JP2011099599A - Heat transport pipe - Google Patents

Heat transport pipe Download PDF

Info

Publication number
JP2011099599A
JP2011099599A JP2009253636A JP2009253636A JP2011099599A JP 2011099599 A JP2011099599 A JP 2011099599A JP 2009253636 A JP2009253636 A JP 2009253636A JP 2009253636 A JP2009253636 A JP 2009253636A JP 2011099599 A JP2011099599 A JP 2011099599A
Authority
JP
Japan
Prior art keywords
temperature side
heat
high temperature
side heat
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009253636A
Other languages
Japanese (ja)
Inventor
Masabumi Nogawa
正文 野川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2009253636A priority Critical patent/JP2011099599A/en
Publication of JP2011099599A publication Critical patent/JP2011099599A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive heat transport pipe with a simple configuration being a heat transport pipe transporting heat from a high temperature side heat exchange part to a low temperature side heat exchange part, capable of controlling heat transport, capable of deriving work, having little restraints of an installation attitude, and easy in connection with a heating object. <P>SOLUTION: The heat transport pipe includes a stack 4, a high temperature side heat exchanger 5 provided on a high temperature end 4c of the stack 4, a low temperature side heat exchanger 3 provided on a low temperature end 4d of the stack 4, and an expander 2 having an expansion chamber 2d communicated with the low temperature side heat exchanger 3. Pressure oscillation and a reciprocating flow are generated in a working fluid by the expander 2, heat Q1 transferred from the high temperature side heat exchanger 5 to the high temperature end 4c of the stack is transferred to the low temperature end 4d via a heat storage body 4b, part of the heat Q1 is discharged from the low temperature side heat exchanger 3, the rest is used as a work flow of the low temperature end 4d, and it is transferred to the expansion chamber 2d and output from the expander 2. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、入熱源からの熱を入熱源から離れた場所へ輸送する熱輸送管に関する。   The present invention relates to a heat transport pipe that transports heat from a heat input source to a location away from the heat input source.

従来技術の熱輸送管として、図7に示すように、両端が閉じた管31にウイック33を内張りする共に、動作媒体を封入し、僅かな温度差で熱を高温から低温へ輸送するヒートパイプ30が知られている。ヒートパイプ30は、管31の一端側の高温部(蒸発部)31aを加熱するとウイック33中の動作媒体32の液32aが蒸発して蒸気32bとなって、他端側の低温部(凝縮部)31bへ移動する。低温部31bへ移動した蒸気32bは、そこで冷却され液体となって、ウイック33の毛細管作用により高温部31aへ戻る。このようにして動作媒体は管31内で相変化して熱を高温部31aから低温部31bへ輸送する。   As a heat transport pipe of the prior art, as shown in FIG. 7, a wick 33 is lined in a pipe 31 closed at both ends, a working medium is enclosed, and heat is transported from a high temperature to a low temperature with a slight temperature difference. 30 is known. When the heat pipe 30 heats the high temperature part (evaporation part) 31a on one end side of the pipe 31, the liquid 32a of the working medium 32 in the wick 33 evaporates to become a vapor 32b, and the low temperature part (condensation part) on the other end side. ) Move to 31b. The steam 32 b that has moved to the low temperature portion 31 b is cooled there to become a liquid and returns to the high temperature portion 31 a by the capillary action of the wick 33. In this way, the working medium undergoes a phase change in the pipe 31 and transports heat from the high temperature part 31a to the low temperature part 31b.

また、図8に示すように、高温側媒体44と低温側媒体45とを隔絶する隔壁46を貫通する密閉器41を隔壁46に対して軸点43をもって回転可能に取付けられ、密閉器41に動作媒体42を封入したサーモサイホン40が開示されている。サーモサイホン40は、密閉器41内にウイックが無く、動作媒体42の液42aと蒸気42bとの密度差と利用して重力により動作媒体42を循環させる。即ち、密閉器41内の密度の大きな液42aが下方へ移動し、密度の小さな蒸気42bが上方へ移動することにより、動作媒体42がサーモサイホン40の高温部(蒸発部)41aと低温部(凝縮部)41bとの間で循環する。従って、動作媒体42の液42aが蒸発する密閉器41の高温部41aは、蒸気42bが凝縮する低温部41bより下方に位置する。そして、サーモサイホン40は隔壁46に対して高温側媒体44と低温側媒体45とが入代わった場合に、高温側媒体44の熱を低温側媒体45へ輸送するため、軸点43を中心に一点鎖線で示すように高温部41aを低温部41bより上方に位置するように回転する(例えば、特許文献1参照)。   In addition, as shown in FIG. 8, a sealing device 41 penetrating a partition wall 46 that separates the high temperature side medium 44 and the low temperature side medium 45 is rotatably attached to the partition wall 46 with an axial point 43. A thermosiphon 40 enclosing a working medium 42 is disclosed. The thermosiphon 40 has no wick in the hermetic seal 41, and circulates the working medium 42 by gravity using the density difference between the liquid 42a and the vapor 42b of the working medium 42. That is, the liquid 42a having a high density in the hermetic seal 41 moves downward and the vapor 42b having a low density moves upward, so that the working medium 42 has a high-temperature part (evaporation part) 41a and a low-temperature part ( It circulates between (condensing part) 41b. Therefore, the high temperature part 41a of the sealing device 41 where the liquid 42a of the working medium 42 evaporates is located below the low temperature part 41b where the vapor 42b condenses. The thermosiphon 40 transports the heat of the high temperature side medium 44 to the low temperature side medium 45 when the high temperature side medium 44 and the low temperature side medium 45 are replaced with respect to the partition wall 46. As indicated by the alternate long and short dash line, the high temperature portion 41a is rotated so as to be positioned above the low temperature portion 41b (see, for example, Patent Document 1).

また、図9に示すように、膨張機51が備えるピストン51aとシリンダ51bとで形成された膨張室52と、常温側熱交換器53と、パルス管54と、高温側熱交換器55と、蓄熱材56aを充填した再生器(蓄熱器)56と、常温側熱交換器57とを順に接続した熱音響エンジン50が開示されている(例えば、特許文献2の図2を参照)。   Further, as shown in FIG. 9, an expansion chamber 52 formed by a piston 51a and a cylinder 51b provided in the expander 51, a normal temperature side heat exchanger 53, a pulse tube 54, a high temperature side heat exchanger 55, A thermoacoustic engine 50 is disclosed in which a regenerator (heat accumulator) 56 filled with a heat storage material 56a and a room temperature side heat exchanger 57 are connected in order (see, for example, FIG. 2 of Patent Document 2).

また、再生器56内において生じる圧力振動が定在波より進行波が大幅に多くなるようにするために、図10に示す熱音響エンジン60が開示されている。即ち、熱音響エンジン60は、膨張機61が備えるピストン61aとシリンダ61bとで形成された膨張室62と、第2常温側熱交換器63と、パルス管64と、高温側熱交換器65と、蓄熱材66aを充填した再生器66と、第1常温側熱交換器67と、圧縮機68のピストン68aとシリンダ68bとで形成された圧縮室69とを順に接続して成る。本来、熱音響エンジン60は、仕事を得るために、高温側熱交換器65を高温(例えば、略600℃)に加熱し、第1常温側熱交換器67および第2常温側熱交換器63を常温(例えば、略60℃)に冷却する(例えば、特許文献2の図3を参照)。   Further, a thermoacoustic engine 60 shown in FIG. 10 is disclosed in order to cause the pressure vibration generated in the regenerator 56 to have a traveling wave significantly larger than a standing wave. That is, the thermoacoustic engine 60 includes an expansion chamber 62 formed by a piston 61a and a cylinder 61b included in the expander 61, a second normal temperature side heat exchanger 63, a pulse tube 64, and a high temperature side heat exchanger 65. The regenerator 66 filled with the heat storage material 66a, the first normal temperature side heat exchanger 67, and the compression chamber 69 formed by the piston 68a and the cylinder 68b of the compressor 68 are sequentially connected. Originally, in order to obtain work, the thermoacoustic engine 60 heats the high temperature side heat exchanger 65 to a high temperature (for example, approximately 600 ° C.), and the first normal temperature side heat exchanger 67 and the second normal temperature side heat exchanger 63. Is cooled to room temperature (for example, approximately 60 ° C.) (see, for example, FIG. 3 of Patent Document 2).

特開昭58−182086号公報JP 58-182086 A 特開2006−112260号公報JP 2006-112260 A

しかしながら、図7に示すヒートパイプ30は、ウイック33の毛細管作用により動作媒体32が循環され熱を輸送するので、ヒートパイプ30の高温部31aに取付けた機器が発生する熱を低温部31bから放熱する熱輸送は、常時、作動状態である。このため、機器の熱源の状態変化に対応した放熱量(熱輸送量)の制御ができない問題がある。また、前述と同じ理由により、ヒートパイプ30は、管31を傾けて凝縮部である低温部31bの位置が蒸発部である高温部31aより下側になる位置でも熱を輸送できるが、低温部31bを下側にする角度によって、熱輸送能力が低下する問題がある。   However, the heat pipe 30 shown in FIG. 7 circulates the operating medium 32 by the capillary action of the wick 33 and transports heat, so that heat generated by the device attached to the high temperature part 31a of the heat pipe 30 is dissipated from the low temperature part 31b. The heat transport to be performed is always in an operating state. For this reason, there is a problem that the amount of heat release (heat transport amount) corresponding to the change in the state of the heat source of the device cannot be controlled. Further, for the same reason as described above, the heat pipe 30 can transport the heat even at a position where the position of the low temperature part 31b which is the condensing part is lower than the high temperature part 31a which is the evaporation part by tilting the pipe 31. There is a problem that the heat transport capability is lowered depending on the angle at which 31b is located on the lower side.

図8のサーモサイホン40は、重力を利用して動作媒体42を循環させるので、サーモサイホン40の設置姿勢は高温部41aの位置が低温部41bの位置より低くなり、構成上の制約がある。また、ヒートパイプ30、サーモサイホン40は、作動流体の相変化を利用している。蒸発部と凝縮部とに温度差つけるには、それに応じた蒸発部と凝縮部間とに圧力差をつける必要があるが、ポンプなどで積極的に差圧をつけているのではないため、圧力差は小さい。従って、従来技術の熱輸送デバイスは、蒸発温度と凝縮温度との温度差が小さい状態での熱輸送に限定される。また、作動流体の凝縮温度は、作動流体の種類によって決まる特定の温度であるので、従来技術の熱輸送デバイスが使用される温度領域も限定される。   Since the thermosiphon 40 of FIG. 8 circulates the working medium 42 using gravity, the installation posture of the thermosiphon 40 is lower in the position of the high temperature part 41a than the position of the low temperature part 41b, and there is a structural limitation. Moreover, the heat pipe 30 and the thermosiphon 40 utilize the phase change of the working fluid. In order to make the temperature difference between the evaporation part and the condensation part, it is necessary to make a pressure difference between the evaporation part and the condensation part according to it, but since the differential pressure is not positively applied by a pump etc., The pressure difference is small. Therefore, the prior art heat transport device is limited to heat transport in a state where the temperature difference between the evaporation temperature and the condensation temperature is small. Further, since the condensation temperature of the working fluid is a specific temperature determined by the type of the working fluid, the temperature range in which the heat transport device of the prior art is used is also limited.

