WO2004086017A1 - X-ray imaging device - Google Patents

X-ray imaging device Download PDF

Info

Publication number
WO2004086017A1
WO2004086017A1 PCT/JP2004/003743 JP2004003743W WO2004086017A1 WO 2004086017 A1 WO2004086017 A1 WO 2004086017A1 JP 2004003743 W JP2004003743 W JP 2004003743W WO 2004086017 A1 WO2004086017 A1 WO 2004086017A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
ray imaging
imaging apparatus
frame transfer
ccd
Prior art date
Application number
PCT/JP2004/003743
Other languages
French (fr)
Japanese (ja)
Inventor
Koichi Omori
Manabu Nishihara
Toshikazu Yoneda
Sueki Baba
Original Assignee
Matsushita Electric Industrial Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co. Ltd. filed Critical Matsushita Electric Industrial Co. Ltd.
Publication of WO2004086017A1 publication Critical patent/WO2004086017A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • A61B6/51

Definitions

  • the present invention relates to an X-ray imaging apparatus that irradiates an object with X-rays and captures a fluoroscopic image thereof.
  • CCDs Charge Coupled Devices
  • FFT-CCDs full-frame transfer CDs
  • FFT-CCDs full-frame transfer CDs
  • the FFT-CCD has a configuration in which the same element of a unit pixel has a storage function that replaces photons incident on the CCD with electric charges and stores them, and a transfer function that performs ⁇ / load.
  • the X-ray generator used in the X-ray inspection device has a weak X-ray output, the amount of X-ray incident on the CCD differs depending on the position of the shutter depending on the opening and closing of the shutter. As a result, there is also a disadvantage that even when irradiating a uniform amount of X-rays, an image with different brightness in the screen can be obtained.
  • an X-ray sensor using an FFT-CCD has the advantage of high sensitivity and low noise, but requires only a still image to be captured using a normal focus X-ray generator with high X-ray output. Not used only for dental intraoral radiographing device ⁇ panoramic radiographing device. And it had a problem that it could not be used for X-ray inspection equipment for nondestructive inspection.
  • the present invention solves the above-mentioned conventional problems, and provides an X-ray inspection apparatus that can use FFT-CCD.
  • the present invention provides an X-ray generator that irradiates X-rays, a sensor that receives X-rays emitted from an mB3 X-ray generator, a controller that controls the sensor, the X-ray generator, and the sensor
  • An X-ray inspection apparatus having a shielding unit for passing and shielding X-rays, wherein a full-frame transfer CCD is used as the sensor, and a rotating member is used as the shielding unit.
  • An X-ray detection apparatus is provided, in which a portion for passing X-rays is provided in a part of the rotating member, the rotating member is rotated in one direction, and the full-frame transfer CCD allows X-rays to pass when charge is leaked.
  • FIG. 1 is a schematic diagram illustrating a configuration of an X-ray imaging apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a timing chart illustrating an operation method according to the first embodiment of the present invention.
  • FIG. 3 is an evening timing chart illustrating a method of operating the V 2> 3o (5th Embodiment 2).
  • Figure 1 shows an X-ray source 1, an X-ray exit 2, a shield 3 made of a fan-shaped metal plate, an FFT-CCD sensor 4, a motor 5 with a rotating shaft mounted at the center of the shield 3, and a position sensor 6, an FFT-CCD sensor controller 7, an X-ray controller 8, a personal computer (hereinafter referred to as a PC) 9, an object to be inspected 10, and a housing 11 are shown.
  • a PC personal computer
  • FIG. 2 is a timing chart illustrating the operation method.
  • A is a moving image preparation command transmitted from the PC 9 to the controller 7
  • B is a moving image operation command transmitted from the PC 9 to the X-ray controller 8
  • C is a controller from the PC 9 to the controller.
  • 7 shows the motion stop command sent to 7
  • D shows the rotation operation status of the motor 5
  • E shows the shutter open signal sent from the position sensor 6,
  • F shows the transfer operation of the FFT-CCD sensor 4.
  • the motor 5 rotates at the time of Hi.
  • X-ray generation source 1 is provided in the direction of the upper inside surface of housing 12.
  • X-ray source 1 is a microfocus X-ray tube with a focal size of 7 m, and the output is 10 W. Therefore, for example, when the X-ray tube voltage is 70 kV, only a tube current of 140 A can flow. I can't do that. With a normal focus X-ray with a focus size of 700 m, the tube current can flow up to about 8 mA, so that the intensity of the X-ray emitted from the X-ray exit 2 is lower than that of a normal focus X-ray. One order of magnitude lower.
  • the X-ray controller 8 controls the X-ray source 1.
  • X-ray controller 8 sends X-ray ON / OFF signals and X-ray control signals such as tube voltage and tube current commands to X-ray source 1.
  • a shield 3 is provided at the X-ray exit 2 in the X-ray beam irradiation direction.
  • the shielding body 3 is composed of a fan-shaped shielding portion 3A composed of a member mainly composed of stainless steel, and a fan-shaped X-ray passing portion 3B that has no shielding portion 3A and transmits X-rays.
  • the shield 3 is moved in one direction by a motor 5, that is, the X-ray source
  • the shield 3 functions as an X-ray shutter.
  • Tungsten constituting the shield 3 is a material having an atomic number of 74 and a density of 19.3, and has a high X-ray shielding ability but a high density and a heavy material. In this case, a high torque motor
  • a motor 5 By rotating in one direction by using 5, it is possible to open and close the shaft with small load movement.
  • a motor 5 for example, a Suatsunog motor is used.
  • the X-rays that have passed through the X-ray passing section 3B pass through the inspection object 10 and are transmitted through the FFT-CCD sensor.
  • the FFT-CCD sensor 4 is provided with a position sensor 6 for detecting the open / closed state of the shield 3, and a CCD controller 7 for controlling the operation thereof is connected to the shield 3.
  • CCD controller 7 is connected to PC 9 for transmitting control commands.
  • An X-ray control unit 8 is also connected to PC 9.
  • the video capture preparation command A is sent from the PC 9 to the CCD controller 7, and the camera enters the image capture standby state.
  • the video operation command B is sent to the X-ray controller 8.
  • a rotation start instruction is transmitted to the motor 5 and the shield 3 starts rotating as shown in D.
  • the position sensor 6 detects the presence or absence of the shield 3A.
  • the output of the position sensor 6 becomes Hi as shown in E.
  • the output of the position sensor 6 is transmitted to the CCD controller 7, and when it is Hi, the FFT—CCD sensor 4 enters the accumulation period.
  • the X-rays incident on the FFT-CCD sensor 4 are converted into signal charges and stored in the pixels constituting the FFT-CCD sensor 4.
  • the output of the position sensor 6 becomes Low, and as shown in F, the FFT-CCD sensor 4 enters the readout period.
  • the signal charges accumulated in the FFT-CCD sensor 4 are transferred, an image signal is output from the FFT-CCD sensor 4, transferred to the PC 9 via the CCD controller 7, and an image is displayed.
  • the rotation of the shield 3 is continued, the cycle of accumulation and transfer is continuously repeated as shown by E and F, and a moving image is displayed on the screen of the PC 9.
  • the moving image operation stop command C is transmitted from the PC 9, the rotation is stopped and the imaging operation ends.
  • the fan-shaped shield 3 made of tungsten with excellent shielding ability in one direction FFT—X-rays incident on the CCD sensor 4 can be intermittently blocked.
  • FFT—X-rays incident on the CCD sensor 4 can be intermittently blocked.
  • the shielding time of the shield 3 differs in the plane of the FFT-CCD sensor 4 and the exposure time is microscopically different in the imaging plane of the CCD sensor 4.
  • this phenomenon is called “keri” by shield. This is a Japanese word.
  • the shield 3 reciprocates, a difference in the plane of the FFT-CCD sensor 4 during the exposure time due to the above-mentioned burr occurs in the same direction at the time of rising and falling, so that the difference of the exposure time is enlarged. Since the exposure time of one screen is short in moving image shooting, the difference in the exposure time deteriorates the image quality of the shot image.
  • the X-ray generation source 1 is on the upper surface of the apparatus and the position of the FFT-CCD sensor 4 is on the lower surface of the apparatus has been described.
  • the present invention is not limited to this, and it suffices that the X-ray source 1 and the FFT-CCD sensor 4 are located at positions facing each other.
  • the shield 3 is provided near the exit 2, the exit 2 and the FF Any location may be used as long as the shield 3 is located between the T-CCD sensor 4.
  • the shield 3 is made of tungsten, but any structure including an element having a high shielding ability with an atomic number of 50 or more and a density of 3 or more such as lead, tin, iron, and copper can be used in the same manner. .
  • FIGS. Fig. 3 shows a still image capture preparation command A1 sent from the PC 9 to the CCD controller 7, a still image operation command B1 sent from the PC 9 to the X-ray controller 8, and a
  • the operation command D 1 sent to the motor 5, the charge accumulation command E 1 sent to the CCD controller 7, the FFT—the transfer operation F 1 from the CCD sensor 4 to the PC 9, and the position sensor 6 are output
  • FIG. 6 is a timing chart showing shutter opening signals G 1 respectively.
  • the configuration of the device is the same as that of the first embodiment, and a detailed description thereof will be omitted.
  • the PC 9 sends the still image capture preparation command A1 to the CCD controller 7, and enters the image capture standby state. Subsequently, the still image operation command B 1 is sent to the X-ray controller 8. Upon receiving the odd-numbered operation command, a rotation start instruction is transmitted to the motor 5 and the shield 3 starts rotating and stops at the X-ray passage section 3B. Next, a command to rotate the motor 5 in the same direction is given by the even-numbered command, and the shield 3 stops at the position where the shielding unit 3 A is arranged at the emission port 2 of the X-ray generator 1.
  • the presence or absence of the shielding portion 3A is detected by the position sensor 6.
  • the output of the position sensor 6 becomes Hi as shown by G1.
  • the output of the position sensor 6 is transmitted to the CCD controller 7 and when Hi, the FFT-CCD sensor 4 enters the accumulation period, and the X-rays incident on the FFT-CCD sensor 4 are converted into signal charges, and the FFT-CCD sensor 4 Are accumulated in the pixels constituting
  • the blocking unit 3A is located at the emission port 2
  • the output of the position sensor 6 becomes Low, and the FFT-CCD sensor 4 enters the readout period as indicated by F1.
  • the signal charge stored in the FFT-CCD sensor 4 is transferred, and an image signal is output from the FFT-single CCD sensor 4, transferred to the PC 9 via the CCD controller 7, and stored as image data.
  • These operations are performed in multiple cycles, and the image data in each cycle is added, or the added data is divided according to the number of repetitions of the cycle, and stored in the storage of the PC 9 as a still image data. Is displayed on the screen.
  • the shield 3 rotates in the same direction, as in the first embodiment, the surface of the FFT-CCD sensor 4 due to the X-ray dose of the shield 3 that is incident on the FFT-CCD sensor 4 Inner variation is minimized when reciprocating. As a result, a uniform X-ray image can be captured even with the above-described low exposure time.
  • the fan-shaped shield 3 made of evening stainless steel having excellent shielding ability is rotated in one direction, and the image is stored multiple times at the X-ray passing position and the image is stored at the shielding position. Repeat the transfer.
  • the image signal sent from the FFT-CCD sensor 4 can be accumulated to the saturation capacity of the FFT-CCD sensor 4 or more. Therefore, the dynamic range of the device is FFT—the saturation capacity of the CCD sensor 4, that is, the pixel It can be expanded regardless of the size and can take excellent SZN images. Also, by repeating the sampling of the image a plurality of times, the quantum noise of the image is reduced and a smooth image with less noise can be taken.
  • the X-ray source 1 is described as the upper surface of the apparatus, and the position of the FFT-CCD sensor 4 is described as the lower surface of the apparatus.
  • the present invention is not limited to this. It suffices if the X-ray source 1 and the FFT-CCD sensor 4 are at opposing positions.
  • the shield 3 is provided close to the output port 2, but any location may be used as long as the shield 3 is located between the output port 2 and the FFT-CCD sensor 4.
  • the shield 3 is made of tungsten, but any structure may be used as long as the structure includes an element having an atomic number of 50 or more and a high density of 3 or more such as lead, tin, iron, and copper.
  • the use of the X-ray imaging apparatus of the present invention makes it possible to take an X-ray moving image with an FFT-CCD sensor having high sensitivity and low noise. Further, the image signal can be stored without being restricted by the saturation capacity due to the pixel size of the FFT-CCD sensor. As a result, an X-ray image with a wide dynamic range can be taken, and quantum variations in the image can be suppressed, and a smooth image can be taken.
  • the present invention can provide an X-ray imaging apparatus capable of expanding the dynamic range regardless of the saturation capacity of the FFT-CCD sensor 4, that is, regardless of the pixel size, and capturing an image with an excellent SZN ratio.

Abstract

An X-ray imaging device comprising a full-frame transfer CCD sensor. The device comprises an X-ray generation unit for emitting an X-ray, a full-frame transfer CCD sensor (4) for receiving an X-ray emitted from the X-ray generation unit, and a shield material (3) disposed between the X-ray generation unit and the full-frame transfer CCD sensor (4), wherein an X-ray is beamed to or shut out from the full-frame transfer CCD sensor (4) by rotating/moving the shield material (3), and signals are stored when an X-ray is beamed to the full-frame transfer CCD sensor (4) and stored signal are transferred or output when it is shut out.

Description

明細書  Specification
X線撮像装置 技術分野  X-ray imaging equipment
本発明は、 被撮像物に X線を照射し、 その透視画像を撮影する X線撮像装置に関する。 背景技術  The present invention relates to an X-ray imaging apparatus that irradiates an object with X-rays and captures a fluoroscopic image thereof. Background art
近年、 X線検査装置において、 X線撮像器として 2次元 X線ィ メージャーを用いたデジタル撮影方式が注目されている。 デジ夕 ル撮影方式は画像のダイナミックレンジが広く、 従来のアナログ 撮影方式では捉えることのできない微小な X線画像の濃淡差を検 出できる。デジタル撮影の為の 2次元 X線イメージヤーとしては、 X線を検出できる X線 C C Dセンサや X線フラッ トパネルが知ら れている。 中でも X線 C C Dは、 ノイズレベルが低いので S /N 比の優れた X線画像の撮影が可能である。 このような X線検査装 置が特開 2 0 0 1一 1 6 5 8 7 3号公報に開示されている。  2. Description of the Related Art In recent years, digital imaging systems using a two-dimensional X-ray imager as an X-ray imaging device have attracted attention in X-ray inspection apparatuses. The digital imaging method has a wide dynamic range of images, and can detect minute differences in the density of X-ray images that cannot be captured by conventional analog imaging methods. X-ray CCD sensors and X-ray flat panels that can detect X-rays are known as two-dimensional X-ray imagers for digital imaging. Above all, X-ray CCD has low noise level, so it is possible to take X-ray images with excellent S / N ratio. Such an X-ray inspection apparatus is disclosed in Japanese Patent Application Laid-Open No. 2001-165873.
C C D (電荷結合素子) にはフルフレーム トランスファ一 C C 、 フレーム トランスファー C C D及びインターライントランス ァ一 C C Dがある。 その中で、 フルフレーム トランスファ一 C D (以後 F F T— C C Dという) は素子の大型化が容易である と、検出感度が高いことから X線 C C Dセンサには適している。 また、 X線イメージャの画素数を上げれば上げるほど精細な画 像撮影が可能となり、 近年は 1 0 0万以上の画素数が求められて レ る。 F F T— C C Dは、 C C Dに入射した光子を電荷に恋換し蓄積 する蓄積機能 、 ¾.し/こ 荷を する転送機能とを単位画素 の同一要素に持たせる構成となつている その結果、 外部のシャ ッ夕 ,„ 台匕と併用して画像を撮る必要がめ しの場合 、 可視光のような光の遮断が容易な場合はフォ一カル プレーンシャッ夕一等の可視光を遮断するシャツ夕一を用いれば 良い 。 しかし 、 X線は透過力を有するので 、 このようなシャツタ で遮断することはできない CCDs (Charge Coupled Devices) include a full-frame transfer CC, a frame transfer CCD, and an interline transfer CCD. Among them, full-frame transfer CDs (hereinafter referred to as FFT-CCDs) are suitable for X-ray CCD sensors because of their easy detection of large elements and high detection sensitivity. Also, as the number of pixels of the X-ray imager increases, more precise image shooting becomes possible. In recent years, more than 1,000,000 pixels have been required. The FFT-CCD has a configuration in which the same element of a unit pixel has a storage function that replaces photons incident on the CCD with electric charges and stores them, and a transfer function that performs し / load. In the case where it is necessary to take an image in combination with the shading of the sun, or in the case of a shade, it is easy to block light such as visible light. However, since X-rays have penetrating power, they cannot be blocked by such shirts.
そのために 、 鉛ゃタングステン等の重 <て密度の高い X線遮蔽 能力の高い材料を用いる必要がある。 しかし、 短時間で開閉する には機構的な負荷が大きくなるので、 短時間でのシャッターの連 続開閉が必要となる動画を撮影することができなかった。  Therefore, it is necessary to use a material having a high density and a high X-ray shielding ability, such as lead-tungsten. However, opening and closing in a short period of time increases the mechanical load, so it was not possible to shoot a moving image that required continuous opening and closing of the shutter in a short period of time.
また、 X線検査装置に用いられる X線発生器は X線出力が弱い 為、 C C Dに入射する X線量がシャッターの開閉に依存して位置 により異なる。 その結果、 均一な光量の X線を照射しても、 画面 内の明るさが異なる画像が得られるという欠点も有していた。  In addition, since the X-ray generator used in the X-ray inspection device has a weak X-ray output, the amount of X-ray incident on the CCD differs depending on the position of the shutter depending on the opening and closing of the shutter. As a result, there is also a disadvantage that even when irradiating a uniform amount of X-rays, an image with different brightness in the screen can be obtained.
これらの理由により、 F F T— C C Dを用いた X線センサは感 度が高く ノィズが低いという利点を有しながら、 X線出力が高い ノーマルフォーカス X線発生器を用い、 静止画像の撮影しか必要 としない歯科用の口腔内撮影装置ゃパノラマ撮影装置に使われる のみであった。 そして、 非破壊検査を目的とした X線検査装置に は用いられないという課題を有していた。  For these reasons, an X-ray sensor using an FFT-CCD has the advantage of high sensitivity and low noise, but requires only a still image to be captured using a normal focus X-ray generator with high X-ray output. Not used only for dental intraoral radiographing device ゃ panoramic radiographing device. And it had a problem that it could not be used for X-ray inspection equipment for nondestructive inspection.
また、 F F T — C C Dは 1 回の蓄積で画像を撮影するので、 画 像のダイナミ ックレンジは C C Dの飽和電荷量に制約される。  In addition, since FFT-CCD captures an image with one accumulation, the dynamic range of the image is limited by the saturation charge of CCD.
C C Dの画素サイズを小さく し分解能を上げると、 飽和電荷量 が減りダイナミ ックレンジが減少するという 萌も有していた。 ら 、 t 細画像を撮影する為に C C Dの画素数を増やせば 増やすほど、 C C Dセンサ内部で蓄積された 荷の転送時間が長Increasing the resolution by reducing the pixel size of the CCD increases the saturation charge And the dynamic range was reduced. Therefore, as the number of CCD pixels is increased to capture a thin image, the transfer time of the load accumulated inside the CCD sensor increases as the number of pixels increases.
<なり撮影周期が長 <なる課題を有していた <The shooting cycle was long.
本発明は上記従来の課題を解決するもので 、 F F T一 C C Dを 用いることがでさる X線検査装置を提供する 発明の開示  The present invention solves the above-mentioned conventional problems, and provides an X-ray inspection apparatus that can use FFT-CCD.
本発明は、 X線を照射する X線発生部と、 m B3 X線発生部から 照射された X線を入射するセンサと 、 前記センサを制御する制御 部と、 前記 X線発生部と前記センサの間に配置し 、 X線の通過と 遮蔽を行う遮蔽部とを有する X線検查装置であつて 、 前記センサ としてフルフレ ム 卜ランスファ一 C C Dを用い 、 記遮蔽部と して回転部材を用い、 前記回転部材の一部に X線を通過させる通 過部を設け、 一方向に前記回転部材を回転させ、 前記フルフレー ム 卜ランスファ C C Dが電荷漏時に X線を通過させる X線検 查装置を提供する。 図面の簡単な説明  The present invention provides an X-ray generator that irradiates X-rays, a sensor that receives X-rays emitted from an mB3 X-ray generator, a controller that controls the sensor, the X-ray generator, and the sensor An X-ray inspection apparatus having a shielding unit for passing and shielding X-rays, wherein a full-frame transfer CCD is used as the sensor, and a rotating member is used as the shielding unit. An X-ray detection apparatus is provided, in which a portion for passing X-rays is provided in a part of the rotating member, the rotating member is rotated in one direction, and the full-frame transfer CCD allows X-rays to pass when charge is leaked. provide. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明の実施の形態 1 における X線撮影装置の構成を 示す概略図である  FIG. 1 is a schematic diagram illustrating a configuration of an X-ray imaging apparatus according to Embodiment 1 of the present invention.
図 2は、 本発明の実施の形態 1 における動作方法を説明する夕 ィミンクチャ一 でめ 。  FIG. 2 is a timing chart illustrating an operation method according to the first embodiment of the present invention.
図 3は、 半 5¾明の実施の形態 2 V >3o (■フ 動作方法を説明する夕 イミングチヤー である。 発明を実施するための最良の形態 FIG. 3 is an evening timing chart illustrating a method of operating the V 2> 3o (5th Embodiment 2). BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について図面を用いて説明する。 (実施の形態 1 )  Hereinafter, embodiments of the present invention will be described with reference to the drawings. (Embodiment 1)
以下、 図 1及び図 2 を用いて、 実施の形態 1 を説明する。  The first embodiment will be described below with reference to FIGS.
図 1 は、 X線発生源 1 、 X線の出射口 2、 扇状の金属板からな る遮蔽体 3 、 F F T— C C Dセンサ 4、 遮蔽体 3 の中心に回転軸 を取り付けたモータ 5、 位置センサ 6 、 F F T— C C Dセンサの 制御器 7 、 X線制御器 8、 パーソナルコンピュータ (以後 P Cと いう) 9、 被検査物 1 0、 筐体 1 1 とを有する X線撮影装置を示 している。  Figure 1 shows an X-ray source 1, an X-ray exit 2, a shield 3 made of a fan-shaped metal plate, an FFT-CCD sensor 4, a motor 5 with a rotating shaft mounted at the center of the shield 3, and a position sensor 6, an FFT-CCD sensor controller 7, an X-ray controller 8, a personal computer (hereinafter referred to as a PC) 9, an object to be inspected 10, and a housing 11 are shown.
図 2は動作方法を説明するタイミングチャートである。 図 2 に おいて、 Aは P C 9から制御器 7 に送信される動画取り込み準備 コマンドを、 Bは P C 9から X線制御器 8 に送信される動画動作 コマンドを、 Cは P C 9から制御器 7 に送信される動画動作停止 コマンドを、 Dはモータ 5の回転動作状態を、 Eは位置センサ 6 より送信されるシャッター開信号を、 Fは F F T— C C Dセンサ 4の転送動作をそれぞれ示している。 なお、 Dに示すチャー トに おいて H i の時モータ 5が回転する。  FIG. 2 is a timing chart illustrating the operation method. In FIG. 2, A is a moving image preparation command transmitted from the PC 9 to the controller 7, B is a moving image operation command transmitted from the PC 9 to the X-ray controller 8, and C is a controller from the PC 9 to the controller. 7 shows the motion stop command sent to 7, D shows the rotation operation status of the motor 5, E shows the shutter open signal sent from the position sensor 6, and F shows the transfer operation of the FFT-CCD sensor 4. . In the chart shown in D, the motor 5 rotates at the time of Hi.
以上のように構成された X線撮像装置について、 その動作を説 明する。  The operation of the X-ray imaging device configured as described above will be described.
本実施の形態の撮像装置では、 筐体 1 2の内部上面方向に X線 発生源 1が設けられている。 X線発生源 1 は焦点サイズ 7 mの マイクロフォーカス X線管で出力は 1 0 Wである。 従って例えば X線の管電圧が 7 0 k Vの時は、 1 4 0 Aの管電流しか流すこ とができない。 焦点サイズが 7 0 0 mのノーマルフォーカス X 線では 8 m A程度まで管電流を流すことができるので、 X線出射 口 2から照射される X線の強度はノ一マルフォーカス X線に比ベ 1桁弱くなる。 X線制御器 8は X線発生源 1 を制御する。 X線制 御器 8から X線発生源 1へ X線の O N , O F F信号や管電圧、 管 電流指令等の X線制御信号が送られる。 X線出射口 2の X線ビー ム照射方向に遮蔽体 3が設けられる。 遮蔽体 3 は夕ングステンを 主成分とする部材から構成された扇状の遮蔽部 3 Aと、 遮蔽部 3 Aがなく X線が透過する扇状の X線通過部 3 B とから構成される。 遮蔽体 3は、 モータ 5 により一方向に、 つまり前記 X線発生源In the imaging device of the present embodiment, X-ray generation source 1 is provided in the direction of the upper inside surface of housing 12. X-ray source 1 is a microfocus X-ray tube with a focal size of 7 m, and the output is 10 W. Therefore, for example, when the X-ray tube voltage is 70 kV, only a tube current of 140 A can flow. I can't do that. With a normal focus X-ray with a focus size of 700 m, the tube current can flow up to about 8 mA, so that the intensity of the X-ray emitted from the X-ray exit 2 is lower than that of a normal focus X-ray. One order of magnitude lower. The X-ray controller 8 controls the X-ray source 1. X-ray controller 8 sends X-ray ON / OFF signals and X-ray control signals such as tube voltage and tube current commands to X-ray source 1. A shield 3 is provided at the X-ray exit 2 in the X-ray beam irradiation direction. The shielding body 3 is composed of a fan-shaped shielding portion 3A composed of a member mainly composed of stainless steel, and a fan-shaped X-ray passing portion 3B that has no shielding portion 3A and transmits X-rays. The shield 3 is moved in one direction by a motor 5, that is, the X-ray source
1 と前記 F F T 一 C C Dセンサ 4 とを結ぶ方向に対して略垂直方 向に回転する 。 遮蔽体 3の遮蔽部 3 Aが出射口 2 を覆う と、 X線 ビ一ムは遮断される。 一方、 X線通過部 3 Bが出射口 2の出射側 に位置すると 、 X線ビ一ムは被検査物 1 0 に照射され F F T— C1 and rotates in a direction substantially perpendicular to the direction connecting the FFT-CCD sensor 4. When the shield 3A of the shield 3 covers the emission port 2, the X-ray beam is blocked. On the other hand, when the X-ray passing portion 3B is located on the exit side of the exit port 2, the X-ray beam is irradiated on the inspection object 10 and F F T—C
C Dセンサ 4に入射する。 このようにして、 遮蔽体 3は X線シャ ッ夕 —として機能する 。 遮蔽体 3 を構成するタングステンは原子 番号 7 4、 密度 1 9 . 3の材料であり、 X線の遮蔽能力に優れて いるが密度が高く重い材料である。 この場合 、 高トルクのモータIt enters the CD sensor 4. In this way, the shield 3 functions as an X-ray shutter. Tungsten constituting the shield 3 is a material having an atomic number of 74 and a density of 19.3, and has a high X-ray shielding ability but a high density and a heavy material. In this case, a high torque motor
5 を用いて一方向に回転駆動することにより 、 負荷の少ない運動 でシャ 、ソ 々 - -開閉を行う ことができる。 このようなモー夕 5 とし て 、 例えばスアツヒノグモータが用いられる 。 X線通過部 3 Bを 通過した X線は、 被検査物 1 0 を透過して F F T— C C DセンサBy rotating in one direction by using 5, it is possible to open and close the shaft with small load movement. As such a motor 5, for example, a Suatsunog motor is used. The X-rays that have passed through the X-ray passing section 3B pass through the inspection object 10 and are transmitted through the FFT-CCD sensor.
4に入射する 一 、 遮蔽体 3 には開閉状態を検出する位置セン サ 6が設けられている F F T - C C Dセンサ 4には、 その動作 を制御する C C D制御器 7が接続される。 さ らに、 C C D制御器 7は、 制御指令を送信する P C 9 と接続されている。 また P C 9 には X線制御ュニッ 卜 8 も接続されている。 On the other hand, the FFT-CCD sensor 4 is provided with a position sensor 6 for detecting the open / closed state of the shield 3, and a CCD controller 7 for controlling the operation thereof is connected to the shield 3. In addition, CCD controller 7 is connected to PC 9 for transmitting control commands. An X-ray control unit 8 is also connected to PC 9.
以下、 本実施例の X線撮像装置での動画撮影動作を説明する。  Hereinafter, a moving image capturing operation in the X-ray imaging apparatus of the present embodiment will be described.
P C 9から動画取り込み準備コマンド Aが C C D制御器 7 に送 られ、 画像取り込みの待機状態になる。 続けて X線制御器 8 に動 画動作コマン ド Bが送られる。 動作コマンド Bの受信によりモ一 夕 5 に回転開始指示が伝えられ、 Dに示すように遮蔽体 3が回転 を始める。 遮蔽体 3が回転を始めると、 位置センサ 6が遮蔽部 3 Aの有無を検出する。 本実施例では出射口 2の位置に遮蔽部 3 A が無いとき (X線通過部 3 Bが位置する場合) Eに示すように位 置センサ 6の出力が H i になる。 位置センサ 6の出力は C C D制 御器 7 に送信され H i のとき F F T— C C Dセンサ 4は蓄積期間 になる。 そして、 F F T— C C Dセンサ 4に入射した X線が信号 電荷に変換され、 F F T— C C Dセンサ 4を構成する画素に蓄積 される。 出射口 2の位置に遮蔽部分 3 Aがある時は、 位置センサ 6 の出力が L o wになり、 Fに示すように F F T— C C Dセンサ 4は読み出し期間になる。 そして、 前記 F F T— C C Dセンサ 4 に蓄積された信号電荷が転送され、 画像信号が F F T— C C Dセ ンサ 4から出力され、 C C D制御器 7 を経て P C 9 に転送され画 像が表示される。 遮蔽体 3の回転を続けると、 E及び Fに示すよ うに蓄積、 転送のサイクルが連続して繰り返され P C 9の画面に 動画が表示される。 また、 P C 9から動画動作停止コマンド Cが 送信されると、 上記回転が止められ撮像動作が終了する。  The video capture preparation command A is sent from the PC 9 to the CCD controller 7, and the camera enters the image capture standby state. Subsequently, the video operation command B is sent to the X-ray controller 8. Upon receiving the operation command B, a rotation start instruction is transmitted to the motor 5 and the shield 3 starts rotating as shown in D. When the shield 3 starts rotating, the position sensor 6 detects the presence or absence of the shield 3A. In this embodiment, when the shielding portion 3A is not located at the position of the emission port 2 (when the X-ray passing portion 3B is located), the output of the position sensor 6 becomes Hi as shown in E. The output of the position sensor 6 is transmitted to the CCD controller 7, and when it is Hi, the FFT—CCD sensor 4 enters the accumulation period. Then, the X-rays incident on the FFT-CCD sensor 4 are converted into signal charges and stored in the pixels constituting the FFT-CCD sensor 4. When there is a shielding portion 3A at the position of the exit port 2, the output of the position sensor 6 becomes Low, and as shown in F, the FFT-CCD sensor 4 enters the readout period. Then, the signal charges accumulated in the FFT-CCD sensor 4 are transferred, an image signal is output from the FFT-CCD sensor 4, transferred to the PC 9 via the CCD controller 7, and an image is displayed. When the rotation of the shield 3 is continued, the cycle of accumulation and transfer is continuously repeated as shown by E and F, and a moving image is displayed on the screen of the PC 9. In addition, when the moving image operation stop command C is transmitted from the PC 9, the rotation is stopped and the imaging operation ends.
以上のように、 本実施の形態によれば遮蔽能力の優れたタンダ ステンからなる扇状の遮蔽体 3 を一方向に回転することにより、 F F T— C C Dセンサ 4に入射する X線を断続的に遮断できる。 その結果、 X線照射中に X線の検出及び X線の入射により発生 する信号電荷の蓄積を、 X線遮断中に蓄積された信号電荷の読み 出し及び画像表示することができる。 つまり、 F F T— C C D センサ 4を用いて、 X線動画の撮影が可能となる。 また遮蔽体 3 が回転を開始する撮影の立ち上がり期間において、 F F T - C C Dセンサ 4の面内で遮蔽体 3 による遮蔽時間が異なり微視的に露 光時間の C C Dセンサ 4における撮像面内での差が生ずる (以下 この現象を遮蔽体によるけり ( k e r i ) という。 このけりは日 本語である)。 遮蔽体 3が往復運動すると前記けりによる露光時 間の F F T— C C Dセンサ 4の面内での差が立ち上がり時と立ち 下がり時で同一方向に生じるので露光時間の差が拡大する。 動画 撮影では 1画面の露光時間が短いので前記露光時間の差が撮影画 像の画質を劣化させる。 本発明では遮蔽体 3が同一方向に回転す るため F F T— C C Dセンサ 4に入射する X線量の遮蔽体 3 によ る前記けりが立ち上がり時と立ち下がり時で反対方向に生じるの で、 F F T— C C Dセンサ 4での露光量の撮像面内ばらつきが前 記往復運動する時にく らべ最小限に抑制される。 したがって、 1 周期当りの露光時間が短く、 上記けりの影響が大きな動画撮影で も均一な X線画像が撮影される。 As described above, according to the present embodiment, by rotating the fan-shaped shield 3 made of tungsten with excellent shielding ability in one direction, FFT—X-rays incident on the CCD sensor 4 can be intermittently blocked. As a result, it is possible to read out the signal charges accumulated during X-ray cutoff and display an image of the accumulation of signal charges generated by X-ray detection and X-ray incidence during X-ray irradiation. That is, X-ray moving images can be captured using the FFT-CCD sensor 4. Also, during the rising period of photographing when the shield 3 starts rotating, the shielding time of the shield 3 differs in the plane of the FFT-CCD sensor 4 and the exposure time is microscopically different in the imaging plane of the CCD sensor 4. (Hereinafter, this phenomenon is called “keri” by shield. This is a Japanese word.) When the shield 3 reciprocates, a difference in the plane of the FFT-CCD sensor 4 during the exposure time due to the above-mentioned burr occurs in the same direction at the time of rising and falling, so that the difference of the exposure time is enlarged. Since the exposure time of one screen is short in moving image shooting, the difference in the exposure time deteriorates the image quality of the shot image. In the present invention, since the shield 3 rotates in the same direction, the FFT—Since the burr caused by the shield 3 of the X-ray amount incident on the CCD sensor 4 occurs in the rising and falling directions in the opposite direction, the FFT— Variations in the exposure amount of the CCD sensor 4 in the imaging plane are minimized during the reciprocating movement. Therefore, the exposure time per cycle is short, and a uniform X-ray image can be captured even in a moving image where the effect of the above-mentioned burr is large.
なお、 本実施の形態では X線発生源 1 を装置上面、 F F T— C C Dセンサ 4の位置を装置下面の場合を説明した。 しかし、 これ に限定されることはなく、 X線発生源 1 と F F T— C C Dセンサ 4が対向する位置にあれば良い。  In this embodiment, the case where the X-ray generation source 1 is on the upper surface of the apparatus and the position of the FFT-CCD sensor 4 is on the lower surface of the apparatus has been described. However, the present invention is not limited to this, and it suffices that the X-ray source 1 and the FFT-CCD sensor 4 are located at positions facing each other.
また、 遮蔽体 3 を出射口 2の間近に設けたが、 出射口 2 と F F T一 C C Dセンサ 4の間に遮蔽体 3 を位置させるのであれば、 ど の場所でも良い。 Although the shield 3 is provided near the exit 2, the exit 2 and the FF Any location may be used as long as the shield 3 is located between the T-CCD sensor 4.
また、 遮蔽体 3 をタングステンから構成したが鉛、 錫、 鉄、 銅 の等の原子番号 5 0以上、 密度 3以上の遮蔽能力の高い元素を含 む構造体であれば同様に用いることができる。  Further, the shield 3 is made of tungsten, but any structure including an element having a high shielding ability with an atomic number of 50 or more and a density of 3 or more such as lead, tin, iron, and copper can be used in the same manner. .
(実施の形態 2 )  (Embodiment 2)
以下、 実施の形態 2 について図 1及び図 3 を用いて説明する。 図 3は、 P C 9から C C D制御器 7 に送信される静止画取り込 み準備コマンド A 1 を、 P C 9から X線制御器 8 に送信される静 止画動作コマンド B 1 を、 P C 9からモータ 5 に送信される動作 コマンド D 1 を、 C C D制御器 7 に送信される電荷蓄積指示コマ ンド E 1 を、 F F T— C C Dセンサ 4から P C 9への転送動作 F 1 を、 位置センサ 6から出力されるシャッター開信号 G 1 を、 そ れぞれ示すタイミングチャートである。 なお、 装置の構成につい ては実施の形態 1 と同じであるので、 詳細な説明を省略する。  Hereinafter, the second embodiment will be described with reference to FIGS. Fig. 3 shows a still image capture preparation command A1 sent from the PC 9 to the CCD controller 7, a still image operation command B1 sent from the PC 9 to the X-ray controller 8, and a The operation command D 1 sent to the motor 5, the charge accumulation command E 1 sent to the CCD controller 7, the FFT—the transfer operation F 1 from the CCD sensor 4 to the PC 9, and the position sensor 6 are output FIG. 6 is a timing chart showing shutter opening signals G 1 respectively. The configuration of the device is the same as that of the first embodiment, and a detailed description thereof will be omitted.
P C 9から静止画取り込み準備コマンド A 1が C C D制御器 7 に送られ、 画像取り込みの待機状態になる。 続けて X線制御器 8 に静止画動作コマンド B 1が送られる。 奇数回目の動作コマンド の受信によりモ一夕 5 に回転開始指示が伝えられ、 遮蔽体 3が回 転を始め X線通過部 3 Bで停止する。 次いで偶数回目のコマンド でモー夕 5 に同一方向への回転指示が与えられ、 遮蔽体 3が X線 発生器 1 の出射口 2 に遮断部 3 Aを配置する位置で停止する。  The PC 9 sends the still image capture preparation command A1 to the CCD controller 7, and enters the image capture standby state. Subsequently, the still image operation command B 1 is sent to the X-ray controller 8. Upon receiving the odd-numbered operation command, a rotation start instruction is transmitted to the motor 5 and the shield 3 starts rotating and stops at the X-ray passage section 3B. Next, a command to rotate the motor 5 in the same direction is given by the even-numbered command, and the shield 3 stops at the position where the shielding unit 3 A is arranged at the emission port 2 of the X-ray generator 1.
遮蔽部 3 Aの有無は位置センサ 6 により検出される。 本実施の 形態では遮蔽部 3が無いとき (X線通過部 3 Bが出射口 2 に位置 する場合) は、 G 1 に示すように位置センサ 6 の出力が H i にな る。 位置センサ 6の出力は C C D制御器 7 に送信され H i のとき F F T— C C Dセンサ 4は蓄積期間になり、 F F T— C C Dセン サ 4に入射した X線が信号電荷に変換され F F T— C C Dセンサ 4を構成する画素に蓄積される。 遮断部 3 Aが出射口 2に位置す る時は位置センサ 6の出力が L o wになり、 F 1 に示すように F F T— C C Dセンサ 4は読み出し期間になる。 前記 F F T— C C Dセンサ 4に蓄積された信号電荷が転送され、 画像信号が F F T 一 C C Dセンサ 4から出力され C C D制御器 7 を経て P C 9 に転 送され、 画像データとして保管される。 これらの動作を複数周期 行い各周期の画像データを加算処理するかまたは加算されたデ一 夕を周期の繰返し回数に応じて除算することにより、 静止画像デ 一夕として P C 9の記憶器に保管されるとともに画面に表示され る。 本発明の実施の形態では、 遮蔽体 3が同一方向に回転するの で、 実施の形態 1 と同様に F F T— C C Dセンサ 4に入射する X 線量の遮蔽体 3のけりによる F F T— C C Dセンサ 4面内ばらつ きは、 往復運動する時にく らべ最小限に抑制される。 その結果、 上記けりの大きな低露光時間での撮影でも均一な X線画像が撮影 される。 The presence or absence of the shielding portion 3A is detected by the position sensor 6. In the present embodiment, when the shielding unit 3 is not provided (when the X-ray passing unit 3B is located at the exit port 2), the output of the position sensor 6 becomes Hi as shown by G1. You. The output of the position sensor 6 is transmitted to the CCD controller 7 and when Hi, the FFT-CCD sensor 4 enters the accumulation period, and the X-rays incident on the FFT-CCD sensor 4 are converted into signal charges, and the FFT-CCD sensor 4 Are accumulated in the pixels constituting When the blocking unit 3A is located at the emission port 2, the output of the position sensor 6 becomes Low, and the FFT-CCD sensor 4 enters the readout period as indicated by F1. The signal charge stored in the FFT-CCD sensor 4 is transferred, and an image signal is output from the FFT-single CCD sensor 4, transferred to the PC 9 via the CCD controller 7, and stored as image data. These operations are performed in multiple cycles, and the image data in each cycle is added, or the added data is divided according to the number of repetitions of the cycle, and stored in the storage of the PC 9 as a still image data. Is displayed on the screen. In the embodiment of the present invention, since the shield 3 rotates in the same direction, as in the first embodiment, the surface of the FFT-CCD sensor 4 due to the X-ray dose of the shield 3 that is incident on the FFT-CCD sensor 4 Inner variation is minimized when reciprocating. As a result, a uniform X-ray image can be captured even with the above-described low exposure time.
以上のように、 本実施の形態によれば遮蔽能力の優れた夕ング ステンからなる扇状の遮蔽体 3 を一方向に回転し、 複数回、 X線 の通過位置で画像蓄積、 遮断位置で画像転送を繰り返す。 P C 9 に送られた画像データを加算または加算平均することによ り、 F F T— C C Dセンサ 4から送られる画像信号を F F T— C C Dセ ンサ 4の飽和容量以上に蓄積可能となる。 したがって装置のダイ ナミ ックレンジが F F T— C C Dセンサ 4の飽和容量つまり画素 サイズに関係なく広げられ、 S Z Nの優れた画像が撮影できる。 また、 画像のサンプリ ングを複数回繰り返すことにより画像の 量子ノイズも低減されノイズの少ない滑らかな画像が撮影できる。 As described above, according to the present embodiment, the fan-shaped shield 3 made of evening stainless steel having excellent shielding ability is rotated in one direction, and the image is stored multiple times at the X-ray passing position and the image is stored at the shielding position. Repeat the transfer. By adding or averaging the image data sent to the PC 9, the image signal sent from the FFT-CCD sensor 4 can be accumulated to the saturation capacity of the FFT-CCD sensor 4 or more. Therefore, the dynamic range of the device is FFT—the saturation capacity of the CCD sensor 4, that is, the pixel It can be expanded regardless of the size and can take excellent SZN images. Also, by repeating the sampling of the image a plurality of times, the quantum noise of the image is reduced and a smooth image with less noise can be taken.
なお、 本実施の形態では X線発生源 1 を装置上面、 F F T — C C Dセンサ 4の位置を装置下面として説明したが、 これに限定さ れるものではない。 X線発生源 1 と F F T— C C Dセンサ 4が対 向する位置にあれば良い。 また、 遮蔽体 3 を出射口 2の間近に設 けたが、 出射口 2 と F F T— C C Dセンサ 4の間に遮蔽体 3 を位 置させるのであればどの場所でも良い。  In the present embodiment, the X-ray source 1 is described as the upper surface of the apparatus, and the position of the FFT-CCD sensor 4 is described as the lower surface of the apparatus. However, the present invention is not limited to this. It suffices if the X-ray source 1 and the FFT-CCD sensor 4 are at opposing positions. Further, the shield 3 is provided close to the output port 2, but any location may be used as long as the shield 3 is located between the output port 2 and the FFT-CCD sensor 4.
また、 遮蔽体 3 をタングステンから構成したが鉛、 錫、 鉄、 銅 の等の原子番号 5 0以上、 密度 3以上の遮蔽能力の高い元素を含 む構造体であれば良い  In addition, the shield 3 is made of tungsten, but any structure may be used as long as the structure includes an element having an atomic number of 50 or more and a high density of 3 or more such as lead, tin, iron, and copper.
以上の説明から明らかなように、 本発明の X線撮像装置を用い ると、 感度が高く ノイズの低い F F T— C C Dセンサでの X線動 画像撮影が可能となる。 さらに、 F F T— C C Dセンサの画素サ ィズに起因する飽和容量に制約されず画像信号を蓄積できる。 そ の結果、 ダイナミックレンジの広い X線画像が撮影できるととも に画像の量子ばらつきも抑制でき滑らかな画像が撮影できる。  As is clear from the above description, the use of the X-ray imaging apparatus of the present invention makes it possible to take an X-ray moving image with an FFT-CCD sensor having high sensitivity and low noise. Further, the image signal can be stored without being restricted by the saturation capacity due to the pixel size of the FFT-CCD sensor. As a result, an X-ray image with a wide dynamic range can be taken, and quantum variations in the image can be suppressed, and a smooth image can be taken.
なお、 必要とされる画像の詳細さによって、 F F T— C C Dを 構成する複数の画素の出力信号を加算するのを切り替えてもよレ 産業上の利用可能性  It should be noted that, depending on the required image details, it is possible to switch between adding the output signals of a plurality of pixels constituting FFT—CCD.
本発明は、 ダイナミ ック レンジが F F T— C C Dセンサ 4の飽 和容量つまり画素サイズに関係なく広げられ、 S Z N比の優れた 画像が撮影できる X線撮像装置を提供できる。  The present invention can provide an X-ray imaging apparatus capable of expanding the dynamic range regardless of the saturation capacity of the FFT-CCD sensor 4, that is, regardless of the pixel size, and capturing an image with an excellent SZN ratio.

Claims

請求の範囲 The scope of the claims
1 . X線を照射する X線発生部と、 前記 X線発生部から照射 された X線を入射するセンサと 、前記センサを制御する制御部と、 前記 X線発生部と前記センサの間に配置し、 X線の通過と遮蔽を 行う遮蔽部を備え、 前記センサとしてフルフ レーム トランスファ 1. An X-ray generator that irradiates X-rays, a sensor that receives the X-rays emitted from the X-ray generator, a controller that controls the sensor, and a sensor between the X-ray generator and the sensor. It is equipped with a shielding part that arranges and transmits and shields X-rays, and full-frame transfer is used as the sensor.
C C Dを用い、 前記遮蔽部として回転部材を用い、 前記回転部 材の一部に X線を通過させる通過部を設け、 一方向に前記回転部 材を回転させ、 前記フルフレ一ム トランスファ一 C C Dが電荷蓄 積時に X線を通過させる X線撮像装置。 Using a CCD, using a rotating member as the shielding part, providing a passing part for passing X-rays in a part of the rotating member, rotating the rotating member in one direction, and providing the full frame transfer CCD. An X-ray imaging device that allows X-rays to pass during charge storage.
2 . 前記遮蔽部による X線通過時に前記フルフレーム トラン スファー C C Dに電荷を蓄積し 、 前記遮蔽部による X線遮蔽時に 刖記フルフレーム トランスファ一 C C Dに蓄積された電荷を転送 して画像信号を出力し、 前記 X線通過と X線遮蔽を複数回繰り返 して動画像を形成する請求項 1記載の X線撮像装置。  2. Charges are accumulated in the full-frame transfer CCD when the shielding unit passes through the X-rays, and charges accumulated in the full-frame transfer CCD are transferred when the X-rays are shielded by the shielding unit to output an image signal. 2. The X-ray imaging apparatus according to claim 1, wherein the moving image is formed by repeating the X-ray passage and the X-ray shielding a plurality of times.
3 . 前記遮蔽部による X線通過時に前記フルフレーム トラン スファ一 C C Dに電荷を蓄積し 、 前記遮蔽部による X線遮蔽時に 刖記フルフレーム トランスファ — C C Dに蓄積された電荷を転送 して画像信号を出力し、 前記 X線通過と X線遮蔽を複数回繰り返 し 、 複数の前記出力される画像信号を加算または加算平均して画 像を得る請求項 1記載の X線撮像装置。  3. Charge is accumulated in the full frame transfer CCD at the time of X-ray passage by the shielding unit, and is transferred when the X-ray is shielded by the shielding unit. 2. The X-ray imaging apparatus according to claim 1, wherein the X-ray imaging apparatus obtains an image by repeating the X-ray passage and the X-ray shielding a plurality of times, and adding or averaging the plurality of output image signals.
4 . 前記回転部材を回転する駆動部を設け、 前記回転部材の 位置を検出する位置検出器を設け、 前記位置検出器からの信号に 基づいて前記フルフレーム トランスファー C C Dを制御する請求 項 1 に記載の X線撮像装置。  4. The driving unit for rotating the rotating member is provided, a position detector for detecting a position of the rotating member is provided, and the full frame transfer CCD is controlled based on a signal from the position detector. X-ray imaging device.
5 . 前記回転部材を回転する駆動部を設け、 前記フルフレ一 ム トランスファー C C Dまたは前記制御部からの信号に基づいて 前記駆動部を制御する請求項 1 に記載の X線撮像装置。 5. A driving unit for rotating the rotating member is provided, and the full frame is provided. The X-ray imaging apparatus according to claim 1, wherein the drive unit is controlled based on a signal from a memory transfer CCD or the control unit.
6. 前記回転部材は扇形形状の遮蔽部分と扇形形状の通過部 を有する請求項 1 に記載の X線撮像装置。  6. The X-ray imaging apparatus according to claim 1, wherein the rotating member has a fan-shaped shielding part and a fan-shaped passing part.
7. 前記回転部材の回転方向を前記 X線発生部と前記フルフ レーム トランスファ一 C C Dを結ぶ方向に対して略垂直方向とし た請求項 6 に記載の X線撮像装置。  7. The X-ray imaging apparatus according to claim 6, wherein a rotation direction of the rotating member is substantially perpendicular to a direction connecting the X-ray generation unit and the full frame transfer CCD.
8. 前記回転部材が鉛、 タングステン、 錫、 鉄、 銅の少なく とも 1種類の元素を含むことを特徴とした請求項 6 と 7 に記載の X線撮像装置。  8. The X-ray imaging apparatus according to claim 6, wherein the rotating member includes at least one element of lead, tungsten, tin, iron, and copper.
9. 前記駆動部にステッピングモータを用いた請求項 5 に記 載の X線撮像装置。  9. The X-ray imaging apparatus according to claim 5, wherein a stepping motor is used for the driving unit.
1 0. 前記フルフレーム トランスファー C C Dを構成する複 数の画素の出力信号を加算する請求項 1 に記載の X線撮像装置。  10. The X-ray imaging apparatus according to claim 1, wherein output signals of a plurality of pixels constituting the full frame transfer CCD are added.
1 1 . 必要とされる画像の詳細さによって、 前記フルフレ一 ム トランスファ一 C C Dを構成する前記複数の画素の出力信号を 加算するのを切り替える請求項 1 0記載の X線撮像装置。  11. The X-ray imaging apparatus according to claim 10, wherein the addition of the output signals of the plurality of pixels constituting the full frame transfer CCD is switched depending on the required image detail.
PCT/JP2004/003743 2003-03-26 2004-03-19 X-ray imaging device WO2004086017A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-085066 2003-03-26
JP2003085066A JP2004294182A (en) 2003-03-26 2003-03-26 X-ray imaging device

Publications (1)

Publication Number Publication Date
WO2004086017A1 true WO2004086017A1 (en) 2004-10-07

Family

ID=33095011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003743 WO2004086017A1 (en) 2003-03-26 2004-03-19 X-ray imaging device

Country Status (3)

Country Link
JP (1) JP2004294182A (en)
TW (1) TW200504353A (en)
WO (1) WO2004086017A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293353A (en) * 1988-09-30 1990-04-04 Mitsubishi Electric Corp X-ray inspection apparatus
JPH0638950A (en) * 1992-07-22 1994-02-15 Hamamatsu Photonics Kk Radiographic apparatus
JPH09512972A (en) * 1994-05-10 1997-12-22 マンネスマン・アクチエンゲゼルシャフト Method for reducing moving blur or image noise of moving object
JPH11326528A (en) * 1998-05-12 1999-11-26 Aloka Co Ltd Radiation measuring device
JP2001165873A (en) * 1999-12-06 2001-06-22 Matsushita Electric Ind Co Ltd X ray inspection device
JP2003161706A (en) * 2001-11-26 2003-06-06 Matsushita Electric Ind Co Ltd Device and method for inspection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293353A (en) * 1988-09-30 1990-04-04 Mitsubishi Electric Corp X-ray inspection apparatus
JPH0638950A (en) * 1992-07-22 1994-02-15 Hamamatsu Photonics Kk Radiographic apparatus
JPH09512972A (en) * 1994-05-10 1997-12-22 マンネスマン・アクチエンゲゼルシャフト Method for reducing moving blur or image noise of moving object
JPH11326528A (en) * 1998-05-12 1999-11-26 Aloka Co Ltd Radiation measuring device
JP2001165873A (en) * 1999-12-06 2001-06-22 Matsushita Electric Ind Co Ltd X ray inspection device
JP2003161706A (en) * 2001-11-26 2003-06-06 Matsushita Electric Ind Co Ltd Device and method for inspection

Also Published As

Publication number Publication date
JP2004294182A (en) 2004-10-21
TW200504353A (en) 2005-02-01

Similar Documents

Publication Publication Date Title
JP5058517B2 (en) Radiation imaging apparatus, control method therefor, and radiation imaging system
JP4669653B2 (en) Radiation imaging apparatus, radiation imaging system, and computer program
US5995583A (en) Dental radiography using an intra-oral linear array sensor
EP1337107A2 (en) X-ray image sensor system and method
WO2010038710A1 (en) Radiographic imaging system
JPH08257026A (en) Digital x-ray photographing device
JP2001513202A (en) X-ray inspection equipment
JPH11311673A (en) Radiation image-pickup device
JPH06254082A (en) Device and method for photographing radiation stereoscopic image
WO2004008965A1 (en) Radiographic image diagnosis device
US20050201518A1 (en) Radiological image detection system for a scanning X-ray generator
JP2004337594A (en) Method for making continuous image using a mass of x-ray images
JP2006346011A (en) Radiation imaging device and its control method
JPH06237927A (en) Radiographic device
JPH0847491A (en) X-ray diagnosing apparatus
WO2004086017A1 (en) X-ray imaging device
JP2023518317A (en) Multistage pixel architecture for synchronous readout/integrated radiological imaging and related systems, devices and methods
JP2003153886A (en) X-ray radiography apparatus
US7589325B2 (en) Method for recording a digital x-ray image, counting x-ray detector and x-ray system
JP2001249183A (en) X-ray equipment
JPH09262233A (en) Radiograph camera
JP4447943B2 (en) Radiation imaging apparatus and control method thereof
JP2010094211A (en) Radiation imaging apparatus
KR101179258B1 (en) Line Type Digital Radiography Sensor Using Direct Conversion Method, Digital Radiography Sensing Unit Composed of the Same and Digital Radiography System having the Same
JPH08248542A (en) Radiation picture reader

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase