JPH11337205A - Sound refrigerating device - Google Patents

Sound refrigerating device

Info

Publication number
JPH11337205A
JPH11337205A JP10146096A JP14609698A JPH11337205A JP H11337205 A JPH11337205 A JP H11337205A JP 10146096 A JP10146096 A JP 10146096A JP 14609698 A JP14609698 A JP 14609698A JP H11337205 A JPH11337205 A JP H11337205A
Authority
JP
Japan
Prior art keywords
sound wave
sound
acoustic
generating means
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10146096A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Masuda
光博 増田
Takeshi Kawai
毅 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10146096A priority Critical patent/JPH11337205A/en
Publication of JPH11337205A publication Critical patent/JPH11337205A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1404Pulse-tube cycles with loudspeaker driven acoustic driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1405Pulse-tube cycles with travelling waves

Abstract

PROBLEM TO BE SOLVED: To provide a sound refrigerating device to produce refrigeration efficiency higher than that of a conventional device. SOLUTION: First and second sound wave generating device 6 and 63 are mounted on the line of a hollow annular sound tube 1 having a peripheral length being integer times the wavelength of a sound wave in a state that the two device are separated away from each other by a distance an odd number times the 1/4 wavelength of a sound wave. Further, third and fourth sound generating devices 64 and 65 are mounted opposite to the first and second sound generating devices 6 and 63, respectively. Further, a cold storage apparatus 4 is mounted on the sound tube 1. The first - fourth sound generating devices 6, 63, 64, and 65 receive a signal from a drive source 5. A first sound wave outputted and first sound waves outputted from the first and third sound wave generating devices 6 and 63 form an iso-phase and second sound waves outputted from the second and fourth sound wave generating devices 63 and 65 form an iso-phase, and drive and control is effected such that the phases of the first and second sound waves are deviated from each other only by an amount being increased an odd number times 1/4 wavelength of the sound wave.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、音響冷凍装置に関
し、特に、カルノーサイクルに近いガスサイクルを実現
することの出来る音響冷凍装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acoustic refrigeration apparatus, and more particularly to an acoustic refrigeration apparatus capable of realizing a gas cycle close to a Carnot cycle.

【0002】[0002]

【従来の技術】従来より、音波を利用して冷凍を行なう
音響冷凍装置が知られている(例えば特公平3-46745号参
照)。例えば図8に示す音響冷凍装置(200)は、一端(202
A)が閉止し、他端(202B)が開口した共鳴管(202)を具
え、該共鳴管(202)の開口端(202B)に対向して、音響発
生用のスピーカ(201)が配備されると共に、共鳴管(202)
内には、平板を複数層に配列してなる蓄冷器(203)が配
備されている。
2. Description of the Related Art Conventionally, there is known an acoustic refrigeration apparatus for refrigeration using sound waves (see, for example, Japanese Patent Publication No. 3-46745). For example, an acoustic refrigerator (200) shown in FIG.
(A) is closed, and the other end (202B) is provided with a resonance tube (202) having an opening, and a speaker (201) for generating sound is provided facing the open end (202B) of the resonance tube (202). And resonance tube (202)
Inside, a regenerator (203) in which flat plates are arranged in a plurality of layers is provided.

【0003】ここで、スピーカ(201)への印加電流の周
波数は、共鳴管(202)内で音波が共鳴することとなる値
に設定される。スピーカ(203)から共鳴管(202)の閉止端
(202A)へ向けて音波が発生されると、共鳴管(202)内に
は、図8に示す如き圧力分布Pが形成され、圧力変動の
大きい腹の部分と、圧力変動の小さな節の部分とが交互
に発生する。又、図中に矢印Wで示す様に、ガスの変位
にも腹と節が生じることになる。この結果、蓄冷器(20
3)の両端に温度差が発生する。そして、蓄冷器(203)の
低温端と高温端がそれぞれ熱交換器(図示省略)を介して
対象物の冷却と外界への放熱を行なうのである。
Here, the frequency of the current applied to the speaker (201) is set to a value at which sound waves resonate in the resonance tube (202). From the speaker (203) to the closed end of the resonance tube (202)
When a sound wave is generated toward (202A), a pressure distribution P is formed in the resonance tube (202) as shown in FIG. And occur alternately. Further, as shown by an arrow W in the figure, the gas displacement also has an antinode and a node. As a result, the regenerator (20
3) Temperature difference occurs at both ends. Then, the low-temperature end and the high-temperature end of the regenerator (203) perform cooling of the object and heat radiation to the outside via a heat exchanger (not shown), respectively.

【0004】上記の音響冷凍装置(200)は、微小なガス
塊についての断熱圧縮、等圧変化、断熱膨張、及び等圧
変化の4つの行程からなるブレイトンサイクルによって
説明することが出来る。しかしながら、上記の音響冷凍
装置(200)が構成するブレイトンサイクルにおいては、
ガス塊が膨張したときの温度と蓄冷器(203)の温度との
差によって熱を吸収させたり、ガス塊が圧縮されたとき
の温度と蓄冷器(203)の温度と差によって熱を放出させ
ているため、熱的移動過程が不可逆的となっており、カ
ルノーサイクルよりも熱効率が低い欠点がある。
The above-described acoustic refrigeration apparatus (200) can be described by a Brayton cycle consisting of four steps of adiabatic compression, isobaric pressure change, adiabatic expansion, and isobaric pressure change of a minute gas mass. However, in the Brayton cycle constituted by the acoustic refrigerator (200),
Heat is absorbed by the difference between the temperature when the gas mass expands and the temperature of the regenerator (203), or is released by the difference between the temperature when the gas mass is compressed and the temperature of the regenerator (203). Therefore, the thermal transfer process is irreversible, and has a disadvantage that the thermal efficiency is lower than that of the Carnot cycle.

【0005】そこで、出願人は、熱的移動行程が可逆的
となって、理想的なガスサイクルであるカルノーサイク
ルに近いガスサイクルを実現出来る音響冷凍装置を提案
している(特願平9-134993号)。図2〜図7に基づいて、
該音響冷凍装置の基本構造及び原理について説明する。
Therefore, the applicant has proposed an acoustic refrigeration apparatus in which the thermal transfer process is reversible and a gas cycle close to an ideal gas cycle, the Carnot cycle, can be realized (Japanese Patent Application No. Hei 9-1997). 134993). Based on FIGS. 2 to 7,
The basic structure and principle of the acoustic refrigerator will be described.

【0006】図2に示す如く、音波を進行させるべき音
響管(1)は、中空環状の閉ループの管路を形成してい
る。該音響管(1)の周長は、音波の波長の整数倍となる
様に設定する。尚、以下の例では、音響管(1)の中心線
の長さを周長とする。音波発生装置としてのスピーカ
(2)(3)は、音波の1/4波長の奇数倍に等しい距離だ
け互いに離間させて、音響管(1)内に音波を放射するよ
うに音響管(1)に取り付けられる。又、スピーカ(2)
(3)には音波発生制御装置(50)が接続され、スピーカ
(2)(3)から放射される音波の位相が互いに音波の1/
4波長の奇数倍だけずれるように駆動制御される。
As shown in FIG. 2, an acoustic tube 1 through which a sound wave is to be transmitted forms a hollow annular closed loop conduit. The circumference of the acoustic tube (1) is set to be an integral multiple of the wavelength of the sound wave. In the following example, the length of the center line of the acoustic tube (1) is defined as the circumference. Speaker as sound wave generator
(2) and (3) are attached to the acoustic tube (1) so as to emit acoustic waves into the acoustic tube (1) while being separated from each other by a distance equal to an odd multiple of 音波 wavelength of the acoustic wave. Also, speaker (2)
A sound wave generation control device (50) is connected to (3), and a speaker
(2) The phases of the sound waves emitted from (3) are 1 /
Drive control is performed so as to shift by an odd multiple of four wavelengths.

【0007】次に、音響冷凍装置の動作原理について、
図3を参照して説明する。各スピーカ(2)(3)から放射
された音波は、音響管(1)内に入ってから2方向に分岐
し、音響管(1)内を進行する。そして、両スピーカ(2)
(3)から放射されて音響管(1)内を進行する2つの音波
が互いに重なり合う。ここで、スピーカ(2)(3)の配置
間隔と音波の位相差の関係から、図の左方向へ進行する
音波2Lと3Lとは、同位相となり、互いに重ね合わさ
れて増幅し、図の右方向へ進行する音波2Rと3Rと
は、逆位相となり、互いに打ち消し合う。この結果、一
方向(左方向)にのみ進行する音波だけが残り、該音波は
更に音響管(1)内を一周して同じ位相の音波と重ね合わ
されるため、共鳴と同様に振幅が増大されることにな
る。
Next, the operation principle of the acoustic refrigerator is described.
This will be described with reference to FIG. The sound waves radiated from the speakers (2) and (3) enter the acoustic tube (1), branch in two directions, and travel in the acoustic tube (1). And both speakers (2)
Two sound waves emitted from (3) and traveling in the acoustic tube (1) overlap each other. Here, from the relationship between the arrangement intervals of the speakers (2) and (3) and the phase difference between the sound waves, the sound waves 2L and 3L traveling to the left in the drawing have the same phase, are superimposed on each other and amplified, and The sound waves 2R and 3R traveling in the directions have opposite phases and cancel each other. As a result, only the sound wave traveling in one direction (left direction) remains, and the sound wave further goes around in the acoustic tube (1) and is superimposed with the sound wave of the same phase, so that the amplitude is increased similarly to the resonance. Will be.

【0008】次に、図4に示す如く、音響冷凍装置の音
響管(1)内に、熱交換性が良く、圧力損失の小さい蓄冷
部材(40)を配備した場合における冷凍原理について、図
5を参照して説明する。蓄冷部材(40)を通過する進行音
波は、その位置により位相のずれがあり、ある場所に位
置する微小なガス塊に着目すると、その中心位置を境
に、音波の進行方向では膨張行程が生じ、その反対方向
では圧縮行程が生じている。この膨張行程及び圧縮行程
において、蓄冷部材(40)を用いて熱吸収及び熱放出が行
なわれることによって、熱が音波の進行方向とは逆方向
へ順次運ばれることになる。この伝熱行程は可逆的であ
るため、従来の音響冷凍装置よりも熱効率が高くなるの
である。
Next, as shown in FIG. 4, the principle of refrigeration when a regenerative member (40) having good heat exchange and a small pressure loss is provided in an acoustic tube (1) of an acoustic refrigeration apparatus will be described with reference to FIG. This will be described with reference to FIG. The traveling sound wave passing through the cold storage member (40) has a phase shift depending on its position, and when focusing on a minute gas mass located at a certain position, an expansion stroke occurs in the traveling direction of the sound wave at the center position as a boundary. In the opposite direction, a compression stroke occurs. In the expansion step and the compression step, heat is absorbed and released using the cold storage member (40), so that heat is sequentially transferred in the direction opposite to the traveling direction of the sound wave. Since the heat transfer process is reversible, the heat efficiency is higher than that of the conventional acoustic refrigerator.

【0009】更に、本発明の音響冷凍装置のガスサイク
ルについて、図6及び図7を参照して説明する。カルノ
ーサイクルは等温行程と断熱行程から構成され、図6に
示す様に、T−S線図では、A・H・G・Dの長方形の
サイクル線図として示される。ここで、A→Hは断熱膨
張行程(エントロピー一定)を示し、H→Gは等温膨張行
程を示し、G→Dは断熱圧縮行程を示し、D→Aは等温
膨張行程を示している。
Further, a gas cycle of the acoustic refrigerator according to the present invention will be described with reference to FIGS. The Carnot cycle is composed of an isothermal process and an adiabatic process, and is shown as a rectangular cycle diagram of AHGD in the TS diagram as shown in FIG. Here, A → H indicates an adiabatic expansion stroke (constant entropy), H → G indicates an isothermal expansion stroke, G → D indicates an adiabatic compression stroke, and D → A indicates an isothermal expansion stroke.

【0010】図7に示す様に、ガス塊となる伝熱性の良
い蓄冷部材中を一方向に音波が通過する場合、微小なガ
ス塊は往復運動をすると同時に圧力変化を生じる。圧力
変化は、ガス塊が音波進行方向に最も移動したときに、
圧力上昇が速く、強く圧縮される。ここで蓄冷部材の伝
熱性がよいため、等温圧縮が行なわれることになる。こ
の等温圧縮行程は、図6及び図7においてD→Aで示さ
れる。次に、ガス塊が音波進行方向と反対方向へ移動す
るときに、蓄冷部材の温度勾配に沿って熱が放出され、
ガス塊は略等積変化で冷却される。この行程は、図6及
び図7においてA→Bで示される。
As shown in FIG. 7, when a sound wave passes in one direction through a regenerative member having good heat conductivity as a gas mass, the minute gas mass reciprocates and changes pressure at the same time. The pressure change, when the gas mass has moved the most in the sound wave traveling direction,
The pressure rises quickly and is strongly compressed. Here, since the heat storage member has good heat conductivity, isothermal compression is performed. This isothermal compression stroke is indicated by D → A in FIGS. Next, when the gas mass moves in the direction opposite to the sound wave traveling direction, heat is released along the temperature gradient of the cold storage member,
The gas mass is cooled by a substantially equal volume change. This process is indicated by AB in FIGS.

【0011】その後、音波進行方向の反対方向の端部に
おいては、圧力の低下が速く、強く膨張する。このと
き、蓄冷部材から熱が吸収される等温膨張行程となる。
この行程は、図6及び図7においてB→Cで示される。
ガスが音波進行方向へ移動するときにも、蓄冷部材の温
度勾配に沿って熱を吸収する等積変化となる。この行程
は、図6及び図7においてC→Dで示される。
Thereafter, at the end in the direction opposite to the traveling direction of the sound wave, the pressure decreases rapidly and expands strongly. At this time, an isothermal expansion process in which heat is absorbed from the cold storage member is performed.
This process is indicated by B → C in FIGS. 6 and 7.
Even when the gas moves in the direction in which the sound wave travels, there is an equal volume change that absorbs heat along the temperature gradient of the cold storage member. This process is indicated by C → D in FIGS. 6 and 7.

【0012】以上により、図6に示すD→A→B→C→
Dの1サイクルによって、熱を音波進行方向とは逆方向
へ運ぶことが可能となる。この様に、等温行程と等積行
程によって構成されるサイクルは、スターリングサイク
ルと呼ばれ、カルノーサイクルの断熱行程が等積行程と
なったものである。従って、上記音響冷凍装置によれ
ば、カルノーサイクルと同等の効率が得られることにな
る。
From the above, D → A → B → C → shown in FIG.
One cycle of D makes it possible to transfer heat in the direction opposite to the direction of sound wave travel. Thus, a cycle constituted by the isothermal process and the isostatic process is called a Stirling cycle, and the adiabatic process of the Carnot cycle is an isostatic process. Therefore, according to the acoustic refrigeration apparatus, efficiency equivalent to the Carnot cycle can be obtained.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、図2に
示す音響冷凍装置においては、各スピーカ(2)(3)から
発せられる音波は、先ず、スピーカ(2)(3)と対向する
音響管(1)の内壁に対して垂直に衝突し、壁面で反射す
ることとなる。この反射は、進行音波形成の妨げとなる
ため、音響冷凍装置の冷凍効率は、カルノーサイクルで
得られるべき効率よりも低くなる問題があった。本発明
の目的は、従来よりも高い冷凍効率が得られる音響冷凍
装置を提供することである。
However, in the acoustic refrigerating apparatus shown in FIG. 2, sound waves emitted from the speakers (2) and (3) are first transmitted to the acoustic tubes (2) and (3). The light impinges perpendicularly on the inner wall of 1) and is reflected on the wall. Since this reflection hinders the formation of the traveling sound wave, there is a problem that the refrigeration efficiency of the acoustic refrigerator is lower than the efficiency to be obtained in the Carnot cycle. An object of the present invention is to provide an acoustic refrigeration apparatus that can achieve a higher refrigeration efficiency than before.

【0014】[0014]

【課題を解決する為の手段】本発明に係る音響冷凍装置
は、周長が音波の波長の整数倍である中空環状の音響管
の管路に対向して、第1音波発生手段と第2音波発生手
段が、音波の1/4波長の奇数倍の間隔をもって配置さ
れると共に、音響管内の所定位置には、蓄冷部材が配備
される。又、第1音波発生手段及び第2音波発生手段に
は音波発生制御手段が接続され、第1音波発生手段から
発せられる第1音波と第2音波発生手段から発せられる
第2音波の位相が音波の1/4波長の奇数倍だけ異なる
よう、両音波発生手段の動作が制御される。本発明の特
徴的構成において、第1音波発生手段及び第2音波発生
手段はそれぞれ、音響管の管路を挟んで互いに対向する
一対の音波発生装置によって構成され、該一対の音波発
生装置は、同一位相の音波を発生する様に制御される。
According to the present invention, there is provided an acoustic refrigeration apparatus, comprising: a first sound wave generating means and a second sound wave generating means which face a hollow annular sound pipe whose circumference is an integral multiple of the wavelength of a sound wave; The sound wave generating means is arranged at an interval of an odd multiple of 1/4 wavelength of the sound wave, and a cool storage member is provided at a predetermined position in the acoustic tube. A sound wave generation control means is connected to the first sound wave generation means and the second sound wave generation means, and the phase of the first sound wave emitted from the first sound wave generation means and the phase of the second sound wave emitted from the second sound wave generation means are changed. The operation of both sound wave generating means is controlled so as to differ by an odd multiple of の wavelength. In the characteristic configuration of the present invention, each of the first sound wave generator and the second sound wave generator is constituted by a pair of sound wave generators opposed to each other across a pipe of the acoustic tube, and the pair of sound wave generators is Control is performed so as to generate sound waves of the same phase.

【0015】上記本発明の音響冷凍装置において、第1
音波発生手段及び第2音波発生手段から音響管内に音波
を放射すると、音波は、音響管内で2方向に分岐して進
行する。この際、各音波発生手段を構成している一対の
音波発生装置から、同一位相の音波が発せられる。そし
て、これらの音波が互いに合成されて、音響管に沿って
進行する音波が生成される。
In the above-described acoustic refrigerator of the present invention, the first
When a sound wave is emitted from the sound wave generating means and the second sound wave generating means into the acoustic tube, the sound wave branches in two directions in the acoustic tube and proceeds. At this time, a pair of sound wave generators constituting each sound wave generator emits sound waves of the same phase. Then, these sound waves are combined with each other to generate a sound wave traveling along the acoustic tube.

【0016】その後、第1音波発生手段から発せられる
第1音波と第2音波発生手段から発せられる第2音波の
位相は、両音波発生手段の配置間隔及び発生される音波
の位相から、一方向へ進行する音波は重ね合わされて増
幅され、他方向へ進行する音波は打ち消されることにな
る。このため、一方向に進行する音波だけが音響管内に
残り、更に音響管内を1回転して同じ位相の音波と重ね
合わされ、共鳴と同様に振幅が増大されることになる
Thereafter, the phase of the first sound wave emitted from the first sound wave generating means and the phase of the second sound wave emitted from the second sound wave generating means are determined in one direction based on the interval between the two sound wave generating means and the phase of the generated sound waves. The sound wave traveling to the other direction is superposed and amplified, and the sound wave traveling to the other direction is canceled. For this reason, only the sound wave traveling in one direction remains in the sound tube, and is further rotated by one turn in the sound tube and superimposed with the sound wave of the same phase, so that the amplitude is increased like resonance.

【0017】この様にして形成された一方向にのみ進行
する音波が蓄冷部材を通過することによって、各場所に
位置する微小なガス塊の圧力及び変位は、その位置によ
り位相のずれを生じる。これによって、各場所に位置す
るガス塊は、その変位の中心位置を境に、音波の進行方
向に位置するときは膨張が起こり、その反対方向に位置
するときは圧縮が起こる。この膨張行程及び圧縮行程に
おいて、熱吸収及び熱放出が行なわれるため、熱が音波
進行方向の逆方向へ順次運ばれることになる。この結
果、熱の伝達行程が可逆的に行なわれ、カルノーサイク
ルに近い熱サイクルが実現される。
When the sound wave formed in this manner and traveling in only one direction passes through the regenerative member, the pressure and displacement of the minute gas mass located at each location causes a phase shift depending on the location. As a result, the gas mass located at each location expands when located in the traveling direction of the sound wave, and compresses when located in the opposite direction, from the center position of the displacement. In the expansion stroke and the compression stroke, heat is absorbed and released, so that heat is sequentially transferred in the direction opposite to the direction in which the sound wave travels. As a result, the heat transfer process is performed reversibly, and a heat cycle close to the Carnot cycle is realized.

【0018】[0018]

【発明の効果】本発明に係る音響冷凍装置においては、
対向配備された一対の音波発生装置から放射される音波
が互いに合成されて、音響管に沿って進行する音波が生
成されるので、極めてカルノーサイクルの効率に近い冷
凍効率が得られる。
According to the acoustic refrigerator of the present invention,
Sound waves radiated from a pair of sound wave generators arranged opposite to each other are combined to generate a sound wave traveling along the acoustic tube, so that a refrigerating efficiency extremely close to the efficiency of the Carnot cycle can be obtained.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態につ
き、図面に沿って具体的に説明する。本発明に係る音響
冷凍装置は、図1に示す如く、中空環状の閉ループの管
路を有する音響管(1)を具え、該音響管(1)の周長は、
音波の波長の整数倍となる様に設定されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below with reference to the drawings. As shown in FIG. 1, the acoustic refrigeration apparatus according to the present invention includes an acoustic tube (1) having a hollow annular closed-loop conduit, and a circumference of the acoustic tube (1) is
It is set to be an integral multiple of the wavelength of the sound wave.

【0020】音響管(1)には、音波の1/4波長の奇数
倍に等しい距離だけ互いに離間させて、第1音波発生装
置(6)と第2音波発生装置(63)が取り付けられている。
又、音響管(1)には、第1音波発生装置(6)及び第2音
波発生装置(63)にそれぞれ対向させて、第3音波発生装
置(64)及び第4音波発生装置(65)が取り付けられてい
る。斯くして、第1音波発生装置(6)及び第3音波発生
装置(64)によって第1の音波発生手段が構成されると共
に、第2音波発生装置(63)及び第4音波発生装置(65)に
よって第2の音波発生手段が構成される。これらの音波
発生装置(6)(63)(64)(65)はそれぞれ、リニアモータ(6
2)の出力部に振動板(61)を連結して構成され、リニアモ
ータ(62)の駆動によって振動板(61)を往復駆動すること
により、音響管(1)内へ音波を発する。
A first sound generator (6) and a second sound generator (63) are attached to the acoustic tube (1) so as to be separated from each other by a distance equal to an odd multiple of 1/4 wavelength of the sound wave. I have.
Also, the sound tube (1) is opposed to the first sound wave generator (6) and the second sound wave generator (63), respectively, and the third sound wave generator (64) and the fourth sound wave generator (65). Is attached. Thus, the first sound wave generator (6) and the third sound wave generator (64) constitute the first sound wave generator, and the second sound wave generator (63) and the fourth sound wave generator (65). ) Constitute the second sound wave generating means. These sound wave generators (6) (63) (64) (65) are linear motors (6
A diaphragm (61) is connected to the output unit of (2), and a sound wave is emitted into the acoustic tube (1) by reciprocatingly driving the diaphragm (61) by driving the linear motor (62).

【0021】音響管(1)の適所には、蓄冷器(4)が取り
付けられている。蓄冷器(4)は、銅、銅合金、鉄、ステ
ンレス鋼などの熱伝導性が高い資材からなる金網状の積
層体や多孔質体、或いは互いに平行な複数枚の板から構
成される蓄冷部材(図示省略)を内蔵している。
A regenerator (4) is mounted at an appropriate position on the acoustic tube (1). The regenerator (4) is a regenerative member composed of a wire mesh laminate or porous body made of a material having high thermal conductivity such as copper, copper alloy, iron, stainless steel, or a plurality of parallel plates. (Not shown).

【0022】又、第1〜第4音波発生装置(6)(63)(64)
(65)は駆動源(5)から駆動制御信号を受けて、第1音波
発生装置(6)と第3音波発生装置(64)から発せられる音
波(第1音波)が同一位相となると共に、第2音波発生装
置(63)と第4音波発生装置(65)から発せられる音波(第
2音波)が同一位相となり、且つ、第1音波発生装置
(6)及び第3音波発生装置(64)から発せられる第1音波
の位相と、第2音波発生装置(63)及び第4音波発生装置
(65)から発せられる第2音波の位相とが、互いに音波の
1/4波長の奇数倍だけずれるように駆動制御される。
The first to fourth sound wave generators (6), (63), (64)
(65) receives the drive control signal from the drive source (5), the sound waves (first sound waves) emitted from the first sound wave generator (6) and the third sound wave generator (64) have the same phase, Sound waves (second sound waves) emitted from the second sound wave generator (63) and the fourth sound wave generator (65) have the same phase, and the first sound wave generator
(6) and the phase of the first sound wave emitted from the third sound wave generator (64), and the second sound wave generator (63) and the fourth sound wave generator
Drive control is performed such that the phase of the second sound wave emitted from (65) is shifted from each other by an odd multiple of 1/4 wavelength of the sound wave.

【0023】上記音響冷凍装置においては、第1〜第4
音波発生装置(6)(63)(64)(65)から音響管(1)内に音波
を放射すると、第1音波発生装置(6)及び第3音波発生
装置(64)から発生される同一位相の音波は、互いに合成
され、これによって音響管に沿って互いに反対方向へ進
行する2つの音波(第1音波)が生成される。又、第2音
波発生装置(63)及び第4音波発生装置(65)から発せられ
る同一位相の音波についても、両音波が互いに合成され
ることによって、音響管に沿って互いに反対方向へ進行
する2つの音波(第2音波)が生成される。
In the above acoustic refrigerator, the first to fourth
When sound waves are emitted from the sound wave generators (6) (63) (64) (65) into the acoustic tube (1), the same sound waves are generated from the first sound wave generator (6) and the third sound wave generator (64). The sound waves in phase are combined with each other, thereby generating two sound waves (first sound waves) traveling in opposite directions along the acoustic tube. Also, the sound waves having the same phase emitted from the second sound wave generator (63) and the fourth sound wave generator (65) are combined with each other, so that they travel in opposite directions along the acoustic tube. Two sound waves (second sound waves) are generated.

【0024】その後、第1音波及び第2音波は、一方向
へ進行する音波が重ね合わされて増幅され、他方向へ進
行する音波が打ち消されることによって、一方向に進行
する音波だけが音響管内に残り、更に音響管内を一周し
て同じ位相の音波と重ね合わされ、共鳴と同様に振幅が
増大されることになる
After that, the first sound wave and the second sound wave are superposed and amplified by the sound waves traveling in one direction, and the sound waves traveling in the other direction are canceled out, so that only the sound waves traveling in one direction enter the acoustic tube. Remaining, further round the inside of the acoustic tube and superimposed with sound waves of the same phase, and the amplitude will be increased like resonance

【0025】この様にして形成された一方向にのみ進行
する音波が蓄冷器(4)を通過することによって、蓄冷器
(4)内の各場所に位置するガス塊は、その変位の中心位
置を境に、音波の進行方向に位置するときは膨張が起こ
り、その反対方向に位置するときは圧縮が起こる。この
膨張行程及び圧縮行程において、熱吸収及び熱放出が行
なわれ、カルノーサイクルに近い熱サイクルが実現され
る。この結果、図8に示す従来の音響冷凍装置よりも高
い冷凍効率が得られる。
The sound wave formed in this way, which travels in only one direction, passes through the regenerator (4).
The gas mass located at each location in (4) expands when it is located in the traveling direction of the sound wave, and compresses when it is located in the opposite direction from the center position of the displacement. In the expansion stroke and the compression stroke, heat absorption and heat release are performed, and a heat cycle close to a Carnot cycle is realized. As a result, higher refrigeration efficiency than the conventional acoustic refrigeration apparatus shown in FIG. 8 can be obtained.

【0026】特に、本発明に係る音響冷凍装置において
は、第1音波発生装置(6)及び第3音波発生装置(64)か
ら発せられる2つの音波が互いに合成されて、2方向に
進行する第1音波が生成されると共に、第2音波発生装
置(63)及び第4音波発生装置(65)から発せられる2つの
音波が互いに合成されて、2方向に進行する第2音波が
生成されるので、従来の如く音波発生装置から発せられ
た音波が対向する壁面で反射することに起因する問題は
発生しない。従って、図2に示す音響冷凍装置よりも更
に高い冷凍効率が実現される。
In particular, in the acoustic refrigerator according to the present invention, the two sound waves emitted from the first sound wave generator (6) and the third sound wave generator (64) are combined with each other and the second sound wave traveling in two directions is obtained. One sound wave is generated, and two sound waves emitted from the second sound wave generator (63) and the fourth sound wave generator (65) are combined with each other to generate a second sound wave traveling in two directions. However, unlike the related art, there is no problem caused by the sound waves emitted from the sound wave generator being reflected on the facing wall surface. Therefore, higher refrigeration efficiency than the acoustic refrigeration apparatus shown in FIG. 2 is realized.

【0027】尚、本発明の各部構成は上記実施の形態に
限らず、特許請求の範囲に記載の技術的範囲内で種々の
変形が可能である。例えば、第1音波発生装置(6)及び
第3音波発生装置(64)によって構成される第1の音波発
生手段と、第2音波発生装置(63)及び第4音波発生装置
(65)によって構成される第2の音波発生手段とは、音波
の1/4波長の奇数倍だけずらして、複数位置に配設す
ることも可能であり、これによって、各音波発生装置に
加わる負荷を軽減され、音響冷凍装置の長寿命化を図る
ことが出来る。又、音波の発生には、上述の如くリニア
モータによって駆動される音波発生装置に限らず、電磁
力で駆動されるラウドスピーカや、圧電素子を振動源と
する振動ユニット等を採用することが出来る。
The configuration of each part of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims. For example, a first sound wave generator constituted by a first sound wave generator (6) and a third sound wave generator (64), a second sound wave generator (63) and a fourth sound wave generator
The second sound wave generating means constituted by (65) can be disposed at a plurality of positions shifted by an odd multiple of 1/4 wavelength of the sound wave, thereby adding to each sound wave generating device. The load can be reduced, and the life of the acoustic refrigerator can be extended. The generation of sound waves is not limited to the sound wave generator driven by the linear motor as described above, but a loudspeaker driven by electromagnetic force, a vibration unit using a piezoelectric element as a vibration source, or the like can be employed. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る音響冷凍装置の基本構造を示す断
面図である。
FIG. 1 is a sectional view showing a basic structure of an acoustic refrigerator according to the present invention.

【図2】出願人の提案にかかる音響冷凍装置の動作原理
を説明するための第1の図である。
FIG. 2 is a first diagram for explaining the operation principle of the acoustic refrigerator according to the proposal of the applicant.

【図3】同上の第2の図である。FIG. 3 is a second diagram of the above.

【図4】該音響冷凍装置の基本構造を示す概略図であるFIG. 4 is a schematic diagram showing a basic structure of the acoustic refrigerator.

【図5】該音響冷凍装置の伝熱行程を説明するための図
である。
FIG. 5 is a diagram for explaining a heat transfer process of the acoustic refrigerator.

【図6】該音響冷凍装置の冷凍サイクルを表わすT−S
線図である。
FIG. 6 shows a TS representing a refrigeration cycle of the acoustic refrigerator.
FIG.

【図7】該冷凍サイクルを説明するための図である。FIG. 7 is a diagram for explaining the refrigeration cycle.

【図8】従来の音響冷凍装置の断面図である。FIG. 8 is a sectional view of a conventional acoustic refrigerator.

【符号の説明】[Explanation of symbols]

(1) 音響管 (2) スピーカ (3) スピーカ (4) 蓄冷器 (40) 蓄冷部材 (5) 駆動源 (6) 第1音波発生装置 (63) 第2音波発生装置 (64) 第3音波発生装置 (65) 第4音波発生装置 (61) 振動板 (62) リニアモータ (1) Acoustic tube (2) Speaker (3) Speaker (4) Cold storage (40) Cold storage member (5) Drive source (6) First sound wave generator (63) Second sound wave generator (64) Third sound wave Generator (65) Fourth sound generator (61) Diaphragm (62) Linear motor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 周長が音波の波長の整数倍である中空環
状の音響管の管路に対向して、第1音波発生手段と第2
音波発生手段が、音波の1/4波長の奇数倍の間隔をも
って配置されると共に、音響管内の所定位置には、蓄冷
部材が配備され、第1音波発生手段及び第2音波発生手
段には音波発生制御手段を接続して、第1音波発生手段
から発せられる第1音波と第2音波発生手段から発せら
れる第2音波の位相が音波の1/4波長の奇数倍だけ異
なるよう、両音波発生手段の動作を制御する音響冷凍装
置であって、第1音波発生手段及び第2音波発生手段は
それぞれ、音響管の管路を挟んで互いに対向する一対の
音波発生装置によって構成され、該一対の音波発生装置
は、同一位相の音波を発生する様に制御されることを特
徴とする音響冷凍装置。
1. A first sound wave generating means and a second sound wave generating means, which face a pipe of a hollow annular acoustic tube whose circumference is an integral multiple of the wavelength of a sound wave.
The sound wave generating means is disposed at an interval of an odd multiple of 1/4 wavelength of the sound wave, and a cool storage member is provided at a predetermined position in the acoustic tube, and the first sound wave generating means and the second sound wave generating means are provided with sound waves. The generation control means is connected to generate both sound waves such that the phases of the first sound wave emitted from the first sound wave generation means and the second sound wave emitted from the second sound wave generation means differ by an odd number times 1/4 wavelength of the sound wave. An acoustic refrigerator for controlling the operation of the means, wherein each of the first sound wave generating means and the second sound wave generating means is constituted by a pair of sound wave generating apparatuses opposed to each other with a pipe of the acoustic tube interposed therebetween, and An acoustic refrigerator, wherein the sound wave generator is controlled so as to generate sound waves having the same phase.
【請求項2】 第1音波発生手段及び第2音波発生手段
は、音波の1/4波長の奇数倍だけずらして、音響管の
複数位置に配設されている請求項1に記載の音響冷凍装
置。
2. The acoustic refrigerator according to claim 1, wherein the first sound wave generating means and the second sound wave generating means are arranged at a plurality of positions of the acoustic tube while being shifted by an odd multiple of 1 / wavelength of the sound wave. apparatus.
JP10146096A 1998-05-27 1998-05-27 Sound refrigerating device Pending JPH11337205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10146096A JPH11337205A (en) 1998-05-27 1998-05-27 Sound refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10146096A JPH11337205A (en) 1998-05-27 1998-05-27 Sound refrigerating device

Publications (1)

Publication Number Publication Date
JPH11337205A true JPH11337205A (en) 1999-12-10

Family

ID=15400057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10146096A Pending JPH11337205A (en) 1998-05-27 1998-05-27 Sound refrigerating device

Country Status (1)

Country Link
JP (1) JPH11337205A (en)

Similar Documents

Publication Publication Date Title
US8584471B2 (en) Thermoacoustic apparatus with series-connected stages
JP3015786B1 (en) Loop tube air column acoustic wave refrigerator
US9777951B2 (en) Thermoacoustic engine
US6560970B1 (en) Oscillating side-branch enhancements of thermoacoustic heat exchangers
EP2280157B1 (en) Thermo-electric-acoustic engine and method of using same
JP4362632B2 (en) Pulse tube refrigerator
JP5711907B2 (en) Thermoelectric acoustic refrigerator and method of using the same
JP2011510610A (en) Small thermoacoustic array energy converter
JPWO2004085934A1 (en) Cooling system
CN107223196B (en) Thermoacoustic heat pump
JP2003324932A (en) Thermoacoustic generator
JPH11344266A (en) Acoustic freezer
US6233946B1 (en) Acoustic refrigeration apparatus
JP2000337724A (en) Acoustic refrigeration system
JPH1068556A (en) Thermoacoustic refrigerator
JP2010071559A (en) Thermoacoustic cooling device
JPH11337205A (en) Sound refrigerating device
Bastyr et al. High-frequency thermoacoustic-Stirling heat engine demonstration device
JPH11337206A (en) Sound refrigerating device
JPH10325625A (en) Acoustic refrigerating device
JP2969124B2 (en) Wave type refrigerator
RU2435113C1 (en) Thermo-acoustic cooling device
Qing et al. Thermoacoustic refrigeration device
Tijani et al. Design, Development, and Operation of a Thermo-Acoustic Refrigerator Cooling to below− 60° C
JP2004353968A (en) Pulse tube refrigerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040621

A131 Notification of reasons for refusal

Effective date: 20041130

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20050127

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20050329

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050906

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050915

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090922

LAPS Cancellation because of no payment of annual fees