図9の熱音響エンジン50は、高温側熱交換器55(入熱部)が装置の中央部に存在し、入熱部を被加熱体と接続する場合に構成上有利ではない。すなわち、熱音響エンジン50の入熱する高温側熱交換器55の両端は、パルス管54と再生器56に接続されているので、高温側熱交換器55への入熱は高温側熱交換器55の外周面を介して行われる。このため、入熱源である機器などを設置し難く、かつ入熱ための伝達面積が減少し、外周面を介して行われる入熱の際に温度差が増大する。また、熱音響エンジン50は、パルス管54、常温側熱交換器53を備えるため、構成が複雑で、コスト高となる問題がある。   The thermoacoustic engine 50 of FIG. 9 is not advantageous in terms of configuration when the high temperature side heat exchanger 55 (heat input part) is present in the center of the apparatus and the heat input part is connected to the object to be heated. That is, since both ends of the high temperature side heat exchanger 55 to which the thermoacoustic engine 50 receives heat are connected to the pulse tube 54 and the regenerator 56, the heat input to the high temperature side heat exchanger 55 is the high temperature side heat exchanger. 55 through the outer peripheral surface. For this reason, it is difficult to install a device that is a heat input source, the transfer area for heat input decreases, and the temperature difference increases during heat input performed through the outer peripheral surface. Further, since the thermoacoustic engine 50 includes the pulse tube 54 and the room temperature side heat exchanger 53, there is a problem that the configuration is complicated and the cost is increased.

図10の熱音響エンジン60においても、高温側熱交換器65(入熱部)が装置の中央部に存在し、入熱部を被加熱体と接続する場合に構成上有利ではない。すなわち、熱音響エンジン60の入熱する高温側熱交換器65の両端は、パルス管64と再生器66に接続されているので、高温側熱交換器65への入熱は高温側熱交換器65の外周面を介して行われる。このため、入熱源である機器などを設置し難く、かつ入熱ための伝達面積が減少し、外周面を介して行われる入熱の際に温度差が増大する。また、熱音響エンジン60は、パルス管64と第2常温側熱交換器63と膨張機61とを備えると共に、膨張室62と圧縮室69との間に位相差を付ける手段が必要であるため、構成が複雑で、コスト高となる問題がある。   Also in the thermoacoustic engine 60 of FIG. 10, the high temperature side heat exchanger 65 (heat input part) exists in the center part of the apparatus, and it is not advantageous in terms of configuration when the heat input part is connected to the object to be heated. That is, since both ends of the high temperature side heat exchanger 65 that receives heat from the thermoacoustic engine 60 are connected to the pulse tube 64 and the regenerator 66, the heat input to the high temperature side heat exchanger 65 is the high temperature side heat exchanger. This is done via 65 outer peripheral surfaces. For this reason, it is difficult to install a device that is a heat input source, the transfer area for heat input decreases, and the temperature difference increases during heat input performed through the outer peripheral surface. In addition, the thermoacoustic engine 60 includes a pulse tube 64, a second room temperature side heat exchanger 63, and an expander 61, and requires a means for providing a phase difference between the expansion chamber 62 and the compression chamber 69. There is a problem that the configuration is complicated and the cost is high.

本発明は上記問題点に鑑みてなされたものであり、高温側熱交換部から低温側熱交換部へ熱を輸送する熱輸送管であって、熱輸送の制御が可能で、仕事を取出せると共に、設置姿勢の制約が少なく、かつ被加熱体との接続が容易で、構成が簡素で低コストな熱輸送管を提供することを目的とする。   The present invention has been made in view of the above problems, and is a heat transport pipe that transports heat from a high-temperature side heat exchange section to a low-temperature side heat exchange section, and can control heat transport and take out work. Another object of the present invention is to provide a heat transport pipe with less restrictions on the installation posture, easy connection to a heated object, a simple configuration, and low cost.

上記課題を解決するため、請求項1に記載の発明は、蓄熱体を備え高温から低温へ向けて温度勾配のついたスタックと、前記スタックの高温側に設けられた高温側熱交換部と、前記スタックの低温側に設けられた低温側熱交換部と、前記低温側熱交換部に隣接し連通する膨張室を有する膨張機とを備えた熱輸送管であって、前記膨張機は、前記スタック内の作動流体に圧力振動と往復流動とを発生し、前記スタックは、前記作動流体と前記蓄熱体との温度差とに起因して前記高温側熱交換部から前記スタックの高温側に伝達された熱が、前記スタックの高温側から低温側に向けて前記蓄熱体を介して輸送され、前記スタックの低温側から前記低温側熱交換部に伝達され、前記低温側熱交換部に伝達された熱は、一部が前記低温側熱交換部より放熱され、残りは前記膨張室へ伝達されて前記膨張機より出力される構成である。   In order to solve the above-mentioned problem, the invention described in claim 1 includes a stack having a heat storage body and having a temperature gradient from high temperature to low temperature, a high temperature side heat exchange section provided on the high temperature side of the stack, A heat transport pipe provided with a low temperature side heat exchange section provided on the low temperature side of the stack and an expander having an expansion chamber adjacent to and in communication with the low temperature side heat exchange section, Pressure oscillation and reciprocating flow are generated in the working fluid in the stack, and the stack is transmitted from the high temperature side heat exchange part to the high temperature side of the stack due to a temperature difference between the working fluid and the heat storage body. The generated heat is transported from the high temperature side of the stack to the low temperature side via the heat storage body, transferred from the low temperature side of the stack to the low temperature side heat exchange unit, and transferred to the low temperature side heat exchange unit. Part of the heat is from the low-temperature side heat exchanger Is heated, the rest is configured to be output from the expander is transmitted to the expansion chamber.

請求項2に記載の発明は、前記高温側熱交換部は前記スタックの高温端に設けられ、一端が前記スタックに開口し他端が閉じた流路孔を複数本備えた高温側熱交換器であり、
前記低温側熱交換部は前記スタックの低温端に設けられ、一端が前記スタックに開口し他端が前記膨張室に開口した流路孔を複数本備えた低温側熱交換器である。
According to a second aspect of the present invention, the high temperature side heat exchanger is provided with a plurality of flow path holes provided at the high temperature end of the stack and having one end opened in the stack and the other end closed. And
The low temperature side heat exchanging section is a low temperature side heat exchanger provided with a plurality of flow path holes provided at a low temperature end of the stack, one end opening in the stack and the other end opening in the expansion chamber.

請求項3に記載の発明は、前記膨張機は、モータの機能と発電機の機能とを備える構成である。   The invention according to claim 3 is a configuration in which the expander has a function of a motor and a function of a generator.

請求項4に記載の発明は、前記作動流体は、気体と凝縮性流体とが混在しているを特徴としている。   The invention according to claim 4 is characterized in that the working fluid is a mixture of gas and condensable fluid.

請求項5に記載の発明は、前記高温側熱交換部と、前記低温側熱交換部または前記膨張室との間を前記作動流体がバイパスするバイパス通路を備える構成である。   The invention described in claim 5 is configured to include a bypass passage through which the working fluid bypasses between the high temperature side heat exchange section and the low temperature side heat exchange section or the expansion chamber.

請求項1に記載の発明では、高温側熱交換部に流入する熱Q1と膨張機がなす往復動とにより、熱輸送管内の作動流体(例えば、ヘリウムあるいは空気などの気体)に圧力振動と、往復流動とが生じる。すると、高温側熱交換部へ流入した高温の熱はスタックの高温側へ伝達される。伝達された高温の熱は、往復流動する作動流体と蓄熱体との熱交換によって温度が降下されてスタックの低温の熱となって低温側へ輸送される。この低温の熱Q1は、スタックの低温側から低温側熱交換部へ伝達され、一部の熱Q2は、低温側熱交換部より放熱される。残りの熱(Q1−Q2)=Wは、スタックの低温側における仕事流(PV仕事に相当)であって、仕事流は作動流体と蓄熱体との熱交換の際の作動流体の往きと戻りとの温度差によって生じる圧力差に起因するものである。そして、残りの熱(Q1−Q2)=Wは低温側熱交換部を通過して、膨張室へ仕事流Wとなって伝達され、仕事流Wが膨張機より出力される。以上により、本発明の熱輸送管は、高温側熱交換部へ入熱した熱Q1のうち、熱Q2=(Q1−W)を低温側熱交換部から外部へ放出すると共に、膨張機より仕事流Wを出力できる。 In the first aspect of the present invention, due to the heat Q1 flowing into the high temperature side heat exchanging section and the reciprocating motion made by the expander, pressure vibration is generated in the working fluid (for example, gas such as helium or air) in the heat transport pipe, A reciprocating flow occurs. Then, the high temperature heat that has flowed into the high temperature side heat exchange section is transferred to the high temperature side of the stack. The transferred high-temperature heat is lowered in temperature by heat exchange between the reciprocating working fluid and the heat storage body, and is transported to the low temperature side as low-temperature heat of the stack. This low-temperature heat Q1 is transmitted from the low-temperature side of the stack to the low-temperature side heat exchange unit, and a part of the heat Q2 is radiated from the low-temperature side heat exchange unit. The remaining heat (Q1-Q2) = W B is a work flow in the cold side of the stack (PV corresponding to work), the work flow and forward the working fluid during heat exchange with the regenerator and the working fluid This is due to the pressure difference caused by the temperature difference from the return. The remaining heat (Q1-Q2) = W B passes through the low-temperature side heat exchanger section, is transmitted to a work flow W B into the expansion chamber, the work flow W B is output from the expander. As described above, the heat transport pipe of the present invention releases heat Q2 = (Q1−W B ) from the low temperature side heat exchange section out of the heat Q1 input to the high temperature side heat exchange section, and from the expander. can output the work flow W B.

また、膨張機の作動停止状態では、作動流体に往復流動が生じないので、高温側熱交換部へ熱が流入した状態でも、スタックを介在して高温側熱交換部から低温側熱交換部への熱輸送と、膨張機への仕事の伝達は停止される。従って、高温側熱交換部の状態変化あるいは低温側熱交換部の状態変化に応じて、膨張機の運転、停止を制御することで、本発明の熱輸送管は高温側熱交換部に流入される熱の輸送と、低温側熱交換部からの放熱、および膨張機からの仕事の出力とを適宜、制御できる。   In addition, since the reciprocating flow does not occur in the working fluid when the expander is stopped, even when heat flows into the high temperature side heat exchange part, the high temperature side heat exchange part passes from the high temperature side heat exchange part via the stack. The heat transfer and work transfer to the expander are stopped. Therefore, by controlling the operation and stop of the expander according to the state change of the high temperature side heat exchange part or the state change of the low temperature side heat exchange part, the heat transport pipe of the present invention flows into the high temperature side heat exchange part. It is possible to appropriately control the transport of heat, the heat radiation from the low-temperature side heat exchanging section, and the work output from the expander.

さらに、膨張機の振動数(回転数)あるいは膨張室の掃気容積を変えることにより、スタックの低温側における仕事流Wを調整でき、高温側熱交換部から低温側熱交換部への熱輸送量Q2および膨張機から出力される仕事流Wが調整できる。結果、本発明の熱輸送管は、低温側熱交換部への熱輸送量(低温側熱交換部の放熱量)Q2および膨張機により出力される仕事流Wを適宜、制御できる。 Further, by changing the scavenging capacity of the vibration speed of the expander (rpm) or expansion chamber can be adjusted to work flow W B at the low temperature side of the stack, heat transfer from the hot side heat exchanger to the cold-side heat exchanger work flow W B outputted from the amount Q2 and the expander can be adjusted. A result, the heat transfer tube of the present invention, the work flow W B output by the low-temperature heat transfer rate of the heat exchange section (heat radiation amount of the low-temperature side heat exchange portion) Q2 and the expander suitably can be controlled.

また、本発明の熱輸送管は、高温側熱交換部から低温側熱交換部への熱輸送が、膨張機により生じる作動流体の往復流動と圧力振動とにより行われるので、熱輸送管の設置姿勢は重力方向に制約されず自由であると共に、無重力環境においても使用可能である。   Further, in the heat transport pipe of the present invention, the heat transport from the high temperature side heat exchange section to the low temperature side heat exchange section is performed by the reciprocating flow of the working fluid generated by the expander and the pressure vibration. The posture is not restricted by the direction of gravity and is free, and can also be used in a weightless environment.

さらに、本発明の熱輸送管は、作動流体の相変化を利用せず、膨張機を使用して作動流体の往復流動と圧力振動とを発生させて熱を輸送するので、使用される温度領域は作動流体の相変化の温度(凝縮温度、蒸発温度)に限定されない。   Furthermore, the heat transport pipe of the present invention transports heat by generating a reciprocating flow of the working fluid and pressure vibration using an expander without using the phase change of the working fluid. Is not limited to the phase change temperature (condensation temperature, evaporation temperature) of the working fluid.

また、従来技術の熱音響エンジンに比べて、本発明の熱輸送管は、熱交換部が高温側と低温側の2つで構成されるので、構成が簡素で低コストになる。また、高温側熱交換部が装置の端に位置するので、被加熱体との接続が容易で、かつ入熱ための伝達面積を大きくとることができる。   Further, as compared with the conventional thermoacoustic engine, the heat transport pipe of the present invention has two heat exchanging parts, a high temperature side and a low temperature side, so that the configuration is simple and the cost is low. Moreover, since the high temperature side heat exchange part is located at the end of the apparatus, it is easy to connect to the object to be heated and a large transfer area for heat input can be obtained.

さらに、本発明の熱輸送管は、従来のヒートパイプのように高い真空度で使用する必要がなく、空気が流入しても性能低下を防止できる。また、作動流体に空気を使用する場合には、平均圧力を大気圧にすることで、空気の流出入がなく、熱輸送管の作動流体の平均圧力は大気圧を保持できる。結果、本発明の熱輸送管は低温側熱交換部への熱輸送能力と膨張機による仕事能力とが維持できる。   Furthermore, the heat transport pipe of the present invention does not need to be used at a high degree of vacuum like a conventional heat pipe, and can prevent performance degradation even when air flows in. In addition, when air is used as the working fluid, the average pressure is set to atmospheric pressure so that air does not flow in and out, and the average pressure of the working fluid in the heat transport pipe can be maintained at atmospheric pressure. As a result, the heat transport pipe of the present invention can maintain the heat transport capability to the low temperature side heat exchange section and the work capability by the expander.

請求項2に記載の発明では、スタックの高温端に高温側熱交換器を接続することで、高温側熱交換器の端面と外周面とを入熱の伝熱面にできるので、熱源の熱を伝熱する面積が増大し伝熱の際に生じる温度差が減少する。さらに、高温側熱交換器を流動する作動流体に熱源から高温側熱交換器へ流入する熱を均等に伝達できる。   In the invention according to claim 2, since the end surface and the outer peripheral surface of the high temperature side heat exchanger can be made into a heat transfer surface by connecting the high temperature side heat exchanger to the high temperature end of the stack, the heat of the heat source The heat transfer area increases and the temperature difference that occurs during heat transfer decreases. Furthermore, the heat flowing from the heat source to the high temperature side heat exchanger can be evenly transferred to the working fluid flowing through the high temperature side heat exchanger.

また、スタックの低温端に低温側熱交換器を接続することで、低温側熱交換器を流動する作動流体にスタックの低温端から流出する熱を均等に伝達できる。   Further, by connecting the low temperature side heat exchanger to the low temperature end of the stack, the heat flowing out from the low temperature end of the stack can be evenly transferred to the working fluid flowing through the low temperature side heat exchanger.

請求項3に記載の発明では、膨張機は発電機と、モータの機能とを備えているので、本発明の熱輸送管を作動させる際、モータとして機能させ、膨張機のスタータに使用し、熱輸送の際には発電機として使用する。これにより本発明の熱輸送管は、確実に始動できると共に、使い勝手が良く、且つ低温熱交換部への熱輸送および膨張機より出力される仕事の制御性が向上する。   In the invention according to claim 3, since the expander has a generator and a motor function, when operating the heat transport pipe of the present invention, the expander functions as a motor and is used as a starter of the expander. Used as a generator for heat transport. As a result, the heat transport pipe of the present invention can be started reliably, is easy to use, and improves the heat transport to the low temperature heat exchange section and the controllability of work output from the expander.

請求項4に記載の発明では、スタック内の作動流体は気体と凝縮性流体とが混在している。このため凝縮性流体が高温側熱交換部ならびに低温側熱交換部において相変化することで各熱交換部での伝熱促進できる。蒸発ならびに凝縮による伝熱は一般に気体単層による伝熱より大きな伝熱性能が得られるからである。すなわち、凝縮性流体は、高温側熱交換部では蒸気化し、低温側熱交換部では凝縮し、それぞれで相変化を起こし伝熱を促進する。これにより、本発明は、従来技術のヒートポンプあるいはサーモサイホンと同じように、熱輸送温度差が小さく、且つ使用される温度領域が凝縮性流体の相変化温度に略等しい限定された熱輸送も可能となる。しかもその際に従来技術のヒートポンプあるいはサーモサイホンのように内部圧が負圧となることはない。   In the invention described in claim 4, the working fluid in the stack is a mixture of gas and condensable fluid. For this reason, heat transfer in each heat exchange part can be promoted by the phase change of the condensable fluid in the high temperature side heat exchange part and the low temperature side heat exchange part. This is because heat transfer by evaporation and condensation generally provides greater heat transfer performance than heat transfer by a gas monolayer. That is, the condensable fluid is vaporized in the high-temperature side heat exchange section and condensed in the low-temperature side heat exchange section, thereby causing a phase change and promoting heat transfer. As a result, the present invention, like the heat pump or thermosiphon of the prior art, can also perform limited heat transport in which the difference in heat transport temperature is small and the temperature range used is approximately equal to the phase change temperature of the condensable fluid. It becomes. In addition, the internal pressure does not become negative as in the conventional heat pump or thermosiphon.

請求項5に記載の発明では、高温側熱交換部と、低温側熱交換部または膨張室との間を作動流体がバイパスすることで、高温端で発生した仕事流が膨張部で回収でき、出力性能が向上する。   In the invention of claim 5, the working fluid is bypassed between the high temperature side heat exchange part and the low temperature side heat exchange part or the expansion chamber, so that the work flow generated at the high temperature end can be recovered at the expansion part, Output performance is improved.

本発明の実施例1に係る熱輸送管の説明図である。It is explanatory drawing of the heat transport pipe which concerns on Example 1 of this invention. 図1のスタックのX位置における作動流体要素の変位に対する温度と圧力およびスタック全長に亘る蓄熱体の平均温度を示す図である。Is a diagram illustrating the average temperature of the heat storage body over the temperature and pressure and stack entire length to the displacement of the working fluid component of X 0 of the stack of FIG. 図1の熱輸送管およびスタックの仕事流を示す図である。It is a figure which shows the work flow of the heat transport pipe and stack of FIG. 図1の高温側熱交換器の一実施例の断面図である。It is sectional drawing of one Example of the high temperature side heat exchanger of FIG. 図1の低温側熱交換器の一実施例の断面図である。It is sectional drawing of one Example of the low temperature side heat exchanger of FIG. 本発明の実施例2に係る熱輸送管の説明図である。It is explanatory drawing of the heat transport pipe which concerns on Example 2 of this invention. 本発明に係る熱輸送管の従来技術の説明図である。It is explanatory drawing of the prior art of the heat transport pipe | tube which concerns on this invention. 本発明に係る熱輸送管の他の従来技術の説明図である。It is explanatory drawing of the other prior art of the heat transport pipe | tube which concerns on this invention. 本発明に係る熱輸送管に関連する従来技術の説明図である。It is explanatory drawing of the prior art relevant to the heat transport pipe | tube which concerns on this invention. 本発明に係る熱輸送管に関連する他の従来技術の説明図である。It is explanatory drawing of the other prior art relevant to the heat transport pipe | tube which concerns on this invention.

以下に本発明の実施例を図面を参照しつつ詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

図1は、本発明の実施例1に係る熱輸送管の説明図であり、図中の黒塗りの矢印は熱の流れ方向、および仕事の方向を示す。図1に示すように、熱輸送管1は、膨張機2に設けた膨張室2dと、低温側熱交換器(低温側熱交換部)3と、スタック4と、高温側熱交換器(高温側熱交換部)5とがこの順に接続される。   FIG. 1 is an explanatory diagram of a heat transport pipe according to a first embodiment of the present invention, and black arrows in the figure indicate a heat flow direction and a work direction. As shown in FIG. 1, the heat transport pipe 1 includes an expansion chamber 2d provided in the expander 2, a low temperature side heat exchanger (low temperature side heat exchange unit) 3, a stack 4, and a high temperature side heat exchanger (high temperature). Side heat exchange section) 5 is connected in this order.

膨張機2は、シリンダ2aと、ロッド2cの一端に連結したピストン2bと、ロッド2cの他端に連結した出力回収手段2eを備え、シリンダ2aとピストン2bとにより膨張室2dが形成される。出力回収手段2eの形態は、ピストン2bの往復動と同じ移動量、往復動するリニア方式、あるいはピストン2bの往復動をクランク機構などより回転運動に変換するロータリー方式のいずれでも良い。より具体的には、出力回収手段2eは例えば発電機あるいはファンなどである。発電機は、リニア方式の場合にはリニア発電機、ロータリー方式の場合にはロータリー発電機の形態をとる。   The expander 2 includes a cylinder 2a, a piston 2b connected to one end of a rod 2c, and output recovery means 2e connected to the other end of the rod 2c, and an expansion chamber 2d is formed by the cylinder 2a and the piston 2b. The form of the output recovery means 2e may be either the same movement amount as the reciprocating motion of the piston 2b, a linear system that reciprocates, or a rotary system that converts the reciprocating motion of the piston 2b into a rotational motion by a crank mechanism or the like. More specifically, the output recovery means 2e is, for example, a generator or a fan. The generator takes the form of a linear generator in the case of a linear system and a rotary generator in the case of a rotary system.

スタック4は、高温側熱交換器5からの熱を低温側熱交換器3へ熱輸送するために設けられ、作動流体が流動する流路断面積が微小な多数の流路と、往復流動する作動流体と再生熱交換する蓄熱機能とを備える。より具体的には、スタック4は、例えば5〜100メッシュ程度の金網の蓄熱体4bが管4a内に積層される。あるいは、管4aに断面が円形状で細長い線材を多数個、充填しても良い。この場合、線材間のスキマが流路を形成し、線材が蓄熱体4bとして機能する。スタック4の両端間の流路抵抗は小さいことが好ましく、実施例1および後述する実施例2、3において、作動条件(作動流体の圧力の振動数、温度、圧力)の下、スタック4の両端間の圧力損失は非常に小さい。   The stack 4 is provided for transporting heat from the high-temperature side heat exchanger 5 to the low-temperature side heat exchanger 3, and reciprocates with a large number of channels having a small channel cross-sectional area in which the working fluid flows. It has a heat storage function for exchanging regenerative heat with the working fluid. More specifically, in the stack 4, for example, a heat storage body 4b of a wire mesh of about 5 to 100 mesh is stacked in the pipe 4a. Alternatively, the tube 4a may be filled with a large number of elongated wires having a circular cross section. In this case, the gap between the wires forms a flow path, and the wires function as the heat storage body 4b. The flow resistance between both ends of the stack 4 is preferably small. In Example 1 and Examples 2 and 3 to be described later, both ends of the stack 4 under operating conditions (frequency of working fluid pressure, temperature, pressure). The pressure loss between them is very small.

高温側熱交換器5は、高温側熱交換器5に設置される機器などの熱源(図示せず)から流入した熱Q1を作動流体に伝達するために設けられ、外周面5aと端面5bとは熱源(図示せず)からの熱Q1が伝達される伝熱面5abを形成する。端面5bは熱源である機器を設置し易くするためにフラットな面である。   The high temperature side heat exchanger 5 is provided to transmit heat Q1 flowing from a heat source (not shown) such as equipment installed in the high temperature side heat exchanger 5 to the working fluid, and includes an outer peripheral surface 5a and an end surface 5b. Forms a heat transfer surface 5ab to which heat Q1 from a heat source (not shown) is transmitted. The end surface 5b is a flat surface for facilitating installation of a device that is a heat source.

低温側熱交換器3はスタック4の低温端4dから流出する作動流体の熱Q2を外部へ放出するために設けられ、外周面3aが熱Q2を外部へ放出する伝熱面を形成する。また、低温側熱交換器3と高温側熱交換器5は、それぞれ両端間の流路抵抗は小さことが好ましく、実施例1および後述する実施例2、3において、作動条件の下、各熱交換器3、5の両端間の圧力損失は非常に小さい。   The low temperature side heat exchanger 3 is provided for releasing the heat Q2 of the working fluid flowing out from the low temperature end 4d of the stack 4 to the outside, and the outer peripheral surface 3a forms a heat transfer surface for releasing the heat Q2 to the outside. Moreover, it is preferable that the low-temperature side heat exchanger 3 and the high-temperature side heat exchanger 5 each have a small flow path resistance between both ends. In Example 1 and Examples 2 and 3 to be described later, The pressure loss between both ends of the exchangers 3 and 5 is very small.

熱輸送管1に充填する作動流体は空気を使用した。しかし作動流体は、空気以外にもヘリウム、水素、窒素、アルゴンなどの気体で良く、複数種類の気体を混合させても良い。作動流体の封入圧力は高圧にすることにより、熱輸送量は増大できるが、大気圧以下でも良い。しかし、熱輸送量および熱輸送管1の密閉性の関点から大気圧以上が好ましい。作動流体として空気を使用する場合、平均圧力を大気圧にすることで、熱輸送管1は厳密な密閉構造にしなくても良い。   Air was used as the working fluid for filling the heat transport pipe 1. However, the working fluid may be a gas such as helium, hydrogen, nitrogen, or argon in addition to air, and a plurality of types of gases may be mixed. Although the amount of heat transport can be increased by increasing the sealing pressure of the working fluid, it may be less than atmospheric pressure. However, the atmospheric pressure or higher is preferable from the viewpoint of the amount of heat transport and the sealing property of the heat transport pipe 1. When air is used as the working fluid, the heat transport pipe 1 may not have a strictly sealed structure by setting the average pressure to atmospheric pressure.

次に、本発明の実施例に係る熱輸送管1の作動と効果について説明する。図2は、図1のスタック4の位置X(図1)の作動流体要素6の変位に対する圧力、温度および蓄熱体の平均温度を示す図である。図中、X〜Xは図1に示す作動流体要素6の各位置を示し、AおよびBは図1のスタック4のA位置(高温端4c)およびB位置(低温端4d)を示す。以下、膨張機2の出力回収手段2eが発電機2e1の場合について述べる。 Next, the operation and effect of the heat transport pipe 1 according to the embodiment of the present invention will be described. FIG. 2 is a diagram illustrating the pressure, temperature, and average temperature of the heat storage body with respect to the displacement of the working fluid element 6 at the position X 0 (FIG. 1) of the stack 4 in FIG. In the figure, X 0 to X 4 indicate the positions of the working fluid element 6 shown in FIG. 1, and A and B indicate the A position (high temperature end 4c) and B position (low temperature end 4d) of the stack 4 in FIG. . Hereinafter, the case where the output recovery means 2e of the expander 2 is the generator 2e1 will be described.

発電機2e1は、発電機の機能とモータの機能とを備え、熱輸送管1の作動開始時には、発電機2e1をモータとして機能させ、ピストン2bを往復動させるスタータに使用する。これにより、熱輸送管1に作動流体の圧力振動と往復流動が発生する。圧力振動発生後は、発電機2e1は発電機として作動する。尚、外部より熱輸送管1への軽い衝撃力で作動流体とピストン2bとに微小振動を発生させて膨張機2を起動さても良い。この場合、発電機2e1は発電機としてのみ機能する。   The generator 2e1 has a generator function and a motor function. When the heat transport pipe 1 starts to operate, the generator 2e1 is used as a starter that causes the generator 2e1 to function as a motor and reciprocates the piston 2b. Thereby, pressure oscillation and reciprocating flow of the working fluid occur in the heat transport pipe 1. After the occurrence of pressure vibration, the generator 2e1 operates as a generator. Note that the expander 2 may be activated by generating minute vibrations in the working fluid and the piston 2b with a light impact force on the heat transport pipe 1 from the outside. In this case, the generator 2e1 functions only as a generator.

高温側熱交換器5、スタック4、低温側熱交換器3、そして膨張室2dの各流路抵抗は、非常に小さいので、高温側熱交換器5、スタック4、低温側熱交換器3、そして膨張室2dの各圧力はほぼ等しい。また、スタック4の管4aの外周面は断熱材(図示せず)で覆われ、周囲に対して断熱されており、そして管4aの熱伝導率の低い材質で形成され、管4aの軸方向の伝導熱は非常に小さい。さらに、高温端4cから低温端4d方向への蓄熱体4bの伝導熱も非常に小さい。なお、実施例ではスタック4の管4aの外周面を断熱材で覆っているが、必ずしも厳重な断熱は必要ないため、断熱材で覆わなくても使用できる。   Since each flow resistance of the high temperature side heat exchanger 5, the stack 4, the low temperature side heat exchanger 3, and the expansion chamber 2d is very small, the high temperature side heat exchanger 5, the stack 4, the low temperature side heat exchanger 3, The pressures in the expansion chamber 2d are almost equal. Moreover, the outer peripheral surface of the tube 4a of the stack 4 is covered with a heat insulating material (not shown), is insulated from the surroundings, and is formed of a material having low thermal conductivity of the tube 4a. The conduction heat of is very small. Furthermore, the heat of conduction of the heat accumulator 4b from the high temperature end 4c to the low temperature end 4d is very small. In the embodiment, the outer peripheral surface of the tube 4a of the stack 4 is covered with a heat insulating material. However, since strict heat insulation is not necessarily required, it can be used without being covered with a heat insulating material.

高温側熱交換器5の伝熱面5abから流入した高温の熱は、高温側熱交換器5を往復流動する作動流体に伝達され、スタック4の高温端4cへ伝達される。スタック4の高温端4cへ伝達された高温の熱は、往復流動する作動流体と蓄熱体4bとの熱交換によって温度が降下しながら、低温の熱となってスタック4の低温端4dへ輸送される。この低温の熱は、低温端4dから低温側熱交換器3へ伝達され、低温の熱の一部(熱Q2)は低温側熱交換器3より放熱される。残りの熱(Q1−Q2)=Wは、膨張室2dへ仕事流Wとなって伝達され、仕事流Wが膨張機2より出力される。 The high temperature heat flowing from the heat transfer surface 5ab of the high temperature side heat exchanger 5 is transmitted to the working fluid that reciprocates through the high temperature side heat exchanger 5, and is transmitted to the high temperature end 4c of the stack 4. The high temperature heat transferred to the high temperature end 4c of the stack 4 is transported to the low temperature end 4d of the stack 4 as low temperature heat while the temperature is lowered by heat exchange between the reciprocating working fluid and the heat storage body 4b. The The low temperature heat is transmitted from the low temperature end 4 d to the low temperature side heat exchanger 3, and a part of the low temperature heat (heat Q 2) is radiated from the low temperature side heat exchanger 3. The remaining heat (Q1-Q2) = W B is transmitted to a work flow W B into the expansion chamber 2d, work flow W B is output from the expander 2.

即ち、高温側熱交換器5の伝熱面5abから流入した高温の熱は、高温側熱交換器5を往復流動する作動流体に伝達され、スタック4の高温端4cでは、1サイクルにおいて熱Q1に等しい高温状態の全エンタルピーH(=Q1)が流入する。この全エンタルピーHは、スタック4を通過してスタック4の低温端4dから低温になって流出する。そして、スタック4の各断面を通過する全エンタルピー、および低温端4dから流出する全エンタルピーは、高温端4に流入する全エンタルピーHに等しい。即ち、高温の熱の熱量と同じ熱量の低温になった熱が低温端4dへ伝達される。   That is, the high-temperature heat flowing from the heat transfer surface 5ab of the high-temperature side heat exchanger 5 is transferred to the working fluid reciprocatingly flowing through the high-temperature side heat exchanger 5, and heat Q1 is generated in one cycle at the high-temperature end 4c of the stack 4. The total enthalpy H (= Q1) in a high temperature state equal to This total enthalpy H passes through the stack 4 and flows out from the low temperature end 4d of the stack 4 at a low temperature. The total enthalpy passing through each cross section of the stack 4 and the total enthalpy flowing out from the low temperature end 4 d are equal to the total enthalpy H flowing into the high temperature end 4. That is, the low-temperature heat having the same heat quantity as the high-temperature heat is transmitted to the low temperature end 4d.

ところで、スタック4の蓄熱体4bの熱容量と、蓄熱体4bと作動流体との熱伝達率とが、それぞれ有限であるため、蓄熱体4bと作動流体との熱交換は不十分で、蓄熱体4bと作動流体との間に温度差を生じる。このため、往復流動する作動流体の往きと戻りの温度に差を生じる。蓄熱体4bの熱容量は有限であるが比較的大きいので、1サイクルにおける蓄熱体4bの温度変動は比較的小さく、スタック4の全長に亘る各位置の蓄熱体4bの平均温度は、図2に示すように右下がりの温度勾配の略直線で示される。   By the way, since the heat capacity of the heat storage body 4b of the stack 4 and the heat transfer coefficient between the heat storage body 4b and the working fluid are finite, heat exchange between the heat storage body 4b and the working fluid is insufficient, and the heat storage body 4b Creates a temperature difference between the working fluid and the working fluid. For this reason, a difference occurs between the return and return temperatures of the reciprocating working fluid. Since the heat capacity of the heat accumulator 4b is finite but relatively large, the temperature fluctuation of the heat accumulator 4b in one cycle is relatively small, and the average temperature of the heat accumulator 4b at each position over the entire length of the stack 4 is shown in FIG. As shown in FIG.

ここで、スタック4の位置Xを中心に往復流動する作動流体要素6に着目する。作動流体要素6の1サイクルの温度は、蓄熱体4bの平均温度の略直線(図2)に交差すると共に、長軸が右下がりに傾き略楕円(図2の太破線)で示される。即ち、作動流体要素6が位置Xから位置X、Xを経由して位置Xへ移動する際は、作動流体要素6の温度は、蓄熱体4bの平均温度より低く、そして位置Xから位置X、Xを経由して位置Xへ移動する際は、蓄熱体4bの平均温度より高くなり、矢印に示す右回りの不可逆変化になる。 Here, attention is paid to the working fluid element 6 that reciprocates around the position X 0 of the stack 4. The temperature of one cycle of the working fluid element 6 intersects with a substantially straight line (FIG. 2) of the average temperature of the heat accumulator 4b, and the major axis is tilted downward to the right and indicated by a substantially ellipse (thick broken line in FIG. 2). That is, when the working fluid element 6 is moved to the position X 2 through the position X 0, X 1 from the position X 3, the temperature of the working fluid element 6 is lower than the average temperature of the heat storage body 4b, and a position X When moving from position 2 via position X 0 , position X 4 to position X 3 , the temperature becomes higher than the average temperature of the heat storage body 4 b, resulting in a clockwise irreversible change indicated by the arrow.

1サイクルにおける作動流体要素6の右回りの温度により、1サイクルの作動流体要素6の圧力は、位置Xから位置Xへ移動する際の圧力が位置Xから位置Xへ移動する際の圧力より高く、図2において長軸が略右下がりに傾いた右回り(矢印方向)の略楕円で示される。この略楕円は、作動流体要素6のPX線図(圧力・変位線図)を示し、作動流体要素6の変位Xにスタック4の断面積を掛けると断面MMを中心に往復流動する作動流体の仮想のPV線図になる。この仮想PV線図は断面MMにおける仕事流Wであり、仮想PV線図の面積値は断面MMの仕事流Wの値を示す。 The temperature of the clockwise working fluid element 6 in one cycle, 1 cycle pressure of the working fluid component 6 is when the pressure in moving from the position X 1 to position X 4 is moved from the position X 4 to the position X 1 The major axis in FIG. 2 is indicated by a substantially elliptical shape in the clockwise direction (in the direction of the arrow) inclined substantially downward to the right. This substantially ellipse shows a PX diagram (pressure / displacement diagram) of the working fluid element 6, and when the displacement X of the working fluid element 6 is multiplied by the cross-sectional area of the stack 4, It becomes a virtual PV diagram. This virtual PV diagram is work flow W M in the cross section MM, the area value of the virtual PV diagram shows the value of the work flow W M of the cross-section MM.

図3は、熱輸送管1とスタック4内の作動流体の流動方向に直交する各断面における仕事流Wを示す図である。図3に示すように、仕事流Wは、スタック4の高温端4cの近傍の位置Cにおいて0、スタック4の高温端4cにおいてマイナスの僅かな値で、右上がりに略直線的に増加し、スタック4の低温端4dにおいてプラスの最大値Wになる。この最大値の仕事流Wは、低温側熱交換器3を通過し膨張室2dへ伝達され、膨張室2dにおいてピストン2bが往復動して仕事流Wに等しい膨張仕事をなす。この膨張仕事より、発電機2e1は電力を出力する。なお、仕事流は、その向かう方向にプラス・マイナスを取って表示しており、プラス域が低温側に向かう仕事流、マイナス域が高温側に向かう仕事流を表している。 FIG. 3 is a diagram illustrating the work flow W in each cross section orthogonal to the flow direction of the working fluid in the heat transport pipe 1 and the stack 4. As shown in FIG. 3, the work flow W increases substantially linearly to the right by 0 at a position C in the vicinity of the high temperature end 4 c of the stack 4 and a slight negative value at the high temperature end 4 c of the stack 4. a plus maximum value W B at the cold end 4d of the stack 4. Work flow W B of the maximum value is transmitted to the expansion chamber 2d through the low-temperature heat exchanger 3, forms expansion work piston 2b is equal to reciprocate to work flow W B in the expansion chamber 2d. From this expansion work, the generator 2e1 outputs electric power. Note that the work flow is displayed with plus or minus in the direction of the direction, and the plus region represents the work flow toward the low temperature side, and the minus region represents the work flow toward the high temperature side.

一方、熱源から高温側熱交換器5へ流入した高温の熱の熱量Q1は、全エンタルピーH(=Q1)の形態となってスタック4の高温端4cへ流入し、全エンタルピーHの一部は仕事流Wとなり、残りの熱(H−W)即ち熱(Q1−W)は、温度と熱量を減少しながらスタック4を通過して低温の熱(H−W)となって低温端4dへ至る。この低温の熱(H−W)は(Q1−W)に等しく、低温側熱交換器3へ流入し、低温側熱交換器の放出熱Q2となって外周面3aから外部へ放出される。ここで放出熱Q2は、Q2=(Q1−W)で示される。 On the other hand, the heat quantity Q1 of the high-temperature heat flowing into the high-temperature side heat exchanger 5 from the heat source flows into the high temperature end 4c of the stack 4 in the form of total enthalpy H (= Q1), and a part of the total enthalpy H is The work flow W becomes, and the remaining heat (H-W), that is, heat (Q1-W) passes through the stack 4 while decreasing the temperature and heat quantity, and becomes low-temperature heat (H-W B ). To. This low-temperature heat (H-W B ) is equal to (Q 1 -W B ), flows into the low-temperature side heat exchanger 3, and is released from the outer peripheral surface 3 a to the outside as the heat Q 2 released from the low-temperature side heat exchanger. The Here, the released heat Q2 is represented by Q2 = (Q1-W B ).

図4は、図1の高温側熱交換器5の断面図である。図4に示すように、高温側熱交換器5は、熱伝導率の高い材質(例えば、銅)からなる円柱形状のブロック5cに一端が開口し他端が閉じた流路孔5dを均等に複数本備え、前述するように高温側熱交換器5の外周面5aとフラットな端面5bは、熱源からの熱Q1が入熱する伝熱面5abを形成する。そして、流路孔5dが開口する側の高温側熱交換器5の端面はスタック4の高温端4cに接続される(図1)。高温側熱交換器5の伝熱面5abへ流入した熱Q1は、熱伝導でブロック5cを通過して流路孔5dの内周面から作動流体に伝達され、スタック4の高温端4cへ流入する。より詳しくは、高温端4cへ流入する熱Q1は、前述したようにスタック4の高温端4cを流出入する1サイクルの作動流体の全エンタルピーHである。   FIG. 4 is a cross-sectional view of the high temperature side heat exchanger 5 of FIG. As shown in FIG. 4, the high temperature side heat exchanger 5 is configured to evenly form channel holes 5d having one end opened and the other end closed in a cylindrical block 5c made of a material having high thermal conductivity (for example, copper). As described above, the outer peripheral surface 5a and the flat end surface 5b of the high temperature side heat exchanger 5 form a heat transfer surface 5ab on which heat Q1 from the heat source is input. And the end surface of the high temperature side heat exchanger 5 on the side where the flow path hole 5d opens is connected to the high temperature end 4c of the stack 4 (FIG. 1). The heat Q1 that has flowed into the heat transfer surface 5ab of the high temperature side heat exchanger 5 passes through the block 5c by heat conduction, is transferred to the working fluid from the inner peripheral surface of the flow path hole 5d, and flows into the high temperature end 4c of the stack 4 To do. More specifically, the heat Q1 flowing into the high temperature end 4c is the total enthalpy H of one cycle of the working fluid flowing into and out of the high temperature end 4c of the stack 4 as described above.

図5は、図1の低温側熱交換器3の断面図である。低温側熱交換器3は、熱伝導率の高い材質(例えば、銅)からなる円柱形状のブロック3bに貫通した流路孔3cを均等に複数本備える。低温側熱交換器3の両端は、それぞれスタック4の低温端4dと膨張機2の膨張室2dとに接続される(図1)。前述するように低温側熱交換器3の外周面3aは熱Q2を外部へ放出する伝熱面を形成する。そして、スタック4の低温端4dから低温側熱交換器3へ流入する全エンタルピーH(=Q1)のうち熱Q2(=Q1−W)が、流路孔3cの内周面から流入し、熱伝導によりブロック3b内を通過して外周面3aから放熱される。低温側熱交換器3へ流入する全エンタルピーHのうち仕事流Wは流路孔3cを経由して膨張室2dへ伝達される。 FIG. 5 is a cross-sectional view of the low temperature side heat exchanger 3 of FIG. The low temperature side heat exchanger 3 includes a plurality of flow path holes 3c that penetrates through a cylindrical block 3b made of a material having high thermal conductivity (for example, copper). Both ends of the low temperature side heat exchanger 3 are respectively connected to the low temperature end 4d of the stack 4 and the expansion chamber 2d of the expander 2 (FIG. 1). As described above, the outer peripheral surface 3a of the low temperature side heat exchanger 3 forms a heat transfer surface for releasing the heat Q2 to the outside. And out of the total enthalpy H (= Q1) flowing from the low temperature end 4d of the stack 4 to the low temperature side heat exchanger 3, heat Q2 (= Q1-W B ) flows from the inner peripheral surface of the flow path hole 3c, The heat passes through the block 3b and is radiated from the outer peripheral surface 3a. Work flow W B of the total enthalpy H that flows into the low-temperature side heat exchanger 3 is transmitted via the channel hole 3c to the expansion chamber 2d.

以上により、本実施例1の熱輸送管1は、高温側熱交換器5へ流入した熱Q1を低温側熱交換器3へ輸送し、低温側熱交換器3から外部へ熱Q2=(Q1−W)を放出すると共に、新たな有効エネルギーとして活用できる仕事流Wを膨張機2より出力する。 As described above, the heat transport pipe 1 of the first embodiment transports the heat Q1 flowing into the high temperature side heat exchanger 5 to the low temperature side heat exchanger 3, and heat Q2 = (Q1) from the low temperature side heat exchanger 3 to the outside. -W B) with releasing the work flow W B is output from the expander 2 that can be used as a new effective energy.

さらに、蓄熱体4bである例えば金網のメッシュ数、充填量あるいは蓄熱体4bの材質等を変えることにより、膨張機2から出力される仕事流Wを調整できる。 Furthermore, the mesh number of the heat storage body 4b in which for example a wire mesh, by changing the material of the filling amount or regenerator 4b, can be adjusted to work flow W B outputted from the expander 2.

また、熱輸送管1は、作動流体に生じた圧力振動と往復流動とにより熱を輸送するので、膨張機2が停止した状態では、熱輸送は停止される。従って、熱源である機器に高温側熱交換器5を設置し、例えば、機器の立ち上げ時間短縮のため、立ち上げ時には暖気しておくことが望ましい場合、暖気終了まで膨張機2を停止させ熱輸送を停止して、機器の暖気を促進させ、機器の暖気終了後、膨張機2を作動させて機器から熱を低温側熱交換器3から放熱し、熱輸送を制御する。即ち、高温側熱交換器5の状態変化あるいは低温側熱交換器3の状態変化に応じて、膨張機2の運転、停止を制御することにより、本実施例1の熱輸送管1は高温側熱交換器5に流入する熱の輸送(低温側熱交換器3からの放熱)、および膨張機2からの仕事の出力とを適宜、制御できる。   Moreover, since the heat transport pipe 1 transports heat by pressure vibration and reciprocating flow generated in the working fluid, the heat transport is stopped when the expander 2 is stopped. Therefore, when the high-temperature side heat exchanger 5 is installed in the equipment that is the heat source, and it is desirable to warm up the equipment at the time of startup, for example, in order to shorten the startup time of the equipment, the expander 2 is stopped until the warm-up is finished. The transportation is stopped and the warming of the equipment is promoted. After the warming of the equipment is finished, the expander 2 is operated to dissipate heat from the equipment from the low-temperature side heat exchanger 3 to control the heat transportation. That is, by controlling the operation and stop of the expander 2 in accordance with the state change of the high temperature side heat exchanger 5 or the state change of the low temperature side heat exchanger 3, the heat transport pipe 1 of the first embodiment is The transport of heat flowing into the heat exchanger 5 (heat radiation from the low temperature side heat exchanger 3) and the work output from the expander 2 can be controlled as appropriate.

また、機器の作動状態の変化に対応して膨張機2の作動状態、例えば振動数(回転数)、あるいはピストン2bのストローク(膨張室2dの掃気容積に相当)等を制御することにより、スタック4の低温端4dにおける仕事流Wの値を調整でき、高温側熱交換器5から低温側熱交換器3への熱輸送量(放熱量)Q2(=Q1−W)の値も調整できる。結果、本実施例1の熱輸送管1は、低温側熱交換器3への熱輸送量(低温側熱交換器3の放熱量)Q2および膨張機2より出力される仕事流Wを適宜、制御できる。 Further, by controlling the operation state of the expander 2, for example, the vibration frequency (the number of rotations) or the stroke of the piston 2b (corresponding to the scavenging volume of the expansion chamber 2d) in response to the change in the operation state of the device, the stack 4 can adjust the value of the work flow W B at the cold end 4d, heat transfer rate from the hot-side heat exchanger 5 to the low-temperature heat exchanger 3 (heat radiation amount) Q2 (= Q1-W B ) values also coordinates it can. Result, heat transport pipe 1 of the first embodiment, appropriate work flow W B outputted from the low-temperature heat transfer rate to the heat exchanger 3 (the heat radiation amount of the low-temperature heat exchanger 3) Q2 and the expander 2 Can control.

さらに、膨張機2は、出力回収手段2eが発電機2e1の機能と、モータの機能を備えているので、熱輸送管1を作動させる際、発電機2e1がモータとして機能し、膨張機2のスタータに使用し、熱輸送の際は発電機2e1を本来の発電機として使用する。これにより熱輸送管1は、確実に始動できると共に、使い勝手が良く、且つ低温熱交換器3への熱輸送および膨張機2より出力される仕事の制御性が向上する。   Further, in the expander 2, since the output recovery means 2e has the function of the generator 2e1 and the function of the motor, when the heat transport pipe 1 is operated, the generator 2e1 functions as a motor. It is used for a starter, and the generator 2e1 is used as an original generator for heat transport. As a result, the heat transport pipe 1 can be reliably started, is easy to use, and improves the heat transport to the low temperature heat exchanger 3 and the controllability of work output from the expander 2.

また、スタック4の高温端4cには、高温側熱交換器5の一端が接続されているので、高温側熱交換器5の他端の端面5bと外周面5aとを熱源からの入熱のための伝熱面5abとして使用している。これにより、熱源の熱を伝熱する面積が増大し伝熱の際に生じる温度差が減少する。また、高温側熱交換器5は熱輸送管の一端に設けられているので、被加熱体との接続が容易であり、幅広い用途に利用できる。高温側熱交換器5に熱が流入する伝熱面である端面5bは、フラットな伝熱面であるので、高温側熱交換器5へ入熱する熱源である機器(図示せず)を容易に設置できる。なお、実施例1では端面5bをフラットな面で構成したが、端面5bや外周面5aは適宜、様々な構造を選択できる。例えば、外周面5a、端面5bを放熱フィン構造にして被加熱流体との間で熱伝達しやすい構造にしてもよい。また端面5bを凹凸を有する構造にして被加熱体の凹凸構造と嵌め合わせるようにしてもよい。こうすれば被加熱体との間の伝熱面積を大きくすることができる。   Further, since one end of the high temperature side heat exchanger 5 is connected to the high temperature end 4c of the stack 4, the other end face 5b and the outer peripheral surface 5a of the high temperature side heat exchanger 5 are connected to the heat input from the heat source. Is used as a heat transfer surface 5ab. Thereby, the area which transfers the heat of a heat source increases, and the temperature difference produced in the case of heat transfer reduces. Moreover, since the high temperature side heat exchanger 5 is provided at one end of the heat transport pipe, it can be easily connected to the heated object and can be used in a wide range of applications. Since the end surface 5b, which is a heat transfer surface through which heat flows into the high temperature side heat exchanger 5, is a flat heat transfer surface, an apparatus (not shown) that is a heat source that inputs heat to the high temperature side heat exchanger 5 is easily provided. Can be installed. In the first embodiment, the end surface 5b is a flat surface, but various structures can be selected as appropriate for the end surface 5b and the outer peripheral surface 5a. For example, the outer peripheral surface 5a and the end surface 5b may have a radiating fin structure so that heat can be easily transferred between the fluid to be heated. Further, the end surface 5b may be structured so as to have a concavo-convex structure so as to be fitted to the concavo-convex structure of the object to be heated. If it carries out like this, the heat-transfer area between to-be-heated bodies can be enlarged.

さらに、高温側熱交換器5は作動流体が流動する複数本の流路孔5dを均等に備えているので、作動流体に熱Q1を伝熱する広い伝熱面を確保できる。また、高温側熱交換器5の中央部分の流路孔5dを流動する作動流体にも熱を伝達できるので、複数の流路孔5dを流動する作動流体へ熱が均等に伝達される。結果、熱源の熱が流入する高温側熱交換器5の伝熱面5abと作動流体との温度差を減少できると共に、作動流体の流れに直交する高温側熱交換器5の断面を流動する作動流体の温度が均一になる。   Furthermore, since the high temperature side heat exchanger 5 is uniformly provided with a plurality of flow path holes 5d through which the working fluid flows, a wide heat transfer surface for transferring the heat Q1 to the working fluid can be secured. Moreover, since heat can be transmitted also to the working fluid flowing through the flow path hole 5d in the central portion of the high temperature side heat exchanger 5, heat is evenly transferred to the working fluid flowing through the plurality of flow path holes 5d. As a result, the temperature difference between the heat transfer surface 5ab of the high temperature side heat exchanger 5 into which the heat of the heat source flows and the working fluid can be reduced, and the operation flows through the cross section of the high temperature side heat exchanger 5 orthogonal to the flow of the working fluid. The temperature of the fluid becomes uniform.

また、低温側熱交換器3は作動流体が流動する複数本の流路孔3cを均等に備えているので、作動流体からブロック3bへ熱Q2を伝熱する広い伝熱面を確保できる。また、低温側熱交換器3の中央部分の流路孔3cを流動する作動流体にも熱を伝達できるので、複数の流路孔3cを流動する作動流体へ熱が均等に伝達される。結果、流路孔3cを流動する作動流体とブロック3bと間の温度差を減少できると共に、作動流体の流れに直交する低温側熱交換器3の断面を流動する作動流体の温度が均一になる。   Moreover, since the low temperature side heat exchanger 3 is uniformly provided with a plurality of flow passage holes 3c through which the working fluid flows, a wide heat transfer surface for transferring the heat Q2 from the working fluid to the block 3b can be secured. Moreover, since heat can be transmitted also to the working fluid flowing through the flow path hole 3c in the central portion of the low temperature side heat exchanger 3, heat is evenly transferred to the working fluid flowing through the plurality of flow path holes 3c. As a result, the temperature difference between the working fluid flowing in the flow path hole 3c and the block 3b can be reduced, and the temperature of the working fluid flowing in the cross section of the low temperature side heat exchanger 3 orthogonal to the flow of the working fluid becomes uniform. .

また、高温側熱交換器5に流入する熱Q1は、膨張機により生じる作動流体の往復流動と圧力振動とによりスタック4を介して輸送されるので、熱輸送管1の設置姿勢は重力方向に制約されず自由である。また、熱輸送管1は無重力環境においても熱輸送使用可能である。   Further, since the heat Q1 flowing into the high temperature side heat exchanger 5 is transported through the stack 4 by the reciprocating flow of the working fluid generated by the expander and the pressure vibration, the installation posture of the heat transport pipe 1 is in the direction of gravity. Unconstrained and free. Further, the heat transport pipe 1 can be used for heat transport even in a weightless environment.

また、従来技術のヒートパイプあるいはサーモサイホン等の熱輸送デバイスは、作動流体の相変化を利用している。このため、従来技術の熱輸送デバイスは、高温側から低温側へ熱を輸送する際、高温側から低温側への熱輸送の温度差は小さく限定される。また、熱輸送デバイスが使用される温度領域は、作動流体の種類によって決まる相変化の温度(凝縮温度、蒸発温度)に限定される。しかし、本実施例1の熱輸送管1は作動流体として気体を使用しているので、高温側熱交換器5と低温側熱交換器3との温度差は、小さな温度差から大きな温度差の幅広い範囲に亘ることができる。さらに、本実施例1の熱輸送管1は、作動流体の相変化を利用せず、膨張機2を使用して作動流体の往復流動と圧力振動とにより輸送する。結果、熱輸送管1は、使用される温度領域は作動流体の相変化の温度に限定されることない。   Further, heat transport devices such as heat pipes and thermosiphons in the prior art utilize the phase change of the working fluid. For this reason, when the heat transport device of the prior art transports heat from the high temperature side to the low temperature side, the temperature difference in heat transport from the high temperature side to the low temperature side is limited to be small. The temperature range in which the heat transport device is used is limited to the phase change temperature (condensation temperature, evaporation temperature) determined by the type of working fluid. However, since the heat transport pipe 1 of the first embodiment uses gas as the working fluid, the temperature difference between the high temperature side heat exchanger 5 and the low temperature side heat exchanger 3 varies from a small temperature difference to a large temperature difference. It can cover a wide range. Furthermore, the heat transport pipe 1 of the first embodiment transports the working fluid by reciprocating flow of the working fluid and pressure vibration without using the phase change of the working fluid. As a result, the temperature range in which the heat transport pipe 1 is used is not limited to the phase change temperature of the working fluid.

また、実施例1の熱輸送管1は、従来技術の熱音響エンジン50(図9)のパルス管54と、常温側熱交換器53とが不要である。また。従来技術の熱音響エンジン60(図10)のパルス管64と、第2常温側側熱交換器63と、膨張機61と、膨張室62と圧縮室69との間に位相差を設ける手段とが不要である。従って、本実施例1の熱輸送管1は、構成が簡素で、低コストになる。   Further, the heat transport tube 1 of the first embodiment does not require the pulse tube 54 of the conventional thermoacoustic engine 50 (FIG. 9) and the room temperature side heat exchanger 53. Also. A pulse tube 64 of a conventional thermoacoustic engine 60 (FIG. 10), a second room temperature side heat exchanger 63, an expander 61, and means for providing a phase difference between the expansion chamber 62 and the compression chamber 69; Is unnecessary. Therefore, the heat transport pipe 1 of the first embodiment has a simple configuration and is low in cost.

熱輸送管1は、従来のヒートパイプのように高い真空度で使用する必要がなく、空気が流入しても性能低下を防止できる。また、作動流体に空気を使用する場合で、平均圧力を大気圧にする場合には、多少の空気の流出入は動作上問題とはならない。結果、熱輸送管1は低温側熱交換部3への熱輸送能力と膨張機2による仕事能力が維持できる。   The heat transport pipe 1 does not need to be used at a high degree of vacuum unlike a conventional heat pipe, and can prevent performance degradation even when air flows in. In addition, when air is used as the working fluid and the average pressure is set to atmospheric pressure, some inflow and outflow of air does not cause a problem in operation. As a result, the heat transport pipe 1 can maintain the heat transport capability to the low temperature side heat exchange section 3 and the work capability of the expander 2.

図6は、本発明の実施例2に係る熱輸送管の説明図である。図6において、図1と同じ名称、同じ形状の部品及び同じ名称、同じ形状の部位の符号は、図1と同じ符号を付す。図6に示すように、熱輸送管10は、図1の熱輸送管1の低温側熱交換器3と、高温側熱交換器5とが削除される。即ち、熱輸送管10は、順次膨張機2の膨張室2dと、スタック14とが接続される。スタック14の低温端14d側に低温側熱交換部13(図6の太実線に囲まれた部分)が形成され、そしてスタック14の高温端14c側に高温側熱交換部15(図6の太実線に囲まれた部分)が形成される。低温側熱交換部13および高温側熱交換部15は、スタック14の一部であり、スタックの機能と、熱交換器の機能とを備える。そして、高温側熱交換部15および低温側熱交換部13は、蓄熱体14bである例えば金網を管14aの軸方向に複数枚積層し、金網の外周(金網を形成する線材の両端)を管14aの内周面に例えば拡散接合などにより熱接触させる。これにより、金網は、入熱あるいは放熱の熱伝導および熱伝達の媒体としての機能と、作動流体の再生熱交換の蓄熱体としての機能とを備える。熱輸送管10の他の構成は、熱輸送管1と同じである。   FIG. 6 is an explanatory diagram of the heat transport pipe according to the second embodiment of the present invention. In FIG. 6, the same reference numerals as those in FIG. 1 are assigned to the same names, parts having the same shapes, and the same names and parts having the same shapes. As shown in FIG. 6, in the heat transport pipe 10, the low temperature side heat exchanger 3 and the high temperature side heat exchanger 5 of the heat transport pipe 1 of FIG. That is, in the heat transport pipe 10, the expansion chamber 2d of the expander 2 and the stack 14 are sequentially connected. A low temperature side heat exchanging portion 13 (a portion surrounded by a thick solid line in FIG. 6) is formed on the low temperature end 14d side of the stack 14, and a high temperature side heat exchanging portion 15 (the thick side in FIG. 6) on the high temperature end 14c side of the stack 14. A portion surrounded by a solid line) is formed. The low temperature side heat exchange unit 13 and the high temperature side heat exchange unit 15 are part of the stack 14 and have a stack function and a heat exchanger function. And the high temperature side heat exchange part 15 and the low temperature side heat exchange part 13 laminate | stack a plurality of wire meshes which are the heat storage bodies 14b, for example in the axial direction of the pipe 14a, and pipe | tube the outer periphery (both ends of the wire which forms a wire mesh) The inner peripheral surface of 14a is brought into thermal contact with, for example, diffusion bonding. As a result, the wire mesh has a function as a heat transfer and heat transfer medium for heat input or heat dissipation and a function as a heat storage body for regenerating heat exchange of the working fluid. Other configurations of the heat transport pipe 10 are the same as those of the heat transport pipe 1.

高温側熱交換部15の高温端外面15b(スタック14の高温端14cの外面)は、熱源の機器(図示せず)などを設置するためにフラットな面になっており、高温側熱交換部15に入熱する伝熱面として機能する。また高温側熱交換部15の外周面15aも入熱のための伝熱面として機能し、高温端外面15bと外周面15aとにより高温側熱交換部15へ流入する熱の伝熱面15abが形成される。高温側熱交換部15の外周面15aに流入した熱は金網の線材の両端から線材の長手方向の中央へ熱伝導で流れると共に、線材の外周面から作動流体へ伝達される。また、スタック14の高温端14cの内面および高温側熱交換部15の内周面から各々の面近傍を往復流動する作動流体に熱源からの熱が伝達される。以上により、高温側熱交換部15の中央部分を往復流動する作動流体にも伝達され、作動流体の流れに直交する高温側熱交換部15の断面を流動する作動流体の温度は略均一になる。   The high temperature end outer surface 15b (the outer surface of the high temperature end 14c of the stack 14) of the high temperature side heat exchange unit 15 is a flat surface for installing a heat source device (not shown) and the like, and the high temperature side heat exchange unit 15 functions as a heat transfer surface for heat input. Moreover, the outer peripheral surface 15a of the high temperature side heat exchange part 15 also functions as a heat transfer surface for heat input, and the heat transfer surface 15ab of heat flowing into the high temperature side heat exchange part 15 is formed by the high temperature end outer surface 15b and the outer peripheral surface 15a. It is formed. The heat that has flowed into the outer peripheral surface 15a of the high temperature side heat exchanging portion 15 flows from both ends of the wire rod to the center in the longitudinal direction of the wire by heat conduction and is transmitted from the outer peripheral surface of the wire to the working fluid. Further, the heat from the heat source is transmitted from the inner surface of the high temperature end 14c of the stack 14 and the inner peripheral surface of the high temperature side heat exchanging portion 15 to the working fluid reciprocally flowing in the vicinity of each surface. As described above, the temperature of the working fluid that is transmitted to the working fluid that reciprocates in the central portion of the high temperature side heat exchange section 15 and flows through the cross section of the high temperature side heat exchange section 15 that is orthogonal to the flow of the working fluid becomes substantially uniform. .

低温側熱交換部13の中央部分を往復流動する作動流体からも金網の線材に熱が伝達され、作動流体の流れに直交する低温側熱交換部13の断面を流動する作動流体の温度は略均一になる。そして、蓄熱体14bでもある金網の線材および低温側熱交換部13の内周面へ伝達された熱Q2は、低温側熱交換部13の外周面13aより放熱される。   Heat is transferred from the working fluid reciprocatingly flowing through the central portion of the low temperature side heat exchanging portion 13 to the wire of the wire mesh, and the temperature of the working fluid flowing through the cross section of the low temperature side heat exchanging portion 13 orthogonal to the flow of the working fluid is approximately. It becomes uniform. Then, the wire mesh wire which is also the heat storage body 14 b and the heat Q 2 transmitted to the inner peripheral surface of the low temperature side heat exchange unit 13 are radiated from the outer peripheral surface 13 a of the low temperature side heat exchange unit 13.

以上により、実施例2の熱輸送管10は、熱源の機器(被加熱体)などを容易に設置できると共に、熱源からの入熱の伝熱面積も増大し、さらには高温側熱交換部15および低温側熱交換部13において作動流体との熱伝達が良好に行われる。   As described above, the heat transport pipe 10 according to the second embodiment can easily install a heat source device (object to be heated) and the like, and the heat transfer area of heat input from the heat source is increased, and further, the high temperature side heat exchange section 15 In addition, heat transfer with the working fluid is favorably performed in the low temperature side heat exchanging portion 13.

また、高温側熱交換部15と低温側熱交換部13とは、スタック14を兼ねているので、図1の熱輸送管1と比較して、熱輸送管10の構成がさらに簡素で且つ低コストになる。特に、熱輸送管10は小型で、熱輸送量の少ない場合に好適である。熱輸送管10の他の作動および効果は熱輸送管1と同じである。   Moreover, since the high temperature side heat exchange part 15 and the low temperature side heat exchange part 13 serve as the stack 14, compared with the heat transport pipe 1 of FIG. 1, the structure of the heat transport pipe 10 is further simple and low. It becomes cost. In particular, the heat transport pipe 10 is suitable for a small size and a small amount of heat transport. Other operations and effects of the heat transport pipe 10 are the same as those of the heat transport pipe 1.

本実施例3は、実施例1の空気の変わりに作動流体として空気(気体)と水(凝縮性流体)を混在させたものを使用しており、図1を準用する。高温側熱交換器5の温度は約100℃、低温側熱交換器3の温度は約30℃となっている。この熱輸送管1が作動しているときには、水は、高温側熱交換器5で蒸発し液体から気体に相変化し、低温側熱交換器3で凝縮して気体から液体に相変化する。蒸発ならびに凝縮による伝熱は気体単層による伝熱より大きな伝熱性能が得られるから、高温側熱交換器5、低温側熱交換器3での伝熱促進できる。これにより、従来技術のヒートポンプあるいはサーモサイホンと同じように、熱輸送温度差が小さく、且つ使用される温度領域が凝縮性流体の相変化温度に略等しい限定された熱輸送も可能となる。しかもその際に従来技術のヒートポンプあるいはサーモサイホンのように内部圧が負圧となることはない。   The third embodiment uses a mixture of air (gas) and water (condensable fluid) as the working fluid instead of the air of the first embodiment, and FIG. 1 is applied mutatis mutandis. The temperature of the high temperature side heat exchanger 5 is about 100 ° C., and the temperature of the low temperature side heat exchanger 3 is about 30 ° C. When the heat transport pipe 1 is in operation, water evaporates in the high temperature side heat exchanger 5 and changes in phase from liquid to gas, and condenses in the low temperature side heat exchanger 3 and changes in phase from gas to liquid. Since heat transfer by evaporation and condensation has a heat transfer performance larger than that by gas single layer, heat transfer in the high temperature side heat exchanger 5 and the low temperature side heat exchanger 3 can be promoted. As a result, like the heat pump or thermosiphon of the prior art, limited heat transport is also possible in which the difference in heat transport temperature is small and the temperature range used is approximately equal to the phase change temperature of the condensable fluid. In addition, the internal pressure does not become negative as in the conventional heat pump or thermosiphon.

なお、実施例3では、気体として空気を使用したが、低温側熱交換部の温度以上で気相であるものなら何でも使用できる。例えば、実施例1で例示した気体を使用できる。実施例3では、凝縮性流体として水を使用したが、低温側熱交換部では凝縮し、高温側熱交換部では蒸発する流体なら何でも使用できる。熱輸送管を使用するときの各熱交換部の温度によって使用する凝縮性流体は変わるが、フロン系流体,炭化水素系流体などが例示できる。   In Example 3, air is used as the gas. However, any gas can be used as long as it is in the gas phase at a temperature higher than the temperature of the low-temperature side heat exchange section. For example, the gas illustrated in Example 1 can be used. In Example 3, although water was used as the condensable fluid, any fluid that condenses in the low temperature side heat exchange section and evaporates in the high temperature side heat exchange section can be used. Although the condensable fluid to be used varies depending on the temperature of each heat exchange section when using the heat transport pipe, examples thereof include chlorofluorocarbon fluids and hydrocarbon fluids.

本実施例4は、図6で示す実施例2にバイパス通路を設けたものである。具体的には、高温側熱交換部15と膨張室2dとを作動流体が流通可能なバイパス管(バイパス通路)で接続している。バイパス管はスタック14の外部に設けられている。図3の仕事流Wのグラフから明らかなようにスタック4の位置Cよりも高温側熱交換器5側にスタック4ないでは仕事流Wはマイナス(すなわち高温側に向かう仕事流が存在する)となっている。これにより高温端部でもわずかながらでも仕事流が得られる(0からマイナス部との差分)。図3は実施例1の説明であるが、実施例6でも同様である。高温側熱交換部15と膨張室2dとをバイパス通路で接続することにより高温端で発生した仕事流(0からマイナス部との差分)を膨張部で回収することができ、出力性能を向上できる。   In the fourth embodiment, a bypass passage is provided in the second embodiment shown in FIG. Specifically, the high temperature side heat exchange unit 15 and the expansion chamber 2d are connected by a bypass pipe (bypass passage) through which a working fluid can flow. The bypass pipe is provided outside the stack 14. As apparent from the graph of the work flow W in FIG. 3, the work flow W is negative (that is, there is a work flow toward the high temperature side) without the stack 4 on the high temperature side heat exchanger 5 side than the position C of the stack 4. It has become. As a result, a work flow can be obtained even at a slightly high temperature end portion (difference from 0 to minus portion). FIG. 3 illustrates the first embodiment, but the same applies to the sixth embodiment. By connecting the high temperature side heat exchanging section 15 and the expansion chamber 2d with a bypass passage, the work flow generated at the high temperature end (difference between 0 and the minus section) can be recovered by the expansion section, and the output performance can be improved. .

なお、本実施例4では高温側熱交換部15と膨張室2dとの間にバイパス通路を設けたが高温側熱交換部15と低温側熱交換部13との間にバイパス通路を設けても同様の効果が得られる。また本実施例4ではバイパス通路をスタック14の外部に設けたが、スタックの内部に設けてもよい。その場合には、バイパス通路と蓄熱体14bとの間で作動流体が流通しないようになっている。   In the fourth embodiment, a bypass passage is provided between the high temperature side heat exchange unit 15 and the expansion chamber 2d, but a bypass passage may be provided between the high temperature side heat exchange unit 15 and the low temperature side heat exchange unit 13. Similar effects can be obtained. In the fourth embodiment, the bypass passage is provided outside the stack 14, but may be provided inside the stack. In that case, the working fluid does not flow between the bypass passage and the heat storage body 14b.

1、10、20 熱輸送管
2 膨張機
2d 膨張室
2e1 発電機
3 低温側熱交換器(低温側熱交換部)
4、14、24 スタック
4b、14b、24b 蓄熱体
5 高温側熱交換器(高温側熱交換部)
13、23 低温側熱交換部
15、25 高温側熱交換部
24e 蒸気用流路(流路)
1, 10, 20 Heat transport pipe 2 Expander 2d Expansion chamber 2e1 Generator 3 Low temperature side heat exchanger (low temperature side heat exchange section)
4, 14, 24 Stack 4b, 14b, 24b Heat storage body 5 High temperature side heat exchanger (high temperature side heat exchange part)
13, 23 Low temperature side heat exchange section 15, 25 High temperature side heat exchange section 24e Steam flow path (flow path)

Claims (5)

蓄熱体を備え高温から低温へ向けて温度勾配のついたスタックと、
前記スタックの高温側に設けられた高温側熱交換部と、
前記スタックの低温側に設けられた低温側熱交換部と、
前記低温側熱交換部に隣接し連通する膨張室を有する膨張機と
を備えた熱輸送管であって、
前記膨張機は、前記スタック内の作動流体に圧力振動と往復流動とを発生し、
前記スタックは、前記作動流体と前記蓄熱体との温度差とに起因して前記高温側熱交換部から前記スタックの高温側に伝達された熱が、前記スタックの高温側から低温側に向けて前記蓄熱体を介して輸送され、前記スタックの低温側から前記低温側熱交換部に伝達され、
前記低温側熱交換部に伝達された熱は、一部が前記低温側熱交換部より放熱され、残りは前記膨張室へ伝達されて前記膨張機より出力される
ことを特徴とする熱輸送管。
A stack with a thermal gradient from high temperature to low temperature with heat storage,
A high temperature side heat exchange section provided on the high temperature side of the stack;
A low temperature side heat exchange section provided on the low temperature side of the stack;
An expander having an expansion chamber adjacent to and communicating with the low temperature side heat exchange section,
The expander generates pressure vibration and reciprocating flow in the working fluid in the stack,
In the stack, heat transferred from the high temperature side heat exchanging unit to the high temperature side of the stack due to a temperature difference between the working fluid and the heat storage body is directed from the high temperature side to the low temperature side of the stack. Transported through the heat storage body, transferred from the low temperature side of the stack to the low temperature side heat exchange unit,
A part of the heat transferred to the low temperature side heat exchange part is radiated from the low temperature side heat exchange part, and the rest is transferred to the expansion chamber and output from the expander. .
前記高温側熱交換部は前記スタックの高温端に設けられ、一端が前記スタックに開口し他端が閉じた流路孔を複数本備えた高温側熱交換器であり、
前記低温側熱交換部は前記スタックの低温端に設けられ、一端が前記スタックに開口し他端が前記膨張室に開口した流路孔を複数本備えた低温側熱交換器である
ことを特徴とする請求項1に記載の熱輸送管。
The high temperature side heat exchange part is provided at the high temperature end of the stack, and is a high temperature side heat exchanger provided with a plurality of channel holes having one end opened in the stack and the other end closed,
The low temperature side heat exchanging unit is a low temperature side heat exchanger provided with a plurality of flow path holes provided at a low temperature end of the stack, one end opened in the stack and the other end opened in the expansion chamber. The heat transport pipe according to claim 1.
前記膨張機は、モータの機能と発電機の機能と
を備えることを特徴とする請求項項1又は2のいずれかに記載の熱輸送管。
The heat transport pipe according to claim 1, wherein the expander has a function of a motor and a function of a generator.
前記作動流体は、気体と凝縮性流体とが混在している
ことを特徴とする請求項1乃至3のいずれか一項に記載の熱輸送管。
The heat transport pipe according to any one of claims 1 to 3, wherein the working fluid is a mixture of a gas and a condensable fluid.
前記高温側熱交換部と、前記低温側熱交換部または前記膨張室との間を前記作動流体がバイパスするバイパス通路
を備えることを特徴とする請求項1乃至4のいずれか一項に記載の熱輸送管。
5. The apparatus according to claim 1, further comprising: a bypass passage that bypasses the working fluid between the high temperature side heat exchange unit and the low temperature side heat exchange unit or the expansion chamber. Heat transport pipe.
JP2009253636A 2009-11-05 2009-11-05 Heat transport pipe Pending JP2011099599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009253636A JP2011099599A (en) 2009-11-05 2009-11-05 Heat transport pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009253636A JP2011099599A (en) 2009-11-05 2009-11-05 Heat transport pipe

Publications (1)

Publication Number Publication Date
JP2011099599A true JP2011099599A (en) 2011-05-19

Family

ID=44190927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009253636A Pending JP2011099599A (en) 2009-11-05 2009-11-05 Heat transport pipe

Country Status (1)

Country Link
JP (1) JP2011099599A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048556A (en) * 2016-09-20 2018-03-29 株式会社デンソー Energy conversion device
JP7270144B1 (en) 2022-10-28 2023-05-10 国立大学法人東京農工大学 Heat transfer device and furnace
WO2023099185A1 (en) * 2021-12-03 2023-06-08 Equium Groupe Thermoacoustic machine with phase-shift modulation
JP7315910B1 (en) 2022-10-06 2023-07-27 国立大学法人東京農工大学 Heat transfer device and furnace
JP7386487B1 (en) 2022-11-24 2023-11-27 昭電工業株式会社 measuring device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4625517A (en) * 1985-01-22 1986-12-02 Sulzer Brothers Limited Thermoacoustic device
JPH06147791A (en) * 1992-10-29 1994-05-27 Aisin New Hard Kk Heat exchanger of apparatus with regenerator
US20020166325A1 (en) * 2001-04-20 2002-11-14 Corey John A. Mechanical resonator and method for thermoacoustic systems
JP2003324932A (en) * 2002-04-26 2003-11-14 Denso Corp Thermoacoustic generator
US20040123979A1 (en) * 2002-12-30 2004-07-01 Ming-Shan Jeng Multi-stage thermoacoustic device
WO2004088217A1 (en) * 2003-03-28 2004-10-14 Japan Aerospace Exploration Agency Pulse tube refrigerator
JP2008167580A (en) * 2006-12-28 2008-07-17 National Institutes Of Natural Sciences Thermoacoustic generator
JP2009074722A (en) * 2007-09-19 2009-04-09 Aisin Seiki Co Ltd Phase change type thermoacoustic engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4625517A (en) * 1985-01-22 1986-12-02 Sulzer Brothers Limited Thermoacoustic device
JPH06147791A (en) * 1992-10-29 1994-05-27 Aisin New Hard Kk Heat exchanger of apparatus with regenerator
US20020166325A1 (en) * 2001-04-20 2002-11-14 Corey John A. Mechanical resonator and method for thermoacoustic systems
JP2003324932A (en) * 2002-04-26 2003-11-14 Denso Corp Thermoacoustic generator
US20040123979A1 (en) * 2002-12-30 2004-07-01 Ming-Shan Jeng Multi-stage thermoacoustic device
WO2004088217A1 (en) * 2003-03-28 2004-10-14 Japan Aerospace Exploration Agency Pulse tube refrigerator
JP2008167580A (en) * 2006-12-28 2008-07-17 National Institutes Of Natural Sciences Thermoacoustic generator
JP2009074722A (en) * 2007-09-19 2009-04-09 Aisin Seiki Co Ltd Phase change type thermoacoustic engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048556A (en) * 2016-09-20 2018-03-29 株式会社デンソー Energy conversion device
WO2018056074A1 (en) * 2016-09-20 2018-03-29 株式会社デンソー Energy conversion device
WO2023099185A1 (en) * 2021-12-03 2023-06-08 Equium Groupe Thermoacoustic machine with phase-shift modulation
FR3130017A1 (en) * 2021-12-03 2023-06-09 Equium Groupe Phase shift modulation thermoacoustic machine
JP7315910B1 (en) 2022-10-06 2023-07-27 国立大学法人東京農工大学 Heat transfer device and furnace
JP7270144B1 (en) 2022-10-28 2023-05-10 国立大学法人東京農工大学 Heat transfer device and furnace
JP7386487B1 (en) 2022-11-24 2023-11-27 昭電工業株式会社 measuring device

Similar Documents

Publication Publication Date Title
US9631874B2 (en) Thermodynamic system including a heat transfer system having an evaporator and a condenser
JP2013506109A (en) Heat transfer system using thermal energy storage material
CN101313420A (en) Thermoelectric power generator for variable thermal power source
JP2011099599A (en) Heat transport pipe
US20130098583A1 (en) Heat pipe dissipating system and method
JP4580247B2 (en) Engine system
US9021800B2 (en) Heat exchanger and associated method employing a stirling engine
JP2009074722A (en) Phase change type thermoacoustic engine
JP2006266571A (en) Cooling system and automobile
JP2012255577A (en) Loop heat pipe, and electronic apparatus including the same
WO2004040218A9 (en) Heat transfer system
Vasiliev et al. Heat pipes in fuel cell technology
US7574870B2 (en) Air-conditioning systems and related methods
JP2005533231A (en) Cooling system
JP2007023885A (en) Stirling engine using liquefied substance for working gas
JP2007023885A5 (en)
JP2017193969A (en) Heating device
JP5628118B2 (en) Vane rotary type heating and cooling equipment
JP2006292337A (en) Heat pipe device
JP6156219B2 (en) Self-excited vibration heat pipe
JP2005156026A (en) Cooling device
Sarraf et al. High temperature and high heat flux thermal management for electronics
JP7469181B2 (en) Heat Pipe Thermostat
JP2005337336A (en) Liquefied gas evaporating device
Bartholomé et al. Electrocaloric cooling with latent heat transfer enabling high power density

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140204