WO2004087839A1 - Fluidized bed gasifier, gas fuel producing method, and gas power generation system - Google Patents

Fluidized bed gasifier, gas fuel producing method, and gas power generation system Download PDF

Info

Publication number
WO2004087839A1
WO2004087839A1 PCT/JP2004/004475 JP2004004475W WO2004087839A1 WO 2004087839 A1 WO2004087839 A1 WO 2004087839A1 JP 2004004475 W JP2004004475 W JP 2004004475W WO 2004087839 A1 WO2004087839 A1 WO 2004087839A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
fluidized
catalyst
tar
gasification furnace
Prior art date
Application number
PCT/JP2004/004475
Other languages
French (fr)
Japanese (ja)
Inventor
Takanari Okamura
Chouji Hukuhara
Original Assignee
Hachinohe Institute Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hachinohe Institute Of Technology filed Critical Hachinohe Institute Of Technology
Publication of WO2004087839A1 publication Critical patent/WO2004087839A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/023Reducing the tar content
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/28Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using moving solid particles
    • C01B3/30Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using moving solid particles using the fluidised bed technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/482Gasifiers with stationary fluidised bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/06Catalysts as integral part of gasifiers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention relates to a fluidized-bed gasification furnace, a gas fuel production method, and a gas power generation system, and more particularly to a moving bed gas for effectively suppressing tar generation in a gas generation process using woody biomass as a raw material.
  • the present invention relates to a gasification furnace, a gas fuel production method, and a gas power generation system using the same. Background art
  • the “gasification furnace” (Reference 4) disclosed in Japanese Patent Application Laid-Open No. 2001-81478 discloses a low cost, safe, and tar-removable property regardless of location.
  • An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to use it as a gas fuel. It is an object of the present invention to provide a fluidized-bed gasification furnace and a method for producing gaseous fuel, which can suppress the generation of tar in the generated gas from the conventional method. By suppressing the generation of tar in the generated gas, it is possible to produce a gas fuel with an extremely low tar content, thereby satisfying the fuel specification conditions of the prime mover used in the power generator using the fuel. An object of the present invention is to provide a floor gasifier, a gas fuel production method, and a gas power generation system using the same.
  • Another object of the present invention is to provide a fluidized bed gas that can reform a portion of the product gas in the gasification furnace to obtain a product gas having a high calorific value.
  • Another object of the present invention is to provide a method for producing a furnace and a gaseous fuel, and to reduce the complexity of the plant structure, reduce the size of the plant, introduce equipment, and reduce the operating cost.
  • An object of the present invention is to provide a fluidized bed gasifier, a gas fuel production method, and a gas power generation system using the same.
  • raw material Gas fuel production raw material to be supplied (hereinafter, also simply referred to as “raw material”).
  • a fluidized gas and a fluidized catalyst to produce a gaseous fuel
  • the fluidized catalyst is a fluidized bed for thermal cracking of a raw material to produce a pyrolysis product gas.
  • a catalyst having a tar cracking function provided in the catalyst holding section, and located downstream of the fluidized catalyst holding section and before a generated fuel gas discharge section (hereinafter, also referred to as a "gasification furnace outlet section").
  • a catalyst layer as another catalyst holding section is provided on the flow side, and the catalyst layer is provided with a catalyst having a function of decomposing tar remaining in the pyrolysis product gas.
  • the catalyst provided in the catalyst layer is a reforming catalyst, and steam is supplied to the catalyst layer (hereinafter, such a catalyst layer is particularly referred to as “reforming catalyst layer”) through a steam supply line. Accordingly, in the reforming catalyst layer, it is possible to convert the residual tar content in the pyrolysis product gas flowing into the reforming catalyst layer into carbon monoxide and hydrogen.
  • Floor gasifier Accordingly, in the reforming catalyst layer, it is possible to convert the residual tar content in the pyrolysis product gas flowing into the reforming catalyst layer into carbon monoxide and hydrogen.
  • the catalyst provided in the fluidized catalyst holding section contains at least a metal-supported zeolite catalyst, (1) to (5).
  • the fluidized bed gasifier according to any one of (4) to (4).
  • the catalyst provided in the fluidized catalyst holding unit is an aggregate of a plurality of catalysts, and the aggregate of the catalysts has a tar cracking function and a hydrogen generation function.
  • the fluidized bed gasifier according to any one of (6) to (6).
  • a gas fuel production method using a fluidized-bed gasification furnace wherein the supplied raw material is produced in a fluidized catalyst holding portion of the gasification furnace by a fluidized gas and a fluidized catalyst having a tar cracking function.
  • a gas fuel production method capable of obtaining a gas fuel having a reduced content through the process.
  • a gas fuel production method capable of obtaining a gas fuel with reduced tar content through a third step of converting residual tar content in gas into carbon monoxide and hydrogen using a reforming catalyst.
  • a metal-carrying zeolite catalyst is used for the fluidized catalyst holding section in the first step, and a metal-carrying honeycomb catalyst is used for the reforming catalyst layer in the third step.
  • a nickel-supported zeolite catalyst is used in the fluidized catalyst holding section in the first step, and a metal-supported alumina honeycomb catalyst is used in the reforming catalyst layer in the third step.
  • a gas power generation system comprising: a gas power pin serving as a prime mover of a power generation device; and a power generator connected to a port provided in the gas power pin.
  • the gas bin is composed of a compressor, a combustor, a bin, and a regenerator, and hot water is supplied to the downstream side of the regenerator by utilizing exhaust heat.
  • FIG. 1 is an explanatory diagram showing the configuration of the fluidized-bed gasification furnace of the present invention.
  • FIG. 2 is a flowchart showing the configuration of the gas fuel production method of the present invention.
  • FIG. 3 is an explanatory diagram showing the configuration of the gas power generation system of the present invention.
  • Raw material, 300, pyrolysis gas, 350, removed particles, 400, pyrolysis gas with particles removed, 500, ⁇ and evening converted from a Le was CO, gas fuel containing H 2
  • FIG. 1 is an explanatory diagram showing the configuration of the fluidized-bed gasification furnace of the present invention.
  • a fluidized bed gasifier 1 of the present invention is introduced from a upstream side into a fluidized gas introduction part 3 for introducing a fluidized gas from a fluidized gas introduction line 2 and a fluidized gas introduction part 3.
  • Dispersion plate 4 to make the flowing gas
  • the flowing gas jet 5 causes a jet of a flowing catalyst to be generated, and a thermal decomposition reaction of the supplied raw material is performed.
  • the free catalyst 1 is a space downstream of the flowing catalyst holding portion 6. 4. It basically comprises a catalyst layer 12 provided on the downstream side and a generated gas line 16 for transporting the generated gas.
  • the fluidized-bed gasifier 1 is used to thermally decompose a supplied gaseous fuel production raw material (hereinafter, also simply referred to as “raw material”) using a fluidized gas and a fluidized catalyst to produce a gaseous fuel.
  • a gasification furnace wherein the fluidized catalyst is a catalyst having a tar cracking function provided in a fluidized catalyst holding unit 6 for performing pyrolysis of a raw material to generate a pyrolysis product gas;
  • a catalyst layer 12 as another catalyst holding section is provided on the downstream side of the section 6 and on the upstream side of the generated fuel gas discharge section (hereinafter also referred to as “gasification furnace outlet section”).
  • the main configuration is that the layer 12 is provided with a catalyst having a function of decomposing tar remaining in the pyrolysis product gas.
  • the catalyst provided in the catalyst layer 12 is a reforming catalyst, and the catalyst layer 12 (hereinafter referred to as the “reforming catalyst layer 12” ) Is provided with a steam supply line 13 for supplying steam thereto, so that in the reforming catalyst layer 12, the residual gas contained in the pyrolysis product gas flowing into the reforming catalyst layer 12 flows into the reforming catalyst layer 12. It has a function to convert tar components into carbon monoxide and hydrogen.
  • the fluidized-bed gasifier of the present invention since the fluidized-bed gasifier of the present invention is configured as described above, the fluidized gas is introduced from the fluidized gas introduction line 2 to the fluidized gas introduction unit 3, and the fluidized gas passes through the dispersion plate 4. As a result, a fluidized gas jet 5 is formed, whereby the catalyst held in the fluidized catalyst holding unit 6 becomes a jet of a fluidized catalyst, while the fluidized catalyst holding unit 6 is supplied with a raw material. In the fluidized catalyst holding section 6, the raw material is thermally decomposed in the presence of the jet of the fluidized catalyst. At this time, the generation of tar components is suppressed by the action of a catalyst having a tar decomposing function.
  • the generated pyrolysis gas passes through the free board 14 and is introduced into the catalyst layer 12 provided on the downstream side, and steam is supplied to the catalyst layer 12 from the steam supply line 13. Then, a conversion reaction is performed in which the tar remaining in the gas is converted into carbon monoxide (CO)) and hydrogen (H 2) by a catalyst having a function of decomposing the tar remaining in the pyrolysis gas.
  • the generated gas thus generated is discharged from the outlet of the gasifier 1 and transported by the generated gas line 16. By this action, the supplied raw material is thermally decomposed by the flowing gas and the flowing catalyst, and gas fuel (product gas) is produced.
  • a metal-supported honeycomb catalyst can be used as the reforming catalyst used for the reforming catalyst layer 12. It can also be, in particular, a metal-supported alumina honeycomb catalyst.
  • the catalyst provided in the fluidized-catalyst holding section 6 can include at least a metal-supported zeolite catalyst.
  • at least a nickel-supported zeolite catalyst can be included.
  • the catalyst provided in the fluidized catalyst holding unit 6 is an aggregate of a plurality of catalysts, and the aggregate of the catalysts has a tar cracking function and hydrogen generation as a whole. Functions can be provided.
  • the fluidized-bed gasification furnace 1 may have a configuration in which a cyclone-type particle separation unit 9 is provided upstream of the catalyst bed 12 and downstream of the fluidized catalyst holding unit 6. it can.
  • a cyclone-type particle separation unit 9 is provided upstream of the catalyst bed 12 and downstream of the fluidized catalyst holding unit 6. It can.
  • the components of the gas are passed through the cyclone type particle separation section 9 through the particle separation section 1 containing no particles. 0 and the particle flow containing particles 11 are separated, and the flow 10 passing through the particle separation section is After being introduced into the catalyst layer 12 and subjected to the conversion of residual tar, the particle stream 11 moves downward (upstream side) and is again subjected to the thermal decomposition reaction in the fluidized catalyst holding section 6.
  • the fluidized bed gasifier 1 of the present invention performs the separation of the particles in the pyrolysis product gas only in the cyclone type particle separation unit 9 in the gasifier 1, and generates one of the particles by the above configuration and operation.
  • the decomposition of the tar content in the gas can be performed only in the fluidized catalyst holding section 6 and the catalyst layer 12 in the gasification furnace 1.
  • the fluidized-bed gasification furnace 1 also includes an ash discharge line 17 for discharging ash generated by thermal decomposition of a raw material in the fluidized catalyst holding section 6, wherein the cyclone type particle separation is performed.
  • the fluid catalyst holding section 6 upstream of the section 9 is provided with a raw material inlet. Thereby, the ash generated by the thermal decomposition of the raw material is discharged by the ash discharge line 17.
  • the raw material is supplied to the fluidized catalyst holding unit 6 from a raw material supply line 7 having a raw material supply device 8.
  • the gasification furnace 1 has a flowing gas introduction section 3 at a lower portion (front side), and a lower portion of this portion (
  • a fluidized gas line 2 is connected to the upstream side (the upstream side), and a dispersion plate 4 is arranged at the upper side (the downstream side).
  • a fluid catalyst holding unit 6 is provided on the upper part (the downstream side) of the dispersion plate 4, and a raw material supply line 7 provided with a raw material supply device 8 is connected to this part.
  • an ash discharge line 17 is connected to the upper part (the downstream side) of the dispersion plate 4.
  • a space above (on the downstream side of) the fluid catalyst holding section 6 is a freeboard 14, and a cyclone type particle separation section 9 is provided above (on the downstream side), followed by a reforming catalyst layer 12. Between the cyclone type particle separation section 9 and the reforming catalyst layer 12, steam The supply line 13 is connected, and the generated gas line 16 is connected to the top of the gasifier 1 (on the downstream side).
  • the flowing gas such as air supplied from the flowing gas line 2 is guided to the flowing gas introduction section 3 of the gasification furnace 1, passes through the dispersion plate 4 and forms the flowing gas jet 5, and the flowing catalyst holding section 6 To form a flowing catalyst, which is jetted.
  • the raw material is supplied from the raw material supply line 7 into the gasification furnace by the raw material supply device 8 and enters the fluidized catalyst holding unit 6, where the fluidized catalyst having a tar decomposing function such as nickel-supported zeolite is added. It is jetted while mixing.
  • the raw material reacts with flowing gas such as air and thermally decomposes, and the exothermic reaction brings the temperature to about 700 X: temperature, carbon dioxide gas (C 02), monoxide It produces carbon (CO), hydrogen (H 2), and methane gas (CH 4), and the production of tar is suppressed by the action of a fluid catalyst.
  • flowing gas such as air and thermally decomposes
  • the gas generated by the thermal decomposition in the fluid catalyst holding unit 6 is guided to the cyclone type particle separation unit 9 to form a swirl flow, and the flow 10 passing through the particle separation unit not containing catalyst particles and the like, and the particles containing particles Stream 11 is separated.
  • the flow 10 passing through the particle separation section is directed to a reforming catalyst layer 12 provided with a reforming catalyst such as a metal-supported alumina honeycomb, while the particle flow 11 flows downward (upstream). For this reason, the catalyst particles and the like are mixed again into the fluidized catalyst holding section 6 in which the fluidized catalyst and the raw material are mixed and jetted, and are subjected to a thermal decomposition reaction of the raw material.
  • the ash generated by the thermal decomposition reaction in the fluidized catalyst holding section 6 is discharged out of the furnace from the ash discharge line 17.
  • the pyrolysis gas that exited the cyclone-type particle separation section 9 was directed to the reforming catalyst layer 12, and was provided with steam supplied from a steam supply line 13 while passing through this layer. Due to the catalytic action of the reforming catalyst, the remaining amount of gas remaining in the gas body is reformed. It is converted to carbon monoxide (CO) and hydrogen (H2).
  • the product gas 15 exiting the reforming catalyst layer 12 is led to the product gas line 16 as fuel gas.
  • FIG. 2 is a flowchart showing the configuration of the gas fuel production method of the present invention.
  • the outline of the method for producing gaseous fuel using the above-described fluidized-bed gasification furnace can be summarized in the flow of the figure. That is, in this production method, the supplied raw material is supplied to the fluidized catalyst holding section (6) of the gasification furnace (1.
  • the symbols used in FIG. The first step P1 in which thermal decomposition is carried out to generate a pyrolysis product gas while suppressing the formation of tar by a fluidized catalyst having a catalyst, and then the particles in the pyrolysis product gas are separated and removed, and the particles are again removed.
  • the pyrolysis product gas (10) from which the particles have been removed is converted into steam and a reforming catalyst having a tar decomposition function.
  • a third process P3 that converts residual tar content in the gas into carbon monoxide and hydrogen using a gas fuel with reduced evening content by going through these processes in order. Can be obtained.
  • the gas fuel production method shown in FIG. 2 can be performed by using the above-described fluidized bed gasifier 1 according to the present invention.
  • the supplied raw material in a first step P1, is tarred by a fluidized gas and a fluidized catalyst having an evening cracking function in a fluidized catalyst holding section (6) of the gasifier (1). Pyrolysis is performed while suppressing generation to generate a pyrolysis product gas. Then, in a second step P 2, particles in the pyrolysis product gas are separated and removed, and the particles are again supplied to the first step. Then, in the third step P 3, the pyrolysis gas (10) from which particles have been removed is converted into gas by the reforming catalyst having steam and tar decomposition functions in the reforming catalyst layer (12). Residual tar content is converted to carbon monoxide and hydrogen.
  • a metal-supported zeolite catalyst can be used for the fluidized catalyst holding part in the first step P 1, and a metal-supported honeycomb catalyst can be used for the reforming catalyst layer in the third step P 3.
  • a nickel-supported zeolite catalyst can be used as the fluidized catalyst holding part in the first process P1
  • a metal-supported alumina double cam catalyst can be used as the reforming catalyst layer in the third process P3.
  • biomass such as woody biomass can be used as the raw material.
  • FIG. 3 is an explanatory diagram showing the configuration of the gas power generation system of the present invention.
  • the present system 100 is provided in communication with any of the above-described fluidized-bed gasifiers 1 and the fluidized-bed gasifier 1 via a fluidized gas line 2 and a product gas line 16.
  • a generator 23 connected to a rotor provided in the gas turbine 30 as a prime mover of the power generation apparatus.
  • the gas bin 30 is composed of a compressor 26 combustor 18, a tarpin 19 and a regenerator 20, and the downstream of the regenerator 20.
  • a water heater 21 for supplying hot water using waste heat can be provided on the side.
  • a system using biomass such as woody biomass as a raw material can be provided.
  • air is sucked from the atmosphere through the intake duct 24 in the compressor 26 of the gas bin, and this air is compressed. Then, it is discharged from the compressor 26. A part of the discharged air is sent to the regenerator through the air line 25 between the regenerator 20 and the remaining air is passed through the fluidized gas line 2 to the fluidized bed gasifier 1 Sent to
  • the product gas 15 generated in the fluidized bed gasifier 1 is a product gas It is supplied as a fuel gas to the combustor 18 of the gas turbine through the line 16, and the high-temperature air sent by the regenerator 20 is burned as an oxidant to generate a high-temperature gas. .
  • This high-temperature gas is guided to the turbine 19 and generates an output by expansion work. This output is converted to an electrical output by rotating the generator 23 with an output obtained by subtracting the driving power of the compressor 26.
  • the exhaust gas 22 at the outlet of the evening bin 19 is heated through the regenerator 20 to raise the temperature of air, and then the water is heated through the water heater 21 provided on the flow side, Supply hot water 27.
  • the exhaust gas 22 coming out of the water heater 21 is released to the atmosphere. That is, by the above operation, an output for rotating the generator 23 in the gas bin 30 is generated using the generated gas generated in the fluidized bed gasifier 1 constituting the system 100 as a fuel,
  • the generator 23 is operated to generate power.
  • part of the compressed air generated by the compressor 26 of the system 100 is supplied as fluidized bed gas to the fluidized bed gasifier 1 constituting the system 100, and is generated by the regenerator 20. Hot air is also in the combustor in system 100
  • Exhaust gas 22 supplied to the regenerator 20 and passed through the regenerator 20 is supplied to the water heater 2
  • the fluidized-bed gasifier and the gaseous fuel production method of the present invention make it possible to supply gaseous fuel containing an extremely low percentage of gaseous oil, and reduce the fuel specification conditions of the prime mover used in the power generator. To get a satisfactory fuel Can be.
  • the tar content is decomposed into hydrogen and carbon monoxide in the gasifier, so the calorific value of the generated gas can be increased.
  • a gas power generation system using such a fluidized bed gasifier can be realized.

