1 (en) 2003-03-28 2004-03-26 Pulse tube refrigerator

Country Status (5)

Country Link
US (1) US20060277925A1 (en)
EP (1) EP1610075A1 (en)
JP (1) JP4362632B2 (en)
CN (1) CN100371657C (en)
WO (1) WO2004088217A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7104055B2 (en) * 2002-06-19 2006-09-12 Japan Aerospace Exploration Agency Pressure vibration generator
JP2009506294A (en) * 2005-08-23 2009-02-12 サンパワー・インコーポレーテツド Pulse tube cooler with quarter wave resonance tube instead of reservoir
JP2009526962A (en) * 2005-10-31 2009-07-23 クレヴァー フェローズ イノヴェイション コンソーティアム, インコーポレイテッド Acoustic cooling device with cold head and resonant drive isolated
JP2011099599A (en) * 2009-11-05 2011-05-19 Aisin Seiki Co Ltd Heat transport pipe
CN107806977A (en) * 2017-11-29 2018-03-16 中国航空工业集团公司沈阳空气动力研究所 A kind of high enthalpy impulse wind tunnel pipe structure of the wide Mach number of combined type

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005004269B4 (en) * 2005-01-29 2006-11-02 Bruker Biospin Gmbh Magnetic resonance apparatus with in-phase coupling of pressure pulses of a working gas
US7614240B2 (en) * 2006-09-22 2009-11-10 Praxair Technology, Inc. Control method for pulse tube cryocooler
US8205459B2 (en) * 2009-07-31 2012-06-26 Palo Alto Research Center Incorporated Thermo-electro-acoustic refrigerator and method of using same
CN102042194B (en) * 2009-10-26 2012-09-05 中国科学院理化技术研究所 Thermocompressor driven by linear motors
CN101900447B (en) * 2010-08-31 2012-08-15 南京柯德超低温技术有限公司 G-M refrigerator with phase modulating mechanism
US9163581B2 (en) 2012-02-23 2015-10-20 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Alpha-stream convertor
US20150033767A1 (en) * 2013-08-02 2015-02-05 Chart Inc. Cryocooler with Magnetic Reciprocating Piston
JP6305286B2 (en) * 2014-09-10 2018-04-04 住友重機械工業株式会社 Stirling type pulse tube refrigerator
TWI609622B (en) * 2015-09-01 2017-12-21 宏碁股份有限公司 Cooling module
JP6740188B2 (en) * 2017-08-01 2020-08-12 住友重機械工業株式会社 Cryogenic refrigerator and pulse tube refrigerator temperature raising method
CL2017003498A1 (en) * 2017-12-29 2018-05-04 Ahr Energy Spa Method to produce heat transfer between two or more means and a system to execute said method.
CN113324343B (en) * 2021-05-07 2022-06-07 太原理工大学 Combined cooling heating and power system capable of recovering waste heat
FR3130017B1 (en) * 2021-12-03 2023-12-22 Equium Groupe Thermoacoustic machine with phase shift modulation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101916A (en) * 1992-09-18 1994-04-12 Toshiba Corp Pulse tube refrigerator
JPH11182958A (en) * 1997-12-17 1999-07-06 Mitsubishi Heavy Ind Ltd Pulse pipe refrigerator
JP2002122020A (en) * 2000-10-16 2002-04-26 Honda Motor Co Ltd Exhaust heat energy recovering device for internal combustion engine
JP2002535597A (en) * 1999-01-20 2002-10-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Traveling wave device with suppressed mass flux

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4114380A (en) * 1977-03-03 1978-09-19 Peter Hutson Ceperley Traveling wave heat engine
US4355517A (en) * 1980-11-04 1982-10-26 Ceperley Peter H Resonant travelling wave heat engine
US4953366A (en) * 1989-09-26 1990-09-04 The United States Of America As Represented By The United States Department Of Energy Acoustic cryocooler
US5335505A (en) * 1992-05-25 1994-08-09 Kabushiki Kaisha Toshiba Pulse tube refrigerator
US5354185A (en) * 1992-10-05 1994-10-11 Aura Systems, Inc. Electromagnetically actuated reciprocating compressor driver
US5412951A (en) * 1993-12-22 1995-05-09 Hughes Aircraft Company Cyrogenic cooling system with active vibration control
WO1998000677A1 (en) * 1996-07-01 1998-01-08 The Regents Of The University Of California Orifice pulse tube with variable phase shift
NL1007316C1 (en) * 1997-10-20 1999-04-21 Aster Thermo Akoestische Syste Thermo-acoustic system.
US6604363B2 (en) * 2001-04-20 2003-08-12 Clever Fellows Innovation Consortium Matching an acoustic driver to an acoustic load in an acoustic resonant system
US6578364B2 (en) * 2001-04-20 2003-06-17 Clever Fellows Innovation Consortium, Inc. Mechanical resonator and method for thermoacoustic systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101916A (en) * 1992-09-18 1994-04-12 Toshiba Corp Pulse tube refrigerator
JPH11182958A (en) * 1997-12-17 1999-07-06 Mitsubishi Heavy Ind Ltd Pulse pipe refrigerator
JP2002535597A (en) * 1999-01-20 2002-10-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Traveling wave device with suppressed mass flux
JP2002122020A (en) * 2000-10-16 2002-04-26 Honda Motor Co Ltd Exhaust heat energy recovering device for internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7104055B2 (en) * 2002-06-19 2006-09-12 Japan Aerospace Exploration Agency Pressure vibration generator
JP2009506294A (en) * 2005-08-23 2009-02-12 サンパワー・インコーポレーテツド Pulse tube cooler with quarter wave resonance tube instead of reservoir
JP2009526962A (en) * 2005-10-31 2009-07-23 クレヴァー フェローズ イノヴェイション コンソーティアム, インコーポレイテッド Acoustic cooling device with cold head and resonant drive isolated
JP2011099599A (en) * 2009-11-05 2011-05-19 Aisin Seiki Co Ltd Heat transport pipe
CN107806977A (en) * 2017-11-29 2018-03-16 中国航空工业集团公司沈阳空气动力研究所 A kind of high enthalpy impulse wind tunnel pipe structure of the wide Mach number of combined type
CN107806977B (en) * 2017-11-29 2024-04-09 中国航空工业集团公司沈阳空气动力研究所 Combined wide Mach number high enthalpy pulse wind tunnel tube structure

Also Published As

Publication number Publication date
EP1610075A1 (en) 2005-12-28
CN100371657C (en) 2008-02-27
JPWO2004088217A1 (en) 2006-07-06
CN1768238A (en) 2006-05-03
JP4362632B2 (en) 2009-11-11
US20060277925A1 (en) 2006-12-14

Similar Documents

Publication Publication Date Title
JP4362632B2 (en) Pulse tube refrigerator
US7363767B2 (en) Multi-stage pulse tube cryocooler
WO2013084830A1 (en) Thermoacoustic engine
JP2007530911A (en) Cryogenic cooler system with frequency-converting mechanical resonator
CN110701822B (en) Heat energy driven thermoacoustic and electric card coupled refrigerating system
JP3857587B2 (en) Refrigerator operating periodically
US7143587B2 (en) Low frequency pulse tube system with oil-free drive
JP2007040647A (en) Pulse type heat storage engine
JP3944854B2 (en) Thermoacoustic drive orifice type pulse tube cryogenic refrigerator
CN109556318B (en) Thermoacoustic refrigerator
JP2006118728A (en) Thermoacoustic refrigeration machine
JP2007530905A (en) Pulse tube refrigerator for changing average pressure
JP2969124B2 (en) Wave type refrigerator
CN115031434B (en) Regenerative refrigeration system and mechanism of thermoacoustic self-circulation heat exchanger
Shire et al. Investigation of microscale cryocoolers
US8950193B2 (en) Secondary pulse tubes and regenerators for coupling to room temperature phase shifters in multistage pulse tube cryocoolers
US7201001B2 (en) Resonant linear motor driven cryocooler system
JP2004347175A (en) Impulse wave tube refrigerator
CN116538745A (en) Low-temperature refrigerator based on stepped piston pulse tube refrigerator
JP2011002152A (en) Thermoacoustic engine
JPH11281179A (en) Pulse tube refrigerating machine
JPH11337205A (en) Sound refrigerating device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004723753

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005504195

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20048085447

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004723753

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006277925

Country of ref document: US

Ref document number: 10551372

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10551372

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2004723753

Country of ref document: EP