JP3164130B2 - Heat exchanger for equipment with regenerator - Google Patents
Heat exchanger for equipment with regeneratorInfo
- Publication number
- JP3164130B2 JP3164130B2 JP33342292A JP33342292A JP3164130B2 JP 3164130 B2 JP3164130 B2 JP 3164130B2 JP 33342292 A JP33342292 A JP 33342292A JP 33342292 A JP33342292 A JP 33342292A JP 3164130 B2 JP3164130 B2 JP 3164130B2
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- regenerator
- temperature
- flow path
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G2243/00—Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】この出願の発明は、スターリング
エンジンやスターリング冷凍機、ギホード・マクマホン
冷凍機などの再生器(蓄熱器、蓄冷器)を持つ機器、つ
まりスターリングエンジンを用いる機械、装置(自動
車、ヒートポンプ等)や、スターリング冷凍機、G−M
冷凍機などの蓄冷器を用いる冷凍機の応用機器(クライ
オポンプ、リニアカー用)冷凍機、超電導機器の冷却装
置)に於ける再生器両端の熱交換機に関するものであ
る。BACKGROUND OF THE INVENTION The claimed invention is a Stirling engine and the Stirling refrigerator, the regenerator, such as Gifford-McMahon refrigerator (thermal storage unit, 蓄 chiller) using equipment with, that is, the Stirling engine machinery, equipment (Automobiles, heat pumps, etc.), Stirling refrigerators, GM
Refrigerator application equipment (cryopump, Riniaka for) using 蓄 chiller such as the refrigerator freezer, it relates in regenerator across the heat exchanger of the cooling device) of the superconducting device.
【0002】[0002]
【従来の技術】再生器を用いて流体の往復動により、熱
輸送あるいは仕事増幅(発生)を行う機械の代表的なも
のがスターリングエンジンやスターリング冷凍機などで
ある。これらの機械の再生器はその両端に必ず外界との
熱の出入りを行わせる熱交換器が用いられており、例え
ばSAEテクニカルペーパーシリーズエンジンの構成図
を示す。1及び6はそれぞれに圧縮ピストン、膨張ピス
トンと呼ばれ系内の圧力変動と流体の移動を引き起こし
ている。2および3がここで問題にしたい熱交換器であ
る。2は低温側熱交換器で外部からの冷却水により放熱
を担っている。3は高温側熱交換器で外部からの熱の取
り込み部であるがこの図の例は火災により加熱を施して
いる。蓄熱器、つまり再生器4により高温側と低温(室
温)部が連結され、蓄熱器の中で仕事の増幅、熱輸送が
行われる。このような再生器を持つ機器は再生器への熱
の出入りがあって初めて、機能するのである。熱交換器
の構造はほとんどのものが図1の2または3のように細
かい流路7あるいは8を作動流体を流すものでその流路
の外側に加熱源5か冷却源(冷却水など)が接触するよ
うになっている。2. Description of the Related Art Stirling engines, Stirling refrigerating machines, and the like are typical examples of machines that perform heat transport or work amplification (generation) by reciprocating fluid using a regenerator. In the regenerators of these machines, heat exchangers are used at both ends to always transfer heat to and from the outside. For example, a configuration diagram of an SAE technical paper series engine is shown in FIG. Numerals 1 and 6 are called a compression piston and an expansion piston, respectively, and cause pressure fluctuation and fluid movement in the system. 2 and 3 are the heat exchangers we want to consider here. Reference numeral 2 denotes a low-temperature side heat exchanger that performs heat radiation with cooling water from the outside. Reference numeral 3 denotes a high-temperature side heat exchanger, which is a portion for taking in heat from the outside. In the example of this figure, heating is performed by a fire. Thermal storage unit, i.e. the high temperature side and the low temperature (room temperature) portion is connected by a regenerator 4, amplification work among the thermal storage unit, the heat transport takes place. A device with such a regenerator functions only when heat enters and exits the regenerator. Most of the structure of the heat exchanger is such that a working fluid flows through a fine flow path 7 or 8 as shown in 2 or 3 in FIG. 1. A heating source 5 or a cooling source (such as cooling water) is provided outside the flow path. It comes into contact.
【0003】熱音響理論的にこの熱交換器を考えると次
のようになる。熱交換器をある一定の径の流路の束と考
えその流路壁から一定の加熱・放熱密度で内部の流体を
加熱あるいは内部の流体から放熱しているとする。今、
例としてスターリングエンジンの場合を考える。エンジ
ンでは再生器の高温側が加熱側、低温側が放熱側にな
る。高温側の熱交換器から供給された熱は再生器まで運
ばれて再生器内の仕事発生に使われる。この熱交換器内
の再生器までの熱の輸送が重要であり問題である。もし
高温側熱交換器の流路の壁面から一様の密度で熱が流体
に供給されているとすると、それらの熱が流路の中を再
生器に向かって運ばれるためには再生器に近づくにつれ
て、その熱流束がだんだん大きくならなくてはならな
い。ところで熱音響理論から得られる結論として振動
(往復動)する流体の運ぶ熱流束Qは下記の数式1、数
式2、数式3、数式4によって求まる3つの熱流束の和
となることが示されている。[0003] Considering this heat exchanger in thermoacoustic theory, it is as follows. It is assumed that the heat exchanger is considered as a bundle of flow passages having a certain diameter, and the internal fluid is heated or radiated from the internal fluid at a constant heating / radiation density from the flow channel wall. now,
As an example, consider the case of a Stirling engine. In the engine, the high temperature side of the regenerator is the heating side, and the low temperature side is the heat radiation side. The heat supplied from the heat exchanger on the high temperature side is carried to the regenerator and used for generating work in the regenerator. The transport of heat to the regenerator in this heat exchanger is important and problematic. If heat is supplied to the fluid at a uniform density from the walls of the flow path of the high-temperature heat exchanger, the heat is transferred to the regenerator in order for the heat to be carried through the flow path toward the regenerator. As we get closer, the heat flux must gradually increase. Incidentally, as a conclusion obtained from the thermoacoustic theory, it is shown that the heat flux Q carried by a vibrating (reciprocating) fluid is the sum of three heat fluxes obtained by the following Expressions 1, 2, 3, and 4. I have.
【0004】[0004]
【数1】 (Equation 1)
【0005】[0005]
【数2】 (Equation 2)
【0006】[0006]
【数3】 (Equation 3)
【0007】[0007]
【数4】 (Equation 4)
【0008】ここで、上記数式における符号の意味する
ことろは次の通りである。 Qprog : 進行波成分によって運ばれる熱流
束 Qstand : 定在波成分 QD : 流体の位置変位のみによって運ば
れる熱流束 Fs : 熱交換器の流路壁の熱容量に関係
ある量 χ’ : 可逆的変化の程度 χ” : 不可逆変化の程度 ω : 振動の角周波数 β : 熱膨張係数 Tm : 作動流体の平均温度 ρm : 作動流体の平均密度 Cp : 作動流体の比熱 ▽Tm : 流路壁の温度勾配 ξ0,prog : 変位振幅の進行波成分 ξ0,stand2 : 変位振幅の定在波成分Here, the meanings of the symbols in the above mathematical expressions are as follows. Qprog: Heat flux carried by traveling wave component Qstand: Standing wave component QD: Heat flux carried only by positional displacement of fluid Fs: Amount related to heat capacity of channel wall of heat exchanger χ ': Reversible change Degree χ ″: Degree of irreversible change ω: Angular frequency of vibration β: Coefficient of thermal expansion Tm: Average temperature of working fluid ρm: Average density of working fluid Cp: Specific heat of working fluid ▽ Tm: Temperature gradient of channel wall ξ 0 , Prog: Traveling wave component of displacement amplitude 0 0 , stand 2 : Standing wave component of displacement amplitude
【0009】QprogとQstandは流路の音勾配
とは無関係で振動の周波数や流路の大きさなどによって
決まるので流路に沿ってそれほど大きな変位はない。一
方QDは温度勾配に比例する量なので温度勾配の大きさ
が変わるとQDの大きさも変化しうる。熱交換器に沿っ
て再生器に近づく程熱流束が大きくなるためにはQpr
ong,Qstandが変化し得ないので残るQDに頼
らざる得ない。即ち熱交換器の流路に沿って温度勾配が
変化し、その結果QDが熱交換器に沿って変化すること
で流路壁からの一様な熱供給に対応できることになる。
そのときの温度勾配の分布つまり熱交換器の流体に沿っ
た温度分布はQDが温度勾配に比例し、そのQDが流路
に沿って一様に増加するためには温度分布は流路に沿っ
て放物線的な変化をしなくてはならないことが容易に求
められる。つまり一様な径の流路による熱交換器では流
路壁から一様に熱の出入りがあるためには、その流路に
沿って放物線的な温度分布が必然的につきことになる。
そのような温度分布の様子を示したのが図2であり、図
2(a)はエンジンの場合を、また図2(b)は冷凍機
の場合である。この図のような温度勾配があると次のよ
うな問題点が生ずる。エンジンの場合を考えると、図2
(a)に示した通り、再生器(蓄熱器)の中ほぼ一様の
温度勾配があるが両端の熱交換器には図のような放物線
的な形の温度分布が生じ、加熱温度はA点の温度(T
A)、冷却温度はD点の温度(TD)であるが、再生器
の両端につく温度差はTB−TCである。スターリング
エンジンは再生器の両端の温度差が大きいほど出力、効
率ともに高く、加熱源はTA、冷却源がTDの温度なの
で理想的には、TA−TDの温度差が期待されるところ
である。[0009] Since Qprog and Qstand are independent of the sound gradient of the flow path and are determined by the frequency of vibration, the size of the flow path, and the like, there is no significant displacement along the flow path. On the other hand, since the QD is an amount proportional to the temperature gradient, the magnitude of the QD may change when the magnitude of the temperature gradient changes. In order for the heat flux to increase as one approaches the regenerator along the heat exchanger, Qpr
ong, Qstand cannot be changed, so we have to rely on the remaining QD. That is, the temperature gradient changes along the flow path of the heat exchanger, and as a result, the QD changes along the heat exchanger, so that it is possible to cope with uniform heat supply from the flow path wall.
At that time, the distribution of the temperature gradient, that is, the temperature distribution along the fluid of the heat exchanger, is such that the QD is proportional to the temperature gradient, and the QD increases uniformly along the flow path. It is easily required that a parabolic change must be made. That is, in a heat exchanger having a flow path having a uniform diameter, in order for heat to flow in and out uniformly from the flow path wall, a parabolic temperature distribution is inevitable along the flow path.
FIG. 2 shows such a temperature distribution. FIG. 2A shows the case of an engine, and FIG. 2B shows the case of a refrigerator. If there is a temperature gradient as shown in this figure, the following problem occurs. Considering the case of an engine,
As shown in (a), there is a substantially uniform temperature gradient in the regenerator (heat accumulator), but the heat exchangers at both ends have a parabolic temperature distribution as shown in FIG. Point temperature (T
A), the cooling temperature is the temperature at point D (TD), but the temperature difference between both ends of the regenerator is TB-TC. The output and efficiency of the Stirling engine are higher as the temperature difference between both ends of the regenerator is larger, and the heating source is TA and the cooling source is TD. Therefore, ideally, a temperature difference of TA-TD is expected.
【0010】同様に冷凍機の再生器については、図2
(b)に示した通り、高温側、低温側の熱交換器ではそ
れぞれ図のようにエンジンとは逆の放物線的温度分布曲
線を描く形になる。この温度分布は冷凍機にとっても不
利であることは容易に理解される。即ち、高温側の放熱
温度(A’点の温度であって、TA’)より再生器高温
端(B’点の温度であって、TB’)が高く、低温部の
冷凍発生温度(D’点の温度であって、TD’)が再生
器低温端温度(C’点の温度であって、TC’)より高
くなり、再生器に必要以上の温度勾配を生じせしめるこ
とで効率を落とす結果となっている。Similarly, a regenerator for a refrigerator is shown in FIG.
As shown in (b), the heat exchangers on the high temperature side and the low temperature side each draw a parabolic temperature distribution curve opposite to that of the engine as shown in the figure. It is easily understood that this temperature distribution is also disadvantageous for the refrigerator. That is, the regenerator high-temperature end (the temperature at the point B ', TB') is higher than the heat radiation temperature on the high temperature side (the temperature at the point A ', TA'), and the refrigeration generation temperature (D ', the temperature at the low temperature part). The temperature at the point TD ') is higher than the regenerator low end temperature (the temperature at the point C' and TC '), resulting in an unnecessary temperature gradient in the regenerator, resulting in reduced efficiency. It has become.
【0011】このように再生器両端に無駄な温度分布を
生じせしめることが従来の一様な流路断面積を持つ熱交
換器にまつわる本質的な問題的であり、これが結果とし
てエンジンや冷凍機の効率を下げている大きな原因にな
っていた。It is an essential problem associated with the conventional heat exchanger having a uniform cross-sectional area of the flow passage that the useless temperature distribution is generated at both ends of the regenerator as described above. This was a major cause of lower efficiency.
【0012】[0012]
【発明が解決しようとする課題】この出願の請求項1の
発明が解決しようとする課題は、この無用な熱交換器内
の温度分布をなくすことである。The problem to be solved by the invention of claim 1 of the present application is to eliminate the unnecessary temperature distribution in the heat exchanger.
【0013】また、この出願の請求項1の発明か解決し
ようとする課題は、上記課題を解決する実用的構成を得
ることである。Another object of the present invention is to provide a practical configuration for solving the above-mentioned problems.
【0014】[0014]
【課題を解決するための手段】この出願の請求項1の発
明においては、スターリングエンジンやスターリング冷
凍機、ギフォード・マクマホン冷凍機などの再生器を持
つ機器に於ける前記再生器両端に高温側熱交換器と低温
側熱交換器が連結されている熱交換器に於いて、前記高
温側熱交換器の内部の作動流体の流路を前記再生器に近
づくにつれて流路寸法を小さくし、前記低温側熱交換器
の内部の作動流体の流路を前記再生器に近づくにつれて
流路寸法を小さくしたことを特徴とする再生器を持つ機
器の熱交換器にしたものである。According to the first aspect of the present invention, a regenerator such as a Stirling engine, a Stirling refrigerator or a Gifford McMahon refrigerator is provided .
High temperature side heat exchanger and low temperature at both ends of the regenerator
The heat exchanger to which the side heat exchanger is connected,
The working fluid flow path inside the warm side heat exchanger is close to the regenerator.
As the flow path size decreases, the low-temperature side heat exchanger
As the working fluid flow path inside the
Machine with regenerator characterized by reduced flow channel size
It is a heat exchanger of the vessel .
【0015】また、この出願の請求項2の発明において
は、作動流体の流路に多数の金網や孔開きプレートを詰
め込み且つそれらの目の細かさを順次変えることで流路
寸法を段階的に変化させたことを特徴とする請求項1記
載の再生器を持つ機器の熱交換器にしたものである。Further, in the invention of claim 2 of this application , a large number of wire meshes or perforated plates are packed in the flow path of the working fluid.
Flow path by embedding and sequentially changing their fineness
2. The method according to claim 1, wherein the dimensions are changed stepwise.
It is a heat exchanger for equipment with a regenerator .
【0016】[0016]
【作用】前述のように熱交換器の役割は外界との熱の出
入りと熱を再生器まで輸送することである。その輸送量
(熱流束)も下流に行く程大きくなることが必要でその
熱流束の大きさの変化をQDの温度勾配依存性に依った
形で温度勾配をつけて実現していたのが従来の方法であ
るが、温度勾配をつけずに熱流束に分布を持たせるため
にはQD以外に熱流束分布を負わせることが必要であ
る。その候補は、QprogやQstandで、それら
に位置によって分布を持たずにはそれぞれの数式2、数
式3から分かるようにχ’、χ”に分布をつけることに
なる。χ’、χ”は図3のようにωτの関数で、ωは冷
凍機の運転角周波数、τは下記の数式5で定義される流
体と熱交換壁との熱緩和時間である。As described above, the role of the heat exchanger is to transfer heat to and from the outside world and to transport the heat to the regenerator. The transport amount (heat flux) also needs to increase as it goes downstream, and the change in the heat flux size is realized by applying a temperature gradient in a form that depends on the temperature gradient dependence of QD. However, in order to provide a heat flux distribution without a temperature gradient, it is necessary to apply a heat flux distribution other than the QD. The candidates are Qprog and Qstand, and if they do not have a distribution depending on the position, distributions are given to χ ′ and χ ″ as can be understood from the respective mathematical expressions 2 and 3. 3, is a function of ωτ, ω is the operating angular frequency of the refrigerator, and τ is the heat relaxation time between the fluid and the heat exchange wall defined by the following equation (5).
【0017】[0017]
【数5】 (Equation 5)
【0018】上記数式5中のr0は流路の代表長さ、
(円管の場合は半径、平行平板の場合は間隔の半分)、
αは流体の温度散拡係数であり、温度が一定なら定数で
ある。温度の分布なしにχ’、χ”に分布を生じさせる
にはr0に分布を与えることが残った方法となる。請求
項1の発明は熱交換器の流路の寸法(代表長さなど)に
流れ方向にそって分布をつけることでQprog、Qs
tandの位置依存性を生じさせ温度分布なしに熱流束
分布を実現させることができる。In the above equation (5), r 0 is a representative length of the flow path,
(Radius for circular tubes, half the spacing for parallel plates),
α is the temperature spread coefficient of the fluid, and is a constant if the temperature is constant. In order to generate a distribution in χ ′ and χ ″ without a temperature distribution, it is the remaining method to provide a distribution to r 0. The invention according to claim 1 is based on the dimensions of the flow path of the heat exchanger (representative length, etc.). ) And Qprog, Qs
The heat flux distribution can be realized without the temperature distribution due to the position dependence of tan.
【0019】そして、請求項2の発明によれば、実用的
な構成の熱交換器とすることができる。According to the second aspect of the present invention, a heat exchanger having a practical configuration can be obtained.
【0020】[0020]
【実施例】具体的な実施例、つまりスターリングエンジ
ンの例を図4に示す。スリーリング機関では比較的進行
波成分が多くQprogに頼るのが効果的であるので、
熱流束の増加する方向にχ’を大きくすることか望まし
い。つまり熱流束の方向に沿って流路の代表長さが小さ
くすることになる。これは図4のように高温側熱交換器
3では再生器4に近づくほどその流路8’の寸法(直径
など)が小さくなり、低温側熱交換器2でも再生器4に
近づくほど流路7’の寸法を小さくするのである。流路
を連続的にその径や隙間を変化させることは実際上難し
いので図5のように熱交換器内の一定の大きさの流路
7”に金網を詰め、その金網の目の細かさをA、B、
C、D、E位置の順に段階的に少しずつ粗く変えていく
方法でも同様な効果が得られる。これらの方法は基本的
にはエンジンの場合も冷凍機の場合も同様である。ただ
しエンジン、冷凍機の違いや能力の違いで熱交換器より
出入りする熱量や温度が異なるのでそれに即した流路寸
法の変化のさせ方あるいは金網の目の分布を決める必要
があることは当然である。FIG. 4 shows a specific embodiment, that is, an example of a Stirling engine. Since it is effective for a three-way engine to have a relatively large traveling wave component and to rely on Qprog,
It is desirable to increase χ ′ in the direction in which the heat flux increases. That is, the representative length of the flow path decreases along the direction of the heat flux. This is because, as shown in FIG. 4, the dimension (diameter and the like) of the flow path 8 ′ becomes smaller as it approaches the regenerator 4 in the high-temperature side heat exchanger 3, and the flow path increases as it approaches the regenerator 4 even in the low-temperature side heat exchanger 2. The size of 7 'is reduced. Since it is practically difficult to continuously change the diameter and gap of the flow channel, a wire mesh is packed in a fixed size flow channel 7 "in the heat exchanger as shown in FIG. A, B,
A similar effect can be obtained by a method of gradually changing the position gradually in the order of C, D, and E steps. These methods are basically the same for an engine and a refrigerator. However, the amount of heat entering and exiting the heat exchanger and the temperature differ depending on the engine and refrigerator, and the difference in capacity.Therefore, it is necessary to determine the way to change the flow path size or the distribution of the wire mesh according to the difference. is there.
【0021】[0021]
【発明の効果】以上説明したように、この出願の請求項
1発明によれば、熱交換器の中を作動流体が輸送する熱
量の変化に応じてQprogを変化させることで熱交換
器の作動流体の流路方向に沿った温度勾配を無くすこと
により機器の熱機関としての効率を高めることができ
る。そして、請求項2の発明によれば、実用的な構成の
熱交換器とすることができる。As described above, according to the first aspect of the present invention, the operation of the heat exchanger is changed by changing Qprog according to the change in the amount of heat transported by the working fluid in the heat exchanger. Eliminating the temperature gradient along the flow path of the fluid can increase the efficiency of the device as a heat engine. According to the second aspect of the present invention, a heat exchanger having a practical configuration can be obtained.
【図面の簡単な説明】[Brief description of the drawings]
【図1】従来の熱交換器を備えたスターリングエンジン
の構成を示す図である。FIG. 1 is a diagram showing a configuration of a Stirling engine provided with a conventional heat exchanger.
【図2】熱交換器及び再生器(蓄熱器、蓄冷器)にわた
る温度分布を示す図であり、(a)はスターリングエン
ジンの場合を、(b)スターリング冷凍機などの畜冷型
冷凍機の場合を夫々示す。[Figure 2] a heat exchanger and a regenerator (thermal storage unit, 蓄 chiller) is a diagram showing the temperature distribution over, (a) shows the case of a Stirling engine,畜冷refrigeration such as (b) Stirling refrigerator Each case is shown.
【図3】χ’、χ”のωτ依存性(流路が円管とした場
合)を示す図である。FIG. 3 is a diagram showing the dependence of χ ′ and χ ″ on ωτ (when the flow path is a circular pipe).
【図4】この出願の発明の実施例を示す図である。FIG. 4 is a diagram showing an embodiment of the invention of this application.
【図5】図4における熱交換器の詳細構成を示す図であ
る。FIG. 5 is a diagram showing a detailed configuration of a heat exchanger in FIG.
1 圧縮ピストン 2 低温熱交換器 3 高温熱交換器 4 再生器(蓄熱器) 5 加熱源 6 膨張ピストン 7 低温熱交換器内の作動流体流路 7’低温熱交換器内の作動流体流路 7”低温熱交換器内の作動流体流路 8 高温熱交換器内の作動流体流路。1 compression piston 2 the low-temperature heat exchanger 3 high temperature heat exchanger 4 regenerator (thermal storage unit) 5 heating source 6 hydraulic fluid channel of the expansion piston 7 low temperature heat exchanger of the hydraulic fluid channel 7 'in the low temperature heat exchanger 7 "Working fluid flow path in low temperature heat exchanger 8 Working fluid flow path in high temperature heat exchanger
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F28F 13/06 F25B 9/00 F25B 9/14 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) F28F 13/06 F25B 9/00 F25B 9/14
Claims (2)
凍機、ギフォード・マクマホン冷凍機などの再生器を持
つ機器に於ける前記再生器両端に高温側熱交換器と低温
側熱交換器が連結されている熱交換器に於いて、前記高
温側熱交換器の内部の作動流体の流路を前記再生器に近
づくにつれて流路寸法を小さくし、前記低温側熱交換器
の内部の作動流体の流路を前記再生器に近づくにつれて
流路寸法を小さくしたことを特徴とする再生器を持つ機
器の熱交換器。1. A Stirling engine or a Stirling refrigerator, a playback device such as a Gifford-McMahon refrigerator lifting
High temperature side heat exchanger and low temperature at both ends of the regenerator
The heat exchanger to which the side heat exchanger is connected,
The working fluid flow path inside the warm side heat exchanger is close to the regenerator.
As the flow path size decreases, the low-temperature side heat exchanger
As the working fluid flow path inside the
Machine with regenerator characterized by reduced flow channel size
Vessel heat exchanger .
レートを詰め込み且つそれらの目の細かさを順次変える
ことで流路寸法を段階的に変化させたことを特徴とする
請求項1記載の再生器を持つ機器の熱交換器。2. A method according to claim, characterized in that the flow channel size is changed stepwise by successively changing the flow path into a number of wire mesh or perforated stuffing plate and fineness of their eyes of the working fluid 1 Heat exchanger for equipment with regenerator as described .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33342292A JP3164130B2 (en) | 1992-10-29 | 1992-10-29 | Heat exchanger for equipment with regenerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33342292A JP3164130B2 (en) | 1992-10-29 | 1992-10-29 | Heat exchanger for equipment with regenerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06147791A JPH06147791A (en) | 1994-05-27 |
JP3164130B2 true JP3164130B2 (en) | 2001-05-08 |
Family
ID=18265937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33342292A Expired - Fee Related JP3164130B2 (en) | 1992-10-29 | 1992-10-29 | Heat exchanger for equipment with regenerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3164130B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011099599A (en) * | 2009-11-05 | 2011-05-19 | Aisin Seiki Co Ltd | Heat transport pipe |
JP5606744B2 (en) * | 2010-01-20 | 2014-10-15 | 住友重機械工業株式会社 | Pulse tube refrigerator |
JP2011149600A (en) * | 2010-01-20 | 2011-08-04 | Sumitomo Heavy Ind Ltd | Pulse tube refrigerator |
WO2023181608A1 (en) * | 2022-03-22 | 2023-09-28 | 株式会社デンソー | Heat-sound converter |
-
1992
- 1992-10-29 JP JP33342292A patent/JP3164130B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06147791A (en) | 1994-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bejan | Method of entropy generation minimization, or modeling and optimization based on combined heat transfer and thermodynamics | |
US6032464A (en) | Traveling-wave device with mass flux suppression | |
Matsubara et al. | Novel configuration of three-stage pulse tube refrigerator for temperatures below 4 K | |
US4953366A (en) | Acoustic cryocooler | |
US6164073A (en) | Method and apparatus for adapting steady flow with cyclic thermodynamics | |
US4619112A (en) | Stirling cycle machine | |
US5107683A (en) | Multistage pulse tube cooler | |
US7363767B2 (en) | Multi-stage pulse tube cryocooler | |
CN100371657C (en) | Pulse tube refrigerator | |
US8640467B2 (en) | Acoustic power transmitting unit for thermoacoustic systems | |
WO2004046621A1 (en) | Pulse tube refrigeration system | |
JP3164130B2 (en) | Heat exchanger for equipment with regenerator | |
US2611236A (en) | Hot gas engine of the bellows type | |
Minner | Theoretical evaluation of the optimal performance of a thermoacoustic refrigerator | |
Xu et al. | A novel shell-tube water-cooled heat exchanger for high-capacity pulse-tube coolers | |
JPS63302259A (en) | Cryogenic generator | |
Trevisani et al. | Performance improvement of a two-stage GM cryocooler by use of Er (Ni0. 075Co0. 925) 2 magnetic regenerator material | |
Wakeland et al. | Thermoacoustics with idealized heat exchangers and no stack | |
Pierens et al. | Development of a thermoacoustic travelling-wave refrigerator | |
Kaiser et al. | Thermodynamic analysis of an ideal four-valve pulse tube refrigerator | |
Gao et al. | A hybrid two-stage refrigerator operated at temperatures below 4K | |
Lee et al. | The influence of gas velocity on surface heat pumping for the orifice pulse tube refrigerator | |
Barreto et al. | Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis | |
Colgate et al. | Regenerator optimization for Stirling cycle refrigeration | |
Gedeon | Flow circulations in foil-type regenerators produced by non-uniform layer spacing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080302 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090302 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |