JPH0244158A - Cooling device - Google Patents

Cooling device

Info

Publication number
JPH0244158A
JPH0244158A JP1103609A JP10360989A JPH0244158A JP H0244158 A JPH0244158 A JP H0244158A JP 1103609 A JP1103609 A JP 1103609A JP 10360989 A JP10360989 A JP 10360989A JP H0244158 A JPH0244158 A JP H0244158A
Authority
JP
Japan
Prior art keywords
working fluid
reheater
cooling device
flat plate
many
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1103609A
Other languages
Japanese (ja)
Inventor
Derrick John Haines
デリツク・ジヨン・ハイネス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BAE Systems PLC
Original Assignee
British Aerospace PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by British Aerospace PLC filed Critical British Aerospace PLC
Publication of JPH0244158A publication Critical patent/JPH0244158A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/057Regenerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/02Arrangements for modifying heat-transfer, e.g. increasing, decreasing by influencing fluid boundary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/30Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders
    • F02G2243/50Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes
    • F02G2243/54Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes thermo-acoustic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/003Gas cycle refrigeration machines characterised by construction or composition of the regenerator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1416Pulse-tube cycles characterised by regenerator stack details

Abstract

PURPOSE: To improve thermal conduction between a reheater and a working fluid and increase heat phase delay between the surface of the working fluid and balk of a member, by providing at least one surface through which and with which the working fluid passes and makes contact on a reheater, and further providing many protrusions protruding into the working fluid on the foregoing surface. CONSTITUTION: A thermal/acoustic condenser includes an elongated organ pipe 1 in which there are accommodated a working fluid and a reheater composed of many thin flat plates 2, and the many thin flat plates 2 are disposed parallely to an axis of the organ pipe 1 and to each other. The working fluid flows through the surface of the flat plate 2 and is rendered to expansion and compression such that cooling effect is produced at one end of the organ pipe 1. Each flat plate 2 includes many pads 3 that protrude into a layer flow boundary layer 4 of the working fluid to divide the layer flow boundary layer for improvement of thermal conduction thereof. The many pads 3 further form a series of heat absorption areas or heat source areas on the flat plate whereby heat phase delay between the surface of each flat plate and the body is made maximum.

Description

【発明の詳細な説明】 本発明は、冷却装置、より具体的には、この熱音響冷却
器は、r NATUR^L ENGINE、  PHY
SIC3TODAY、八uaust  1985  、
  r IJnderstandina  Some 
 5iule Phenonena In Therl
lo−Acoustics With Applica
tions To Acoustical Heat 
Engines」  ^I1. J、 Phys、53
(2)February 1985 、rTheory
 and Ca1culatOn  for  an 
 Intrinsically  Irreversi
ble  ACOLIStCprile HOVer 
using LiQ!Jid Sod!1111 As
 PrilaryWorking FILlidJJ、
^coust、soc、An、 78(2)、 Aug
ust1985、及び「Heat Tr ansf8r
) 1955 Edition、 v。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a cooling device, and more specifically, this thermoacoustic cooler.
SIC3TODAY, August 1985,
r IJnderstandina Some
5iule Phenonena In Therl
lo-Acoustics With Applica
tions To Acoustical Heat
Engines” ^I1. J. Phys., 53
(2) February 1985, rTheory
and CalculatOn for an
Intrinsically Irreversi
ble ACOLIStCprile HOVer
using LiQ! Jid Sod! 1111 As
Primary Working FILlidJJ,
^coust, soc, An, 78(2), Aug
ust1985, and “Heat Tr ansf8r
) 1955 Edition, v.

tulle 1.Hax Jacob、 John W
il I y and 5ons 、 291ページな
どに記載熱力学現象に基ずいて作動する、いわゆる熱音
響冷却器に関する。しかしながら熱音響冷却器に限定さ
れるものではない。
tulle 1. Hax Jacob, John W.
The present invention relates to so-called thermoacoustic coolers which operate on the basis of thermodynamic phenomena, such as those described in Ill Iy and 5ons, page 291. However, it is not limited to thermoacoustic coolers.

簡単にいうと、この種の冷却器は、オルガンパイプ(o
rgan pipe)内の空気の動作に類似する、囲壁
内においての気体又は蒸気などの作用流体の運動・圧縮
及び膨脹により作動する。
Simply put, this type of cooler is an organ pipe (o
It operates by the movement, compression, and expansion of a working fluid, such as gas or steam, within an enclosure, similar to the movement of air within an rgan pipe.

作用流体の動きは、実際、熱音響冷却器の囲壁又はパイ
プ内に配置される再熱器(「6gcnerator)と
して知られる構造物の存在のために、やや異なるが、オ
ルガンパイプ内の空気に関する物理の法則と同じ法則に
従う。
The movement of the working fluid is actually somewhat different due to the presence of a structure known as a reheater ("6gcnerator") placed within the thermoacoustic cooler enclosure or pipe, but the physics of the air within the organ pipes are It follows the same law as the law of.

再熱器は作用流体がjt流する一種の熱交換器であり、
作用流体から熱エネルギを受取り、それを−時的に貯蔵
し、そしてそれを与えるという機能をもつ、熱は、熱音
響冷却器の“冷端”と呼ばれる部分かち再熱器の他側の
部分に運ばれる。再熱器はまた、同様の目的で、スター
リングサイクルで作動する冷却装置においても使用され
る。
Reheater is a kind of heat exchanger in which the working fluid flows,
The heat is transferred to the part called the "cold end" of the thermoacoustic cooler, the other part of the reheater, whose function is to receive thermal energy from the working fluid, temporarily store it, and then give it away. carried to. Reheaters are also used for similar purposes in refrigeration systems operating on the Stirling cycle.

熱音響冷却器の性能は、作用流体圧サイクルと再熱器に
よるエネルギの一時的貯蔵との間の時間位相遅れ、及び
熱エネルギを再熱器に出し入れできる効率とにかかつて
いる。
The performance of a thermoacoustic cooler depends on the time lag between the working fluid pressure cycle and the temporary storage of energy by the reheater, and the efficiency with which thermal energy can be transferred into and out of the reheater.

本発明は、再熱器と、再熱器と接触しそして冷却効果を
生じるように運動・圧縮及びH脹される作用流体とを有
し、再熱器に作用流体が通過接触する少なくとも一の表
面が設けられ、該表面には、作用流体内に突出してその
層流境界層流に多数の部分的不連続部を発生させそれに
より再熱器と作用流体との間の熱伝導を改善し、更にま
た前記表面と該表面を形成する部材のバルクとの間の熱
位相遅れを増大させる部分的熱源領域又は熱シンク領域
を作る多数の突出部が設けられている冷却装置を提供す
ることにある。
The present invention comprises a reheater and a working fluid in contact with the reheater and which is moved, compressed and expanded to produce a cooling effect, the working fluid passing through and contacting the reheater. A surface is provided that protrudes into the working fluid to create a number of partial discontinuities in the laminar boundary layer flow thereby improving heat transfer between the reheater and the working fluid. and further to provide a cooling device provided with a number of protrusions creating partial heat source or heat sink areas increasing the thermal phase lag between said surface and the bulk of the component forming said surface. be.

以下、本発明のより一層の理解のために、添附図面につ
き説明する。
Hereinafter, for a better understanding of the present invention, description will be made with reference to the accompanying drawings.

第1図の熱音響冷却器は、作用流体と、多数の薄い平板
2からなる再熱器とを収容する細長い囲壁又はオルガン
パイプ(organ pipe) 1を有する。
The thermoacoustic cooler of FIG. 1 has an elongated enclosure or organ pipe 1 containing a working fluid and a reheater consisting of a number of thin flat plates 2. The thermoacoustic cooler of FIG.

多数の薄い平板2は、オルガンパイプ1の軸線に平行に
、また相互に平行に配置されている6作用流体は、再熱
器すなわち平板2の表面を通って流れると同時に、冷却
効果がオルガンパイプ1の一端(図示されていない)に
おいて生じるように膨脹及び圧縮を受ける。流体を流動
・膨脹及び圧縮させる手段は図示されていない。
A number of thin flat plates 2 are arranged parallel to the axis of the organ pipes 1 and parallel to each other 6 The working fluid flows through the reheater or the surface of the flat plates 2 and at the same time the cooling effect is applied to the organ pipes. 1 (not shown) undergoes expansion and compression as occurs. The means for flowing, expanding and compressing the fluid are not shown.

第2図に示すように、各平板2は、その両表面に、作用
流体の層流境界層4内に突出して該層流境界層を分断し
て、その熱伝導を向上させる多数のパッド3が設けられ
ている。多数のパッド3はまた、平板上に一連の熱吸収
領域または熱源領域を形成し、各平板の表面とその本体
との間の熱位相遅れを最大限にする。(厚い再熱器の理
論的最適条件は、45 である。前記の第4の公知文献
を見よ) パッド3の代わりに、作用流体の流動方向を横切る方向
にのびる、すなわち、断面において第2図のパッドのよ
うに見える一連の細長片(図示されていない)を設けて
もよい。
As shown in FIG. 2, each flat plate 2 has a number of pads 3 on both surfaces thereof that protrude into the laminar boundary layer 4 of the working fluid to disrupt the laminar boundary layer and improve its heat conduction. is provided. The large number of pads 3 also forms a series of heat absorption or heat source areas on the plates, maximizing the thermal phase lag between the surface of each plate and its body. (The theoretical optimum for a thick reheater is 45 mm, see the above-mentioned fourth publication) Instead of the pad 3, it extends transversely to the direction of flow of the working fluid, i.e. in cross-section as shown in FIG. A series of strips (not shown) may be provided that look like pads.

再熱器の平板2は、石英、シリコン又はセラミックなど
から作られ、その厚さは約0.5ミリメートルである。
The flat plate 2 of the reheater is made of quartz, silicon or ceramic and has a thickness of approximately 0.5 mm.

パッド及び細長片は、アルミニウムからなり、適宜の方
法により平板2上に付着されその厚さは約0.5ミクロ
ンである6作動流体は、10気圧の窒素であり、窒素の
局所バルク運動(the Iokal bulk no
vclent of the N1troaen)すな
わち、第1及び第2図に矢印で示す運動は、0.5ミリ
メートル又はそれより大である。
The pads and strips are made of aluminum and are deposited on the flat plate 2 by any suitable method and have a thickness of about 0.5 microns.6 The working fluid is nitrogen at 10 atmospheres, and the local bulk movement of the nitrogen (the Iokal bulk no.
vclent of the N1troen), ie the movement indicated by the arrows in FIGS. 1 and 2 is 0.5 mm or more.

再熱器は、平板の代りに、その表面にパッド又は細長片
を有する相互に同軸に入れ子状に配置された多数の筒状
板を備えていてもよい。
Instead of flat plates, the reheater may also comprise a number of cylindrical plates coaxially nested in one another, with pads or strips on their surfaces.

当業者には明らかであるように、最良の¥Ie効率を得
るためには、再熱器の平板は、音響反射を減するように
、その端部をテーパーにしたり、その長さを異ならせた
り、あるいは、その端部をテーパーにすると共にその長
さを異ならせなりする。
As will be clear to those skilled in the art, to obtain the best Ie efficiency, the reheater plates should be tapered at their ends or of different lengths to reduce acoustic reflections. Alternatively, the ends may be tapered and their lengths may vary.

(これにより倍音が発生する。) 更にいう言うまでもないが、気体流路の断面は、オルガ
ンパイプの全長にわたり物理的に可能な限り一定である
ことが望ましい、再熱器の区域ではオルガンパイプの横
断面寸法は、平板を設置するため他の部分より大きく作
られる。
(This creates overtones.) It also goes without saying that the cross-section of the gas flow path should be as constant as physically possible over the entire length of the organ pipe; The surface dimensions are made larger than other parts to accommodate the flat plate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱音響冷却器の部分断面図、第2図は第1図の
熱音響冷却器において使用される再熱器の部分断面図で
ある。 に囲壁またはオルガンパイプ 2:平板 3:パッド 4:層流境界層 手続補装置(帥) 平成1年8月18日
FIG. 1 is a partial sectional view of a thermoacoustic cooler, and FIG. 2 is a partial sectional view of a reheater used in the thermoacoustic cooler of FIG. Surrounding wall or organ pipe 2: Flat plate 3: Pad 4: Laminar boundary layer procedure auxiliary device (marshal) August 18, 1999

Claims (1)

【特許請求の範囲】 1)再熱器と、再熱器と接触しそして冷却効果を生じる
ように運動・圧縮及び膨脹される作用流体とを有し、再
熱器に作用流体が通過接触する少なくとも一の表面が設
けられ、また該表面に、作用流体内に突出してその層流
境界層流に多数の部分的不連続部を発生させそれにより
再熱器と作用流体との間の熱伝導を改善し、更にまた前
記表面と該表面を形成する部材の体積との間の熱位相遅
れを増大させる部分的熱源又は熱シンクを生じる多数の
突出部が設けられている冷却装置。 2)前記冷却装置が細長い囲壁を有している請求項1に
記載の冷却装置。 3)前記再熱器が、細長い囲壁の軸線方向に相互に平行
に配置された多数の薄い平板を有している請求項1又は
2のいずれかに記載の冷却装置 4)前記再熱器が、同軸に入れ子状に配置された多数の
筒状板を有している請求項1又は2のいずれかに記載の
冷却装置。 5)作用流体内に突出する前記の突出部が多数のパッド
を有している請求項1ないし4のうちのいずれかの1項
に記載の冷却装置。 6)前記作用流体が窒素である請求項1ないし5のうち
のいずれかの1項に記載の冷却装置。
[Claims] 1) A reheater and a working fluid that is in contact with the reheater and is moved, compressed, and expanded to produce a cooling effect, and the working fluid passes through and comes into contact with the reheater. at least one surface is provided, the surface protruding into the working fluid to create a number of partial discontinuities in the laminar boundary layer flow to thereby conduct heat between the reheater and the working fluid; A cooling device provided with a number of protrusions creating a partial heat source or heat sink that improves the temperature and also increases the thermal phase lag between said surface and the volume of the component forming said surface. 2) The cooling device of claim 1, wherein the cooling device has an elongated enclosure. 3) The cooling device according to claim 1 or 2, wherein the reheater has a large number of thin flat plates arranged parallel to each other in the axial direction of an elongated surrounding wall. 3. The cooling device according to claim 1, comprising a large number of coaxially nested cylindrical plates. 5) A cooling device according to any one of claims 1 to 4, wherein the protrusion protruding into the working fluid has a number of pads. 6) The cooling device according to any one of claims 1 to 5, wherein the working fluid is nitrogen.
JP1103609A 1988-04-25 1989-04-25 Cooling device Pending JPH0244158A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB888809707A GB8809707D0 (en) 1988-04-25 1988-04-25 Cooling apparatus
GB8809707.6 1988-04-25

Publications (1)

Publication Number Publication Date
JPH0244158A true JPH0244158A (en) 1990-02-14

Family

ID=10635776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1103609A Pending JPH0244158A (en) 1988-04-25 1989-04-25 Cooling device

Country Status (4)

Country Link
JP (1) JPH0244158A (en)
DE (1) DE3913050A1 (en)
FR (1) FR2630531B1 (en)
GB (2) GB8809707D0 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100346450C (en) * 2003-06-04 2007-10-31 三星电子株式会社 Cooling apparatus for wafer baking plate
JP2016183844A (en) * 2015-03-26 2016-10-20 大阪瓦斯株式会社 Thermoacoustic engine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2236841B (en) * 1989-08-09 1993-09-01 James Wing Ho Wong Heat exchangers
GB8924022D0 (en) * 1989-10-25 1989-12-13 British Aerospace Refrigeration apparatus
US5561984A (en) * 1994-04-14 1996-10-08 Tektronix, Inc. Application of micromechanical machining to cooling of integrated circuits
FR2855253A1 (en) * 2003-05-19 2004-11-26 Univ Maine Thermoacoustic refrigerator for e.g. motorized vehicle, has amplifier and phase shifters to respectively control acoustic pressure and velocity fields generated in fluid contained in cavity by transducers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49127518U (en) * 1973-03-05 1974-11-01
JPS53145222A (en) * 1977-05-10 1978-12-18 Autoflug Gmbh Belt winder for safety belt
JPS57134419U (en) * 1981-02-18 1982-08-21
JPS62278310A (en) * 1986-05-28 1987-12-03 Alps Electric Co Ltd Bearing device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE89496C (en) *
SU474661A1 (en) * 1973-07-06 1975-06-25 Предприятие П/Я М-5727 Piston refrigeration gas machine
FR2536788A2 (en) * 1981-08-14 1984-06-01 Us Energy INTRINSICALLY IRREVERSIBLE HEAT ENGINE
US4398398A (en) * 1981-08-14 1983-08-16 Wheatley John C Acoustical heat pumping engine
SU1078201A1 (en) * 1982-02-01 1984-03-07 Липецкий политехнический институт Regenerative heat exchanger packer
US4449581A (en) * 1982-08-30 1984-05-22 Chromalloy American Corporation Heat exchanger fin element with dog-bone type pattern of corrugations

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49127518U (en) * 1973-03-05 1974-11-01
JPS53145222A (en) * 1977-05-10 1978-12-18 Autoflug Gmbh Belt winder for safety belt
JPS57134419U (en) * 1981-02-18 1982-08-21
JPS62278310A (en) * 1986-05-28 1987-12-03 Alps Electric Co Ltd Bearing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100346450C (en) * 2003-06-04 2007-10-31 三星电子株式会社 Cooling apparatus for wafer baking plate
JP2016183844A (en) * 2015-03-26 2016-10-20 大阪瓦斯株式会社 Thermoacoustic engine

Also Published As

Publication number Publication date
FR2630531A1 (en) 1989-10-27
GB8908944D0 (en) 1989-06-07
GB2218790A (en) 1989-11-22
FR2630531B1 (en) 1992-10-09
GB2218790B (en) 1992-04-01
DE3913050A1 (en) 1989-11-02
GB8809707D0 (en) 1988-06-02

Similar Documents

Publication Publication Date Title
JP4046686B2 (en) High frequency thermoacoustic cooler
US6983610B1 (en) Cold inertance tube for multi-stage pulse tube cryocooler
WO2003089848A1 (en) Cascaded thermoacoustic devices
US5456082A (en) Pin stack array for thermoacoustic energy conversion
Xiao Thermoacoustic heat transportation and energy transformation Part 1: Formulation of the problem
CN100432572C (en) Cryocooler system with frequency modulating mechanical resonator
Wheatley et al. Natural engines
US6688112B2 (en) Thermoacoustic refrigeration device and method
US20160007773A1 (en) Cooling blanket with cooling capability
JPH0244158A (en) Cooling device
Gheith et al. Stirling engines
US20050109042A1 (en) High frequency thermoacoustic refrigerator
Minner Theoretical evaluation of the optimal performance of a thermoacoustic refrigerator
US6233946B1 (en) Acoustic refrigeration apparatus
JPH1068556A (en) Thermoacoustic refrigerator
JPH0587415A (en) Low temperature generating method and expansion machine
GB2237866A (en) Thermo-acoustic refrigeration apparatus
Tijani et al. Thermal-relaxation dissipation in thermoacoustic systems
JP3164130B2 (en) Heat exchanger for equipment with regenerator
Wu Analysis of an endoreversible Rallis cycle
Colgate et al. Regenerator optimization for Stirling cycle refrigeration
Hara Experimental investigation of cooled air injection in thermoacoustic refrigerator
Mitchell et al. Results of tests of etched foil regenerator material
Abdel-Rahman et al. Size considerations in interfacing thermoacoustic coolers with electronics
JPH06221701A (en) Etching using photolithographic method of manufacturing wire screen disc for regenerator for cooler which realizes extremely low temperature