Abstract

A fluid catalyst of a fluidized bed gasifier (1) has a tar decomposing function and is equipped in a fluid catalyst holding section (6) for generating thermal decomposition produced gas produced by thermally decomposing the raw material. The gasifier is so structured that at a place on the downstream of the fluid catalyst holding section and on the upstream of a produced-fuel-gas discharging section, another catalyst holding section, in another word, a catalyst layer (12) is installed which contains a catalyst having a function of decomposing the remaining tar in the thermal decomposition produced gas. Thus tar production in the produced gas to be used as a gas fuel can be suppressed more than the conventional ones.

Description

明 細 書 流動床ガス化炉、 ガス燃料製造方法、 およびガス発電システム 技術分野  Description Fluidized bed gasifier, gas fuel production method, and gas power generation system
本発明は、 流動床ガス化炉、 ガス燃料製造方法、 およびガス発電シス テムに係り、 特に、 木質バイオマスを原料としたガス生成過程における タールの発生を効果的に抑制するための流勤床ガス化炉、 ガス燃料製造 方法、 およびこれを用いたガス発電システムに関する。 背景技術  The present invention relates to a fluidized-bed gasification furnace, a gas fuel production method, and a gas power generation system, and more particularly to a moving bed gas for effectively suppressing tar generation in a gas generation process using woody biomass as a raw material. The present invention relates to a gasification furnace, a gas fuel production method, and a gas power generation system using the same. Background art
従来、 流動床ガス化炉では一般に、 発生したタールを流動触媒に吸着 して、 その流動媒体を燃焼炉に通して、 タールを燃焼させて除去する方 式が取られていた。 たとえば特開平 1 1 一 2 1 5 6 6公報に開示された 「可燃性ガス中のタール分解処理方法」 (文献 1 ) では、 廃棄物を流動 層方式のガス化炉においてガス化処理するに際し、 生成した可燃性ガス 中に含有されているタールを効率的に分解除去するために、 生成ガスを 熱交換器で所定温度まで昇温させ、 タール改質塔において触媒と接触さ せて、 ガス中のタールを炭化水素等に分解する方法が提案されている。  Conventionally, in a fluidized-bed gasification furnace, generally, a method has been adopted in which generated tar is adsorbed on a fluidized catalyst, and the fluidized medium is passed through a combustion furnace to burn and remove the tar. For example, in the “method of decomposing tar in combustible gas” (Reference 1) disclosed in Japanese Patent Application Laid-Open Publication No. H11-216, when waste is gasified in a fluidized-bed gasification furnace, In order to efficiently decompose and remove the tar contained in the generated combustible gas, the generated gas is heated to a predetermined temperature in a heat exchanger, and then brought into contact with the catalyst in the tar reforming tower, and There has been proposed a method of decomposing tars into hydrocarbons and the like.
また、 特開平 1 0 — 2 3 6 8 0 1公報に開示された 「有機性廃棄物の 資源化方法及び資源化装置」 (文献 2 ) では、 有機性廃棄物の焼却に よるガス生成において、 低温ガス化と高温ガス化を組合せ、 低温ガス化 には流動層ガス化炉、 高温ガス化には溶融炉を用い、 ガス化に用いる流 動層ガス化炉では流動層部で 4 5 0 〜 6 5 0で、 フリーボー ド部で 6 0 0 〜 8 5 0でにてガス化し、 高温ガス化に用いる溶融炉では、 1 3 0 0 °C以上で高温燃焼することにより、 チヤ一、 夕一ル分をガス化する方法 が提案されている。 Further, in “Method and Device for Recycling Organic Waste” (Japanese Unexamined Patent Application Publication No. 10-236801), in the gas generation by incineration of organic waste, Combination of low-temperature gasification and high-temperature gasification, using a fluidized-bed gasifier for low-temperature gasification, a melting furnace for high-temperature gasification, and 450- At 650, the freeboard section gasifies at 600 to 850, and in the melting furnace used for high-temperature gasification, it burns at a high temperature of more than 130 ° C, resulting in higher temperatures and lower temperatures. To gasify oil Has been proposed.
また、 特開平 9 一 1 1 1 2 5 4公報に開示された 「有機物のガス化 - 分解装置」 (文献 3 ) では、 プラスチック、 重質油、 残渣油などの有機 物を部分ガス化し、 すす又はタールをほとんど含有しないメタノール合 成用の原料ガスを製造するに際し、 ガス化炉の後流側にガス分解炉を設 け、 これにはニッケル含有合金またはニッケルの触媒を内装するととも に、 水蒸気供給手段および支燃ガス供給手段を備える構成が提案されて いる。  In the “gasification-decomposition apparatus for organic matter” disclosed in JP-A-9-111254 (Reference 3), organic substances such as plastics, heavy oil, and residual oil are partially gasified and sooted. Alternatively, when producing a raw material gas for methanol synthesis containing almost no tar, a gas cracking furnace is installed on the downstream side of the gasification furnace, which contains a nickel-containing alloy or nickel catalyst, A configuration including a supply unit and a supporting gas supply unit has been proposed.
一方、 特開 2 0 0 1 — 8 1 4 7 8号公報に開示された 「ガス化炉」 ( 文献 4 ) では、 低コス トで安全で、 場所に限定されずにタール分除去性 能を有するガス化炉の提供を目的として、 廃棄物を熱分解させてガス化 させるガス化炉において、 ガス化によって発生した熱分解ガスに暴露さ れる部分の一部又は全部の表面に高沸点有機化合物を酸化分解する触媒 の層を設ける提案がなされている。 発明の開示  On the other hand, the “gasification furnace” (Reference 4) disclosed in Japanese Patent Application Laid-Open No. 2001-81478 discloses a low cost, safe, and tar-removable property regardless of location. A gasification furnace that pyrolyzes waste into gas to provide a gasification furnace that has Proposals have been made to provide a layer of a catalyst that oxidizes and decomposes. Disclosure of the invention
しかしながら、 上記文献 1 〜 3 に開示されたような従来のガス化炉で は、 ガス化炉の他に燃焼炉を設ける必要があり、 プラン トの構成が複雑 になること、 また、 バイオマス原料を用いた場合、 タール分を燃焼させ ることでバイオマスのガス生成への転換効率が低下するなどの問題点が ある。 また、 上記文献 4に開示された技術では、 ガス化炉の他に設備を 設ける必要はないものの、 ガス化炉内部の暴露表面に触媒層を設ける構 成であり、 熱分解ガスがこれと反応する機会は限定的であり、 タール含 有量の極めて少ない上質のガス燃料製造を可能とする観点からは、 充分 なタール発生抑制効果は期待できない。  However, in the conventional gasifiers disclosed in the above References 1 to 3, it is necessary to provide a combustion furnace in addition to the gasifier, which complicates the plant configuration, and requires If it is used, there is a problem that the conversion of biomass to gas is reduced by burning the tar component. In the technology disclosed in Reference 4, although it is not necessary to provide any equipment other than the gasifier, the catalyst layer is provided on the exposed surface inside the gasifier, and the pyrolysis gas reacts with the catalyst layer. Opportunities to carry out are limited, and from the viewpoint of enabling the production of high-quality gas fuel with extremely low tar content, a sufficient tar generation suppression effect cannot be expected.
本発明の課題は、 上記従来技術の欠点を解決し、 ガス燃料とするため の生成ガス中のタール発生を従来以上に抑制することができる、 流動床 ガス化炉およびガス燃料製造方法を提供することである。 そして、 生成 ガス中のタール発生を抑制することによりタール含有量の極めて低いガ ス燃料製造を可能とし、 これを燃料とする発電装置で用いられる原動機 の燃料仕様条件を満足することができる、 流動床ガス化炉、 ガス燃料製 造方法、 およびこれを用いたガス発電システムを提供することである。An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to use it as a gas fuel. It is an object of the present invention to provide a fluidized-bed gasification furnace and a method for producing gaseous fuel, which can suppress the generation of tar in the generated gas from the conventional method. By suppressing the generation of tar in the generated gas, it is possible to produce a gas fuel with an extremely low tar content, thereby satisfying the fuel specification conditions of the prime mover used in the power generator using the fuel. An object of the present invention is to provide a floor gasifier, a gas fuel production method, and a gas power generation system using the same.
„ また本発明の課題は、 これに加えて、 ガス化炉内で,生成ガス中の夕一 ル分を改質して、 発熱量の高い生成ガスを得ることのできる、 流動床ガ ス化炉およびガス燃料製造方法を提供するこ とである。 さ らに本発明の 課題は、 プラン トの構成の複雑さを排して、 プラン トの小型化および設 備導入ならびに運転コス ト低減を図ることのできる、 流動床ガス化炉、 ガス燃料製造方法、 およびこれを用いたガス発電システムを提供するこ とである。 課題 Another object of the present invention is to provide a fluidized bed gas that can reform a portion of the product gas in the gasification furnace to obtain a product gas having a high calorific value. Another object of the present invention is to provide a method for producing a furnace and a gaseous fuel, and to reduce the complexity of the plant structure, reduce the size of the plant, introduce equipment, and reduce the operating cost. An object of the present invention is to provide a fluidized bed gasifier, a gas fuel production method, and a gas power generation system using the same.
本願発明者らが上記課題について鋭意検討した結果 ガス化炉内の前 流側および後流側にそれぞれタール分発生抑制のための触媒部を設ける ことによって課題を解決できることを見出し、 本発明に至った。 すなわ ち、 本願で開示される発明は、 以下の通りである。  As a result of the inventors of the present invention diligently examining the above problems, they have found that the problems can be solved by providing catalyst sections for suppressing the generation of tar components on the upstream side and downstream side of the gasification furnace, respectively. Was. That is, the invention disclosed in the present application is as follows.
( 1 ) 供給されるガス燃料製造原料 (以下、 単に 「原料」 ともいう。 (1) Gas fuel production raw material to be supplied (hereinafter, also simply referred to as “raw material”).
) を流動ガスおよび流動触媒を用いて熱分解しガス燃料を製造するため の流動床ガス化炉であって、 該流動触媒は原料の熱分解を行って熱分解 生成ガスを生成するための流動触媒保有部に備えられた、 タール分解機 能を有する触媒であり、 該流動触媒保有部の後流側かつ生成燃料ガス排 出部 (以下、 「ガス化炉出口部」 ともいう。 ) の前流側には別の触媒保 有部である触媒層が設けられ、 該触媒層には熱分解生成ガス中に残存す るタール分を分解する機能を有する触媒が備えられている ことを特徴と する、 流動床ガス化炉。 ( 2 ) 前記触媒層に備えられる触媒は改質触媒であり、 該触媒層 (以 下、 かかる触媒層を特に 「改質触媒層」 という。 ) には水蒸気供給ライ ンにより水蒸気が供給され、 これにより該改質触媒層においてはこれに 流入する前記熱分解生成ガス中の残存タール分を一酸化炭素および水素 に転換することが可能であることを特徴とする、 ( 1 ) に記載の流動床 ガス化炉。 ) Using a fluidized gas and a fluidized catalyst to produce a gaseous fuel, wherein the fluidized catalyst is a fluidized bed for thermal cracking of a raw material to produce a pyrolysis product gas. A catalyst having a tar cracking function provided in the catalyst holding section, and located downstream of the fluidized catalyst holding section and before a generated fuel gas discharge section (hereinafter, also referred to as a "gasification furnace outlet section"). A catalyst layer as another catalyst holding section is provided on the flow side, and the catalyst layer is provided with a catalyst having a function of decomposing tar remaining in the pyrolysis product gas. To a fluidized bed gasifier. (2) The catalyst provided in the catalyst layer is a reforming catalyst, and steam is supplied to the catalyst layer (hereinafter, such a catalyst layer is particularly referred to as “reforming catalyst layer”) through a steam supply line. Accordingly, in the reforming catalyst layer, it is possible to convert the residual tar content in the pyrolysis product gas flowing into the reforming catalyst layer into carbon monoxide and hydrogen. Floor gasifier.
( 3 ) 前記改質触媒層に用いられる改質触媒は、 金属担持ハニカム触 媒であることを特徴とする、 ( 2 ) に記載の流動床ガス化炉。  (3) The fluidized-bed gasification furnace according to (2), wherein the reforming catalyst used in the reforming catalyst layer is a metal-supported honeycomb catalyst.
( 4 ) 前記改質触媒層に用いられる改質触媒は、 金属担持アルミナハ 二カム触媒であることを特徴とする、 ( 2 ) に記載の流動床ガス化炉。 (4) The fluidized-bed gasification furnace according to (2), wherein the reforming catalyst used in the reforming catalyst layer is a metal-supported alumina honeycomb catalyst.
( 5 ) 前記流動触媒保有部に備えられる触媒としては、 少なく とも金 属担持ゼオライ ト触媒が含まれていることを特徴とする、 ( 1 ) ないし(5) The catalyst provided in the fluidized catalyst holding section contains at least a metal-supported zeolite catalyst, (1) to (5).
( 4 ) のいずれかに記載の流動床ガス化炉。 The fluidized bed gasifier according to any one of (4) to (4).
( 6 ) 前記流動触媒保有部に備えられる触媒としては、 少なく とも二 ッケル担持ゼオライ ト触媒が含まれていることを特徴とする、 ( 1 ) な いし ( 5 ) のいずれかに記載の流動床ガス化炉。  (6) The fluidized bed according to any one of (1) to (5), wherein the catalyst provided in the fluidized catalyst holding section includes at least a nickel-supported zeolite catalyst. Gasifier.
( 7 ) 前記流動触媒保有部に備えられる触媒は複数の触媒の集合体で あって、 該触媒の集合体にはタール分解機能および水素生成機能が備え られていることを特徵とする、 ( 1 ) ないし ( 6 ) のいずれかに記載の 流動床ガス化炉。  (7) The catalyst provided in the fluidized catalyst holding unit is an aggregate of a plurality of catalysts, and the aggregate of the catalysts has a tar cracking function and a hydrogen generation function. ) The fluidized bed gasifier according to any one of (6) to (6).
( 8 ) 前記触媒層の前流側かつ前記流動触媒保有部の後流側に、 サイ クロン型粒子分離部が設けられていることを特徴とする、 ( 1 ) ないし ( 7 ) のいずれかに記載の流動床ガス化炉。  (8) The method according to any one of (1) to (7), wherein a cyclone type particle separation unit is provided upstream of the catalyst layer and downstream of the fluidized catalyst holding unit. A fluidized bed gasifier as described.
( 9 ) 前記熱分解生成ガス中の粒子の分離は、 ガス化炉内の前記サイ クロン型粒子分離部においてのみ行われ、 タール分の分解は、 ガス化炉 内の前記流動触媒保有部および前記触媒層においてのみ行われることを 特徴とする、 ( 8 ) に記載の流動床ガス化炉。 (9) Separation of particles in the pyrolysis product gas is performed only in the cyclone type particle separation section in the gasification furnace, and decomposition of tar is performed in the fluidized catalyst holding section in the gasification furnace and in the gasification furnace. What happens only in the catalyst layer The fluidized-bed gasifier according to (8), which is characterized in that:
( 1 0 ) 前記流動触媒保有部には、 原料の熱分解により生じる灰分を 排出するための灰分排出ラインが設けられていることを特徴とする、 ( 8 ) または ( 9 ) に記載の流動床ガス化炉。  (10) The fluidized bed according to (8) or (9), wherein the fluidized catalyst holding unit is provided with an ash discharge line for discharging ash generated by thermal decomposition of a raw material. Gasifier.
( 1 1 ) 前記サイクロン型粒子分離部の前流側に原料の投入口が設け られていることを特徴とする、 ( 8 ) ないし ( 1 0 ) のいずれかに記載 の流動床ガス化炉。  (11) The fluidized-bed gasification furnace according to any one of (8) to (10), wherein an inlet for a raw material is provided upstream of the cyclone-type particle separation section.
( 1 2 ) 流動床ガス化炉を用いたガス燃料製造方法であって、 供給さ れた原料を該ガス化炉の流動触媒保有部において流動ガスおよびタール 分解機能を有する流動触媒により、 タール生成を抑制しつつ熱分解し熱 分解生成ガスを生成する第 1過程と、 ついで該熱分解生成ガス中の粒子 を分離除去するとともに該粒子を再度第 1 過程に供する第 2過程と、 つ いで改質触媒層において、 粒子の除去された熱分解生成ガスを、 水蒸気 およびタール分解機能を有する改質触媒を用いて, ガス中の残存タール 分を一酸化炭素と水素に転換させる第 3過程と、 を経て、 夕一ル含有量 の低減されたガス燃料を得ることのできる、 ガス燃料製造方法。  (12) A gas fuel production method using a fluidized-bed gasification furnace, wherein the supplied raw material is produced in a fluidized catalyst holding portion of the gasification furnace by a fluidized gas and a fluidized catalyst having a tar cracking function. A first step of generating a pyrolysis gas by pyrolysis while suppressing cracking, and a second step of separating and removing particles in the pyrolysis gas and subjecting the particles to the first step again. A third step of converting the pyrolysis product gas from which particles have been removed from the gas in the porous catalyst layer into carbon monoxide and hydrogen using a steam and reforming catalyst having a tar decomposition function; A gas fuel production method capable of obtaining a gas fuel having a reduced content through the process.
( 1 3 ) 前記流動床ガス化炉が ( 1 ) ないし ( 1 1 ) のいずれかに記 載の流動床ガス化炉を用いたガス燃料製造方法であって、 供給された原 料を該ガス化炉の流動触媒保有部において流動ガスおよびタール分解機 能を有する流動触媒によ り、 夕一ル生成を抑制しつつ熱分解し熱分解生 成ガスを生成する第 1過程と、 ついで該熱分解生成ガス中の粒子を分離 除去するとともに該粒子を再度第 1過程に供する第 2過程と、 ついで改 質触媒層において、 粒子の除去された熱分解生成ガスを、 水蒸気および タール分解機能を有する改質触媒を用いて、 ガス中の残存タール分を一 酸化炭素と水素に転換させる第 3過程と、 を経て、 タール含有量の低減 されたガス燃料を得るこ とのできる、 ガス燃料製造方法。 ( 1 ) 前記第 1過程の流動触媒保有部には金属担持ゼォライ ト触媒 が用いられ、 前記第 3過程の改質触媒層には金属担持ハニカム触媒が用 いられることを特徴とする、 ( 1 2 ) または ( 1 3 ) に記載のガス燃料 製造方法。 (13) A method for producing a gaseous fuel using the fluidized bed gasifier according to any one of (1) to (11), wherein the fluidized bed gasifier is provided with A first step in which a fluidized catalyst having a function of decomposing a flowing gas and tar in a fluidized catalyst holding section of the gasification furnace is used to thermally decompose and generate a pyrolysis product gas while suppressing the generation of an evening gas; A second step of separating and removing the particles in the decomposition product gas and subjecting the particles to the first step again; and, in the reforming catalyst layer, the pyrolysis product gas from which the particles have been removed has a steam and tar decomposition function. A gas fuel production method capable of obtaining a gas fuel with reduced tar content through a third step of converting residual tar content in gas into carbon monoxide and hydrogen using a reforming catalyst. . (1) A metal-carrying zeolite catalyst is used for the fluidized catalyst holding section in the first step, and a metal-carrying honeycomb catalyst is used for the reforming catalyst layer in the third step. 2) or the gas fuel production method according to (13).
( 1 5 ) 前記第 1過程の流動触媒保有部にはニッケル担持ゼォライ ト 触媒が用いられ、 前記第 3過程の改質触媒層には金属担持アルミナハニ カム触媒が用いられることを特徴とする、 ( 1 2 ) または ( 1 3 ) に記 載のガス燃料製造方法。  (15) A nickel-supported zeolite catalyst is used in the fluidized catalyst holding section in the first step, and a metal-supported alumina honeycomb catalyst is used in the reforming catalyst layer in the third step. The gas fuel production method described in 1 2) or (1 3).
( 1 6 ) 前記原料が木質バイオマス等のバイオマスであることを特徴 とする ( 1 2 ) ないし ( 1 5 ) のいずれかに記載のガス燃料製造方法。 (16) The gas fuel production method according to any one of (12) to (15), wherein the raw material is biomass such as woody biomass.
( 1 7 ) ( 1 ) ないし ( 1 1 ) のいずれかに記載の流動床ガス化炉と 、 流動ガスラインおよび生成ガスライ ンを介して該流動床ガス化炉に連 通して設けられている、 発電装置の原動機たるガスターピンと、 該ガス 夕一ピンに備えられている口一夕と連結している発電機と、 からなるガ ス発電システム。 (17) A fluidized-bed gasifier according to any one of (1) to (11), and a fluidized-bed gasifier provided through a fluidized gas line and a product gas line. A gas power generation system comprising: a gas power pin serving as a prime mover of a power generation device; and a power generator connected to a port provided in the gas power pin.
( 1 8 ) 前記ガス夕一ビンは、 圧縮機と、 燃焼器と、 夕一ビンと、 な らびに再生器からなり、 該再生器の後流側には排熱を利用して温水を供 給するための温水器が設けられていることを特徵とする、 ( 1 7 ) に記 載のガス発電システム。  (18) The gas bin is composed of a compressor, a combustor, a bin, and a regenerator, and hot water is supplied to the downstream side of the regenerator by utilizing exhaust heat. The gas power generation system according to (17), wherein a water heater for supplying water is provided.
( 1 9 ) 用いられる原料が木質バイオマス等のバイオマスであること を特徴とする、 ( 1 7 ) または ( 1 8 ) に記載のガス発電システム。 つまり本発明は、 ガス化炉下部の流動層部に位置する第 1段にタール を分解する機能を有する金属担持ゼォライ トの流動触媒を配し、 ガス化 炉上部のフリーボード部に位置する第 2段に蒸気改質によるタールの水 素と一酸化炭素への転換の機能を有する金属担持八二カムの改質触媒層 を配したガス化炉を提供することで上記課題を解決したものである。 図面の簡単な説明 (19) The gas power generation system according to (17) or (18), wherein the raw material used is biomass such as woody biomass. That is, according to the present invention, a metal-supported zeolite fluidized catalyst having a function of decomposing tar is disposed in the first stage located in the fluidized bed portion below the gasification furnace, and the first stage is disposed in the freeboard portion above the gasification furnace. The above problem was solved by providing a gasification furnace in which a two-stage metal-supported 82 cam reforming catalyst layer having the function of converting tar to hydrogen and carbon monoxide by steam reforming was provided. is there. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明の流動床ガス化炉の構成を示す説明図である。  FIG. 1 is an explanatory diagram showing the configuration of the fluidized-bed gasification furnace of the present invention.
図 2 は、 本発明のガス燃料製造方法の構成を示すフロー図である。 図 3は、 本発明のガス発電システムの構成を示す説明図である。  FIG. 2 is a flowchart showing the configuration of the gas fuel production method of the present invention. FIG. 3 is an explanatory diagram showing the configuration of the gas power generation system of the present invention.
用いた符号は、 次のとおりである。  The codes used are as follows.
1 …ガス化炉、 2…流動ガスライン、 3…流動ガス導入部、 4ー 分散板、 5…流動ガス噴流、 6 …流動触媒保有部、 7 …原料供給 ライン、 8…原料供給装置、 9 …サイクロン型粒子分離部、 1 0 …粒子分離部通過ガス、 1 1 粒子流れ、 1 2…改質触媒層、 1 3…水蒸気供給ライ ン、 1 4 フリーボー ド、 1 5 …生成ガス、 1 6 …生成ガスライ ン、 1 7 灰分排出ライ ン、 1 8 …燃焼器、 1 9 …タービン、 2 0 …再生器、 2 1 …温水器、 2 2 …排ガス、 2 3 …発電機、 2 4…吸気ダク ト、 2 5 …空気ライ ン、 2 6 …圧 縮機、 2 7…温水、 3 0…ガスタービン、 1 ... gasifier, 2 ... flowing gas line, 3 ... flowing gas inlet, 4-dispersion plate, 5 ... flowing gas jet, 6 ... flowing catalyst holding section, 7 ... raw material supply line, 8 ... raw material supply device, 9 ... cyclone type particle separation part, 10 ... gas passing through the particle separation part, 11 particle flow, 12 ... reforming catalyst layer, 13 ... steam supply line, 14 free board, 15 ... product gas, 16 … Product gas line, 17 ash discharge line, 18… combustor, 19… turbine, 20… regenerator, 21… water heater, 22… exhaust gas, 23… generator, 24… intake Duct, 25… air line, 26… compressor, 27… hot water, 30… gas turbine,
2 0 0 · · ·原料、 3 0 0 · · ·熱分解生成ガス、 3 5 0 · · ·除去された 粒子、 4 0 0 · · ·粒子の除去された熱分解生成ガス、 5 0 0 · · ·夕一 ルから転換した C O、 H 2を含むガス燃料 Raw material, 300, pyrolysis gas, 350, removed particles, 400, pyrolysis gas with particles removed, 500, · and evening converted from a Le was CO, gas fuel containing H 2
丄 …第 丄過程、 P 2…第 2過程、 P 3…第 3過程 発明を実施するための最良の形態  丄… Step 、, P 2 第 Step 2, P 3 第 Step 3 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を図を用いて詳細に説明する。  Hereinafter, the present invention will be described in detail with reference to the drawings.
図 1 は、 本発明の流動床ガス化炉の構成を示す説明図である。 図にお いて本発明の流動床ガス化炉 1 は、 前流側から、 流動ガスを流動ガス導 入ライ ン 2から導入するための流動ガス導入部 3、 該流動ガス導入部 3 で導入された流動ガスを流動ガス噴流 5 とするための分散板 4、 触媒が 設けられ、 該流動ガス噴流 5 により流動触媒の噴流が生じ、 供給された 原料の熱分解反応が行われる流動触媒保有部 6、 該流動触媒保有部 6 の 後流側の空間であるフリーボード 1 4、 その後流側に設けられた触媒層 1 2、 生成ガスを搬送する生成ガスライン 1 6 を基本的に備えてなる。 図において本流動床ガス化炉 1 は、 供給されるガス燃料製造原料 (以 下、 単に 「原料」 ともいう。 ) を流動ガスおよび流動触媒を用いて熱分 解しガス燃料を製造するためのガス化炉であって、 該流動触媒は、 原料 の熱分解を行って熱分解生成ガスを生成するための流動触媒保有部 6 に 備えられたタール分解機能を有する触媒であり、 該流動触媒保有部 6 の 後流側かつ生成燃料ガス排出部 (以下、 「ガス化炉出口部」 ともいう。 ) の前流側には、 別の触媒保有部である触媒層 1 2が設けられ、 該触媒 層 1 2 には熱分解生成ガス中に残存するタール分を分解する機能を有す る触媒が備えられていることを、 主たる構成とする。 FIG. 1 is an explanatory diagram showing the configuration of the fluidized-bed gasification furnace of the present invention. In the figure, a fluidized bed gasifier 1 of the present invention is introduced from a upstream side into a fluidized gas introduction part 3 for introducing a fluidized gas from a fluidized gas introduction line 2 and a fluidized gas introduction part 3. Dispersion plate 4 to make the flowing gas The flowing gas jet 5 causes a jet of a flowing catalyst to be generated, and a thermal decomposition reaction of the supplied raw material is performed. The free catalyst 1 is a space downstream of the flowing catalyst holding portion 6. 4. It basically comprises a catalyst layer 12 provided on the downstream side and a generated gas line 16 for transporting the generated gas. In this figure, the fluidized-bed gasifier 1 is used to thermally decompose a supplied gaseous fuel production raw material (hereinafter, also simply referred to as “raw material”) using a fluidized gas and a fluidized catalyst to produce a gaseous fuel. A gasification furnace, wherein the fluidized catalyst is a catalyst having a tar cracking function provided in a fluidized catalyst holding unit 6 for performing pyrolysis of a raw material to generate a pyrolysis product gas; On the downstream side of the section 6 and on the upstream side of the generated fuel gas discharge section (hereinafter also referred to as “gasification furnace outlet section”), a catalyst layer 12 as another catalyst holding section is provided. The main configuration is that the layer 12 is provided with a catalyst having a function of decomposing tar remaining in the pyrolysis product gas.
図において本流動床ガス化炉 1 は、 前記触媒層 1 2 に備えられる触媒 が改質触媒であり、 該触媒層 1 2 (以下、 同じ符号を用いて、 「改質触 媒層 1 2」 ともいう。 ) には、 これに水蒸気を供給するための水蒸気供 給ライン 1 3が設けられ、 これにより該改質触媒層 1 2 においては、 こ れに流入する前記熱分解生成ガス中の残存タール分を、 一酸化炭素およ び水素に転換可能な機能を有する構成をとる。  In the figure, in the fluidized-bed gasification furnace 1, the catalyst provided in the catalyst layer 12 is a reforming catalyst, and the catalyst layer 12 (hereinafter referred to as the “reforming catalyst layer 12” ) Is provided with a steam supply line 13 for supplying steam thereto, so that in the reforming catalyst layer 12, the residual gas contained in the pyrolysis product gas flowing into the reforming catalyst layer 12 flows into the reforming catalyst layer 12. It has a function to convert tar components into carbon monoxide and hydrogen.
図 1 において本発明の流動床ガス化炉は上述のように構成されている ため、 流動ガスは流動ガス導入ライン 2から流動ガス導入部 3 に導入さ れ、 該流動ガスは分散板 4を通過することによ り流動ガス噴流 5 とされ 、 これによ り流動触媒保有部 6 に保有されている触媒は流動触媒の噴流 となり、 一方、 該流動触媒保有部 6 には原料が供給され、 該流動触媒保 有部 6で原料は流動触媒の噴流存在下で熱分解され、 その際タール分解 機能を有する触媒の作用によりタール分の発生は抑制され、 熱分解によ り生成した熱分解生成ガスはフリーボード 1 4を通ってその後流側に設 けられた触媒層 1 2 に導入され、 該触媒層 1 2 には水蒸気供給ライ ン 1 3から水蒸気が供給され、 そこで熱分解生成ガス中に残存するタール分 を分解する機能を有する触媒によってガス中に残存するタール分が一酸 化炭素 ( C O ) ) および水素 (H 2 ) に転換する転換反応が行われ、 こ のよう にして生成した生成ガスはガス化炉 1 出口部から排出され、 生成 ガスライ ン 1 6 により搬送される。 かかる作用によ り、 供給される原料 は流動ガスおよび流動触媒によって熱分解され、 ガス燃料 (生成ガス) が製造される。 In FIG. 1, since the fluidized-bed gasifier of the present invention is configured as described above, the fluidized gas is introduced from the fluidized gas introduction line 2 to the fluidized gas introduction unit 3, and the fluidized gas passes through the dispersion plate 4. As a result, a fluidized gas jet 5 is formed, whereby the catalyst held in the fluidized catalyst holding unit 6 becomes a jet of a fluidized catalyst, while the fluidized catalyst holding unit 6 is supplied with a raw material. In the fluidized catalyst holding section 6, the raw material is thermally decomposed in the presence of the jet of the fluidized catalyst. At this time, the generation of tar components is suppressed by the action of a catalyst having a tar decomposing function. The generated pyrolysis gas passes through the free board 14 and is introduced into the catalyst layer 12 provided on the downstream side, and steam is supplied to the catalyst layer 12 from the steam supply line 13. Then, a conversion reaction is performed in which the tar remaining in the gas is converted into carbon monoxide (CO)) and hydrogen (H 2) by a catalyst having a function of decomposing the tar remaining in the pyrolysis gas. The generated gas thus generated is discharged from the outlet of the gasifier 1 and transported by the generated gas line 16. By this action, the supplied raw material is thermally decomposed by the flowing gas and the flowing catalyst, and gas fuel (product gas) is produced.
図 1 において、 前記改質触媒層 1 2 に用いられる改質触媒としては、 金属担持ハニカム触媒を用いることができる。 また、 これは特に、 金属 担持アルミナハニカム触媒とすることもできる。  In FIG. 1, as the reforming catalyst used for the reforming catalyst layer 12, a metal-supported honeycomb catalyst can be used. It can also be, in particular, a metal-supported alumina honeycomb catalyst.
図において本流動床ガス化炉 1 では、 前記流動触媒保有部 6 に備えら れる触媒としては、 少なく と も金属担持ゼォライ ト触媒が含まれる もの とすることができる。 また、 特に、 少なく ともニッケル担持ゼオライ ト 触媒が含まれるものとすることができる。  In the figure, in the fluidized-bed gasification furnace 1, the catalyst provided in the fluidized-catalyst holding section 6 can include at least a metal-supported zeolite catalyst. In particular, at least a nickel-supported zeolite catalyst can be included.
図において本流動床ガス化炉 1 ではまた、 前記流動触媒保有部 6 に備 えられる触媒は複数の触媒の集合体であって、 該触媒の集合体には全体 として、 タール分解機能および水素生成機能が備えられている ものとす る こ とができる。  In the figure, in the fluidized-bed gasifier 1, the catalyst provided in the fluidized catalyst holding unit 6 is an aggregate of a plurality of catalysts, and the aggregate of the catalysts has a tar cracking function and hydrogen generation as a whole. Functions can be provided.
図 1 において本流動床ガス化炉 1 は、 前記触媒層 1 2 の前流側かつ前 記流動触媒保有部 6 の後流側に、 サイクロン型粒子分離部 9 を設けた構 成とすることができる。 これによ り、 前流側で生成した熱分解生成ガス 中に触媒粒子などの粒子が存在する場合、 該ガスの成分は該サイクロン 型粒子分離部 9 において粒子を含まない粒子分離部通過流れ 1 0 と、 粒 子を含む粒子流れ 1 1 に分離され、 粒子分離部通過流れ 1 0 は後流側の 触媒層 1 2へと導入されて残存タール分の転換に供され、 一方粒子流れ 1 1 は下方 (前流側) へ移動して、 再度流動触媒保有部 6での熱分解反 応に供される。 かかる構成および作用により、 本発明の流動床ガス化炉 1では、 ガス化炉外に特別サイクロンを設ける必要がない。 In FIG. 1, the fluidized-bed gasification furnace 1 may have a configuration in which a cyclone-type particle separation unit 9 is provided upstream of the catalyst bed 12 and downstream of the fluidized catalyst holding unit 6. it can. As a result, when particles such as catalyst particles are present in the pyrolysis product gas generated on the upstream side, the components of the gas are passed through the cyclone type particle separation section 9 through the particle separation section 1 containing no particles. 0 and the particle flow containing particles 11 are separated, and the flow 10 passing through the particle separation section is After being introduced into the catalyst layer 12 and subjected to the conversion of residual tar, the particle stream 11 moves downward (upstream side) and is again subjected to the thermal decomposition reaction in the fluidized catalyst holding section 6. You. With such a configuration and operation, in the fluidized-bed gasifier 1 of the present invention, there is no need to provide a special cyclone outside the gasifier.
本発明の流動床ガス化炉 1 は、 上述の構成および作用により、 前記熱 分解生成ガス中の粒子の分離を、 ガス化炉 1 内の前記サイクロン型粒子 分離部 9 においてのみ行い、 一方生成するガス中のタール分の分解は、 ガス化炉 1 内の前記流動触媒保有部 6および前記触媒層 1 2 においての み行う ことができる。  The fluidized bed gasifier 1 of the present invention performs the separation of the particles in the pyrolysis product gas only in the cyclone type particle separation unit 9 in the gasifier 1, and generates one of the particles by the above configuration and operation. The decomposition of the tar content in the gas can be performed only in the fluidized catalyst holding section 6 and the catalyst layer 12 in the gasification furnace 1.
図 1 においてまた、 本流動床ガス化炉 1 は、 前記流動触媒保有部 6 に は、 原料の熱分解により生じる灰分を排出するための灰分排出ライ ン 1 7 を設け、 前記サイク ロン型粒子分離部 9 の前流側の該流動触媒保有部 6 には原料の投入口が設けられる構成をとる。 これにより、 原料の熱分 解によ り生じる灰分は該灰分排出ライ ン 1 7 により排出される。 また原 料は、 原料供給装置 8 を備える原料供給ライン 7から該流動触媒保有部 6 に供給される。  In FIG. 1, the fluidized-bed gasification furnace 1 also includes an ash discharge line 17 for discharging ash generated by thermal decomposition of a raw material in the fluidized catalyst holding section 6, wherein the cyclone type particle separation is performed. The fluid catalyst holding section 6 upstream of the section 9 is provided with a raw material inlet. Thereby, the ash generated by the thermal decomposition of the raw material is discharged by the ash discharge line 17. The raw material is supplied to the fluidized catalyst holding unit 6 from a raw material supply line 7 having a raw material supply device 8.
すなわち図 1および上述の説明に示されるように、 本発明の流動床ガ ス化炉 1 では、 ガス化炉 1 の下部 (前流側 ) に流動ガス導入部 3があり 、 この部位の下部 (前流側 ) には流動ガスライ ン 2が接続され、 上部 ( 後流側 ) には分散板 4が配されている。 該分散板 4の上部 (後流側 ) に は流動触媒保有部 6が設けられ、 この部位に合わせて原料供給装置 8が 設けられた原料供給ライ ン 7が接続されている。 また、 該分散板 4の上 部 (後流側) には灰分排出ライ ン 1 7が接続している。 該流動触媒保有 部 6 の上部 (後流側) の空間はフリーボード 1 4で、 その上部 (後流側 ) にはサイクロン型粒子分離部 9、 続いて改質触媒層 1 2が設けられる 。 これらサイクロン型粒子分離部 9 と改質触媒層 1 2 との間には水蒸気 供給ライン 1 3が接続し、 ガス化炉 1 の最上部 (後流側) には生成ガス ライン 1 6が接続している。 That is, as shown in FIG. 1 and the above description, in the fluidized-bed gasification furnace 1 of the present invention, the gasification furnace 1 has a flowing gas introduction section 3 at a lower portion (front side), and a lower portion of this portion ( A fluidized gas line 2 is connected to the upstream side (the upstream side), and a dispersion plate 4 is arranged at the upper side (the downstream side). A fluid catalyst holding unit 6 is provided on the upper part (the downstream side) of the dispersion plate 4, and a raw material supply line 7 provided with a raw material supply device 8 is connected to this part. Further, an ash discharge line 17 is connected to the upper part (the downstream side) of the dispersion plate 4. A space above (on the downstream side of) the fluid catalyst holding section 6 is a freeboard 14, and a cyclone type particle separation section 9 is provided above (on the downstream side), followed by a reforming catalyst layer 12. Between the cyclone type particle separation section 9 and the reforming catalyst layer 12, steam The supply line 13 is connected, and the generated gas line 16 is connected to the top of the gasifier 1 (on the downstream side).
したがってかかる構成により、 流動ガスライ ン 2から供給された空気 などの流動ガスはガス化炉 1 の流動ガス導入部 3 に導かれて、 分散板 4 を通って流動ガス噴流 5 として流動触媒保有部 6 に噴き出されて流動触 媒を形成、 これを噴流する。 このとき、 原料供給ライ ン 7から原料供給 装置 8 によって原料がガス化炉内に供給され、 流動触媒保有部 6 に入つ て、 たとえばニッケル担持ゼォライ トなどのタール分分解機能を有する 流動触媒と混合しながら噴流される。 この部位 (流動触媒保有部 6 ) で 原料は空気などの流動ガスと反応して熱分解し、 発熱反応により 7 0 0 X:程度の温度状態になり、 炭酸ガス ( C 0 2 ) 、 一酸化炭素 ( C O ) 、 水素 ( H 2 ) 、 およびメタンガス ( C H 4 ) を発生し、 タール分の発生 は流動触媒の作用によって抑制される。  Therefore, with this configuration, the flowing gas such as air supplied from the flowing gas line 2 is guided to the flowing gas introduction section 3 of the gasification furnace 1, passes through the dispersion plate 4 and forms the flowing gas jet 5, and the flowing catalyst holding section 6 To form a flowing catalyst, which is jetted. At this time, the raw material is supplied from the raw material supply line 7 into the gasification furnace by the raw material supply device 8 and enters the fluidized catalyst holding unit 6, where the fluidized catalyst having a tar decomposing function such as nickel-supported zeolite is added. It is jetted while mixing. In this part (fluid catalyst holding part 6), the raw material reacts with flowing gas such as air and thermally decomposes, and the exothermic reaction brings the temperature to about 700 X: temperature, carbon dioxide gas (C 02), monoxide It produces carbon (CO), hydrogen (H 2), and methane gas (CH 4), and the production of tar is suppressed by the action of a fluid catalyst.
これら前記流動触媒保有部 6 における熱分解により生成したガスは サイクロン型粒子分離部 9 に導かれて旋回流れを形成し、 触媒粒子等を 含まない粒子分離部通過流れ 1 0 と、 粒子を含む粒子流れ 1 1 とに分離 される。 粒子分離部通過流れ 1 0 は、 たとえば金属担持アルミナハニカ ムなどの改質触媒が設けられた改質触媒層 1 2 に向い、 一方粒子流れ 1 1 は下方 (前流側) に向かって流れる。 そのため、 触媒粒子等は再度、 流動触媒と原料が混合して噴流する流動触媒保有部 6 に混入し、 原料の 熱分解反応に供される。  The gas generated by the thermal decomposition in the fluid catalyst holding unit 6 is guided to the cyclone type particle separation unit 9 to form a swirl flow, and the flow 10 passing through the particle separation unit not containing catalyst particles and the like, and the particles containing particles Stream 11 is separated. The flow 10 passing through the particle separation section is directed to a reforming catalyst layer 12 provided with a reforming catalyst such as a metal-supported alumina honeycomb, while the particle flow 11 flows downward (upstream). For this reason, the catalyst particles and the like are mixed again into the fluidized catalyst holding section 6 in which the fluidized catalyst and the raw material are mixed and jetted, and are subjected to a thermal decomposition reaction of the raw material.
このとき、 前記流動触媒保有部 6 において熱分解反応で生成した灰分 は、 灰分排出ライ ン 1 7から炉外に排出される。 前記サイクロン型粒子 分離部 9 を出た熱分解生成ガスは、 前記改質触媒層 1 2 に向い、 この層 を通過する間に、 水蒸気供給ライ ン 1 3から供給された水蒸気と、 設け られた改質触媒の触媒作用によって、 ガス体に残存する夕一ル分が改質 されて一酸化炭素 ( C O ) と水素 (H 2 ) に転換する。 該改質触媒層 1 2 を出た生成ガス 1 5は、 燃料ガスとして生成ガスライ ン 1 6 に導かれ る。 At this time, the ash generated by the thermal decomposition reaction in the fluidized catalyst holding section 6 is discharged out of the furnace from the ash discharge line 17. The pyrolysis gas that exited the cyclone-type particle separation section 9 was directed to the reforming catalyst layer 12, and was provided with steam supplied from a steam supply line 13 while passing through this layer. Due to the catalytic action of the reforming catalyst, the remaining amount of gas remaining in the gas body is reformed. It is converted to carbon monoxide (CO) and hydrogen (H2). The product gas 15 exiting the reforming catalyst layer 12 is led to the product gas line 16 as fuel gas.
図 2は、 本発明のガス燃料製造方法の構成を示すフロー図である。 つ まり、 上述の流動床ガス化炉を用いてガス燃料を製造する方法の概要は 、 図のフローにまとめることができる。 すなわち本製造方法は、 供給さ れた原料を該ガス化炉 ( 1。 以下、 図 1で用いた符号を () 内に示す。 ) の流動触媒保有部 ( 6 ) において流動ガスおよびタール分解機能を有 する流動触媒により、 タール生成を.抑制しつつ熱分解し熱分解生成ガス を生成する第 1 過程 P 1 と、 ついで該熱分解生成ガス中の粒子を分離除 去するとともに該粒子を再度第 1過程に供する第 2過程 P 2 と、 ついで 改質触媒層 ( 1 2 ) において、 粒子の除去された熱分解生成ガス ( 1 0 ) を、 水蒸気、 およびタール分解機能を有する改質触媒を用いて、 ガス 中の残存タール分を一酸化炭素と水素に転換させる第 3過程 P 3 と か ら構成され、 これらの過程を順に経ることによって、 夕一ル含有量の低 減されたガス燃料を得ることができる。  FIG. 2 is a flowchart showing the configuration of the gas fuel production method of the present invention. In other words, the outline of the method for producing gaseous fuel using the above-described fluidized-bed gasification furnace can be summarized in the flow of the figure. That is, in this production method, the supplied raw material is supplied to the fluidized catalyst holding section (6) of the gasification furnace (1. The symbols used in FIG. The first step P1 in which thermal decomposition is carried out to generate a pyrolysis product gas while suppressing the formation of tar by a fluidized catalyst having a catalyst, and then the particles in the pyrolysis product gas are separated and removed, and the particles are again removed. In the second step P 2 for the first step, and in the reforming catalyst layer (12), the pyrolysis product gas (10) from which the particles have been removed is converted into steam and a reforming catalyst having a tar decomposition function. And a third process P3 that converts residual tar content in the gas into carbon monoxide and hydrogen using a gas fuel with reduced evening content by going through these processes in order. Can be obtained.
図 2 のガス燃料製造方法は、 上述した本発明に係る前記流動床ガス化 炉 1 を用いて、 これを行う ことができる。  The gas fuel production method shown in FIG. 2 can be performed by using the above-described fluidized bed gasifier 1 according to the present invention.
図において本製造方法では、 第 1過程 P 1 において、 供給された原料 は、 前記ガス化炉 ( 1 ) の流動触媒保有部 ( 6 ) で流動ガスおよび夕一 ル分解機能を有する流動触媒によってタール生成を抑制しつつ熱分解さ れて熱分解生成ガスが生成され、 ついで第 2過程 P 2 において、 該熱分 解生成ガス中の粒子が分離除去されるとともに該粒子が再度第 1過程に 供され、 ついで第 3過程 P 3 において、 粒子の除去された熱分解'生成ガ ス ( 1 0 ) が改質触媒層 ( 1 2 ) で水蒸気およびタール分解機能を有す る改質触媒によってガス中の残存タール分が一酸化炭素と水素に転換さ せられ、 こう して、 タール含有量の低減されたガス燃料が製造される。 図の製造方法において、 前記第 1過程 P 1 の流動触媒保有部には金属 担持ゼォライ ト触媒を用い、 前記第 3過程 P 3 の改質触媒層には金属担 持ハニカム触媒を用いることができる。 また特に、 前記第 1過程 P 1 の 流動触媒保有部としてニッケル担持ゼォライ ト触媒を用い、 前記第 3過 程 P 3の改質触媒層として金属担持アルミナ Λ二カム触媒を用いること ができる。 また、 前記原料としては、 木質バイオマス等のバイオマスを 用いることができる。 In the present production method, in the first process P1, in a first step P1, the supplied raw material is tarred by a fluidized gas and a fluidized catalyst having an evening cracking function in a fluidized catalyst holding section (6) of the gasifier (1). Pyrolysis is performed while suppressing generation to generate a pyrolysis product gas. Then, in a second step P 2, particles in the pyrolysis product gas are separated and removed, and the particles are again supplied to the first step. Then, in the third step P 3, the pyrolysis gas (10) from which particles have been removed is converted into gas by the reforming catalyst having steam and tar decomposition functions in the reforming catalyst layer (12). Residual tar content is converted to carbon monoxide and hydrogen. Thus, a gas fuel with reduced tar content is produced. In the manufacturing method shown in the figure, a metal-supported zeolite catalyst can be used for the fluidized catalyst holding part in the first step P 1, and a metal-supported honeycomb catalyst can be used for the reforming catalyst layer in the third step P 3. . In particular, a nickel-supported zeolite catalyst can be used as the fluidized catalyst holding part in the first process P1, and a metal-supported alumina double cam catalyst can be used as the reforming catalyst layer in the third process P3. Further, as the raw material, biomass such as woody biomass can be used.
図 3 は、 本発明のガス発電システムの構成を示す説明図である。 図に おいて本システム 1 0 0は、 上述したいずれかの流動床ガス化炉 1 と、 流動ガスライン 2および生成ガスライ ン 1 6 を介して該流動床ガス化炉 1 に連通して設けられている、 発電装置の原動機たるガスタービン 3 0 と、 該ガスタービン 3 0 に備えられているロータと連結している発電機 2 3 と、 からから主として構成される。  FIG. 3 is an explanatory diagram showing the configuration of the gas power generation system of the present invention. In the figure, the present system 100 is provided in communication with any of the above-described fluidized-bed gasifiers 1 and the fluidized-bed gasifier 1 via a fluidized gas line 2 and a product gas line 16. And a generator 23 connected to a rotor provided in the gas turbine 30 as a prime mover of the power generation apparatus.
図 3で、 本ガス発電システム 1 0 0 においては、 前記ガス夕一ビン 3 0 は圧縮機 2 6 燃焼器 1 8、 ターピン 1 9 ならびに再生器 2 0から なり、 該再生器 2 0 の後流側には排熱を利用して温水を供給するための 温水器 2 1が設けられる構成とすることができる。 また、 原料として木 質バイオマス等のバイオマスを用いたシステムとすることができる。 図において本発明のガス発電システム 1 0 0 は上述のように構成され ているため、 ガス夕一ビンの圧縮機 2 6では吸気ダク ト 2 4 を通して大 気から空気が吸い込まれ、 この空気が圧縮されて該圧縮機 2 6から吐出 される。 吐出された空気の一部は、 再生器 2 0 との間の空気ライ ン 2 5 を通って再生器に送られ、 残りの空気は流動ガスライン 2 を通って、 流 動床ガス化炉 1 に送られる。  In FIG. 3, in the present gas power generation system 100, the gas bin 30 is composed of a compressor 26 combustor 18, a tarpin 19 and a regenerator 20, and the downstream of the regenerator 20. On the side, a water heater 21 for supplying hot water using waste heat can be provided. Further, a system using biomass such as woody biomass as a raw material can be provided. In the figure, since the gas power generation system 100 of the present invention is configured as described above, air is sucked from the atmosphere through the intake duct 24 in the compressor 26 of the gas bin, and this air is compressed. Then, it is discharged from the compressor 26. A part of the discharged air is sent to the regenerator through the air line 25 between the regenerator 20 and the remaining air is passed through the fluidized gas line 2 to the fluidized bed gasifier 1 Sent to
前記流動床ガス化炉 1 において生成された生成ガス 1 5は、 生成ガス ライン 1 6 を通ってガスタービンの前記燃焼器 1 8 に燃料ガスとして供 給され、 前記再生器 2 0で高温状態となって送られた空気を酸化剤とし て燃焼し、 高温ガスが発生する。 この高温ガスは前記タービン 1 9 に導 かれて、 膨張仕事により出力を発生する。 この出力は、 前記圧縮機 2 6 の駆動動力を差し引いた出力でもって前記発電機 2 3 を回転させて、 電 気出力に変換される。 The product gas 15 generated in the fluidized bed gasifier 1 is a product gas It is supplied as a fuel gas to the combustor 18 of the gas turbine through the line 16, and the high-temperature air sent by the regenerator 20 is burned as an oxidant to generate a high-temperature gas. . This high-temperature gas is guided to the turbine 19 and generates an output by expansion work. This output is converted to an electrical output by rotating the generator 23 with an output obtained by subtracting the driving power of the compressor 26.
前記夕一ビン 1 9出口の排ガス 2 2は、 前記再生器 2 0 を通って空気 を昇温させた後、 その後流側に設けられた前記温水器 2 1 を通って水を 昇温させ、 温水 2 7 を供給する。 該温水器 2 1 を出た排ガス 2 2は、 大 気に放出される。 すなわち以上の作用により、 本システム 1 0 0 を構成 する流動床ガス化炉 1 において生成された生成ガスを燃料として、 ガス 夕一ビン 3 0で発電機 2 3 を回転させるための出力が発生、 発電機 2 3 が運転されて発電がなされる。  The exhaust gas 22 at the outlet of the evening bin 19 is heated through the regenerator 20 to raise the temperature of air, and then the water is heated through the water heater 21 provided on the flow side, Supply hot water 27. The exhaust gas 22 coming out of the water heater 21 is released to the atmosphere. That is, by the above operation, an output for rotating the generator 23 in the gas bin 30 is generated using the generated gas generated in the fluidized bed gasifier 1 constituting the system 100 as a fuel, The generator 23 is operated to generate power.
また、 本システム 1 0 0 の圧縮機 2 6で発生した圧縮空気の一部は システム 1 0 0 を構成する流動床ガス化炉 1 の流動層ガスとして供給さ れ、 再生器 2 0で発生した高温空気は同じく システム 1 0 0内の燃焼器 In addition, part of the compressed air generated by the compressor 26 of the system 100 is supplied as fluidized bed gas to the fluidized bed gasifier 1 constituting the system 100, and is generated by the regenerator 20. Hot air is also in the combustor in system 100
1 8 に供給され、 また該再生器 2 0 を通過した排ガス 2 2は、 温水器 2Exhaust gas 22 supplied to the regenerator 20 and passed through the regenerator 20 is supplied to the water heater 2
7 による温水供給に利用される。 産業上の利用可能性 7 for hot water supply. Industrial applicability
本発明の流動床ガス化炉、 ガス燃料製造方法、 およびこれを用いたガ ス発電システムは上述のように構成されるため、 以下のような効果を得 ることができる。  Since the fluidized-bed gasifier, the gas fuel production method, and the gas power generation system using the same according to the present invention are configured as described above, the following effects can be obtained.
1 . 本発明の流動床ガス化炉およびガス燃料製造方法により、 夕一ルを 含有する割合を極めて低く抑えたガス燃料を供給することが可能となり 、 発電装置で用いられる原動機の燃料仕様条件を満足する燃料を得るこ とができる。 1. The fluidized-bed gasifier and the gaseous fuel production method of the present invention make it possible to supply gaseous fuel containing an extremely low percentage of gaseous oil, and reduce the fuel specification conditions of the prime mover used in the power generator. To get a satisfactory fuel Can be.
2 . また、 従来はガス化炉出口ラインに設けられていたサイクロンが不 要となり、 プラントの小型化とコス ト低減に寄与できる。  2. In addition, the cyclone that was conventionally provided at the gasification furnace outlet line is not required, which can contribute to downsizing and cost reduction of the plant.
3 . また同じく、 従来はガス化炉出口ラインに設けられていたタール除 去装置が不要となり、 プラントの小型化とコス ト低減に寄与できる。 3. Similarly, tar removal equipment conventionally provided at the gasification furnace outlet line is no longer necessary, which can contribute to downsizing and cost reduction of the plant.
4 . また、 ガス化炉内でタール分を水素と一酸化炭素に分解するため、 生成ガスの発熱量を高くすることができる。 4. In addition, the tar content is decomposed into hydrogen and carbon monoxide in the gasifier, so the calorific value of the generated gas can be increased.
5 . このような流動床ガス化炉を用いたガス発電システムを実現するこ とができる。  5. A gas power generation system using such a fluidized bed gasifier can be realized.

Claims

請 求 の 範 囲 The scope of the claims
1 . 供給されるガス燃料製造原料 (以下、 単に 「原料」 ともいう。 ) を流動ガスおよび流動触媒を用いて熱分解しガス燃料を製造するための 流動床ガス化炉 あって、 該流動触媒は原料の熱分解を行って熱分解生 成ガスを生成するための流動触媒保有部に備えられた、 タール分解機能 を有する触媒であり、 該流動触媒保有部の後流側かつ生成燃料ガス排出 部 (以下、 「ガス化炉出口部」 ともいう。 ) の前流側には別の触媒保有 部である触媒層が設けられ、 該触媒層には熱分解生成ガス中に残存する タール分を分解する機能を有する触媒が備えられていることを特徴とす る、 流動床ガス化炉。 1. A fluidized-bed gasification furnace for producing a gaseous fuel by pyrolyzing a supplied gaseous fuel production raw material (hereinafter, also simply referred to as a "raw material") using a fluidized gas and a fluidized catalyst. Is a catalyst having a tar cracking function, which is provided in a fluidized catalyst holding section for generating a pyrolysis product gas by performing thermal cracking of the raw material. A catalyst layer, which is another catalyst holding section, is provided upstream of the section (hereinafter, also referred to as “gasification furnace outlet section”), and the catalyst layer is provided with a tar content remaining in the pyrolysis product gas. A fluidized-bed gasifier comprising a catalyst having a function of decomposing.
2 . 前記触媒層に備えられる触媒は改質触媒であり、 該触媒層 (以下 、 かかる触媒層を特に 「改質触媒層」 という。 ) には水蒸気供給ライ ン により水蒸気が供給され、 これにより該改質触媒層においてはこれに流 入する前記熱分解生成ガス中の残存タール分を一酸化炭素および水素に 転換することが可能であることを特徴とする、 1 . に記載の流動床ガス 化炉。  2. The catalyst provided in the catalyst layer is a reforming catalyst, and steam is supplied to the catalyst layer (hereinafter, such a catalyst layer is particularly referred to as a “reforming catalyst layer”) by a steam supply line. 2. The fluidized bed gas according to item 1, wherein the reforming catalyst layer is capable of converting a residual tar content in the pyrolysis product gas flowing into the reforming catalyst layer into carbon monoxide and hydrogen. Furnace.
3 . 前記改質触媒層に用いられる改質触媒は、 金属担持ハニカム触媒 であることを特徴とする、 2 . に記載の流動床ガス化炉。  3. The fluidized-bed gasification furnace according to 2, wherein the reforming catalyst used in the reforming catalyst layer is a metal-supported honeycomb catalyst.
4 . 前記改質触媒層に用いられる改質触媒は、 金属担持アルミナハニ カム触媒であることを特徴とする、 2 . に記載の流動床ガス化炉。  4. The fluidized-bed gasification furnace according to 2, wherein the reforming catalyst used in the reforming catalyst layer is a metal-supported alumina honeycomb catalyst.
5 . 前記流動触媒保有部に備えられる触媒としては、 少なく とも金属 担持ゼオライ ト触媒が含まれていることを特徴とする、 1 . ないし 4 . のいずれかに記載の流動床ガス化炉。  5. The fluidized-bed gasifier according to any one of 1. to 4., wherein the catalyst provided in the fluidized catalyst holding unit includes at least a metal-supported zeolite catalyst.
6 . 前記流動触媒保有部に備えられる触媒としては、 少なく ともニッ ケル担持ゼオライ ト触媒が含まれていることを特徴とする、 1 . ないし 6. The catalyst provided in the fluidized catalyst holding unit includes at least a nickel-supported zeolite catalyst, which is characterized in that:
5 . のいずれかに記載の流動床ガス化炉。 5. The fluidized bed gasifier according to any one of the above.
7 . 前記流動触媒保有部に備えられる触媒は複数の触媒の集合体であ つて、 該触媒の集合体にはタール分解機能および水素生成機能が備えら れていることを特徴とする、 1 . ないし 6 . のいずれかに記載の流動床 ガス化炉。  7. The catalyst provided in the fluidized catalyst holding unit is an aggregate of a plurality of catalysts, and the aggregate of the catalysts has a tar cracking function and a hydrogen generation function. 6. The fluidized-bed gasifier according to any one of to 6.
8 . 前記触媒層の前流側かつ前記流動触媒保有部の後流側に、 サイク ロン型粒子分離部が設けられていることを特徴とする、 1 . ないし 7 . のいずれかに記載の流動床ガス化垆。  8. The flow according to any one of 1 to 7, wherein a cyclone-type particle separation unit is provided upstream of the catalyst layer and downstream of the fluidized catalyst holding unit. Floor gasification.
9 . 前記熱分解生成ガス中の粒子の分離は、 ガス化炉内の前記サイク ロン型粒子分離部においてのみ行われ、 タール分の分解は、 ガス化炉内 の前記流動触媒保有部および前記触媒層においてのみ行われることを特 徴とする、 8 . に記載の流動床ガス化炉。  9. Separation of the particles in the pyrolysis product gas is performed only in the cyclone-type particle separation section in the gasification furnace, and decomposition of tar is performed in the fluidized catalyst holding section and the catalyst in the gasification furnace. 8. The fluidized bed gasifier according to item 8, characterized in that it is performed only in a bed.
1 0 . 前記流動触媒保有部には、 原料の熱分解により生じる灰分を排 出するための灰分排出ライ ンが設けられていることを特徴とする、 8 . または 9 . に記載の流動床ガス化炉。  10. The fluidized bed gas according to 8 or 9, wherein the fluidized catalyst holding section is provided with an ash discharge line for discharging ash generated by thermal decomposition of the raw material. Furnace.
1 1 . 前記サイクロン型粒子分離部の前流側に原料の投入口が設けら れていることを特徴とする、 8 . ないし 1 0 . のいずれかに記載の流動 床ガス化炉。  11. The fluidized-bed gasification furnace according to any one of 8. to 10., wherein a raw material inlet is provided upstream of the cyclone type particle separation section.
1 2 . 流動床ガス化炉を用いたガス燃料製造方法であって、 供給され た原料を該ガス化炉の流動触媒保有部において流動ガスおよびタール分 解機能を有する流動触媒によ り、 タール生成を抑制しつつ熱分解し熱分 解生成ガスを生成する第 1過程と、 ついで該熱分解生成ガス中の粒子を 分離除去するとともに該粒子を再度第 1過程に供する第 2過程と、 つい で改質触媒層において、 粒子の除去された熱分解生成ガスを、 水蒸気お よびタール分解機能を有する改質触媒を用いて、 ガス中の残存タール分 を一酸化炭素と水素に転換させる第 3過程と、 を経て、 タール含有量の 低減されたガス燃料を得ることのできる、 ガス燃料製造方法。 12. A gas fuel production method using a fluidized-bed gasification furnace, wherein the supplied raw material is supplied to a fluidized catalyst holding section of the gasification furnace by a fluidized catalyst having a function of decomposing a fluidized gas and tar. A first step in which pyrolysis is performed while suppressing generation to generate a pyrolysis gas; a second step in which particles in the pyrolysis product gas are separated and removed, and the particles are again subjected to the first step; In the reforming catalyst layer, the pyrolysis gas from which the particles have been removed is converted into residual carbon in the gas into carbon monoxide and hydrogen using a reforming catalyst having a steam and tar decomposition function. Through the process and through the tar content A gas fuel production method capable of obtaining a reduced gas fuel.
1 3 . 前記流動床ガス化炉が 1 . ないし 1 1 . のいずれかに記載の流 動床ガス化炉を用いたガス燃料製造方法であって、 供給された原料を該 ガス化炉の流動触媒保有部において流動ガスおよびタール分解機能を有 する流動触媒により、 タール生成を抑制しつつ熱分解し熱分解生成ガス を生成する第 1過程と、 ついで該熱分解生成ガス中の粒子を分離除去す るとともに該粒子を再度第 1過程に供する第 2過程と、 ついで改質触媒 層において、 粒子の除去された熱分解生成ガスを、 水蒸気およびタール 分解機能を有する改質触媒を用いて、 ガス中の残存夕一ル分を一酸化炭 素と水素に転換させる第 3過程と、 を経て、 夕一ル含有量の低減された ガス燃料を得ることのできる、 ガス燃料製造方法。 13. The method for producing a gaseous fuel using the fluidized-bed gasification furnace according to any one of 1 to 11, wherein the fluidized-bed gasification furnace is supplied with a fluidized gas through the gasification furnace. In the catalyst holding section, a first process in which pyrolysis is carried out by using a flowing gas and a fluid catalyst having a tar decomposition function while suppressing the production of tar to generate a pyrolysis product gas, and then particles in the pyrolysis product gas are separated and removed. And a second step of subjecting the particles to the first step again.Then, in the reforming catalyst layer, the pyrolysis product gas from which the particles have been removed is converted into gas using a reforming catalyst having a steam and tar decomposition function. A gas fuel production method capable of obtaining a gas fuel having a reduced evening content through a third step of converting the remaining evening oil into carbon monoxide and hydrogen.
1 4 . 前記第 1過程の流動触媒保有部には金属担持ゼォライ ト触媒が 用いられ、 前記第 3過程の改質触媒層には金属担持ハニカム触媒が用い られることを特徴とする、 1 2 . または 1 3 . に記載のガス燃料製造方 法。  14. The metal-supported zeolite catalyst is used for the fluidized catalyst holding part in the first step, and the metal-supported honeycomb catalyst is used for the reforming catalyst layer in the third step. Or the gas fuel production method described in 13.
1 5。 前記第 1過程の流動触媒保有部にはニッケル担持ゼォライ ト触 媒が用いられ、 前記第 3過程の改質触媒層には金属担持アルミナハニカ ム触媒が用いられることを特徴とする、 1 2 . または 1 3 . に記載のガ ス燃料製造方法。  1 5. 12.The nickel-supported zeolite catalyst is used for the fluidized catalyst holding part in the first step, and the metal-supported alumina honeycomb catalyst is used for the reforming catalyst layer in the third step. Or the gas fuel production method described in 13.
1 6 . 前記原料が木質バイオマス等のバイオマスであることを特徵と する、 1 2 . ないし 1 5 . のいずれかに記載のガス燃料製造方法。  16. The gas fuel production method according to any one of 12. to 15., wherein the raw material is biomass such as woody biomass.
1 7 . 1 . ないし 1 1 . のいずれかに記載の流動床ガス化炉と、 流動 ガスライ ンおよび生成ガスライ ンを介して該流動床ガス化炉に連通して 設けられている、 発電装置の原動機たるガスタービンと、 該ガスタービ ンに備えられているロータと連結している発電機と、 からなるガス発電 システム。 17. A fluidized-bed gasifier according to any one of 17.1 to 11.1, and a power generator, which is provided in communication with the fluidized-bed gasifier via a fluidized gas line and a product gas line. A gas power generation system comprising: a gas turbine serving as a motor; and a generator connected to a rotor provided in the gas turbine.
1 8. 前記ガス夕一ビンは、 圧縮機と、 燃焼器と、 タービンと、 なら びに再生器からなり、 該再生器の後流側には排熱を利用して温水を供給 するための温水器が設けられていることを特徴とする、 1 7. に記載の ガス発電システム。 1 8. The gas bin consists of a compressor, a combustor, a turbine, and a regenerator, and hot water for supplying hot water using exhaust heat is provided on the downstream side of the regenerator. 17. The gas power generation system according to item 7, wherein a gas generator is provided.
1 9. 用いられる原料が木質バイオマス等のバイオマスであることを 特徴とする、 1 7. または 1 8. に記載のガス発電システム。  1 9. The gas power generation system according to 1 7. or 1 8., wherein the raw material used is biomass such as woody biomass.
PCT/JP2004/004475 2003-03-28 2004-03-29 Fluidized bed gasifier, gas fuel producing method, and gas power generation system WO2004087839A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-089717 2003-03-28
JP2003089717A JP2004292720A (en) 2003-03-28 2003-03-28 Fluidized bed gasification furnace, fuel gas producing method and gas power generation system

Publications (1)

Publication Number Publication Date
WO2004087839A1 true WO2004087839A1 (en) 2004-10-14

Family

ID=33127247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004475 WO2004087839A1 (en) 2003-03-28 2004-03-29 Fluidized bed gasifier, gas fuel producing method, and gas power generation system

Country Status (2)

Country Link
JP (1) JP2004292720A (en)
WO (1) WO2004087839A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2927305A1 (en) * 2014-04-03 2015-10-07 Ulf Söderlind A fluidized bed gasifier system with freeboard tar removal

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4505247B2 (en) * 2004-03-26 2010-07-21 出光興産株式会社 Method for removing tar in a fluidized bed furnace
FI118647B (en) 2006-04-10 2008-01-31 Valtion Teknillinen Procedure for reforming gas containing tar-like pollutants
JP5446088B2 (en) * 2007-12-06 2014-03-19 国立大学法人群馬大学 Internal circulation type fluidized bed low-temperature contact gasifier and gasification and decomposition method for livestock excreta using the same
WO2012065272A1 (en) * 2010-11-17 2012-05-24 Highbury Biofuel Technologies Inc. Freeboard tar destruction unit
KR101401472B1 (en) * 2012-10-31 2014-05-30 서울시립대학교 산학협력단 Two-stage biomass gasifier having nickel distributor plate and biomass gasifier apparatus having the same
KR101791566B1 (en) 2015-11-12 2017-10-31 한국에너지기술연구원 Gasification power generation equipment of solid biomass and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111254A (en) * 1995-10-23 1997-04-28 Kansai Electric Power Co Inc:The Device for gasifying and cracking organic substance
JP2002059143A (en) * 2000-08-11 2002-02-26 Mitsubishi Heavy Ind Ltd Gasifying equipment for waste and gasification power equipment using the same
JP2003041268A (en) * 2001-07-31 2003-02-13 Hitoshi Inoue Method for gasifying biomass
JP2003238973A (en) * 2001-09-28 2003-08-27 Ebara Corp Method for reforming combustible gas, apparatus for reforming combustible gas and apparatus for gasification

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111254A (en) * 1995-10-23 1997-04-28 Kansai Electric Power Co Inc:The Device for gasifying and cracking organic substance
JP2002059143A (en) * 2000-08-11 2002-02-26 Mitsubishi Heavy Ind Ltd Gasifying equipment for waste and gasification power equipment using the same
JP2003041268A (en) * 2001-07-31 2003-02-13 Hitoshi Inoue Method for gasifying biomass
JP2003238973A (en) * 2001-09-28 2003-08-27 Ebara Corp Method for reforming combustible gas, apparatus for reforming combustible gas and apparatus for gasification

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2927305A1 (en) * 2014-04-03 2015-10-07 Ulf Söderlind A fluidized bed gasifier system with freeboard tar removal
WO2015150309A1 (en) * 2014-04-03 2015-10-08 Ulf Söderlind A fluidized bed gasifier system

Also Published As

Publication number Publication date
JP2004292720A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
JP5877237B2 (en) Method and apparatus for producing low tar synthesis gas from biomass
JP5114412B2 (en) Separation type fluidized bed gasification method and gasification apparatus for solid fuel
JP4267968B2 (en) Biomass processing method
JP5630626B2 (en) Organic raw material gasification apparatus and method
Hayashi et al. Gasification of low-rank solid fuels with thermochemical energy recuperation for hydrogen production and power generation
WO2007004342A1 (en) Method of solid fuel gasification including gas purification and gasifier employing the method
JP2011514923A (en) Method and apparatus for converting carbon raw materials
US10443004B2 (en) First stage process configurations in a 2-stage bio-reforming reactor system
JP2008069017A (en) Method for producing hydrogen
WO2004087839A1 (en) Fluidized bed gasifier, gas fuel producing method, and gas power generation system
KR20110018427A (en) Method and equipment for producing synthesis gas
JP2010126595A (en) System of reforming woody biomass gas
JP2003171675A (en) Liquid fuel synthesis system
JP4388245B2 (en) Biomass gasifier
JP3776692B2 (en) Waste gasification treatment facility and gasification power generation facility using the same
JP2004217868A (en) Coal thermal hydrocracking process
CN110819392B (en) Gasification furnace and partial gasification method
JPH11302666A (en) Process and apparatus for pneumatic bed gasification of coal
JPH11246876A (en) Method for generating flammable gas, its device and hybrid power generator using the same gas
JP2003226501A (en) Hydrogen production system
ES2633169T3 (en) Integrated process for total crude oil gasification in a membrane wall gasifier and electricity generation
JP7118341B2 (en) Hydrogen production equipment
KR102497426B1 (en) Waste pyrolytic gasification device and Energy system having the same
JP7334924B2 (en) Biomass gasifier, biomass gasification method and biomass gasification system
WO2002033030A1 (en) Method and device for gasifying biomass

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase