JPH06147791A - Heat exchanger of apparatus with regenerator - Google Patents

Heat exchanger of apparatus with regenerator

Info

Publication number
JPH06147791A
JPH06147791A JP4333422A JP33342292A JPH06147791A JP H06147791 A JPH06147791 A JP H06147791A JP 4333422 A JP4333422 A JP 4333422A JP 33342292 A JP33342292 A JP 33342292A JP H06147791 A JPH06147791 A JP H06147791A
Authority
JP
Japan
Prior art keywords
regenerator
heat exchanger
heat
temperature
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4333422A
Other languages
Japanese (ja)
Other versions
JP3164130B2 (en
Inventor
Tatsuo Inoue
龍夫 井上
Arata Kono
新 河野
Akira Tominaga
昭 富永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Newhard Co Ltd
Original Assignee
Aisin Newhard Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Newhard Co Ltd filed Critical Aisin Newhard Co Ltd
Priority to JP33342292A priority Critical patent/JP3164130B2/en
Publication of JPH06147791A publication Critical patent/JPH06147791A/en
Application granted granted Critical
Publication of JP3164130B2 publication Critical patent/JP3164130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes

Abstract

PURPOSE:To improve an efficiency by eliminating a useless temperature distribution in a heat exchanger in an apparatus having a regenerator such as a Stirling engine and heat exchangers at both ends of the regenerator. CONSTITUTION:Channels 7', 8' of operation fluids in heat exchangers 2, 3 at both ends of a regenerator 4 are so formed as to be continuously or stepwisely reduced in sizes (diameters, gaps, etc.) toward the generator.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この出願の発明は、スターリング
エンジンやスターリング冷凍機、ギフォード・マクマホ
ン冷凍機など再生器(畜熱器、畜冷器)を持つ機器、つ
まりスターリングエンジンを用いる機械、装置(自動
車、ヒートポンプ等)や、スターリング冷凍機、G−M
冷凍機などの畜冷器を用いる冷凍機の応用機器(クライ
オポンプ、リニアカー用冷凍機、超電動機器の冷却装
置)に於ける再生器両端の熱交換器に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The invention of the present application relates to a device having a regenerator (heat storage device, cooler) such as a Stirling engine, a Stirling refrigerator, a Gifford McMahon refrigerator, that is, a machine or device using the Stirling engine ( Automobiles, heat pumps, etc.), Stirling refrigerators, GM
The present invention relates to a heat exchanger at both ends of a regenerator in an applied device of a refrigerator that uses a refrigerating machine such as a refrigerator (a cryopump, a refrigerator for a linear car, a cooling device for a super-electric device).

【0002】[0002]

【従来の技術】再生器を用いて流体の往復動により、熱
輸送あるいは仕事増幅(発生)を行う機械の代表的なも
のがスターリングエンジンやスターリング冷凍機などで
ある。これらの機械の再生器はその両端には必ず外界と
の熱の出入りを行わせる熱交換器が用いられており、例
えばSAEテクニカルペーパーシリーズ859423に
記載されている。図1に従来の熱交換器を備えたスター
リングエンジンの構成図を示す。1及び6はそれぞれ圧
縮ピストン、膨張ピストンと呼ばれ系内の圧力変動と流
体の移動を引き起こしている。2および3がここで問題
にしたい熱交換器である。2は低温側熱交換器で外部か
らの冷却水により放熱を担っている。3は高温側熱交換
器で外部からの熱の取り込み部であるがこの図の例は火
炎により加熱を施している。畜熱器、つまり再生器4に
より高温部と低温(室温)部が連結され、畜熱器の中で
仕事の増幅、熱輸送が行われる。このような再生器を持
つ機器は再生器への熱の出入りがあってはじて機能する
のである。熱交換器の構造はほとんどのものが図1の2
または3のように細かい流路7あるいは8を作動流体を
流すものでその流路の外側に加熱源5か冷却源(冷却水
など)が接触するようになっている。
2. Description of the Related Art A typical Stirling engine, Stirling refrigerator or the like is a machine that transports heat or amplifies (generates) heat by reciprocating a fluid using a regenerator. The regenerators of these machines have heat exchangers at both ends that always let heat in and out with the outside world, and are described in, for example, SAE Technical Paper Series 859423. FIG. 1 shows a block diagram of a conventional Stirling engine equipped with a heat exchanger. Reference numerals 1 and 6 are called a compression piston and an expansion piston, respectively, and cause pressure fluctuation and fluid movement in the system. 2 and 3 are the heat exchangers that we are interested in here. Reference numeral 2 is a low temperature side heat exchanger that radiates heat by cooling water from the outside. Reference numeral 3 denotes a high temperature side heat exchanger which is a portion for taking in heat from the outside, but in the example of this figure, heating is performed by a flame. The high temperature part and the low temperature (room temperature) part are connected by the heat storage device, that is, the regenerator 4, and work is amplified and heat is transferred in the heat storage device. A device with such a regenerator will function as heat enters and leaves the regenerator. Most of the heat exchanger structures are 2 in Fig. 1.
Alternatively, the working fluid flows through the fine flow passages 7 or 8 as in 3, and the heating source 5 or the cooling source (cooling water or the like) comes into contact with the outside of the flow passage.

【0003】熱音響理論的にこの熱交換器を考えると次
のようになる。熱交換器をある一定の径の流路の束と考
えその流路壁から一定の加熱・放熱密度で内部の流体を
加熱あるいは内部の流体から放熱しているとする。今、
例としてスターリングエンジンの場合を考える。エンジ
ンでは再生器の高温側が加熱側、低温側が放熱側にな
る。高温側の熱交換器から供給された熱は再生器まで運
ばれて再生器内の仕事発生に使われる。この熱交換器内
の再生器までの熱の輸送が重要であり問題である。もし
高温側熱交換器の流路の壁面から一様の密度で熱が流体
に供給されているとすると、それらの熱が流路の中を再
生器に向かって運ばれるためには再生器に近づくにつれ
て、その熱流束がだんだん大きくならなくてはならな
い。ところで熱音響理論から得られる結論として振動
(往復動)する流体の運ぶ熱流束Qは下記の数式1、数
式2、数式3、数式4によって求まる3つの熱流束の和
となることが示されている。
Considering this heat exchanger thermodynamically, it is as follows. It is assumed that the heat exchanger is considered as a bundle of flow passages having a certain diameter, and the fluid inside is heated or radiated from the fluid inside with a constant heating and heat radiation density. now,
As an example, consider the case of a Stirling engine. In the engine, the high temperature side of the regenerator is the heating side and the low temperature side is the heat radiating side. The heat supplied from the high temperature side heat exchanger is transferred to the regenerator and used for generating work in the regenerator. The transport of heat to the regenerator in this heat exchanger is important and problematic. If heat is supplied to the fluid at a uniform density from the wall surface of the flow path of the high temperature side heat exchanger, the heat is transferred to the regenerator in the flow path to the regenerator. As it gets closer, its heat flux must grow. By the way, as a conclusion obtained from thermoacoustic theory, it has been shown that the heat flux Q carried by the fluid that vibrates (reciprocates) is the sum of the three heat fluxes obtained by the following equations 1, 2, 3, and 4. There is.

【0004】[0004]

【数1】 [Equation 1]

【0005】[0005]

【数2】 [Equation 2]

【0006】[0006]

【数3】 [Equation 3]

【0007】[0007]

【数4】 [Equation 4]

【0008】ここで、上記数式における符号の意味する
ことろは次の通りである。 Qprog : 進行波成分によって運ばれる熱流
束 Qstand : 定在波成分 QD : 流体の位置変位のみによって運ば
れる熱流束 Fs : 熱交換器の流路壁の熱容量に関係
ある量 χ’ : 可逆的変化の程度 χ” : 不可逆変化の程度 ω : 振動の角周波数 β : 熱膨張係数 Tm : 作動流体の平均温度 ρm : 作動流体の平均密度 Cp : 作動流体の比熱 ▽Tm : 流路壁の温度勾配 ξ,prog : 変位振幅の進行波成分 ξ,stand : 変位振幅の定在波成分
Here, the meanings of the symbols in the above equations are as follows. Qprog: Heat flux carried by traveling wave component Qstand: Standing wave component QD: Heat flux carried only by positional displacement of fluid Fs: Quantity related to heat capacity of flow passage of heat exchanger χ ': Reversible change Degree χ ”: degree of irreversible change ω: angular frequency of vibration β: coefficient of thermal expansion Tm: average temperature of working fluid ρm: average density of working fluid Cp: specific heat of working fluid ▽ Tm: temperature gradient of flow passage wall ξ 0 , Prog: Traveling wave component of displacement amplitude ξ 0 , stand 2 : Standing wave component of displacement amplitude

【0009】QprogとQstandは流路の音勾配
とは無関係で振動の周波数や流路の大きさなどによって
決まるので流路に沿ってそれほど大きな変位はない。一
方QDは温度勾配に比例する量なので温度勾配の大きさ
が変わるとQDの大きさも変化しうる。熱交換器に沿っ
て再生器に近づく程熱流束が大きくなるためにはQpr
ong,Qstandが変化し得ないので残るQDに頼
らざる得ない。即ち熱交換器の流路に沿って温度勾配が
変化し、その結果QDが熱交換器に沿って変化すること
で流路壁からの一様な熱供給に対応できることになる。
そのときの温度勾配の分布つまり熱交換器の流体に沿っ
た温度分布はQDが温度勾配に比例し、そのQDが流路
に沿って一様に増加するためには温度分布は流路に沿っ
て放物線的な変化をしなくてはならないことが容易に求
められる。つまり一様な径の流路による熱交換器では流
路壁から一様に熱の出入りがあるためには、その流路に
沿って放物線的な温度分布が必然的につきことになる。
そのような温度分布の様子を示したのが図2であり、図
2(a)はエンジンの場合を、また図2(b)は冷凍機
の場合である。この図のような温度勾配があると次のよ
うな問題点が生ずる。エンジンの場合を考えると、図2
(a)に示した通り、再生器(蓄熱器)の中ほぼ一様の
温度勾配があるが両端の熱交換器には図のような放物線
的な形の温度分布が生じ、加熱温度はA点の温度(T
A)、冷却温度はD点の温度(TD)であるが、再生器
の両端につく温度差はTB−TCである。スターリング
エンジンは再生器の両端の温度差が大きいほど出力、効
率ともに高く、加熱源はTA、冷却源がTDの温度なの
で理想的には、TA−TDの温度差が期待されるところ
である。
Since Qprog and Qstand are unrelated to the sound gradient of the flow passage and are determined by the frequency of vibration and the size of the flow passage, there is no great displacement along the flow passage. On the other hand, since QD is an amount proportional to the temperature gradient, the size of QD may change if the size of the temperature gradient changes. Since the heat flux becomes larger as it gets closer to the regenerator along the heat exchanger, Qpr
Since ong and Qstand cannot be changed, there is no choice but to rely on the remaining QD. That is, the temperature gradient changes along the flow path of the heat exchanger, and as a result, the QD changes along the heat exchanger, so that uniform heat supply from the flow path wall can be dealt with.
The distribution of the temperature gradient at that time, that is, the temperature distribution along the fluid of the heat exchanger, is that the QD is proportional to the temperature gradient, and in order for the QD to increase uniformly along the flow path, the temperature distribution is along the flow path. It is easily sought to make parabolic changes. That is, in a heat exchanger having a uniform diameter flow path, heat flows in and out uniformly from the flow path wall, so that a parabolic temperature distribution is inevitably attached along the flow path.
FIG. 2 shows such a temperature distribution, FIG. 2 (a) shows the case of an engine, and FIG. 2 (b) shows the case of a refrigerator. The temperature gradient shown in this figure causes the following problems. Considering the case of the engine,
As shown in (a), there is a nearly uniform temperature gradient in the regenerator (heat accumulator), but the heat exchangers at both ends have a parabolic temperature distribution as shown in the figure, and the heating temperature is A Point temperature (T
A), the cooling temperature is the temperature at point D (TD), but the temperature difference between both ends of the regenerator is TB-TC. In the Stirling engine, the larger the temperature difference between both ends of the regenerator, the higher the output and the efficiency. Since the heating source has the temperature TA and the cooling source has the temperature TD, ideally, the temperature difference TA-TD is expected.

【0010】同様に冷凍機の再生器については、図2
(b)に示した通り、高温側、低温側の熱交換器ではそ
れぞれ図のようにエンジンとは逆の放物線的温度分布曲
線を描く形になる。この温度分布は冷凍機にとっても不
利であることは容易に理解される。即ち、高温側の放熱
温度(A’点の温度であって、TA’)より再生器高温
端(B’点の温度であって、TB’)が高く、低温部の
冷凍発生温度(D’点の温度であって、TD’)が再生
器低温端温度(C’点の温度であって、TC’)より高
くなり、再生器に必要以上の温度勾配を生じせしめるこ
とで効率を落とす結果となっている。
Similarly, the regenerator of the refrigerator is shown in FIG.
As shown in (b), the heat exchanger on the high temperature side and the heat exchanger on the low temperature side each have a parabolic temperature distribution curve opposite to that of the engine as shown in the figure. It is easily understood that this temperature distribution is also disadvantageous for the refrigerator. That is, the regenerator high temperature end (the temperature at the B'point and TB ') is higher than the heat radiation temperature on the high temperature side (the temperature at the A'point, TA'), and the freezing generation temperature (D 'at the low temperature portion is high. Point temperature, TD ') is higher than the regenerator low temperature end temperature (C' point temperature, TC '), resulting in an excessive temperature gradient in the regenerator, resulting in reduced efficiency. Has become.

【0011】このように再生器両端に無駄な温度分布を
生じせしめることが従来の一様な流路断面積を持つ熱交
換器にまつわる本質的な問題的であり、これが結果とし
てエンジンや冷凍機の効率を下げている大きな原因にな
っていた。
In this way, the generation of useless temperature distribution at both ends of the regenerator is an essential problem in the conventional heat exchanger having a uniform flow passage cross-sectional area, and as a result, this is caused in the engine and the refrigerator. It was a major cause of reduced efficiency.

【0012】[0012]

【発明が解決しようとする課題】この出願の請求項1の
発明が解決しようとする課題は、この無用な熱交換器内
の温度分布をなくすことである。
The problem to be solved by the invention of claim 1 of this application is to eliminate the temperature distribution in this useless heat exchanger.

【0013】また、この出願の請求項1の発明か解決し
ようとする課題は、上記課題を解決する実用的構成を得
ることである。
Further, the problem to be solved by the invention of claim 1 of this application is to obtain a practical constitution for solving the above problem.

【0014】[0014]

【課題を解決するための手段】この出願の請求項1の発
明においては、スターリングエンジンやスターリング冷
凍機、ギフォード・マクマホン冷凍機など再生器(畜熱
器、畜冷器)を持つ機器に於ける再生器両端の熱交換器
に於いて、その内部の作動流体の流路を再生器に近い方
ほど連続的にあるいは段階的にその流路寸法(径や隙間
など)を小さくした。
According to the invention of claim 1 of the present application, a Stirling engine, a Stirling refrigerator, a Gifford-McMahon refrigerator, and other devices having a regenerator (heat storage device, storage device) are provided. In the heat exchangers at both ends of the regenerator, the flow passage dimensions (diameter, gap, etc.) of the working fluid inside the regenerator were reduced continuously or stepwise as it came closer to the regenerator.

【0015】また、この出願の請求項2の発明において
は、上記構成において、作動流体の流路に多数の金網や
孔開きプレートを詰め込み且つそれらの目の細かさを順
次変えることで流路寸法を段階的に変化させた。
Further, in the invention of claim 2 of this application, in the above-mentioned structure, a large number of wire nets and perforated plates are packed in the flow path of the working fluid, and the fineness of the meshes is sequentially changed to form the flow path dimension. Was changed in stages.

【0016】[0016]

【作用】前述のように熱交換器の役割は外界との熱の出
入りと熱を再生器まで輸送することである。その輸送量
(熱流束)も下流に行く程大きくなることが必要でその
熱流束の大きさの変化をQDの温度勾配依存性に依った
形で温度勾配をつけて実現していたのが従来の方法であ
るが、温度勾配をつけずに熱流束に分布を持たせるため
にはQD以外に熱流束分布を負わせることが必要であ
る。その候補は、QprogやQstandで、それら
に位置によって分布を持たずにはそれぞれの数式2、数
式3から分かるようにχ’、χ”に分布をつけることに
なる。χ’、χ”は図3のようにωτの関数で、ωは冷
凍機の運転角周波数、τは下記の数式5で定義される流
体と熱交換壁との熱緩和時間である。
As described above, the role of the heat exchanger is to transfer heat to and from the outside world and transport the heat to the regenerator. The transport amount (heat flux) also needs to increase toward the downstream side, and the change in the heat flux magnitude was realized by applying a temperature gradient in a form that depends on the temperature gradient dependency of QD. However, in order to give a heat flux distribution without a temperature gradient, it is necessary to impose a heat flux distribution in addition to QD. The candidates are Qprog and Qstand, and they have distributions according to their positions, so that χ ′ and χ ″ are distributed as shown in Equations 2 and 3. χ ′ and χ ″ are the figures. 3 is a function of ωτ, ω is the operating angular frequency of the refrigerator, and τ is the thermal relaxation time between the fluid and the heat exchange wall, which is defined by Equation 5 below.

【0017】[0017]

【数5】 [Equation 5]

【0018】上記数式5中のrは流路の代表長さ、
(円管の場合は半径、平行平板の場合は間隔の半分)、
αは流体の温度散拡係数であり、温度が一定なら定数で
ある。温度の分布なしにχ’、χ”に分布を生じさせる
にはrに分布を与えることが残った方法となる。請求
項1の発明は熱交換器の流路の寸法(代表長さなど)に
流れ方向にそって分布をつけることでQprog、Qs
tandの位置依存性を生じさせ温度分布なしに熱流束
分布を実現させることができる。
In the above equation 5, r 0 is the representative length of the flow path,
(Radius for circular tubes, half the spacing for parallel plates),
α is a temperature spread coefficient of the fluid, and is a constant if the temperature is constant. In order to generate a distribution in χ ′, χ ″ without a temperature distribution, it is a method that gives a distribution to r 0. The invention of claim 1 is the dimension of the flow path of the heat exchanger (representative length, etc.). ), Qprog, Qs
It is possible to realize the heat flux distribution without causing temperature distribution by causing tan position dependency.

【0019】そして、請求項2の発明によれば、実用的
な構成の熱交換器とすることができる。
According to the second aspect of the invention, a heat exchanger having a practical structure can be obtained.

【0020】[0020]

【実施例】具体的な実施例、つまりスターリングエンジ
ンの例を図4に示す。スリーリング機関では比較的進行
波成分が多くQprogに頼るのが効果的であるので、
熱流束の増加する方向にχ’を大きくすることか望まし
い。つまり熱流束の方向に沿って流路の代表長さが小さ
くすることになる。これは図4のように高温側熱交換器
3では再生器4に近づくほどその流路8’の寸法(直径
など)が小さくなり、低温側熱交換器2でも再生器4に
近づくほど流路7’の寸法を小さくするのである。流路
を連続的にその径や隙間を変化させることは実際上難し
いので図5のように熱交換器内の一定の大きさの流路
7”に金網を詰め、その金網の目の細かさをA、B、
C、D、E位置の順に段階的に少しずつ粗く変えていく
方法でも同様な効果が得られる。これらの方法は基本的
にはエンジンの場合も冷凍機の場合も同様である。ただ
しエンジン、冷凍機の違いや能力の違いで熱交換器より
出入りする熱量や温度が異なるのでそれに即した流路寸
法の変化のさせ方あるいは金網の目の分布を決める必要
があることは当然である。
FIG. 4 shows a concrete example, that is, an example of a Stirling engine. Since it is effective to rely on Qprog in the three-ring engine because it has relatively many traveling wave components,
It is desirable to increase χ'in the direction of increasing heat flux. That is, the representative length of the flow path is reduced along the heat flux direction. As shown in FIG. 4, in the heat exchanger 3 on the high temperature side, the dimensions (diameter, etc.) of the passage 8 ′ become smaller as it gets closer to the regenerator 4, and the heat exchanger 2 at the low temperature side also has passages closer to the regenerator 4. The size of 7'is reduced. Since it is practically difficult to continuously change the diameter and gap of the flow passage, as shown in Fig. 5, the flow passage 7 "of a certain size in the heat exchanger is filled with the wire mesh, and the fineness of the wire mesh is reduced. A, B,
The same effect can be obtained by the method of gradually changing the C, D, and E positions in a step-wise rough manner. These methods are basically the same both for the engine and for the refrigerator. However, since the amount of heat and temperature flowing in and out of the heat exchanger differ depending on the difference in engine and refrigerator and the capacity, it is natural that it is necessary to decide how to change the flow path dimensions or the distribution of the wire mesh according to it. is there.

【0021】[0021]

【発明の効果】以上説明したように、この出願の請求項
1発明によれば、熱交換器の中を作動流体が輸送する熱
量の変化に応じてQprogを変化させることで熱交換
器の作動流体の流路方向に沿った温度勾配を無くすこと
により機器の熱機関としての効率を高めることができ
る。そして、請求項2の発明によれば、実用的な構成の
熱交換器とすることができる。
As described above, according to the first aspect of the present invention, the operation of the heat exchanger is changed by changing the Qprog according to the change in the amount of heat of the working fluid transported in the heat exchanger. By eliminating the temperature gradient along the flow direction of the fluid, the efficiency of the equipment as a heat engine can be improved. Further, according to the invention of claim 2, it is possible to provide a heat exchanger having a practical configuration.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の熱交換器を備えたスターリングエンジン
の構成を示す図である。
FIG. 1 is a diagram showing a configuration of a conventional Stirling engine including a heat exchanger.

【図2】熱交換器及び再生器(畜熱器、畜冷器)にわた
る温度分布を示す図であり、(a)はスターリングエン
ジンの場合を、(b)スターリング冷凍機などの畜冷型
冷凍機の場合を夫々示す。
FIG. 2 is a diagram showing a temperature distribution over a heat exchanger and a regenerator (a heat storage device, a storage device), (a) shows a case of a Stirling engine, and (b) a storage cooling type refrigeration such as a Stirling refrigerator. Machines are shown respectively.

【図3】χ’、χ”のωτ依存性(流路が円管とした場
合)を示す図である。
FIG. 3 is a diagram showing ωτ dependence of χ ′ and χ ″ (when a flow channel is a circular tube).

【図4】この出願の発明の実施例を示す図である。FIG. 4 is a diagram showing an embodiment of the invention of this application.

【図5】図4における熱交換器の詳細構成を示す図であ
る。
5 is a diagram showing a detailed configuration of a heat exchanger in FIG.

【符号の説明】[Explanation of symbols]

1 圧縮ピストン 2 低温熱交換器 3 高温熱交換器 4 再生器(畜熱器) 5 加熱源 6 膨張ピストン 7 低温熱交換器内の作動流体流路 7’低温熱交換器内の作動流体流路 7”低温熱交換器内の作動流体流路 8 高温熱交換器内の作動流体流路 1 compression piston 2 low temperature heat exchanger 3 high temperature heat exchanger 4 regenerator (heat storage device) 5 heat source 6 expansion piston 7 working fluid flow path in low temperature heat exchanger 7'working fluid flow path in low temperature heat exchanger 7 "Working fluid flow path in low temperature heat exchanger 8 Working fluid flow path in high temperature heat exchanger

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 スターリングエンジンやスターリング冷
凍機、ギフォード・マクマホン冷凍機など再生器(畜熱
器、畜冷器)を持つ機器に於ける再生器両端の熱交換器
に於いて、その内部の作動流体の流路を再生器に近い方
ほど連続的にあるいは段階的にその流路寸法(径や隙間
など)を小さくしたことを特徴とする熱交換器の構造。
1. The internal operation of a heat exchanger at both ends of a regenerator in a device having a regenerator (heat storage, cooler) such as a Stirling engine, a Stirling refrigerator, a Gifford McMahon refrigerator. The structure of the heat exchanger is characterized in that the flow passage of the fluid is reduced in size or diameter in a continuous or stepwise manner as it is closer to the regenerator.
【請求項2】 作動流体の流路に多数の金網や孔開きプ
レートを詰め込み且つそれらの目の細かさを順次変える
ことで流路寸法を段階的に変化させたことを特徴とする
請求項(1)記載の熱交換器。
2. The flow path dimension is changed stepwise by packing a large number of wire nets or perforated plates in the flow path of the working fluid and sequentially changing the fineness thereof. The heat exchanger described in 1).
JP33342292A 1992-10-29 1992-10-29 Heat exchanger for equipment with regenerator Expired - Fee Related JP3164130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33342292A JP3164130B2 (en) 1992-10-29 1992-10-29 Heat exchanger for equipment with regenerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33342292A JP3164130B2 (en) 1992-10-29 1992-10-29 Heat exchanger for equipment with regenerator

Publications (2)

Publication Number Publication Date
JPH06147791A true JPH06147791A (en) 1994-05-27
JP3164130B2 JP3164130B2 (en) 2001-05-08

Family

ID=18265937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33342292A Expired - Fee Related JP3164130B2 (en) 1992-10-29 1992-10-29 Heat exchanger for equipment with regenerator

Country Status (1)

Country Link
JP (1) JP3164130B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099599A (en) * 2009-11-05 2011-05-19 Aisin Seiki Co Ltd Heat transport pipe
JP2011149600A (en) * 2010-01-20 2011-08-04 Sumitomo Heavy Ind Ltd Pulse tube refrigerator
JP2011149601A (en) * 2010-01-20 2011-08-04 Sumitomo Heavy Ind Ltd Pulse tube refrigerator
WO2023181608A1 (en) * 2022-03-22 2023-09-28 株式会社デンソー Heat-sound converter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099599A (en) * 2009-11-05 2011-05-19 Aisin Seiki Co Ltd Heat transport pipe
JP2011149600A (en) * 2010-01-20 2011-08-04 Sumitomo Heavy Ind Ltd Pulse tube refrigerator
JP2011149601A (en) * 2010-01-20 2011-08-04 Sumitomo Heavy Ind Ltd Pulse tube refrigerator
WO2023181608A1 (en) * 2022-03-22 2023-09-28 株式会社デンソー Heat-sound converter

Also Published As

Publication number Publication date
JP3164130B2 (en) 2001-05-08

Similar Documents

Publication Publication Date Title
US4619112A (en) Stirling cycle machine
Radebaugh et al. A comparison of three types of pulse tube refrigerators: new methods for reaching 60K
US3237421A (en) Pulse tube method of refrigeration and apparatus therefor
US5339640A (en) Heat exchanger for a thermoacoustic heat pump
US4953366A (en) Acoustic cryocooler
US6164073A (en) Method and apparatus for adapting steady flow with cyclic thermodynamics
US6640553B1 (en) Pulse tube refrigeration system with tapered work transfer tube
US8640467B2 (en) Acoustic power transmitting unit for thermoacoustic systems
Swift et al. Quarter-wave pulse tube
Kajurek et al. Design and simulation of a small capacity thermoacoustic refrigerator
Tao et al. Numerical analysis on pressure drop and heat transfer performance of mesh regenerators used in cryocoolers
JPH06147791A (en) Heat exchanger of apparatus with regenerator
Sobol et al. A study of a miniature in-line pulse tube cryocooler
Xu et al. A novel shell-tube water-cooled heat exchanger for high-capacity pulse-tube coolers
Xiao Thermoacoustic heat transportation and energy transformation Part 2: Isothermal wall thermoacoustic effects
Pang et al. Experimental study of the influence of cold heat exchanger geometry on the performance of a co-axial pulse tube cooler
Wakeland et al. Thermoacoustics with idealized heat exchangers and no stack
Hashimoto et al. Effect of high entropy magnetic regenerator materials on power of the GM refrigerator
JPH0244158A (en) Cooling device
GB2237866A (en) Thermo-acoustic refrigeration apparatus
Gao et al. A hybrid two-stage refrigerator operated at temperatures below 4K
Andersen et al. Numerical study on transverse asymmetry in the temperature profile of a regenerator in a pulse tube cooler
Kaiser et al. Thermodynamic analysis of an ideal four-valve pulse tube refrigerator
Brito et al. Numerical model of free warm expander pulse tube cooler
Colgate et al. Regenerator optimization for Stirling cycle refrigeration

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080302

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090302

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees