WO2004087764A1 - ダイオキシンを認識する組換抗体および該抗体をコードする遺伝子 - Google Patents

ダイオキシンを認識する組換抗体および該抗体をコードする遺伝子 Download PDF

Info

Publication number
WO2004087764A1
WO2004087764A1 PCT/JP2004/004355 JP2004004355W WO2004087764A1 WO 2004087764 A1 WO2004087764 A1 WO 2004087764A1 JP 2004004355 W JP2004004355 W JP 2004004355W WO 2004087764 A1 WO2004087764 A1 WO 2004087764A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
polypeptide
acid sequence
variable region
seq
Prior art date
Application number
PCT/JP2004/004355
Other languages
English (en)
French (fr)
Inventor
Kazuyuki Sawadaishi
Keiichi Higano
Chiwa Kataoka
Original Assignee
Kyoto Electronics Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co., Ltd. filed Critical Kyoto Electronics Manufacturing Co., Ltd.
Priority to US10/550,951 priority Critical patent/US7381798B2/en
Priority to EP04723765A priority patent/EP1616885B1/en
Priority to JP2005504305A priority patent/JP4077481B2/ja
Publication of WO2004087764A1 publication Critical patent/WO2004087764A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5308Immunoassay; Biospecific binding assay; Materials therefor for analytes not provided for elsewhere, e.g. nucleic acids, uric acid, worms, mites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/44Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material not provided for elsewhere, e.g. haptens, metals, DNA, RNA, amino acids

Definitions

  • the present invention relates to a novel recombinant antibody having binding activity to 2,3,4,7,8-pentachlorodibenzofuran (2,3,4,7,8-PeCDF), which encodes its amino acid sequence.
  • Gene a vector into which the gene has been introduced, a transformant transformed with the vector, a method for producing the recombinant antibody, and immunization of 2, 3, 4, 7, 8-Pe CDF using the recombinant antibody It relates to biological capture and measurement methods.
  • Dioxins include a number of structural isomers consisting of 75 polychlorodibenzodioxins (PCDDs) and 135 polychlorodibenzofurans (PCDFs).
  • PCDDs polychlorodibenzodioxins
  • PCDFs polychlorodibenzofurans
  • T EQ dioxin amount
  • Japanese Patent Application Laid-Open No. 2002-340882 discloses that dioxins are collected using a dioxin collection unit, an extraction unit, a separation and purification unit, and an antibody. A measuring device and a measuring method for dioxins composed of four measuring units are described.
  • Japanese Patent Application Laid-Open No. 2002-228660 discloses that dioxins in biological samples such as human blood and breast milk are prepared by using monoclonal antibodies having high affinity to 2,3,7,8-TCDD. Are described.
  • Japanese Patent Application Laid-Open No. 2002-119279 describes a method for estimating the abundance of dioxins by using several kinds of antibodies having cross-reactivity to a plurality of dioxins isomers.
  • these documents include a monoclonal antibody recognizing 2,3,4,7,8_Pe CDF, a gene sequence encoding the monoclonal antibody, a recombinant antibody based on the gene sequence, and a recombinant antibody based on the gene sequence.
  • the method for measuring 2, 3, 4, 7, 8-P e CDF using a recombinant antibody is not described.
  • the present inventors have determined that the 17 major dioxins measured by the HRGC / HRMS method are the major constituents, and that the content of the dioxins is an indicator isomer having a high correlation with the total TEQ of the dioxins. , 3, 4, 7, and 8-Pe CDF by immunological techniques were sought to establish a rapid, simple, and sensitive method for capturing and measuring.
  • the present inventors have solved the above-mentioned problems by using a 2,3,4,7,8-Pe CDF derivative as an antigen and carrying out 2,3,4,7, Two hybridomas producing monoclonal antibodies that recognize 8_P e CDF, namely, hybridoma DX 3860 r1 producing monoclonal antibody DX3860 and hybridoma D3150 r1 producing monoclonal antibody D3150 Obtained.
  • the present inventors isolated and isolated mRNA contained in these hybridomas. And purified, and cDNA was synthesized based on the mRNA. Next, from the cDNA, the H chain variable region and the L chain variable region of the monoclonal antibody DX380 are encoded, and the H chain variable region and the L chain variable region of the monoclonal antibody DX3150 are encoded. In order to select cDNA, PCR was performed using a sequence specific to the antibody gene to specifically amplify the target antibody gene. The nucleotide sequences of these selected cDNAs were analyzed, and the amino acid sequences encoded by them were deduced.
  • the cDNAs encoding the H chain variable region and the L chain variable region of the monoclonal antibody DX3680 are shown in SEQ ID NOs: 1 and 2, respectively, while the monoclonal antibody DX315
  • the cDNAs encoding the H chain variable region and the L chain variable region of 0 were found to be represented by SEQ ID NOS: 3 and 4, respectively.
  • the deduced amino acid sequences of the H chain variable region and the L chain variable region of the monoclonal antibody DX380 are shown in SEQ ID NOS: 5 and 6, respectively, while the H chain variable region of the monoclonal antibody DX3150 is The putative amino acid sequences of the region and the light chain variable region were found to be shown in SEQ ID NOs: 7 and 8, respectively.
  • the present inventors specified the amino acid sequence of the hypervariable region (CDR 1-3) in the variable region of the antibody and the position thereof.
  • the amino acid sequences of the hypervariable regions are shown in Tables 1-4 below.
  • Table 1 Amino acid sequence of the hypervariable region in the variable region of Dx3680 H chain
  • the positions of the hypervariable regions (CDRs 1 to 3) in the H chain and L chain variable regions of the monoclonal antibody DX3860 are shown in FIGS. 1 and 2 together with the DNA sequence and amino acid sequence, respectively.
  • the positions of the hypervariable regions (CDRs 1 to 3) in the variable regions of the H and L chains of the monoclonal antibody DX3150 are shown in Figs. 3 and 4 together with the DNA sequence and the amino acid sequence. .
  • positions 26 to 33 of the amino acid sequence represent CDR1
  • CDRs 51 to 57 represent CDR2
  • positions 96 to 103 represent CDR3.
  • positions 26 to 34 of the amino acid sequence are CDR1
  • positions 52 to 54 are C
  • positions 26 to 34 of the amino acid sequence indicate CDR1
  • CDRs 52 to 58 indicate CDR2
  • positions 97 to 107 indicate CDR3.
  • positions 26 to 34 of the amino acid sequence indicate CDR1
  • positions 52 to 54 indicate ⁇ DR2
  • positions 91 to 99 indicate CDR3.
  • the present inventors incorporated DNA encoding the variable region of the above antibody into an expression vector, introduced the vector into a host cell, and expressed the recombinant antibody in the host cell. Furthermore, the present inventors have confirmed that 2,3,4,7,8-PeCDF in a sample can be quantified using the recombinant antibody. Further, the present inventors introduced a mutation into DNA encoding the variable region of the above antibody, expressed the recombinant antibody using the mutated DNA as described above, and using the recombinant antibody, 2, 3, 4, 7, 8- It was confirmed that P e CDF could be quantified.
  • the present invention relates to a recombinant antibody having binding activity to 2,3,4,7,8-pentachlorodibenzofuran (2,3,4,7,8-P e CDF),
  • polypeptide comprising an H chain variable region of a monoclonal antibody Dx3860 that recognizes 2, 3, 4, 7, 8-PeCDF and having an amino acid sequence represented by SEQ ID NO: 5;
  • polypeptide comprising an H chain variable region of a monoclonal antibody Dx3150 that recognizes 2, 3, 4, 7, 8-PeCDF and having an amino acid sequence represented by SEQ ID NO: 7;
  • a recombinant antibody comprising at least one polypeptide selected from the group consisting of:
  • the present invention provides a DNA encoding the amino acid sequence of the above-mentioned recombinant antibody, a cloning or expression vector containing the DNA, a transformant transformed with the vector, And a method of immunologically capturing and measuring 2,3,4,7,8-PeCDF using the recombinant antibody. is there.
  • dioxins particularly 2,3,4,7,8-PeCDF
  • Using the recombinant antibody of the present invention dioxins, particularly 2,3,4,7,8-PeCDF, can be rapidly and simply and highly sensitively captured and measured by immunological techniques. Cut. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 shows the positions of the DNA sequence, amino acid sequence and hypervariable region (CDR 1-3) of the variable region of the H chain of the monoclonal antibody DX3860.
  • FIG. 2 shows the positions of the DNA sequence, amino acid sequence, and hypervariable regions (CDR 1-3) of the light chain variable region of monoclonal antibody DX3860.
  • FIG. 3 shows the positions of the DNA sequence, amino acid sequence and hypervariable region (CDR 1-3) of the H chain variable region of the monoclonal antibody DX3150.
  • FIG. 4 shows the positions of the DNA sequence, amino acid sequence and hypervariable regions (CDR 1-3) of the light chain variable region of the monoclonal antibody DX3150.
  • FIG. 5 shows the construction of the scFV fragment Dx 386 OHL.
  • FIG. 6 shows the construction of the scFV fragment DX3860 LH.
  • FIG. 7 shows the configuration of the sc Fv fragment Dx3150HL.
  • FIG. 8 shows the configuration of the scFV fragment Dx3150 LH.
  • FIG. 9 shows the results of measuring 2, 3, 4, 7, 8-PeCDF by indirect competitive immunoassay using anti 2,3,4,7,8-PeCDF scFv. It is a graph.
  • FIG. 10 is a graph showing the relationship between the H chain variable region polypeptide fraction and the activity of anti-2, 3, 4, 7, 8-Pe CDF.
  • FIG. 11 shows the amino acid sequence of the V H chain mutant of the monoclonal antibody DX3860.
  • FIG. 12 shows that the mutated D X 3860 scFv-displaying phage showed 2, 3, 4, 7,
  • FIG. 13 is a graph comparing the antibody titers of mutated D X 3860 scFv-displaying phage.
  • FIG. 14 is a graph comparing the reactivity of mutated Dx3860 scFV-displaying phage in the presence of DMSO.
  • the “antibody” referred to in the present invention includes, in addition to a naturally-occurring antibody present in a living body, at least one of a variable region of an H chain or an L chain of the antibody or a combination thereof Polypeptides having an antigen binding site are included. Such polypeptides include, for example, polypeptides containing only the H or L chain variable region, Fab fragments consisting of one set of H chain fragments and L chains, and two sets of H chain fragments and L chains. F (ab ') 2 fragment comprising a chain; a single-chain recombinant antibody (scFV) in which an H-chain variable region and an L-chain variable region are linked together by a linker;
  • scFV single-chain recombinant antibody
  • the linker is arranged between the H chain variable region and the L chain variable region so that the F chain variable region is efficiently folded when the sc FV binds to the antigen.
  • the linker is usually are composed of 5 to 1 5 amino acids, for example, - (G ly 4 S er ) 3 - can be mentioned as an example.
  • the linker used in the present invention is not limited in the number and type of amino acids as long as the above object can be achieved.
  • an appropriate amino acid sequence may be further added to the N-terminal side and the C-terminal side of the H-chain variable region or the L-chain variable region.
  • an appropriate amino acid sequence may be further added to the N-terminal side and the C-terminal side of the H-chain variable region or the L-chain variable region.
  • the polypeptide is secreted to the N-terminal side of the H chain variable region.
  • An epitope tag sequence can be added to the signal region at the C-terminal side of the L chain variable region.
  • a secretory signal region is placed on the N-terminal side of the L chain variable region, and a C-terminal side of the H chain variable region.
  • An epitope tag sequence can be added to the tag.
  • the recombinant antibody of the present invention includes, in addition to a polypeptide having at least one antigen-binding site formed by the variable region of the H or L chain of the antibody or a combination thereof, substantially the same as these polypeptides Mutant polypeptides having functions are included.
  • substantially the same function as used in the present invention means that the binding ability to an antigen is substantially the same. That is, the variable region of the H chain and the L chain of the anti-2,3,4,7,8-Pe CDF antibody of the present invention having the amino acid sequences represented by SEQ ID NOS: 5 to 8 has an antigen-binding ability.
  • Such a mutant polypeptide of the present invention has a homology of preferably 95% or more, more preferably 98% or more, and most preferably 99% or more with the amino acid sequences represented by SEQ ID NOS: 5 to 8. Further, this mutation is preferably present in a framework other than the hypervariable regions (CDRs 1-3) in the antibody variable regions shown in FIGS.
  • the recombinant antibody of the present invention includes a fragment of the polypeptide represented by SEQ ID NOS: 5 to 8, which has substantially the same function as the original polypeptide, and a combination of these fragments. Includes the polypeptides formed. These fragments contain at least one, preferably two, and more preferably all three of the hypervariable regions (CDRs 1-3) shown in FIGS.
  • the recombinant antibody of the present invention comprises preparing a DNA encoding the amino acid sequence of a desired polypeptide, incorporating the DNA into an expression vector, introducing the expression vector into a host cell, and placing the host cell in an appropriate medium.
  • the recombinant antibody can be produced by culturing the recombinant antibody.
  • DNA encoding the amino acid sequence of the desired polypeptide can be prepared synthetically based on the cDNA or amino acid sequence shown in SEQ ID NOs: 1-4 (or FIGS. 1-4).
  • a DNA encoding the amino acid sequence of a desired polypeptide can be obtained as follows. That is, as shown in the following examples, the present inventors have proposed a fragment containing the H chain variable region of the monoclonal antibody DX3860, the linker, and the L chain variable region of Dx3860 in this order from the N-terminal side (see FIG. This vector was introduced into Escherichia coli B, and the Escherichia coli B (pET22 ⁇ -Dx3860HL) was deposited at the Patent Biotechnology Deposit Center.
  • the present inventors incorporated a fragment (see FIG. 7) containing, in this order, the H chain variable region of the monoclonal antibody DX3150, the linker, and the L chain variable region of DX3150 from the N-terminal side.
  • An expression vector was prepared, this vector was introduced into E. coli K-12, and this E. coli K-12 (pET22 ⁇ -DX3
  • DNA encoding the amino acid sequence of the desired polypeptide can be obtained by cutting out these expression vectors using an appropriate restriction enzyme and, if desired, mutating the DNA sequence.
  • the ends of the fragment are modified in the usual manner. Can be decorated.
  • Incorporation of the obtained DNA fragment into an expression vector is performed by matching the DNA fragment with a predetermined fragment insertion site of a commercially available expression vector [eg, pET-22b (+)]. It can be carried out by processing the ends and inserting the DNA fragments whose ends have been processed into an expression vector.
  • a commercially available expression vector eg, pET-22b (+)
  • the expression vector thus obtained is introduced into a suitable host cell, particularly Escherichia coli [eg, Escherichia coli B strain, K-12 strain, BL21 (DE3) strain, etc.], and the inserted DNA fragment is inserted into the DNA fragment.
  • Escherichia coli eg, Escherichia coli B strain, K-12 strain, BL21 (DE3) strain, etc.
  • the desired recombinant antibody By culturing the host cell in a medium suitable for expression, the desired recombinant antibody can be expressed.
  • the expressed recombinant antibody can be recovered from the host cell or its culture solution by a conventional method.
  • the recovered recombinant antibody can be purified by, for example, one method of mouth chromatography.
  • a desired recombinant antibody can be produced at a lower cost and in a larger amount than a monoclonal antibody obtained by culturing animal cells in a medium requiring serum.
  • 2,3,4,7,8-P e CDF in a sample can be captured quickly and immunologically.
  • capture methods include immunochromatographic and immunoprecipitation methods for the separation, purification and enrichment of 2,3,4,7,8-Pe CDF.
  • the main substance among the dioxins ingested into the living body using the recombinant antibody is 2,2,4,7,8-Pe CDF.
  • 3,4,7,8-Pe CDF can be quickly captured and removed.
  • 2,3,4,7,8_P e CDF in a sample can be measured immunologically quickly and with high sensitivity using the obtained recombinant antibody.
  • assays include radioimmunoassay (RIA), enzyme immunoassay (EIA), and fluorescence immunoassay (FIA).
  • Immunoassays are broadly divided into noncompetitive and competitive methods.
  • the recombinant antibody of the present invention is preferably used in a competition method. These competition methods include indirect and direct competition methods.
  • 2,3,4,7,8-Pe CDF derivative is immobilized, and free 2,3,4,7,8_P e CDF in the sample is immobilized on the immobilized antigen. With recombinant antibodies Compete the reactions.
  • the direct competition method the recombinant antibody is immobilized, and depending on the amount of 2,3,4,7,8-Pe CDF present in the sample, the label 2,3,4 that binds to the recombinant antibody is used. The amount of 7,7-P e CDF derivative is determined.
  • a hybridoma producing a monoclonal antibody recognizing 2, 3, 4, 7, 8-PeCDF was prepared as follows. That is, first, an alkyl chain was introduced into 2,3,4,7,8_PeCDF, and its terminal was used as an active ester. Then, this was introduced into carrier serum albumin (BSA), which is a carrier protein, according to a conventional method to prepare a conjugate for immunization.
  • BSA carrier serum albumin
  • This conjugate for immunization was sufficiently emulsified in the adjuvant RAS R-700 (Ribi), and 200 ⁇ l of this iridium was administered intraperitoneally to BALB / c mice (7 weeks old, female). Mice were immunized. Booster immunizations were performed every two weeks, and approximately one week after the booster immunization, blood was collected from the tail vein and the antibody titer in the blood was measured by the competitive EIA method.
  • mice with high antibody production against 2, 3, 4, 7, 8-Pe CDF were selected, and a immunization conjugate was administered into the tail vein for final immunization.
  • the spleen was excised and spleen cells were prepared.
  • Mouse myeoma cells (Sp 2 ZO) in the logarithmic growth phase and spleen cells were mixed so that the number of cells became 1: 5, and cell fusion was performed by the polyethylene dalicol method (PEG method).
  • PEG method polyethylene dalicol method
  • a substrate solution (TMB substrate, KPL) was added, the peroxidase activity on the plate was measured, and the antibody titer in the culture supernatant was determined.
  • the antibody titer against the immobilized 2,3,4,7,8-Pe CDF derivative-BSA conjugate was 2,3,4,7,20% dissolved in DMSO.
  • a well that was greatly inhibited by 8-Pe CDF was selected, and the hybridoma in the well was cloned by the limiting dilution method.
  • cDNA was synthesized from poly (A) + RNA of the above g.
  • the obtained cDNA was designated as type ⁇ , and Mouse Ig-Primer Set (Novagen) and Taq DNA polymerase (Applied
  • PCR was performed using Biosystems). MuIg VH5'-A and MuIgVH3'-2 primer set for Dx3860 H chain, MuIg VH5'-D and MuIg VH3'-2 primer set for Dx315 OH chain A set was used. Also, both Dx3 860 L chain and Dx3150 L chain have Mu Ig V L 5'-A and Mu I g V L 3, - using one of the primer sets. The primers used are shown in Table 5 below. The PCR reaction was performed as follows.
  • MuIgVH3'-2 CCCAAGCTTCCAGGGRCCARKGGATARACIGRTGG (SEQ ID NO: 23)
  • the PCR product was inserted into pGEM-T Easy using a TA cloning kit, pGEM-T Easy Vector System I (Promega), and then E. coli XL1-B1ue was transformed. XL1-Blue Competent Cells (STRATAGENE) were used as the competent cells.
  • the sequence was analyzed by Analyzer (Applied Biosystems). As a result, the nucleotide sequence of cDNA encoding the variable regions of the H and L chains of the Dx3860 antibody gene and its deduced amino acid sequence (SEQ ID NOS: 1 and 2), and the H sequence and L sequence of the DX3150 antibody gene
  • SEQ ID NOS: 3 and 4 The nucleotide sequence of cDNA encoding the chain variable region and its deduced amino acid sequence (SEQ ID NOS: 3 and 4) were obtained.
  • the analysis software DNAsis was used for the estimation and analysis of the amino acid sequence.
  • the hypervariable regions contained in the sequences of SEQ ID NOs: 1 to 4 were identified according to the classification of the ImMunoGeneTics database (http: @imgt. Cines. Fr). This database is based on Lefranc, ⁇ ⁇ -P. Et al. [Nucleic Acids Research, 27, p.209-212 (1999)],
  • CDRs 1-3 The locations of the identified hypervariable regions (CDRs 1-3) are shown in FIGS. 1-4 along with the DNA and amino acid sequences.
  • the cDNA of the H chain and the L chain of the cleaved antibody gene are linked by a DNA encoding a linker sequence, and a restriction enzyme is used to incorporate this into an expression vector.
  • the primer containing the sequence the cDNA of the H chain and the L chain was amplified by PCR.
  • For the Dx315 OH chain change the sequence of the BamHI site from GGATCC to GGATTC, and design primers to include the sequence before and after the BamHI site. And amplified.
  • the linker DNA was amplified by PCR using primers containing a part of these sequences to ligate the H chain and L chain cDNAs by fill-in.
  • Linker-5 (3860H) GGT ACC CTG GTC ACT GTC TCT TCC GGA GGA GGC GGT TCA G (SEQ ID NO: 32)
  • Linker-3 (3860L) AGA TTC CTG AGT CAC AAC AGC CTG GGA TCC GCC ACC GCC AG (SEQ ID NO: 33 )
  • PCR amplification was performed as follows using rAq DNA polymerase (Toyobo) using GeneAmp PCR System 9700 (Applied Biosystems). That is, a reaction cycle of 94 ° CXI min, 58 ° CXI min, and 72 ° CX for 1 min was performed in 5 cycles, and further, 94 ° CX for 1 min, 48 ° CX for 1 min, and 72 ° CX A 1 minute reaction cycle was performed for 20 cycles. After PCR amplification, each PCR product was separated by 3% agarose gel electrophoresis. Cut out gel containing DNA fragment and extract DNA from gel using MagExtractor -PCR & Gel Clean Up- (Toyobo) did.
  • FIGS. 5-8 SEQ ID NOs: 56-59; only the amino acid sequence is SEQ ID NOs: 60-63).
  • Figure 5 shows a sc FV fragment (Dx3860HL) that contains, in this order, the H chain variable region of the monoclonal antibody DX3860, the linker, and the DX3860 L chain variable region from the N-terminal side. Positions 1-114 of the amino acid sequence represent the H chain variable region, positions 115-129 represent the linker, and positions 130-239 represent the L chain variable region.
  • Figure 6 shows a sc FV fragment (DX 3860 LH) that includes, in this order, the L chain variable region of the monoclonal antibody DX 3860, the linker, and the H chain variable region of DX 3860 from the N-terminal side.
  • positions 1-110 of the amino acid sequence represent the L chain variable region
  • positions 112-126 represent the linker
  • positions 127-240 represent the H chain variable region.
  • Figure 7 shows a scFV fragment (Dx315OHL) containing, in this order, the H chain variable region of the monoclonal antibody DX3150, the linker, and the DX3150 L chain variable region from the N-terminal side.
  • positions 1-118 represent the H chain variable region
  • positions 119-133 represent the linker
  • positions 134-243 represent the L chain variable region.
  • FIG. 8 shows a sc FV fragment (Dx3150 LH) containing, in this order, the L chain variable region of monoclonal antibody Dx3150, the linker, and the H chain variable region of Dx3150 from the N-terminal side.
  • positions 1-110 represent the L chain variable region
  • 112-126 represent the linker
  • 127-244 represent the H chain variable region.
  • PCR was performed by adding primers corresponding to both ends (NcoI-NotI) of scFV to the reaction solution.
  • a reaction cycle of 2 ° CX for 1 minute and 75 ° CX for 4 minutes was performed for 5 cycles, and a further 20 cycles of 95 ° CX for 1 minute, 55 ° CX for 1 minute, and 75 ° CX for 4 minutes were performed. .
  • the PCR product was separated by 1.5% agarose gel electrophoresis, the gel containing the scFv DNA fragment (730-740 bp) was cut out, and the DNA fragment was extracted from the gel. Then, the end of this DNA fragment was treated with restriction enzymes NcoI (New England BioLabs) and NotI (Toyobo) and purified again by MagExtractor.
  • the scFV DNA fragment was inserted into the NcoI-NotI site of the expression vector pET22 ⁇ , and E. coli XL1-B1ue was transformed with this expression vector.
  • E. coli XL1-B1ue was transformed with this expression vector.
  • DNA Ligetion Kit Ver.2 (Takara Shuzo) was used, and XL Competent Blue Competent Cells (STRATAGENE) were used as competent cells.
  • STRATAGENE XL Competent Blue Competent Cells
  • the expression vector pET22 ⁇ -Dx3860HL was introduced into Escherichia coli B and transformed into Escherichia coli B (pET22 ⁇ -DX380HL). 3150HL was introduced into Escherichia coli K-12 and transformed into Escherichia coli K-12 (pET22 ⁇ -DX3150HL) on February 27, 2003 Deposited with the Patent Organism Depositary of the National Research Institute, and obtained accession numbers F ERM BP-8305 and FERM BP-830, respectively.
  • sc FV fragment DX3860 Expression vector with HL integrated pET22 Escherichia coli Origami B (DE3) (Novagen) transformed with UM-Dx386 OHL is cultured at 37 ° C in 300 ml of LB medium until 6D600 becomes about 0.5. did. Then, the culture temperature was lowered to 25 ° C, and the culture was continued. When the OD600 reached about 1.0, IPTG (isopropylthiogalactoside) was added to the mixture so that the final concentration became 1 mM, and the cells were cultured overnight to induce the expression of scFV.
  • IPTG isopropylthiogalactoside
  • the cells After collecting about 1 g of the cells by centrifugation, the cells were suspended in 5 OmM Tris-HC1 (pH 8.0), 0.1 MNaCl, and lysozyme (final concentration: 0.2 mg / m1) And Triton X_100 (final concentration 1%) were added for lysis. Collect the precipitate by centrifugation (15,000 Xg, 20 minutes), wash the precipitate twice with a buffer containing 1.0% Triton X-100, and wash the precipitate containing scFv with approx. 0 mg was obtained.
  • ScFV obtained as inclusion bodies were added in a buffer of 25 mM PB, 350 mM NaC1, 6 M guanidine'HC1 (pH 7.4). C was left standing overnight to dissolve. After removing the residue by centrifugation (10,000 X g, 15 minutes), the mixture was applied to a -chelchel chelate column (Qiagen) equilibrated with the above buffer. After thoroughly washing the buffer with about 5 to 10 times the volume of the buffer, the buffer was replaced with the above buffer containing 20% glycerol and 400 mM arginine. The scFV bound on the chelating column was reconstituted using a gradient of guanidine'HC1 from 6 M to 0 M.
  • H chain variable region polypeptide Restriction enzyme containing L chain variable region of expression vector pET22 2 ⁇ -D x 3860 HL Escherichia coli Origami B (DE3) (Novagen) was transformed using the expression vector pET22-DX380H produced by removing the sequence between the sites BamHI-NotI. Using this transformant, H chain variable region polypeptide (polypeptide having an amino acid sequence represented by SEQ ID NO: 5) was expressed in the same manner as scFV.
  • the H chain variable region polypeptide obtained as an inclusion body was reconstituted on a nickel 'chelate column in the same manner as described above, and then isolated and purified using imidazole.
  • the protein concentration was determined by measuring the absorbance (280 rim) of the fraction eluted from the chelate column, and the solid-phased 2, 3, 4, 7, 8-Pe
  • the cells were collected by centrifugation, resuspended in 10 ml of 2 XYT medium containing 100 ⁇ g / m1 ampicillin and 50 ⁇ g / m1 kanamycin, and cultured overnight at 37 ° C. Single-chain antibody display phage were produced.
  • the culture solution was centrifuged, and 2 ml of a 20% polyethylene glycol solution containing 2.5 M NaC1 was added to 1 ml of the culture supernatant from which E. coli cells had been removed, and mixed. After leaving it on ice for 1 hour, it was centrifuged (10000 g x 20 minutes) under cooling. After the supernatant was completely removed, the resulting precipitate was dissolved in 1 ml of a 10-fold diluted Block Ace (Snow Brand) to obtain a single-chain antibody-displayed phage solution.
  • a 20% polyethylene glycol solution containing 2.5 M NaC1 was added to 1 ml of the culture supernatant from which E. coli cells had been removed, and mixed. After leaving it on ice for 1 hour, it was centrifuged (10000 g x 20 minutes) under cooling. After the supernatant was completely removed, the resulting precipitate was dissolved in 1 ml of a 10-fold diluted Block Ace (Snow Brand) to obtain a
  • the plate was transferred to a plate (100 ⁇ l / Pell) and reacted at room temperature for 1 hour in the presence of 8% DMS. After the reaction, add 300 ⁇ l of PBS containing 8% DMS O and 0.1% Tween 20 to each well of the plate.
  • M13K ⁇ 7 phage was added to a culture solution containing ampicillin (final concentration 100 ⁇ g / ml) and glucose (final concentration 2%) to a final concentration of 4 ⁇ 10 9 pfu / ml, and then incubated at 37 ° C. The cells were cultured at C for 1 hour.
  • the cells were resuspended in 10 ml of 2XYT medium containing 1 ⁇ 0 ⁇ g / m1 of ampicillin and 50 ⁇ g / m1 of kanamycin, and cultured overnight at 37 ° C.
  • a single-chain antibody-displayed phage was amplified and produced in a medium (phage rescue).
  • the amplified phage was recovered again by polyethylene glycol precipitation. Concentration and reinfection by biopanning and amplification by phage rescue were repeated 3 to 5 times.
  • a phage clone considered to be sufficiently enriched was infected with E. coli TG1 and plated on agar plates. (: Overnight and cultured in a single mouth. Six clones were randomly selected from a single colony of TG1 for each screening condition, phagemid was prepared by a conventional method, and this was used as a type II BigDye Terminator.
  • a sequencing reaction was performed using the Cycle Sequencing Ready Reaction Kit v3.0 (Applied Biosystems) Soil Genetic analyzer ABI PRISM 310 Genetic analyzer (Applied Biosystems) was used to analyze the base sequence and analyze four types of V H chain mutations. Introductory material (DX 3860HL- M # 5, D x 3860 L H- M # 1, Dx 3860
  • LH-M # 2, Dx3860 LH—M # 3 were obtained.
  • the amino acid sequences of these VH chain variants are shown in FIG. 11 and SEQ ID NOs: 64-67.
  • WT DX3860 wild type VH
  • 1-2 amino acid mutations were found.
  • the mutation site was not specified in the CDR site, but was also found in the framework.
  • a large amount of a recombinant antibody recognizing 2, 3, 4, 7, 8-PeCDF can be produced.
  • the recombinant antibody produced in this way is less expensive than the parent monoclonal antibody and can be used to immunologically capture 2,3,4,7,8-Pe CDF. It can be applied to
  • the use of mutated DNA allows the use of recombinant antibodies having more advantageous properties, such as recombinant antibodies with improved affinity for 2, 3, 4, 7, 8-Pe CDF, and stability. It is possible to produce recombinant antibodies and the like with improved quality, and it is also possible to overcome the problems of natural antibody proteins that are biological components

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明は、2,3,4,7,8-ペンタクロロジベンゾフラン(2,3,4,7,8-PeCDF)に結合活性を有する新規な組換抗体、そのアミノ酸配列をコードする遺伝子、該遺伝子を導入したベクター、該ベクターで形質転換された形質転換体、該組換抗体の製造方法、該組換抗体を用いる2,3,4,7,8-PeCDFの免疫学的捕獲法ならびに測定法に関する。本発明の組換抗体を用いて、ダイオキシン類、特に2,3,4,7,8-PeCDFを、免疫学的手法により、迅速、簡便、高感度に捕獲および測定することができる。

Description

明 細 書 ダイォキシンを認識する組換抗体おょぴ該抗体をコードする遺伝子 技術分野
本発明は、 2, 3, 4, 7, 8 -ペンタクロロジベンゾフラン(2, 3, 4, 7, 8-P e CD F)に結合活性を有する新規な組換抗体、 そのァミノ酸配列をコードする 遺伝子、 該遺伝子を導入したベクター、 該ベクターで形質転換された形質転換体、 該組換抗体の製造方法、 該組换抗体を用いる 2, 3, 4, 7, 8-P e CDFの免疫 学的捕獲法ならびに測定法に関する。 背景技術
内分泌撹乱物質による環境汚染が問題となり、 その汚染状況の把握ゃヒトの健 康への影響などの調査が進められている。 これら内分泌撹乱物質によるヒトゃ環 境への影響が明らかになるに従い、 日本のみならず世界各国においても重大な社 会的関心事となっている。 なかでもダイォキシン類については、 ヒトゃ生態系お よび環境への持続的な影響が懸念されおり、 汚染状況の把握や、 ヒトゃ生態系で の暴露状況の調查、 摂取ルートの解明、 さらには汚染箇所のダイォキシン量のモ ニタリングや汚染除去方法への対応が急務となっている。 ダイォキシン類は、 有 機塩素化合物の使用、 生産、 燃焼などの過程で生成することから発生源が多岐に 渡るとともに、 土壌、 水質、 大気、 食品、 海産物などにおいて広範な汚染が確認 されている。 従って、 膨大な生体試料や環境試料などの試料中のダイォキシン濃 度を測定し、 対策を講じる必要から、 ダイォキシン類の簡便かつ迅速な測定方法 の確立が望まれている。
ダイォキシン類には、 75種類のポリクロロジベンゾダイォキシン(P CDD) および 135種類のポリクロロジベンゾフラン(PCDF)からなる多数の構造異 性体が存在する。 最も毒性が高い 2, 3, 7, 8 -テトラクロロジベンゾパラダイォ キシン(2, 3, 7, 8- TCDD)の毒性を 1としたときの各ダイォキシン異性体の 相対毒性が毒性等価指数として示されており、 ダイォキシン類の分析においては 毒性の高レ、 7種類の PCDDおよび 10種類の P C D Fが測定対象物質とされて いる。 また、 内分泌撹乱物質の 1つとして以前から問題とされていたポリクロ口 ビフヱニール(PCB)のうち 12種類の共平面(co_planar) P C Bもダイォキシ ン類として測定されるようになった。
ダイォキシン類の測定は、 従来、 高分解能ガスクロマトグラフィー Zマススぺ クトロメトリー(HRGCZHRMS)分析により行われていた。 し力、し、 HRG CZHRMS法は、 試料中の妨害物質を除去するために多段階のクリーンアップ 操作を必要とし、 分析機器が高額であり、 力つ測定者の習熟を要するため、 特定 の分析機関においてのみ測定が可能であった。 ダイォキシン類の分析方法、 特に HRGC/HRMS法においては、 毒性の高い 17種類のダイォキシン異性体の 含有量を個々に定量し、 次いで各異性体の実測値に毒性等価指数を乗じた値の総 和を、 2, 3, 7, 8- TCDD相当量である毒性等量(TEQ)に換算し、 この換算 値をダイォキシン分析値として用いている。 従って、 データ解析を含め被検体の 分析に多大な時間を要する。 これらの理由力 ら、 ダイォキシン類のより簡便で安 価かつ高感度な測定方法の開発が強く望まれている。
また、 特定の指標物質を測定することにより、 より簡便にダイォキシン量(T E Q )を把握しょうという考え方が根強く存在している。 前駆体であるクロ口べ ンゼンを測定する方法もこの 1つである。 近年、 ダイォキシン異性体の 1つであ る 2, 3, 4, 7, 8-P e CDF量が、 ダイォキシン類の総 T E Qと非常に高レ、相 関性を有することが明らかになつてきた(高菅ら、 第 1 1回環境化学討論会講演 要旨集、 136頁、 2002年)。 土壌、 底質、 大気、 水質、 排ガス、 飛灰などの環境試 料、 母乳、 血液などの生体試料、 ならびに、 海産物、 食品などの広範な試料にお いても、 2, 3, 4, 7, 8- P e CDFは、 全ダイォキシンの主要構成成分であり、 その含有量はダイォキシン類の総 TEQと R=0.96〜0.99の高い相関を示 す。 従って、 2, 3, 4, 7, 8- P e CDFは、 ダイォキシン量を把握するための 指標物質として注目されている。
一方、 抗体を利用してダイォキシン類を定量する試みも行われている。
例えば、 特開 2002— 340882号公報には、 ダイォキシン類の捕集ュ- ット、 抽出ユニット、 分離精製ユニット、 および抗体を用いてダイォキシン類を 測定する測定ュニットの 4つのュニットから構成されるダイォキシン類の測定装 置および測定方法が記載されている。
また、 特開 2002-228660号公報には、 2, 3, 7, 8- TCDDに高親 和性のモノクローナル抗体を作製し、 これを用いてヒト血液や母乳などの生体試 料中のダイォキシン類を検出する方法が記載されている。
さらに、 特開 2002— 119279号公報には、 ダイォキシン類である複数 の異性体に対して交差反応性を有する数種の抗体を用い、 ダイォキシン類の存在 量を推定する方法が記載されている。
し力 し、 これらの文献には、 2, 3, 4, 7, 8_P e CDFを認識するモノクロ ーナル抗体、 ならびに、 該モノクローナル抗体をコードする遺伝子配列、 該遺伝 子配列に基づく組換抗体および該組換抗体を用いる 2, 3, 4, 7, 8-P e CDF の測定方法については記載されていなレ、。
また、 これら文献の方法は、 試料中に含まれるダイォキシン類の T E Qを把握 するには至らないという欠点を有する。 発明の開示
(発明が解決しようとする技術的課題)
本発明者らは、 HRGC/HRMS法で測定される 17種類のダイォキシン類 の主要構成成分であり、 かつ、 その含有量がダイォキシン類の総 TEQと高い相 関性を有する指標異性体である 2, 3, 4, 7, 8- P e CDFを、 免疫学的手法に より、 迅速、 簡便、 高感度に捕獲および測定する方法を確立しょうとした。
(その解決方法)
本発明者らは、 上記課題を解決するために、 2, 3, 4, 7, 8-P e CDF誘導 体を抗原として用いて、 通常の細胞融合法により、 2, 3, 4, 7, 8_P e CDF を認識するモノクローナル抗体を産生する 2株のハイブリドーマ、 即ち、 モノク ローナル抗体 D X 3860を産生するハイプリ ドーマ D X 3860 r 1およぴモ ノクローナル抗体 D 3150を産生するハイブリ ドーマ D 3150 r 1を得 た。
また、 本発明者らは、 これらのハイプリ ドーマ中に含まれる mRNAを単離お よび精製し、 この mR NAをもとに c D NAを合成した。 次いで、 この c D NA の中から、 モノクローナル抗体 D X 3 8 6 0の H鎖可変領域および L鎖可変領域 ならぴにモノクローナル抗体 D X 3 1 5 0の H鎖可変領域および L鎖可変領域を コードする c D NAを選択するため、 抗体遺伝子特有の配列を利用して P C Rを 行い、 目的の抗体遺伝子を特異的に増幅させた。 これら選択された c D NAの塩 基配列を解析し、 それらがコードするアミノ酸配列を推定した。
その結果、 モノクローナル抗体 D X 3 8 6 0の H鎖可変領域おょぴ L鎖可変領 域をコードする c D NAは、 それぞれ配列番号 1および 2で示され、 一方、 モノ クローナル抗体 D X 3 1 5 0の H鎖可変領域おょぴ L鎖可変領域をコードする c D N Aは、 それぞれ配列番号 3および 4で示されることがわかった。
また、 モノクローナル抗体 D X 3 8 6 0の H鎖可変領域および L鎖可変領域の 推定アミノ酸配列は、 それぞれ配列番号 5および 6で示され、 一方、 モノクロ一 ナル抗体 D X 3 1 5 0の H鎖可変領域および L鎖可変領域の推定ァミノ酸配列は、 それぞれ配列番号 7および 8で示されることがわかつた。
さらに、 本発明者らは、 上記抗体の可変領域中の超可変領域( C D R 1〜 3 )の ァミノ酸配列およびその位置を特定した。 超可変領域のァミノ酸配列を以下の表 1〜 4に示す。 表 1 : D x 3 8 6 0の H鎖可変領域中の超可変領域のァミノ酸配列
CDR 1 Gly-Phe-Thr-Phe-Ser-Ser-Tyr-Ala 配列番号 9
CDR 2 Phe-Ser-Asn-Gly-Gly-Ile-Thr 配列番号 1 0
CDR 3 Ala-Arg-Gly-Tyr-Gly-Pro-Ala-Tyr 配列番号 1 1 表 2 : D x 3 8 6 0の L鎖可変領域中の超可変領域のァミノ酸配列
CDR 1 Tlir一 Gl y_Al a— Va丄一 Thr— Thr—し eu— Asn— Tyr 配列番号 1 2
CDR 2 Asn-Tnr-Asn
CDR 3 Ala— Leu— Trp— Tyr— Ser— Asn— His—し eu 配列番号 1 3 表 3 : Dx 3150の H鎖可変領域中の超可変領域のァミノ酸配列
Figure imgf000006_0001
モノクローナル抗体 D X 3860の H鎖および L鎖可変領域中の超可変領域 (CDR 1〜3)の位置を、 DNA配列おょぴァミノ酸配列と共に、 それぞれ図 1 およぴ図 2に示す。 また、 モノクロ一ナル抗体 D X 3150の H鎖および L鎖可 変領域中の超可変領域( C D R 1〜 3 )の位置を、 D N A配列およびァミノ酸配列 と共に、 それぞれ図 3およぴ図 4に示す。
図 1において、 アミノ酸配列の 26〜33位が CDR 1を、 51〜57位が C DR 2を、 96— 103位が C D R 3を示す。
図 2において、 アミノ酸配列の 26〜34位が CDR 1を、 52〜54位が C
DR 2を、 91〜98位が CDR 3を示す。
図 3において、 アミノ酸配列の 26〜34位が CDR 1を、 52〜 58位が C DR2を、 97〜: 107位が CDR 3を示す。
図 4において、 アミノ酸配列の 26〜34位が CDR 1を、 52〜54位が〇 DR2を、 91〜99位が CDR 3を示す。
また、 本発明者らは、 上記抗体の可変領域をコードする DN Aを発現ベクター に組込み、 該ベクターを宿主細胞に導入し、 該宿主細胞において組換抗体を発現 させた。 さらに、 本発明者らは、 該組換抗体を用いて、 試料中の 2, 3, 4, 7, 8- P e CD Fを定量しうることを確かめた。 また、 本発明者らは、 上記抗体の 可変領域をコードする DN Aに変異を導入し、 この変異導入 DNAを用いて上記 のように組換抗体を発現させ、 該組換抗体を用いて、 試料中の 2, 3, 4, 7, 8 - P e CDFを定量しうることを確かめた。
即ち、 本発明は、 2, 3, 4, 7, 8 -ペンタクロロジベンゾフラン(2, 3, 4, 7, 8-P e CDF)に結合活性を有する組換抗体であって、
(1) 2, 3, 4, 7, 8-P e C D Fを認識するモノクローナル抗体 D x 3860 の H鎖可変領域を構成し、 配列番号 5で示されるァミノ酸配列を有するポリぺプ チド;
(2)該モノクローナル抗体 D X 3860の L鎖可変領域を構成し、 配列番号 6 で示されるァミノ酸配列を有するポリぺプチド;
(3) 2, 3, 4, 7, 8-P e C D Fを認識するモノクローナル抗体 D x 3150 の H鎖可変領域を構成し、 配列番号 7で示されるァミノ酸配列を有するポリぺプ チド;
( 4 )該モノクロ一ナル抗体 D X 3150の L鎖可変領域を構成し、 配列番号 8 で示されるァミノ酸配列を有するポリぺプチド;
(5)上記(1)〜(4)のポリぺプチドのァミノ酸配列に 95 %以上の相同性を有 するァミノ酸配列を有し、 2, 3,4, 7, 8- P e CDFに結合活性を有するポリ ぺプチド;ならびに
(6)上記(1)〜(5)のポリぺプチドのフラグメントであり、 2, 3, 4, 7, 8 - P e CDFに結合活性を有するポリぺプチド;
からなる群から選択される少なくとも 1つのポリぺプチドを含む組換抗体を提供 するものである。
また、 本発明は、 上記の組換抗体のアミノ酸配列をコードする DNA、 該 DN Aを含むク口一二ングまたは発現べクタ一、該べクターで形質転換した形質転換 体、 該形質転換体を用いて該組換抗体を製造する方法、 ならびに、 該組換抗体を 用いて 2, 3, 4, 7, 8- P e CD Fを免疫学的に捕獲および測定する方法を提供 するものである。
(従来技術より有効な効果)
本発明の組換抗体を用いて、 ダイォキシン類、 特に 2, 3, 4, 7, 8- P e CD Fを、 免疫学的手法により、 迅速、 簡便、 高感度に捕獲および測定することがで ぎる。 図面の簡単な説明
図 1は、 モノクローナル抗体 D X 3860の H鎖可変領域の DN A配列、 了ミ ノ酸配列および超可変領域( C D R 1〜 3 )の位置を示す。
図 2は、 モノクローナル抗体 D X 3860の L鎖可変領域の DN A配列、 ァミ ノ酸配列および超可変領域( C D R 1〜 3 )の位置を示す。
図 3は、 モノクローナル抗体 D X 3150の H鎖可変領域の DN A配列、 了ミ ノ酸配列および超可変領域( C D R 1〜 3 )の位置を示す。
図 4は、 モノクローナル抗体 D X 3150の L鎖可変領域の DN A配列、 了ミ ノ酸配列および超可変領域( C D R 1〜 3 )の位置を示す。
図 5は、 s c F Vフラグメント Dx 386 OHLの構成を示す。
図 6は、 s c F Vフラグメント D X 3860 LHの構成を示す。
図 7は、 s c Fvフラグメント Dx 3150HLの構成を示す。
図 8は、 s c F Vフラグメント Dx 3150 LHの構成を示す。
図 9は、 抗 2, 3, 4, 7, 8-P e CDF s c F vを用いた間接競合ィムノアツ セィにより、 2, 3, 4, 7, 8- P e CD Fを測定した結果を示すグラフである。 図 10は、 H鎖可変領域ポリペプチド画分と抗 2, 3, 4, 7, 8-P e CDF活 性の関係を示すグラフである。
図 1 1は、 モノクローナル抗体 D X 3860の VH鎖変異体のァミノ酸配列を 示す。
図 12は、 変異導入 D X 3860 s c F v提示ファージにより、 2, 3, 4, 7,
8-P e CDFを測定した結果を示すグラフである。
図 1 3は、 変異導入 D X 3860 s c F v提示ファージの抗体価を比較する グラフである。
図 14は、 変異導入 Dx 3860 s c F V提示ファージの DMSO存在下で の反応性を比較するグラフである。 発明を実施するための最良の形態
本発明で言う 「抗体」 には、 生体内に存在する天然型抗体の他に、 抗体の H鎖 もしくは L鎖の可変領域またはその組合せにより形成される、 少なくとも 1つの 抗原結合部位を有するポリぺプチドが含まれる。 このようなポリぺプチドには、 例えば、 H鎖または L鎖の可変領域のみを含むポリぺプチド、 1組の H鎖フラグ メントと L鎖からなる F a bフラグメント、 2組の H鎖フラグメントと L鎖から なる F ( a b ' ) 2フラグメント、 H鎖可変領域と L鎖可変領域がリンカ一により 1本に結合された一本鎖組換抗体( s c F V )などが含まれる。
s c F vには、 例えば、 N末端側から 「(H鎖可変領域) -(リンカ一) -(L鎖可 変領域)」 の順序で結合されたポリペプチド、 ならびに、 「(L鎖可変領域) -(リ ンカー) _ (H鎖可変領域)」 の順序で結合されたポリペプチドが含まれる。 リンカ 一は、 s c F Vが抗原に結合する際に、 H鎖可変領域および L鎖可変領域が効率 良く折り畳まれるように、 これらの領域の間に配置させるものである。 このリン カーは、 通常、 5〜1 5個のアミノ酸から構成されており、 例えば、 - (G l y 4 S e r ) 3-を例として挙げることができる。 本発明において使用するリンカ一は、 上記目的を達成できる限り、 ァミノ酸の数および種類に制限はない。
また、 本発明の組換抗体においては、 H鎖可変領域または L鎖可変領域の N末 端側および C末端側に、 さらに適当なアミノ酸配列が付カ卩されていてもよい。 例 えば、 以下の実施例において示すように、 「(: H鎖可変領域) -(リンカ一) -(L鎖 可変領域)」 ポリペプチドの場合には、 H鎖可変領域の N末端側に分泌シグナル 領域を、 L鎖可変領域の C末端側にェピトープタグ配列を付加することができる。 また、 「(L鎖可変領域) -(リンカー) - (H鎖可変領域)」 ポリペプチドの場合には、 L鎖可変領域の N末端側に分泌シグナル領域を、 H鎖可変領域の C末端側にェピ トープタグ配列を付加することができる。
本発明の組換抗体には、 抗体の H鎖もしくは L鎖の可変領域またはその組合せ により形成される少なくとも 1つの抗原結合部位を有するポリぺプチドの他に、 これらポリぺプチドと実質的に同じ機能を有する変異ポリぺプチドが含まれる。 本発明で言う 「実質的に同じ機能」 とは、 抗原に対する結合力が実質的に同じで あることを意味する。 即ち、 配列番号 5〜 8で示されるアミノ酸配列を有する本 発明の抗 2, 3, 4, 7, 8 - P e C D F抗体の H鎖おょぴ L鎖の可変領域は、 抗原 との結合力が実質的に同じである限り、 1またはそれ以上のアミノ酸の欠失、 置 換または付加変異を含むことができる。 このような本発明の変異ポリべプチドは、 配列番号 5〜 8で示されるアミノ酸配列に対して、 好ましくは 95 %以上、 さら に好ましくは 98 %以上、 最も好ましくは 99 %以上の相同性を有する。 また、 この変異は、 図 1〜4に示される抗体可変領域中の超可変領域(CDR 1〜3)以 外のフレームワークに存在するのが好ましい。
また、 本発明の組換抗体には、 配列番号 5〜8で示されるポリペプチドのフラ グメントであって、 元のポリぺプチドと実質的に同じ機能を有するフラグメント、 ならびに、 これらフラグメントの組合せにより形成されるポリぺプチドが含まれ る。 これらのフラグメントは、 図 1〜4に示される超可変領域(CDR 1〜3)の 少なくとも 1つ、 好ましくは 2つ、 さらに好ましくは 3つ全てを含有する。
本発明の組換抗体は、 所望のポリペプチドのアミノ酸配列をコードする DNA を調製し、 該 DN Aを発現ベクターに組込み、 該発現ベクターを宿主細胞に導入 し、 該宿主細胞を適当な培地中で培養して該組換抗体を発現させることにより製 造することができる。
所望のポリぺプチドのァミノ酸配列をコ一ドする D N Aは、 配列番号 1〜 4 (または図 1〜4)に示される cDNA配列またはアミノ酸配列に基づいて、 合成 により調製することができる。 別法によれば、 所望のポリペプチドのアミノ酸配 列をコードする DN Aは、 次のようにして得ることもできる。 即ち、 本発明者ら は、 以下の実施例において示すように、 N末端側からモノクローナル抗体 D X 3 860の H鎖可変領域、 リンカー、 Dx 3860の L鎖可変領域を、 この順序で 含むフラグメント(図 5を参照)を組込んだ発現べクターを作製し、 このベクター を大腸菌 Bに導入し、 この大腸菌 B (p ET22 Δ-Dx 3860HL)を特許生 物寄託センターに寄託した。 さらに、 本発明者らは、 N末端側からモノクローナ ル抗体 D X 3150の H鎖可変領域、 リンカー、 D X 3150の L鎖可変領域を、 この順序で含むフラグメント(図 7を参照)を組込んだ発現べクターを作製し、 こ のベクターを大腸菌 K-12に導入し、 この大腸菌 K- 12 (p ET 22 Δ- D X 3
150HL)を特許生物寄託センターに寄託した。 所望のポリペプチドのァミノ 酸配列をコードする DNAは、 これらの発現ベクターから適当な制限酵素を用い て切出し、 所望により D N A配列中に変異を加えることにより得ることができる。 また、 DN Aフラグメントの連結のために、 常法によりフラグメントの末端を修 飾することができる。
得られた DN Aフラグメントの発現ベクターへの組込みは、 市販の発現べクタ 一 [例えば、 p ET- 22 b (+)など]の所定のフラグメント揷入部位に合致させ るように、 DNAフラグメントの末端を加工し、 末端加工された DNAフラグメ ントを発現ベクターに揷入することによって行うことができる。
このようにして得た発現ベクターを、 適当な宿主細胞、 特に大腸菌 [例えば、 大腸菌 B株、 K- 1 2株、 BL 2 1 (DE 3)株など]に導入し、 挿入した DNAフ ラグメントの発現に適した培地で宿主細胞を培養することにより、 所望の組換抗 体を発現させることができる。 発現された組換抗体を、 常法により宿主細胞また はその培養液から回収することができる。 回収した組換抗体は、 例えばク口マト グラフィ一法によって精製することができる。
この方法により、 所望の組換抗体を、 血清を必要とする培地で動物細胞を培養 することにより得られるモノクローナル抗体より安価に、 かつ大量に製造するこ とができる。
得られた組換抗体を用いて試料中の 2, 3, 4, 7, 8-P e CDFを免疫学的に、 迅速に捕獲することができる。 このような捕獲法としては、 ィムノクロマトグラ フィ一や免疫沈降による 2, 3, 4, 7, 8- P e CDFの分離、 精製および濃縮方 法が含まれる。 また、 このような 2, 3, 4, 7, 8- P e CDFの捕獲作用を利用 することにより、 該組換抗体を用いて生体中に摂取されたダイォキシン類のうち 主要物質である 2, 3, 4, 7, 8-P e CDFを迅速に捕獲し、 除去することも可 であ 。
また、 得られた組換抗体を用いて試料中の 2, 3, 4, 7, 8_P e CDFを免疫 学的に迅速かつ高感度に測定することができる。 このような測定法には、 ラジォ ィムノアッセィ(R I A)、 酵素免疫測定(E I A)、 蛍光免疫測定(F I A)などが 含まれる。
また、 免疫学的測定法は非競合法と競合法に大別される。 本発明の組換抗体は 競合法に用いるのが好ましい。 この競合法には、 間接競合法と直接競合法が含ま れる。 間接競合法においては、 2, 3, 4, 7, 8- P e C D F誘導体を固定ィ匕し、 試料中の遊離 2, 3,4, 7, 8_P e CDFと固定化抗原との間で、 組換抗体との 反応を競合させる。 直接競合法においては、 組換抗体を固定ィ匕し、 試料中の 2, 3, 4, 7, 8-P e CDFの存在量に応じ、 該組換抗体に結合する標識 2, 3, 4, 7, 8-P e CDF誘導体の量を測定する。 実施例
以下に実施例を挙げて本発明を具体的に説明するが、 本発明はこれら実施例に 限定されるものではない。
抗 2, 3, 4, 7, 8_P e CDF抗体産生ハイプリ ドーマの調製
2, 3, 4, 7, 8-P e CD Fを認識するモノクローナル抗体を産生するハイプ リ ドーマを、 次のようにして調製した。 即ち、 初めに 2, 3, 4, 7, 8 _P e CD Fにアルキル鎖を導入し、 その末端を活性エステル体とした。 次いで、 これを、 常法に従い、 キヤリァータンパク質であるゥシ血清アルブミン(B S A)に導入し、 免疫用コンジュゲートを調製した。
この免疫用コンジュゲートを、 アジュバント RAS R-700 (Ribi社)中に十 分に乳化させ、 この乳ィ匕液 200 μ 1を BALB/cマウス(7週齢、 雌)の腹腔 内に投与して、 マウスを免疫感作した。 2週間毎に追加免疫を行い、 追加免疫よ り約 1週間の経過後に尾静脈より採血し、 血中抗体価を競合 E I A法により測定 した。
2, 3, 4, 7, 8-P e C D Fに対する高い抗体産生が確認されたマウスを選択 し、 尾静脈内に免疫用コンジュゲートを投与して、 最終免疫を行った。 最終免疫 より 3〜4日後に脾臓を摘出し、 脾臓細胞を調製した。 対数増殖期にあるマウス ミエ口一マ細胞( S p 2 ZO)と脾臓細胞を細胞数が 1 : 5になるように混合し、 ポリエチレンダリコール法( P E G法)にて細胞融合を行つた。 10%FCS含有 H A T培地に懸濁し、 96ゥエル培養プレートに分注(l S. S X I O5 7ゥェ ル)し、 37 °C、 5 % C〇 2下で培養した。
培養開始より 7〜10日後、 ハイプリ ドーマの増殖が見られたゥエルの培養上 清を一部採取し、 2, 3, 4, 7, 8-P e CD F誘導体 -B S Aコンジユゲートを固 相化したマイクロタイタープレートに添カ卩した。 室温で 1時間反応させた後、 0. 05% Tween 20含有 P B S (―)で洗浄した。 次いで、 プレートにペルォキシダ ーゼ標識抗マウス I gG(y鎖認識)抗体(KPL社)を加えて室温で 1時間反応さ せた後、 同様にプレートを洗浄した。 基質溶液(TMB基質、 KPL社)を加えて プレート上のペルォキシダーゼ活性を測定し、 培養上清中の抗体価を求めた。 高 い抗体価を示すゥエルのうち、 固相化 2, 3, 4, 7, 8-P e CDF誘導体- B S A コンジュゲートに対する抗体価が、 20%DMSOに溶解した 2, 3, 4, 7, 8 - P e CDFによって大きく阻害されるゥエルを選抜し、 該ゥエル中のハイプリ ド 一マを限界希釈法によりクローニングした。 クローニングにより単離された細胞 を培養することによって、 2, 3, 4, 7, 8-P e CDFを認識する 2種類のモノ クローナル抗体産生クローンを樹立した。
即ち、 このようにして、 モノクローナル抗体 D X 3860を産生するハイプリ ドーマ D 3860 r 1およびモノクローナル抗体 D x 3150を産生するハイ プリ ドーマ D X 31501- 1を得た。
m R N Aの単離および精製
抗 2, 3, 4, 7, 8- P e CDF抗体産生ハイブリ ドーマ D x 3860 r 1およ び D y— 31 50 r 1を、 5%C02通気条件下、 10 % F C Sを含有する R P M
I 1640培地中で増殖させた。 対数増殖期にある約 2.8〜 5.0 x 107個 の細胞から、 AG P C法 [Chomczynski, P., Sacchi.N. , Anal. Biochem., 162, p.156-159 (1987)]によって全 RN Aを抽出した。 次いで、 オリゴ dTがラテツ クスビーズに結合した Origotex-dT 30 (宝酒造)を用レ、て poly (A)+RNAを精製 した。
c DNAの合成
Mouse scFv Modu丄 e/Recombinant Phage Antibody System (Amersham
Pharmacia社)に含ま^ bる Primed first-strand reaction mixを用いて、 上 g己の poly(A)+RNAから c DNAを合成した。 得られた c DNAを铸型とし、 Mouse Ig- Primer Set (Novagen)および T a q D N Aポリメラーゼ(Applied
Biosystems社)を用いて PCRを行った。 D x 3860 H鎖には Mu I g VH5 '- Aと Mu I gVH 3 '-2のプライマーセットを、 Dx 315 OH鎖には Mu I g VH5'-Dと Mu I g VH3'- 2のプライマーセットを用いた。 また、 Dx 3 860 L鎖おょぴ Dx 3150 L鎖の両方には、 Mu I gえ VL 5' - Aと Mu I g VL3,- 1のプライマーセットを用いた。 用いたプライマーを以下の表 5に 示す。 PCR反応は次のように行った。 即ち、 Dx 3860H鎖と Dx 3 1 50 L鎖については、 94°CX 1分間、 50°CX 1分間、 72°CX 1分間の反応サ イタルを 30サイクル行い、 Dx 3 1 5 0H鎖については、 94°CX 1分間、 60°CX 1分間、 72 °CX 1分間の反応サイクルを 30サイクル行い、 Dx 3 860 L鎖については、 94°CX 1分間、 60°CX 1分間、 72°CX 1分間の 反応サイクルを 5サイクル行い、 その後さらに、 94°CX 1分間、 50 °C X 1 分間、 72 °C X 1分間の反応サイクルを 30サイクル行つた。 表 5 : cDNA合成用 PCRプライマ'
H鎖 5,側
Dx3860 MuIgVH5'-A GGGAATTCATGRASTTSKGGYTMARCTKGRTTT (配列番号 19) Dx3150 MuIgVn5'-D ACTAGTCGACATGGRCAGRCTTACWTYYTCATTCCT (配列番号 20)
ACTAGTCGACATGATGGTGTTAAGTCTTCTGTACCT (配列番号 21)
ACTAGTCGACATGGGATGGAGCTRTATCATSYTCTT (配列番号 22)
H鎖 3,側 (Dx3860, Dx3150共通)
MuIgVH3'-2 CCCAAGCTTCCAGGGRCCARKGGATARACIGRTGG (配列番号 23)
L鎖 5 '側 (Dx3860、 Dx3150共通)
Mulg λ VL5'-A GGGAATTCATGGCCTGGAYTYCWCTYWTMYTCT (配列番号 24)
L鎖 3,側 (0x3860, Dx3150共通)
Mulg λ VL3'-1 CCCAAGCTTAGCTCYTCWGWGGAIGGYGGRAA (配列番号 25) c DNAのサブクローニング
上記の P CR産物を、 TAクローニングキットである pGEM-T Easy Vector System I (Promega社)を用いて pGEM- T Easyに挿入した後、 大腸菌 XL 1- B 1 u eを形質転換した。 コンビテントセルとして、 XL1- Blue Competent Cells (STRATAGENE社)を使用した。
塩基配列の決定とァミノ酸配列の解析
pGEM-T Easyにサブクローニングした抗体遺伝子 c DNAクローンについて、 T 7プライマー(5'- TAATACGACTCACTATAGGG:配列番号 26)を用いて、 BigDye fermmator Cycle Sequencing Ready Reaction Kit v2.0 (Applied Biosysteras 社)によるシークェンス反応を行った。 次いで、 ABI PRISM 310 Genetic
Analyzer (Applied Biosystems社)にて配列を解析した。 その結果、 Dx 386 0抗体遺伝子の H鎖および L鎖可変領域をコードする c DN Aの塩基配列および その推定ァミノ酸配列 (配列番号 1および 2 )ならびに D X 3 1 50抗体遺伝子の H鎮および L鎖可変領域をコードする c DN Aの塩基配列およびその推定ァミノ 酸配列 (配列番号 3および 4 )を得た。 塩基配列の解析ならぴにァミノ酸配列の推 定およぴ解析には、 解析ソフト DNAsis (日立ソフトエンジニアリング)を使用した。 また、 配列番号 1〜4の配列中に含まれる超可変領域は、 ImMunoGeneTicsデー タベース(http: 〃imgt. cines. fr)の分類に従って特定した。 このデータベース は、 Lefranc, Μ· -P.ら [Nucleic Acids Research, 27, p.209-212 (1999)]、
Ruiz,M.ら [Nucleic Acids Research, 28, p.219 - 221 (2000)]、 および、
Lefranc, M. - P. [Nucleic Acids Research, 29, p.207-209 (2001) ]の論文を参照 して作成されている。 特定した超可変領域(CDR 1〜3)の位置を、 DNA配列 およびアミノ酸配列と共に、 図 1〜4に示す。
発現べクター Ρ ΕΤ22 Δの作製
市販べクターである p E T- 22 b (+) (Novagen社)の制限酵素サイト Xba I - Nco I間の配列を、 市販べクターである p ET-3 d (Novagen社)の制限酵素サイ ト Xba I -Nco I間の配列に置換して、 T 7/ 1 a cプロモーター、 ヒスチジン タグおよび T 7ターミネータ一を有する発現ベクター p ET 22 Δを作製した。 この発現ベクター p E T 22 Δを、 制限酵素 Nco I (New England BioLabs社)と
Not I (東洋紡社)で切断し、 その末端を Calf intestine Alkaline
Phosphatase (東洋紡社)により脱リン酸化処理した。 0. 7 %ァガロースゲル電気 泳動により、 切断した p ET 22 Δのバンドを分離し、 ゲルを切り出し、 . MagExtractor-PCR & Gel Clean Up- (東洋紡社)を用いて DNAをゲルより抽出 した。 この Nco I -Not Iサイトに、 以下のように s c F vフラグメントを組込 み、 これを s c F V発現ベクターとした。
c DNAからの s c F Vフラグメントの作製
クローユングした抗体遺伝子の H鎖おょぴ L鎖の c DNAを、 リンカー配列を コードする DNAにより連結し、 これを発現ベクターに組込むために、 制限酵素 配列を含むプライマ一を用いて、 H鎖おょぴ L鎖の c D N Aを P C Rで増幅した。 Dx 315 OH鎖は、 BamH Iサイトの配列を GGATCCから GGATTCに変更し、 かつ、 BamHIサイトの前後の配列を含むようにプライマーを設計し、 H鎖 DNAを 5 '側と 3'側の 2つに分け増幅した。 リンカー DNAは、 fill - inにより H鎖およ び L鎖の c DNAを連結するために、 これらの配列の一部を含むプライマーによ り PCRで増幅した。 これによつて、 一本鎖抗体のアミノ末端側が H鎖となるも のには、 H鎖センス DN A 3'端側の配列をリンカー DNAの 5'端側に、 L鎖セ ンス D NA 5 '端側の配列をリンカー D NAの 3 '端側に付加した。 また、 一本鎖 抗体のァミノ末端側が L鎖となるものには、 L鎖センス D N A 3 '端側の配列を リンカー DN Aの 5'端側に、 H鎖センス DNA5'端側の配列をリンカ一 DNA の 3'端側に付加した。 H鎖、 L鎖おょぴリンカ一 DNAの増幅に用いたプライ マーの糸且合せを表 6およぴ表 7に示す。
表 6 : scF v構築用 P C Rプライマー
リンカー用オリゴ (センス)
GGA GGA GGC GGT TCA GGC GGA GGT GGC TCT GGC GGT GGC GGA TCC (酉己歹幡号 27)
Dx3860 HL
•H
/"*八 「
3860H 5 (Nco) G ACC ATG GAA GTG AAG CTG GTG GAG TCC GGG GG (配列番号 28)
3860H 3* (Mro) CC TCC GGA AGA GAC AGT GAC CAG GGT ACC TTG GC (配列番号 29)
•: L鎖
3860L 5, (Bam) GC GGA TCC CAG GCT GTT GTG ACT CAG GAA TCT (配列番号 30)
3860L 3, (Not) G AGC GGC CGC GCC TAG GAC AGT CAG TTT GGT (配列番号 31)
•リンカー延長
リンカ一 5, (3860H) GGT ACC CTG GTC ACT GTC TCT TCC GGA GGA GGC GGT TCA G (配列番号 32) リンカ - 3 (3860L) AGA TTC CTG AGT CAC AAC AGC CTG GGA TCC GCC ACC GCC AG (配列番号 33)
Dx3860 LH
3860L 5' (Nco) G ACC ATG GCC CAG GCT GTT GTG ACT CAG GAA TCT (配列番号 34)
3860L 3' (Mro) CC TCC GGA GCC TAG GAC AGT CAG TTT GGT TCC TCC (配列番号 35)
•H鎖
3860H 5' (Bam) GC GGA TCC GAA GTG AAG CTG GTG GAG TCC GGG GGA GG (配列番号 36)
3860H 3' (Not) G AGC GGC CGC TGC AGA GAC AGT GAC CAG AGT (配列番号 37)
•リンカー延長
リンカ— 5' (3860L) ACC AAA CTG ACT GTC CTA GGC TCC GGA GGA GGC GGT TCA G (配列番号 38) リンカ— 3' (3860H) CCC GGA CTC CAC CAG CTT CAC TTC GGA TCC GCC ACC GCC AG (配列番号 39)
表 7: sc F v構築用 P C Rプライマー (続き)
Dx3150 HL
- «:鎖(5 '側)
3150H 5' (Nco) G ACC ATG GAT GTA CAG CTT CAG GAG TCA GGA CC (配列番号 40)
3150H (128at) CC TGG AAA CTG CCG AAT CCA GTT CCA GT (配列番号 41) 鎮(3 '側)
3150H (lOlsn) AC TGG AAC TGG ATT CGG CAG TTT CCA GG (配列番号 42)
3150H 3' (Mro) CC TCC GGA GGA GAC TGT GAG AGT GGT ACC TTG GC (配列番号 43)
3150L 5' (Bam) GC GGA TCC CAG GCT GTT GTG ACT CAG GAA TCT (配列番号 44)
3150L 3' (Not) G AGC GGC CGC GCC TAG GAC AGT CAG TCT GGT (配列番号 45)
•リンカー延長
リンカ一 5' (3150H) GGT ACC ACT CTC ACA GTC TCC TCC GGA GGA GGC GGT TCA G (配列番号 46) リンカ - 3' (3150L) AGA TTC CTG AGT CAC AAC AGC CTG GGA TCC GCC ACC GCC AG (配列番号 47)
Dx3150 LH
•L鎖
3150L 5' (Nco) G ACC ATG GCC CAG GCT GTT GTG ACT CAG GAA TCT (配列番号 48)
3150L 3' (Mro) CC TCC GGA GCC TAG GAC AGT CAG TCT GGT TCC TCC (配列番号 49) 鎖(5 '側)
3150H 5' (Bam) GC GGA TCC GAT GTA CAG CTT CAG GAG TCA GGA CCT GG (配列番号 50)
CC TGG AAA CTG CCG AAT CCA GTT CCA GT (配列番号 51)
- 11鎖(3 '側)
3150H (lOlsn) AC TGG AAC TGG ATT CGG CAG TTT CCA GG (配列番号 52)
3150H 3' (Not) G AGC GGC CGC TGA GGA GAC TGT GAG AGT GGT (配列番号 53)
'リンカー延長
リンカ— 5' (3150L) ACC AGA CTG ACT GTC CTA GGC TCC GGA GGA GGC GGT TCA G (配列番号 54) リンカ— 3' (3150H) TCC TGA CTC CTG AAG CTG TAC ATC GGA TCC GCC ACC GCC AG (配列番号 55)
P C R増幅を、 GeneAmp PCR System 9700 (Applied Biosystems社)を使用し、 r T a q D N Aポリメラーゼ (東洋紡社)を用いて、 次のように行った。 即ち、 9 4 °C X I分間、 5 8 °C X I分間、 7 2 °C X 1分間の反応サイクルを 5サイク ル行レ、、 さらに 9 4 °C X 1分間、 4 8 °C X 1分間、 7 2 °C X 1分間の反応サイ クルを 2 0サイクル行った。 P C R増幅の後、 各 P C R産物を 3 %ァガロースゲ ル電気泳動により分離した。 D N Aフラグメントを含むゲルを切り出し、 MagExtractor -PCR & Gel Clean Up- (東洋紡社)を用いて D N Aをゲルから抽出 した。 次いで、 抽出した H鎖、 L鎖およびリンカ一 DNAの 3種類の DNAを混 合し、 r Ta q DNAポリメラーゼ(東洋紡社)を用いて 94°CX 1. 5分、 6 5 °CX 3分の反応サイクルを 20サイクノレ行う力、、 あるいは、 P f u DNAポ リメラーゼ (STRATAGENE社)を用いて 95°CX 1.5分、 65 °C X 6分の反応サイ クルを 20サイクル行うことにより、 H鎖、 L鎖おょぴリンカ一 DNAを連結し た。
このように連結した s c F Vフラグメントを、 それがコードするァミノ酸配列 と共に、 図 5〜 8 (配列番号 56〜59 ;ァミノ酸配列のみは配列番号 60〜 6 3)に示した。
図 5 (配列番号 56 )は、 N末端側からモノクローナル抗体 D X 3860の H鎖 可変領域、 リンカー、 D X 3860の L鎖可変領域を、 この順序で含む s c F V フラグメント(Dx 3860HL)を示すものであり、 そのアミノ酸配列の 1〜1 14位は H鎖可変領域を、 1 15〜129位はリンカーを、 130〜239位は L鎖可変領域を示す。
図 6 (配列番号 57)は、 N末端側からモノクローナル抗体 D X 3860の L鎖 可変領域、 リンカー、 D X 3860の H鎖可変領域を、 この順序で含む s c F V フラグメント(D X 3860 LH)を示すものであり、 そのアミノ酸配列の 1〜1 10位は L鎖可変領域を、 1 12〜126位はリンカ一を、 127〜240位は H鎖可変領域を示す。
図 7 (配列番号 58 )は、 N末端側からモノクローナル抗体 D X 3150の H鎖 可変領域、 リンカー、 D X 3150の L鎖可変領域を、 この順序で含む s c F V フラグメント(Dx 315 OH L)を示すものであり、 そのアミノ酸配列の 1〜1 18位は H鎖可変領域を、 1 19〜133位はリンカ一を、 134〜243位は L鎖可変領域を示す。
図 8 (配列番号 59 )は、 N末端側からモノクローナル抗体 D x 3150の L鎖 可変領域、 リンカ一、 Dx 3150の H鎖可変領域を、 この順序で含む s c F V フラグメント(Dx 3150 LH)を示すものであり、 そのアミノ酸配列の 1〜1 10位は L鎖可変領域を、 1 12〜126位はリンカ一を、 127〜244位は H鎖可変領域を示す。 さらに、 得られた s c F vフラグメントを増幅するために、 反応溶液に s c F Vの両端(Nco I -Not I )に対応するプライマーを加えて P C Rを行った。 D x 3 8 6 0については、 9 4°CX 1分、 6 7°CX 1分、 7 2°CX 2分の反応サイ クルを 5サイクル行い、 さらに 94°CX 1分、 6 0 °C X 1分、 7 2°CX 2分の 反応サイクルを 2 0サイクル行った。 D X 3 1 5 0については、 9 5 °C X 1分、
6 2°CX 1分、 7 5 °CX 4分の反応サイクルを 5サイクゾレ行い、 さらに 9 5 °C X 1分、 5 5 °C X 1分、 7 5 °C X 4分の反応サイクルを 20サイクル行つた。 P CR産物を、 1. 5%ァガロースゲル電気泳動により分離し、 s c F vの DN Aフラグメント(7 30〜740 b p)を含むゲルを切り出し、 DNAフラグメン トをゲルから抽出した。 次いで、 この D N Aフラグメントの末端を、 制限酵素 N co I (New England BioLabs社)および Not I (東洋紡社)により処理し、 再度 MagExtractorにより精製した。
s c F V DNAフラグメントを、 発現べクタ一 p ET 2 2 Δの Nco I -Not I サイトに挿入し、 この発現ベクターで大腸菌 XL 1-B 1 u eを形質転換した。 ライゲーションには DNA Ligetion Kit Ver.2 (宝酒造社)を用い、 コンピテントセ ノレとして XL卜 Blue Competent Cells (STRATAGENE社)を使用した。 サブクローニン グしたクローンについて、 s c F V·部分の配列を解析し、 正しい配列を有するク ローンを選択して s c F Vの発現に用いた。 このようにして、 s c F Vフラグメ ント D X 3 8 6 0HLを含む発現ベクター p ET 2 2 Δ- D X 3 8 6 0HLなら ぴに s c F Vフラグメント D x 3 1 5 0 H Lを含む発現ベクター p E T 2 2厶-
D X 3 1 5 0HLを得た。
発現ベクター p ET 2 2 Δ-D x 3 8 6 0HLは、 大腸菌 Bに導入し、 大腸菌 B ( p ET 2 2 Δ— D X 3 8 6 0HL)として、 また、 発現ベクター p ET 2 2厶ー D X 3 1 5 0HLは、 大腸菌 K-1 2に導入し、 大腸菌 K- 1 2 (p ET 2 2 Δ- D X 3 1 5 0HL)として、 平成 1 5年 2月 2 7日に独立行政法人産業技術総合研 究所特許生物寄託センターに寄託され、 それぞれ受託番号 F ERM B P— 8 3 0 5および FERM B P- 8 3 0 6を取得した。
大腸菌での発現
s c F Vフラグメント D X 3 8 6 0 H Lが組込まれた発現ベクター p E T 2 2 厶- D x 3 8 6 OHLで形質転換した大腸菌 Origami B (DE3) (Novagen社)を、 L B培地 3 0 0m l中、 〇D 6 00が約 0. 5になるまで 3 7°Cで培養した。 次い で、 培養温度を 2 5 °Cに下げて培養を続けた。 OD 6 0 0が約 1. 0になった時 点で、 I P T G (イソプロピルチオガラクトシド)を終濃度が 1 mMになるように 添カ卩し、 終夜培養して、 s c F Vの発現を誘導した。 遠心により菌体約 1 gを回 収した後、 5 OmMトリス- HC 1 (p H8. 0)、 0. 1 M N a C 1中に懸濁し、 リゾチーム(終濃度 0. 2 m g /m 1 )および Triton X_ 1 0 0 (終濃度 1 %)を加 えて溶菌した。 遠心( 1 5, 000 X g、 20分間)により沈殿を回収し、 沈殿を 1. 0% Triton X- 1 0 0を含む緩衝液で 2回洗浄し、 s c F vを含む沈殿を 約 1 0 0m g得た。
s c F Vの再構成
封入体として得られた s c F Vを、 2 5 mM P B、 3 5 0 mM N a C 1 , 6 Mグァニジン 'HC 1 (p H7. 4)の緩衝液中に加え、 4。Cで終夜静置して溶解し た。 遠心(1 0, 0 0 0 X g、 1 5分間)により残渣を除去した後、 上記の緩衝液 にて平衡化した-ッケルキレートカラム(Qiagen社)に適用した。 力ラム容積の約 5〜 1 0倍量の緩衝液にて力ラムを十分に洗浄した後、 2 0 %グリセ口ールぉよ び 4 0 0 mMアルギニンを含む上記緩衝液に交換した。 6 Mから 0 Mまでのグァ 二ジン 'HC 1のグラジェントを用いて、 キレートカラム上に結合した s c F V を再構成させた。 2 5mM P B、 3 5 OmM N a C 1、 2 0%グリセロール、 5 0 mMィミダゾールの溶液( p H 7. 4 )でカラムを洗浄した後、 ィミダゾール 濃度を 3 0 0 mMに上げて s c F Vを溶出させた。
抗 2, 3, 4, 7, 8-P e CDF s c F vを用いた間接競合ィムノアッセィによ る 2, 3, 4, 7, 8— P e CDFの?則定
マイクロタイタープレートに 2, 3, 4, 7, 8- P e CD F誘導体- B S Aコンジ ュゲート( 1 μ g /m 1 ) 5 0 μ 1を加え、 室温で 1時間反応させた。 0. 0 5% Tween 20含有 P B S (—)でマイクロタイタープレートの各ゥエルを洗浄し、 ブロ ックエース(雪印社)を加え、 室温で 2時間静置してブロッキングを行った。 マイ クロタイタープレートを洗净後、 各濃度に調製した 2, 3, 4, 7, 8- P e CDF (2 0% DMSO溶液) 2 5 μ I と抗 2, 3, 4, 7, 8— P e CDF s c F vの溶 液 2 5 1を添カ卩し、 室温で 0. 5〜 1時間反応させた。 再度マイクロタイター プレートを洗浄した後、 2 0 0 0倍希釈した抗 tetra- His抗体(Qiagen社)を加え、 室温で 1時間反応させた。 次!/、で、 3 0 00倍希釈したペルォキシダーゼ標識抗 マウス I g G(y鎖認識)抗体 (KPL社) 5 0 μ ΐを添加し、 室温で 1時間反応させ た。 マイクロタイタープレートの各ゥエルを十分に洗浄して未反応液を除去した 後、 基質溶液(ΤΜΒ基質、 KPL社)を加え、 室温で 1 5分間静置した。 5 Ο μ 1 の 1 Μ Η 3 Ρ Ο 4を添加して反応を停止させ、 プレートリーダー(Labsystems社) により OD 4 5 0 (対照:〇D 6 00)を測定した。 この結果を図 9にグラフで示 す。 このグラフから、 抗 2, 3, 4, 7, 8-P e CDF s c F vにより、 高感度に 2, 3, 4, 7, 8-P e C D Fを測定できることが明らかである。
H鎖可変領域ポリぺプチドの 2, 3, 4, 7, 8-P e CD F結合活性の確認 発現ベクター p ET 2 2 Δ-D x 3 8 6 0 H Lの L鎖可変領域を含む制限酵素 サイト BamH I - Not I間の配列を除去して作製した発現べクター p E T 2 2厶- D X 3 8 6 0Hを用いて大腸菌 Origami B (DE3) (Novagen社)を形質転換した。 この形質転換体を用いて、 s c F Vと同様に、 H鎖可変領域ポリぺプチド (配列 番号 5で示されるァミノ酸配列を有するポリぺプチド)の発現を行つた。
封入体として得られた H鎖可変領域ポリペプチドを、 上記と同様に、 ニッケル' キレートカラム上で再構成した後、 ィミダゾールを用いて単離および精製した。 キレートカラムより溶出された画分について、 吸光度(2 8 0 rim)を測定してタ ンパク質濃度を求め、 さらに、 E I A法により固相ィ匕した 2, 3, 4, 7, 8- P e
CDF- B S Aコンジユゲートへの反応性を検討した。 この結果、 図 1 0に示す ように、 H鎖可変領域ポリぺプチド画分に抗 2, 3, 4, 7, 8- P e CD F活性を 認め、 H鎖可変領域ポリぺプチドカ 2, 3, 4, 7, 8- 6〇0?に結合活性を有 することを確認した。
H鎖への変異導入と変異体の 2, 3, 4, 7, 8-P e CDF結合活性の確認 モノクローナル抗体 D X 3 8 6 0の遺伝子配列をもとに、 変異導入抗体遺伝子 ライブラリーの作製を行った。 抗体の H鎖可変領域 (VH)の遺伝子を錶型とし、 5 '側および 3 '側の配列に制限酵素サイトを付加したプライマーを設定し、 error-prone P C Rにより変異を導入した。 error— prone P CRは、 T a q D NAポリメラーゼが増幅中にしばしば読み間違えを起こす†生質を利用し、 さらに 塩化マンガンの添加により P CRの際の読み間違いを意図的に誘発し、 ランダム な変異を導入する方法である。 この PCR産物を、 制限酵素による末端の処理と 精製の後、 その制限酵素サイトを利用して単鎖抗体発現ファージミドの H鎖遺伝 子と置き換え、 これを用いて大腸菌 TG 1を形質転換した。
形質転換した大腸菌の培養液 1 Om 1に、 アンピシリンを終濃度 1 00 μ g/ m lとなるように、 また、 Ml 3 K〇 7ファージを終濃度 4 X 1 09 p f u/m 1となるよう添加し、 3 7でで 1時間培養した。 遠心分離により菌体を回収し、 アンピシリン 1 00 μ g/m 1とカナマイシン 50 μ g/m 1を含む 2 XYT 培地 1 0m lに再懸濁し、 3 7 °Cで終夜培養して培地中に単鎖抗体提示ファージ を産生させた。 培養液を遠心分離し、 大腸菌菌体を除いた培養上清 1 Om lに対 し、 2. 5M N a C 1含有 20 %ポリエチレングリコール溶液 2 m 1を加え、 混 和した。 氷上で 1時間静置した後、 冷却下、 遠心分離(10000 g X 20分 間)した。 上清を完全に除去した後、 得られた沈殿を 1 0倍希釈ブロックエース (雪印社) 1 m 1に溶解させ、 単鎖抗体提示ファージ溶液とした。
調製した単鎖抗体提示ファージから、 2, 3, 4, 7, 8-P e CDF誘導体、 2, 3, 7, 8- T CDF誘導体、 およびクロ口ベンゼン誘導体に対する反応性の高い クローンを濃縮するため、 バイオバニングを行った。 調製したファージ溶液を、 まずプロッキング剤のみを固相化したマイクロタイタープレート中でプレインキ ュベート( 1 00 μ 1 /ゥエル、 室温、 1時間)することにより、 非特異的結合を 排除した。 次いで、 2, 3, 4, 7, 8- P e CDF誘導体、 2, 3, 7, 8-TCDF 誘導体、 およびクロ口ベンゼン誘導体の各 B S Aコンジユゲートを固相化してブ 口ックエースでブロッキングしたマイクロタイタープレートに移し(1 00 μ 1 /ゥエル)、 8%DMS〇存在下に室温で 1時間反応させた。 反応終了後、 プレ 一トの各ゥエルに 8%DMS Oおよび 0. 1% Tween 20含有 PB S (—) 300 μ
1を添カ卩し、 ピペッティングし、 5分間静置した後、 洗浄緩衝液を廃棄した。 こ の洗浄操作を 3回繰り返した後、 洗浄液を完全に除去し、 0. 1 Μグリシン-塩酸 緩衝液 (ρΗ2. 2) 1 00 1 /ゥエルを加え、 1 0分間静置した。 ピぺッティ ングを行って、 固相化抗原から遊離した単鎖抗体提示ファージを回収し、 直ちに トリス溶液(pH 8.0)を加えて中和した。
2 XYT培地 2.5ml中で培養した大腸菌 TG 1 (OD 600nm=0.3)の培養 液に、 バイォバニングにより回収したファージ溶液を混和し、 37でで 1時間培 養してファージを再感染させた。 次に、 アンピシリン (終濃度 100 μ g/ml) およびグルコース(終濃度 2%)を含む培養液に、 終濃度 4 X 109p f u/ml となるよう M13K〇7ファージを添加し、 さらに 37 °Cで 1時間培養を行つた。 遠心分離により菌体を回収した後、 アンピシリン 1◦ 0 μ g/m 1とカナマイシ ン 50 μ g /m 1を含む 2 X Y T培地 10mlに再度懸濁し、 37 °Cで終夜培 養した。 これにより、 単鎖抗体提示ファージを増幅し、 培地中に産生させた(フ ァージレスキュー)。 増幅したファージを、 再びポリエチレングリコール沈殿に より回収した。 バイオパニングによる濃縮と再感染およびファージレスキューに よる増幅を、 3〜 5回繰り返した。
十分濃縮されたと考えられるファージクローンを、 大腸菌 TG 1に感染させ、 寒天平板培地にプレーテイングし、 30。(:で終夜培養して単一コ口ユー化した。 スクリーニング条件ごとに T G 1の単一コロニーから 6クローンずつを無作為に 選び、 常法によりファージミドを調製し、 これを铸型として BigDye Terminator Cycle Sequencing Ready Reaction Kit v3.0 (Applied Biosystems†土)によるン' ークエンス反応を行った。 ジェネティックアナライザ ABI PRISM 310 Genetic Analyzer (Applied Biosystems社)により塩基配列を解析し、 4種類の VH鎖変 異導入体(D X 3860HL- M# 5、 D x 3860 L H- M# 1、 Dx 3860
LH - M# 2、 D x 3860 L H— M# 3 )を得-た。 これら VH鎖変異体のァミノ 酸配列を、 図 11および配列番号 64〜 67に示した。 D X 3860野生型 VH (WT)と比較したところ、 1〜 2個のアミノ酸の変異が見られた。 また、 変異導 入箇所は CD R部位に特定されず、 フレームワークにも認められた。
いずれの変異体も間接競合ィムノアッセィにより 2, 3, 4, 7, 8-P e CDF を認識することを確認した(図 12 )。 また、 抗体価や DM S O中での反応性には 差が見られ、 抗体価おょぴ DM SO中での安定性はいずれも、 変異体の方が野生 型を上回る結果を示した(図 13および図 14)。 さらに、 この傾向は形質転換し た大腸菌 [Origami B (DE3)]にて発現させた各 s c F vにおいても保持されてい た。 産業上の利用の可能性
本発明により提供される D N Aを用いて宿主細胞内で発現させることにより、 2, 3, 4, 7, 8-P e CD Fを認識する組換抗体を大量に製造することができる。 このように製造された組換抗体は、 親モノクローナル抗体より安価であり、 それ を用いて 2, 3, 4, 7, 8- P e C D Fを免疫学的に捕獲することができ、 免疫測 定に応用することができる。 また、 変異を導入した DNAを用いることにより、 さらに有利な特性を有する組換抗体、 例えば、 2, 3, 4, 7, 8-P e CDFへの 親和性が向上した組換抗体や安定性が改善された組換抗体などを製造することが でき、 生体成分である天然の抗体タンパク質が有する問題点の克服も可能となる

Claims

請 求 の 範 囲
1. 2, 3, 4, 7, 8 _ペンタクロロジベンゾフラン(2, 3, 4, 7, 8-P e CD F )に結合活性を有する組換抗体であって、
(1) 2, 3, 4, 7, 8-P e CD Fを認識するモノクローナル抗体 D x 3860 の H鎖可変領域を構成し、 配列番号 5で示されるァミノ酸配列を有するポリぺプ チド;
(2)該モノクローナル抗体 D X 3860の L鎖可変領域を構成し、 配列番号 6 で示されるァミノ酸配列を有するポリぺプチド;
(3) 2, 3, 4, 7, 8-P e CDFを認識するモノク口ーナル抗体 D x 3150 の H鎖可変領域を構成し、 配列番号 7で示されるァミノ酸配列を有するポリぺプ チド;
(4)該モノクローナル抗体 D X 3150の L鎖可変領域を構成し、 配列番号 8 で示されるァミノ酸配列を有するポリぺプチド;
(5)上記(1)〜(4)のポリぺプチドのァミノ酸配列に 95 %以上の相同性を有 するァミノ酸配列を有し、 2, 3,4, 7, 8- P eCDFに結合活性を有するポリ ぺプチド;ならびに
( 6 )上記( 1 )〜( 5 )のボリぺプチドのフラグメントであり、 2, 3, 4, 7, 8- P e CDFに結合活性を有するポリぺプチド;
からなる群から選択される少なくとも 1つのポリぺプチドを含む組換抗体。
2. (5)のポリペプチドが、 ( 1 )〜( 4 )のポリぺプチドのァミノ酸配列に 9 8%以上の相同性を有するアミノ酸配列を有し、 2, 3, 4, 7, 8- P e CDFに 結合活性を有するポリぺプチドである請求項 1に記載の組換抗体。
3. モノクローナル抗体 D X 3860の H鎖可変領域を構成し、 配列番号 5で 示されるアミノ酸配列を有するポリペプチド、 または該ポリペプチドのアミノ酸 配列に 95%以上の相同性を有するアミノ酸配列を有し、 2, 3, 4, 7, 8- P e CDFに結合活性を有するポリぺプチド、 ならびに、 モノクローナル抗体 D X 3 860の L鎖可変領域を構成し、 配列番号 6で示されるァミノ酸配列を有するポ リぺプチド、 または該ポリぺプチドのァミノ酸配列に 95 %以上の相同性を有す るアミノ酸配列を有し、 2, 3, 4, 7, 8-P e C D Fに結合活性を有するポリべ プチドを含む請求項 1に記載の組換抗体。
4. モノクローナル抗体 D X 3150の H鎖可変領域を構成し、 配列番号 7で 示されるァミノ酸配列を有するポリぺプチド、 または該ポリペプチドのアミノ酸 配列に 95%以上の相同性を有するアミノ酸配列を有し、 2, 3,4, 7, 8_P e CDFに結合活性を有するポリぺプチド、 ならびに、 モノクローナル抗体 D X 3 1 50の L鎖可変領域を構成し、 配列番号 8で示されるアミノ酸配列を有するポ リぺプチド、 または該ポリぺプチドのァミノ酸配列に 95 %以上の相同性を有す るアミノ酸配列を有し、 2, 3, 4, 7, 8-P e C D Fに結合活性を有するポリぺ プチドを含む請求項 1に記載の組換抗体。
5. 請求項 1に記載の組換抗体のァミノ酸配列をコードする DNA。
6. 請求項 5に記載の D N Aを含むクローニングまたは発現べクタ一。
7. 請求項 6に記載のクロ一二ングまたは発現べクタ一で形質転換した形質転 換体。
8. 請求項 1に記載の組換抗体の製造方法であって、 請求項 7に記載の発現べ クターで形質転換した形質転換体を適当な培地中で培養し、 該形質転換体または 培地から組換抗体を回収することを含んでなる方法。
9. 2, 3, 4, 7, 8-P e CDFを免疫学的に捕獲する方法であって、 請求項 1に記載の組換抗体を使用することを特徴とする方法。
10. 2, 3, 4, 7, 8- P e CDFを免疫学的に測定する方法であって、 請求 項 1に記載の組換抗体を使用することを特徴とする方法。
PCT/JP2004/004355 2003-03-28 2004-03-26 ダイオキシンを認識する組換抗体および該抗体をコードする遺伝子 WO2004087764A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/550,951 US7381798B2 (en) 2003-03-28 2004-03-26 Recombinant antibody recognizing dioxin and gene encoding the antibody
EP04723765A EP1616885B1 (en) 2003-03-28 2004-03-26 Recombinant antibody recognizing dioxin and gene encoding the antibody
JP2005504305A JP4077481B2 (ja) 2003-03-28 2004-03-26 ダイオキシンを認識する組換抗体および該抗体をコードする遺伝子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-091663 2003-03-28
JP2003091663 2003-03-28

Publications (1)

Publication Number Publication Date
WO2004087764A1 true WO2004087764A1 (ja) 2004-10-14

Family

ID=33127288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004355 WO2004087764A1 (ja) 2003-03-28 2004-03-26 ダイオキシンを認識する組換抗体および該抗体をコードする遺伝子

Country Status (4)

Country Link
US (1) US7381798B2 (ja)
EP (1) EP1616885B1 (ja)
JP (1) JP4077481B2 (ja)
WO (1) WO2004087764A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1307301C (zh) * 2005-08-23 2007-03-28 中国科学院武汉病毒研究所 一种检测二恶英的单链抗体方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0818228D0 (en) * 2008-10-06 2008-11-12 Avecia Biolog Ltd Purification process
EP3262411B1 (en) 2015-02-25 2022-04-06 Vanderbilt University Antibody-mediated neutralization of marburg virus
WO2020010235A1 (en) * 2018-07-05 2020-01-09 H. Lee Moffitt Cancer Center And Research Institute Inc. Car t cells that target b-cell antigens

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002119279A (ja) * 2000-10-16 2002-04-23 Food & Drug Safety Center ダイオキシンに対するモノクローナル抗体及びその用途

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798807A (en) * 1986-06-24 1989-01-17 The Regents Of The University Of California Monoclonal antibodies and method for detecting dioxins and dibenzofurans
FI890341A (fi) * 1988-01-26 1989-07-27 Hoechst Ag Foerfarande foer immunodiagnostisk bestaemning av polyhalogenerade, plana, polycykliska, aromatiska kolvaeten.
JP2002228660A (ja) 2001-02-05 2002-08-14 Enbiotec Laboratories:Kk ダイオキシン類の検出方法
JP2002340882A (ja) 2001-03-12 2002-11-27 Osaka Gas Co Ltd ダイオキシン類の測定装置及び測定方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002119279A (ja) * 2000-10-16 2002-04-23 Food & Drug Safety Center ダイオキシンに対するモノクローナル抗体及びその用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OMURA NAOYA ET AL.: "Dioxin-rui no jinsoku kan'i sokutei men'eki sokutei (immunoassay)-ho", ENVIRONMENTAL MANAGEMENT, vol. 39, no. 3, 10 March 2003 (2003-03-10), pages 251 - 256, XP002982521 *
STANKER L.H. ET AL.: "Monoclonal antibodies for dioxin: antibody characterization nad assay development", TOXICOLOGY, vol. 45, no. 3, 1987, pages 229 - 243, XP001189336 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1307301C (zh) * 2005-08-23 2007-03-28 中国科学院武汉病毒研究所 一种检测二恶英的单链抗体方法

Also Published As

Publication number Publication date
US20060269977A1 (en) 2006-11-30
JPWO2004087764A1 (ja) 2006-06-29
EP1616885A1 (en) 2006-01-18
US7381798B2 (en) 2008-06-03
EP1616885A4 (en) 2006-07-26
EP1616885B1 (en) 2012-10-10
JP4077481B2 (ja) 2008-04-16

Similar Documents

Publication Publication Date Title
US8148085B2 (en) Donor specific antibody libraries
Yamanaka et al. Chicken monoclonal antibody isolated by a phage display system.
US6818748B2 (en) Cloning, expression, sequencing, and functional enhancement of monoclonal ScFv antibody against Venezuelan equine encephalitis virus (VEE)
CN112794899B (zh) 一种抗新型冠状病毒的全人源单克隆中和抗体及其应用
Singh et al. Construction of a single-chain variable-fragment antibody against the superantigen staphylococcal enterotoxin B
Deng et al. Recombinant single-chain variable fragment antibodies directed against Clostridium difficile toxin B produced by use of an optimized phage display system
EP3650465A1 (en) Novel populations of polypeptides having a triple-helical structure
JPH11127861A (ja) C型肝炎ウイルス由来のセリンプロテアーゼに対する中和抗体部分ペプチド
KR101631054B1 (ko) 마이코박테리아 유래 CFP-10 또는 Ag85B에 특이적으로 결합하는 항체 또는 그의 항원 결합 단편
EP2121019A1 (en) A new immunoglobulin against helicobacter pylori
EP1457559A1 (en) ARTIFICIAL ANTIBODY LIBRARY WITH SUPER−REPERTORY
WO2004087764A1 (ja) ダイオキシンを認識する組換抗体および該抗体をコードする遺伝子
US20090215092A1 (en) Antibodies for Anthrax
US8507655B2 (en) Antibody against anthrax toxins
Link et al. Selection of phage-displayed anti-guinea pig C5 or C5a antibodies and their application in xenotransplantation
Nishi et al. Preparation and characterization of monoclonal and recombinant antibodies specific to the insecticide malathion
Pokorny et al. Inhibition of Cryptosporidium parvum infection of a mammalian cell culture by recombinant scFv antibodies
EP0915158A2 (en) Improvements in or relating to detection of salmonella
JPH10507341A (ja) ファージ技術を用いる触媒性抗体の単離および産生
Ravn et al. Identification of phage antibodies toward the Werner protein by selection on Western blots
CN114437225B (zh) 一种抗沙丁胺醇和/或克伦特罗单克隆抗体和应用
US7615218B2 (en) Methods for determining and lowering caffeine concentration in fluids
JP2007534759A (ja) 設計デコイタンパク質を用いる溶液相バイオパニング方法
WO2013021277A1 (en) Recombinant ant-bovine iga antibody and uses thereof
Fu et al. Isolation of single chain variable fragments against six esters of pyrethrins by subtractive phage display

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005504305

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004723765

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004723765

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006269977

Country of ref document: US

Ref document number: 10550951

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10550951

Country of ref document: US