WO2004084559A1 - Video display for vehicle - Google Patents

Video display for vehicle Download PDF

Info

Publication number
WO2004084559A1
WO2004084559A1 PCT/JP2003/003404 JP0303404W WO2004084559A1 WO 2004084559 A1 WO2004084559 A1 WO 2004084559A1 JP 0303404 W JP0303404 W JP 0303404W WO 2004084559 A1 WO2004084559 A1 WO 2004084559A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
vehicle
display device
image display
eye
Prior art date
Application number
PCT/JP2003/003404
Other languages
French (fr)
Japanese (ja)
Inventor
Seijiro Tomita
Original Assignee
Seijiro Tomita
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seijiro Tomita filed Critical Seijiro Tomita
Priority to AU2003236054A priority Critical patent/AU2003236054A1/en
Priority to PCT/JP2003/003404 priority patent/WO2004084559A1/en
Priority to JP2004569586A priority patent/JPWO2004084559A1/en
Publication of WO2004084559A1 publication Critical patent/WO2004084559A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/20Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/31Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles providing stereoscopic vision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/20Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/22Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle
    • B60R1/23Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with a predetermined field of view
    • B60R1/26Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with a predetermined field of view to the rear of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/20Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/22Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle
    • B60R1/28Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with an adjustable field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/10Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of camera system used
    • B60R2300/105Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of camera system used using multiple cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/10Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of camera system used
    • B60R2300/107Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of camera system used using stereoscopic cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/80Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement
    • B60R2300/802Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement for monitoring and displaying vehicle exterior blind spot views
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/80Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement
    • B60R2300/8066Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement for monitoring rearward traffic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0132Head-up displays characterised by optical features comprising binocular systems
    • G02B2027/0134Head-up displays characterised by optical features comprising binocular systems of stereoscopic type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0138Head-up displays characterised by optical features comprising image capture systems, e.g. camera

Definitions

  • the present invention relates to an image display device for a vehicle, and more particularly to an image display device for a vehicle mounted on a vehicle and displaying an image around the vehicle as a three-dimensional image.
  • An image display device for a vehicle in which an image pickup device such as a CCD camera is attached to the rear of the vehicle, and an image display device such as a liquid crystal display device that displays images taken by the image pickup device is arranged near the driver. There is.
  • the driver can monitor the situation behind the vehicle on the video display device.
  • Some image display devices for vehicles are designed to draw a part of the outline of the vehicle on the image display device or to display the route of the vehicle.
  • the displayed image is a plane, which is different from an actual state, so that it is not easy to match with the driver's vehicle feeling.
  • the driver must re-recognize the image information displayed on the plane as a three-dimensional object and compare it with the driver's vehicle sensation.
  • an object of the present invention is to provide a vehicular image display device capable of displaying an image around a vehicle as a three-dimensional image.
  • the invention described in claim 1 is mounted on a vehicle, and includes a plurality of imaging means for photographing the periphery of the vehicle, and a stereoscopic image display means for displaying an image captured by the imaging means as a stereoscopic image to an occupant. And a control unit for adjusting the depth of the stereoscopic video displayed on the stereoscopic video display means.
  • an image around a vehicle can be displayed as a stereoscopic image with a sense of reality, and the situation around the vehicle can be intuitively and reliably recognized.
  • the imaging unit captures an image of a rear side of the vehicle ⁇ .
  • the image behind the vehicle can be displayed as a stereoscopic image with a sense of reality, and the situation behind the vehicle can be intuitively and reliably recognized.
  • the imaging unit captures an image of a side of the vehicle.
  • the image of the side of a vehicle can be displayed with a sense of reality as a three-dimensional image, and the situation of the side of the vehicle can be intuitively and reliably recognized.
  • the imaging unit captures an image of an upper part of the vehicle.
  • the image above the vehicle can be displayed as a three-dimensional image with a sense of reality, and the situation above the vehicle can be reliably recognized.
  • the display unit includes a switching unit capable of displaying one or both of a vehicle rear side and a vehicle side side. It is characterized by the following.
  • an image in a desired direction selected on one display unit can be displayed. Also, both images can be displayed so that the surrounding situation can be recognized.
  • the invention according to claim 6 is the vehicle image display device according to any one of claims 1 to 5, wherein the imaging unit is operated by an operation from inside the vehicle, and It is characterized by having imaging operation means capable of changing at least one of the ranges.
  • the present invention it is possible to specify a necessary photographing place and a photographing range from inside the vehicle, so that the situation of the necessary place can be displayed three-dimensionally.
  • the invention according to claim 7 is the vehicle image display device according to any one of claims 1 to 6, wherein the stereoscopic image display means displays a vehicle image representing a transit of the vehicle. Vehicle contour display means for displaying a three-dimensional image is provided.
  • the position of the own vehicle in the surrounding situation can be more intuitively and accurately recognized.
  • the invention according to claim 8 is the vehicle image display device according to any one of claims 1 to 7, wherein the distance dimension to the object displayed on the stereoscopic image display means is displayed.
  • a distance display means is provided.
  • the distance to the display object since the distance to the display object is displayed, the distance to the display object can be numerically recognized, and accurate situation recognition can be performed.
  • the invention according to claim 9 is the image display device for a vehicle according to any one of claims 1 to 7, wherein the interval display means displays an interval dimension of a plurality of objects displayed in the stereoscopic image. Is provided.
  • the present invention since the distance between display objects is displayed, it is possible to objectively determine whether or not the display object can pass through.
  • An invention according to claim 10 is the vehicle image display device according to any one of claims 1 to 9, wherein the stereoscopic image display means displays an expected course image of the vehicle. A means is provided.
  • the predicted course is displayed in the three-dimensional image, so that the vehicle can be operated by predicting the course of the own vehicle in advance.
  • the invention according to claim 11 is the vehicle image display device according to any one of claims 1 to 9, wherein the stereoscopic image display means displays an image of a power navigation system. It is characterized in that it also serves as a means.
  • the display means of a force navigation system can be shared with the periphery of a vehicle by one display means, and the number of parts and cost can be reduced.
  • An invention according to claim 12 is the vehicle image display device according to claim 11, wherein the map of the power navigation system is stereoscopically displayed. Things.
  • the invention according to claim 13 is the vehicle image display device according to any one of claims 1 to 12, wherein the three-dimensional image display means includes an image software. It is characterized in that it also serves as a means.
  • image software can be displayed as a stereoscopic image in a vehicle.
  • the invention according to claim 14 is the vehicle image display device according to any one of claims 1 to 13, wherein the display of the stereoscopic image display means is a normal image screen or a mirror image.
  • a display switching means for switching to a screen is provided.
  • the present invention when displaying the rear, it is possible to switch between a normal image (corresponding to a state of looking back) or a mirror image in which the left and right are inverted (corresponding to a back mirror). Images that the user is accustomed to can be displayed, and more accurate situation recognition can be performed.
  • the invention according to claim 15 is the video display device for a vehicle according to any one of claims 1 to 14, wherein the stereoscopic image display device is a head-up display (HUD). Is characterized.
  • HUD head-up display
  • the driver can recognize the situation around the host vehicle without changing the driver's line of sight.
  • the invention described in claim 16 is the vehicle image display device according to any one of claims 1 to 15, further comprising: two image pickup units, wherein image information from the image pickup units is provided.
  • Cross-point measuring means for measuring information; transmitting information including the CP information and the video information; and the stereoscopic video display device includes the video information, the cross-point information, and the stereoscopic video display device.
  • offset setting means for shifting and displaying the different images based on the size information of the image to be displayed.
  • ADVANTAGE OF THE INVENTION According to this invention, it adjusts to the optimal three-dimensional degree (depth amount) corresponding to the video display apparatus for vehicles. A stereoscopic image can be obtained.
  • the invention according to claim 17 is the vehicle image display device according to any one of claims 1 to 16, wherein the stereoscopic image display device includes: The cross-point information, the size information of the image displayed by the three-dimensional image display device, and the viewer's position information. Offset setting means for shifting the display is provided.
  • a stereoscopic image having an optimum stereoscopic degree (depth amount) corresponding to the stereoscopic image photographing and displaying means and the position of the viewer.
  • the invention according to claim 18 is the vehicle image display device according to any one of claims 16 and 17, wherein the cross-point measuring means is provided in two imaging means. It is characterized in that the crosspoint position is calculated based on the crossing angle of the optical axis.
  • the present invention it is possible to measure the distance between the cross point and the imaging target (subject) based on the distance between the two imaging units and the value of the intersection angle of the optical axis based on the principle of triangulation. . Also, the distance between two objects can be measured.
  • the invention according to claim 20 is the vehicle image display device according to any one of claims 16 to 19, wherein the stereoscopic video imaging device has a depth extending before and after a captured area. The different images are shifted and displayed based on the depth amount, the size information of the image displayed by the stereoscopic image display device, and the position information of the viewer. Offset setting means for causing the offset to be set.
  • the invention according to claim 21 is the vehicle image display device according to claim 17, wherein the observer position detecting means is disposed integrally with the vehicle image display device main body. It is characterized by the following.
  • the invention according to claim 24 is the vehicle image display device according to any one of claims 21 and 22, wherein the observer position detection means is an image of a viewer. The position is detected based on
  • ADVANTAGE OF THE INVENTION According to this invention, it is hard to be influenced by surrounding noise etc. compared with the detection of an observer by other means, such as infrared rays, and can perform accurate detection.
  • the invention according to claim 25 is the vehicle image display device according to any one of claims 16 to 24, wherein the offset setting means is input to the input means.
  • An offset between the left-eye image and the right-eye image is set based on the information, and the stereoscopic effect of the image displayed on the display means is adjusted.
  • the present invention it is possible to obtain a stereoscopic image in which the stereoscopic degree (depth amount) is adjusted according to the viewer's preference.
  • the invention according to claim 26 is a vehicle image display device according to any one of claims 16 to 25, further comprising: a left-eye image frame memory that stores a left-eye image; A right-eye video frame memory for storing a video, wherein the offset setting means includes a timing control means for controlling timing of reading video data from the left-eye video frame memory and the right or left-eye video frame memory.
  • the timing control means includes a timing for reading video data from one of the left-eye video frame memory and the right-eye video frame memory, and a timing for reading video data from the other frame memory. Setting an offset between the left-eye image and the right-eye image by advancing or delaying as compared to the video signal. It is.
  • the offset of the left and right eye images can be set with a simple circuit.
  • the invention according to claim 27 is a vehicle image display device according to any one of claims 16 to 25, further comprising: a stereoscopic image frame memory that stores a stereoscopic image; Signal switching means for switching between left-eye video data read from the left-eye video frame memory and right-eye video data read from the right-eye video frame memory and inputting the data to the stereoscopic video frame memory. It is characterized by the following.
  • ADVANTAGE OF THE INVENTION According to this invention, it can synthesize
  • the invention according to claim 28 is the vehicle image display device according to any one of claims 16 to 27, wherein a horizontal phase of the left-eye image and the right-eye image is advanced. Alternatively, an offset between the left-eye image and the right-eye image is set by delaying the offset.
  • the light source can be freely turned on by controlling the LED control means.
  • power consumption can be reduced.
  • the invention according to claim 31 is the vehicle image display device according to claim 29, wherein the LED control means of the offset setting means observes the observer based on the observer position information.
  • the white LED or the RGB LED is controlled to be turned on so as to maintain an image.
  • video can be displayed even if an observer moves and an observer exists in several different positions.
  • the invention according to claim 32 is the vehicle image display device according to claim 29, wherein each of the LED arrays provided above and below the light source device includes a right-eye image display portion and a left-eye image display portion. It is characterized by forming an image display section.
  • FIG. 3 is a perspective view showing a display state of the vehicle image display device shown in FIG.
  • FIG. 4 is a perspective view showing a display state of the vehicle image display device shown in FIG.
  • FIG. 8 is a diagram showing how a viewer sees a stereoscopic image.
  • FIG. 10 is a diagram showing how a viewer sees a stereoscopic image.
  • FIG. 11 is a diagram showing how a viewer sees a stereoscopic image.
  • FIG. 12 is a diagram showing the configuration of the display means.
  • FIG. 13 is an exploded perspective view showing a detailed configuration of the display device.
  • FIG. 16 is a diagram showing a configuration of a vehicle image display device according to another example of the present invention.
  • FIG. 17 is a diagram showing a configuration of a video display device for a vehicle according to yet another example of the present invention.
  • FIGS. 10 and 11 are diagrams illustrating the appearance position of the stereoscopic image
  • FIG. 12 is a diagram illustrating the configuration of the display means
  • FIG. 13 is an exploded view illustrating the detailed configuration of the display device.
  • FIG. 14 is a perspective view
  • FIG. 14 is a diagram showing a display state of a liquid crystal of the display device
  • FIG. 15 is a diagram showing a polarization direction of a checkerboard of the display device
  • FIG. 16 is another example according to the present invention.
  • FIG. 17 is a diagram showing a configuration of a vehicular image display device according to the present invention
  • FIG. 17 is a diagram showing a configuration of a vehicular video display device according to still another example of the present invention. As shown in FIG. 1 and FIG.
  • a vehicle image display device system includes two image pickup means (cameras) 40 provided behind a vehicle 400, for example, an automobile. 2L, 402R, and 3D image display means provided with a liquid crystal display screen, for example, which provides a three-dimensional display to a viewer 90 based on images taken by the cameras 402L, 402R. And a control unit (display control circuit) 100 for adjusting the depth of an image to be displayed based on a signal from the camera.
  • the control unit 100 includes an image processing unit 110 that performs various digital image processing.
  • the CP information can calculate the crosspoint position based on the imaging position of the subject in the two imaging units arranged in parallel. Further, in the present embodiment, information on the depth amount before and after the imaged area is transmitted, and the stereoscopic video display device displays the information using the depth amount in addition to the video information and the crosspoint information. Yo Thus, an appropriate stereoscopic image can be displayed. Further, in the vehicular image display device according to the present embodiment, the viewer's position measuring means 122 for measuring the position of the viewer, the viewer operates and the operation content is input to the ideographic control circuit 100. In addition, a controller 105 is provided as a manual input unit for changing the depth of the displayed image to a desired state. Further, by this controller, it is possible to switch the image displayed on the stereoscopic image display means 121 so as to display one or both of the rear display and the side of the vehicle.
  • the controller 105 can be provided with an imaging operation means capable of activating a driving means 405 provided on the camera to change at least one of an imaging location and an imaging range. This makes it possible to specify the required shooting location and shooting range from inside the vehicle, and to display the status of the required location in three dimensions.
  • the display of the display means can be switched to a normal image screen or a mirror image screen. This is realized by performing inversion image processing in the image processing means 110 according to an instruction from the controller 105. This allows the user to switch between a normal image (equivalent to looking back) or a mirror image with inverted left and right (equivalent to looking at the rearview mirror) when displaying the rear. You can display images that you are used to, and you can recognize the situation more accurately.
  • the object displayed on the vehicle image display device is displayed on the stereoscopic image display means.
  • the distance dimension to can be displayed For this reason, the distance to the display object is displayed, so that the distance to the display object can be numerically recognized, and accurate situation recognition can be performed.
  • the vehicle image display device can display the predicted course image of the vehicle on the stereoscopic image display means. This is predicted from the vehicle dimensions and the steering angle of the handle, which are input in advance, and is realized by indicating the trajectory of the tires and displaying the limit surface of the vehicle passage three-dimensionally. As a result, the predicted course is displayed in the three-dimensional image, and the vehicle can be operated while predicting the course of the own vehicle in advance.
  • FIG. 3 An image when the vehicle image display device according to this embodiment is used will be described with reference to FIGS. 3, 4, and 17.
  • FIG. 3 An image when the vehicle image display device according to this embodiment is used will be described with reference to FIGS. 3, 4, and 17.
  • the values of the ceiling height Am, the distance Bm between the two walls, and the depth Cm to the back wall are displayed in the image. Further, in the present embodiment, the trajectories 62 1 and 62 2 of the wheels of the vehicle when the vehicle proceeds as it is are displayed. This makes it possible to intuitively and accurately check the state behind the vehicle.
  • the image can be displayed as a mirror image as described above, and in addition to the trajectory of the vehicle Can be expressed as a wall showing the limits.
  • an image equivalent to a conventional side mirror image can be displayed.
  • the display control circuit 100 includes a stereoscopic video signal generation circuit 101 that generates a stereoscopic video signal composed of a left-eye video and a right-eye video, and a drive circuit that drives the display unit 122.
  • the stereoscopic video signal generation circuit 101 includes video information related to the stereoscopically visible video, that is, a size of a display image assumed at the time of production, a position of an observer, and a Video information acquiring means 103 for acquiring point information, and information acquiring means 10 for acquiring display device information relating to the display area of the display means, that is, the image size to be actually displayed, and the position information of the observer with respect to the display device.
  • the shooting device measures the distance to the CP when shooting stereoscopic images by laser distance measurement, the inclination of the left-eye camera and the right-eye camera, and cross-point data input by the photographer.
  • a device 12 is provided, and when capturing a stereoscopic image, information on the distance to the CP is recorded as CP information together with the stereoscopic image.
  • the distance between the left-eye camera and the right-eye camera is also recorded as CP information. This interocular distance information corresponds to the distance between human eyes and is selected from 63 mm to 68 mm.
  • the left-eye video and right-eye video that have been digitized and recorded in the frame memories 30 and 31 are input to the signal switch 40.
  • the signal switch 40 switches the left-eye video and the right-eye video and reads them out, thereby recording the composite stereoscopic video in the composite frame memory 50 and generating a composite stereoscopic video signal.
  • the signal switch 40 is a switch (semiconductor switching element) that operates according to a timing signal instructed by the switching control section 41.
  • the stereoscopic video signal generation circuit according to the present embodiment generates a composite stereoscopic video signal in which the left-eye video 10 and the right-eye video 11 are synthesized for each horizontal line from the left-eye video 10 and the right-eye video 11. I do.
  • the timing for reading the right-eye video data to be written to the composite frame memory 50 from the right-eye video frame memory 31 is controlled by the read timing control unit 32.
  • the read timing controller 32 receives the CP information 13, the timing signal of the signal switch 40 from the switching controller 41, the screen size information, and the normality adjustment signal.
  • the read timing control unit 32 calculates the timing to read from the right-eye video frame memory 31 from these information, and generates a clock to read data from the right-eye video frame memory 31. By adjusting the timing that gives the amount of parallax that provides an appropriate stereoscopic effect, by reading out the right-eye image later (or earlier) than the normal timing.
  • the reading timing of the right-eye signal from the right-eye video frame memory 31 is controlled with respect to the reading timing of the left-eye signal based on the C ⁇ information 13 and the screen size information, so that the stereoscopic effect is obtained. Reading is performed at the optimal timing.
  • the switching control section 41 controls the signal switch 40, and outputs a horizontal synchronization signal 71, a vertical synchronization signal 72, a dot synchronization signal 73, and a left / right reference signal inputted from the synchronization signal generator 70.
  • the operation of the signal switch 40 is controlled based on the signal 74. That is, as described above, the timing at which the signal switch 40 is switched at any timing and the timing at which the video data is written to the composite frame memory 50 is set in order to generate a composite stereoscopic video signal.
  • the synchronizing signal generator 70 generates a horizontal synchronizing signal 71 and a vertical synchronizing signal 72 based on a video synchronizing signal 82 input from outside of the stereoscopic video signal generating circuit (for example, a display controller). Further, it generates a dot synchronization signal 73 based on the dot sampling signal 83 input from the outside. Further, a left and right reference signal 74 is generated based on the video synchronization signal 82. The left and right reference signals 74 are common video signals such as video signals.
  • the DA converter 60 converts the digitized video signal into an analog signal and outputs it as a composite stereoscopic video signal.
  • the right eye video data readout timing is controlled based on the CP information 13 and the screen size information so that an appropriate stereoscopic effect can be obtained.
  • the distance to the CP is infinite. Even if there is no CP information 13, it is possible to adjust the amount of parallax by controlling the read timing of the right-eye video data according to the screen size information.
  • the stereoscopic video signal supplied to the stereoscopic video signal generation circuit described above is produced by using a stereoscopic video production device that has the function of producing a pair of left and right video images using computer graphics (CG). It is generated by a stereoscopic video production device equipped with a function that records the interocular distance and the distance to the optical crosspoint (the point where the left and right lines of sight intersect) of the left and right images as crosspoint information. That is, the stereoscopic picture production apparatus generates and records data relating to the stereoscopic effect together with the stereoscopic CG image.
  • CG computer graphics
  • FIG. 7 shows a case where the right-eye image and the left-eye image are at the positions at the time of shooting.
  • the stereoscopic image 310 is composed of a left-eye image 311 and a right-eye image 312. Delays the reading timing of the right-eye image (delays the phase of the right-eye signal) with respect to the reading timing of the left-eye image, and sets and displays an offset to shift the right-eye image to the right with respect to the left-eye image
  • the line of sight looking at the left eye image with the left eye and the line of sight looking at the right eye image with the right eye intersect at the far side of the display screen, and the cross point 3 13 moves farther from the shooting position. I do. Therefore, the degree of protrusion is weaker than that of the original stereoscopic image, and the sense of depth is emphasized.
  • the three-dimensional image 320 is composed of a left-eye image 3221 and a right-eye image 3222.
  • an offset is set to shift the right-eye image to the left with respect to the left-eye image.
  • the line of sight of the left eye with the left eye and the line of sight of the right eye with the right eye intersect on the near side of the display screen, and the cross point 3 23 3 is closer to the position at the time of shooting. Therefore, compared to the original stereoscopic image, the degree of protrusion is emphasized, the sense of depth is weakened, and the image becomes closer to the front as a whole.
  • the left-eye image and the right-eye image are displayed, one of the left and right ends of the left- and right-eye images is missing. It is good to enlarge and display. At this time, the image is enlarged and displayed in the vertical direction based on the aspect ratio of the display screen (aspect ratio). Specifically, in the offset state shown in 4, the left end of the right-eye image is missing, but the left-end image of the right-eye image is extended to the left end of the display screen to display the right-eye image. Also, in the offset state shown in FIG. 9, the right end of the right eye image is missing, but the right end image of the right eye image is extended to the right end of the display screen to display the right eye image.
  • FIG. 10 shows the relationship between the amount of parallax of the original stereoscopic video and the appearance position of the stereoscopic image.
  • the right-eye image and the left-eye image have a positional relationship at the time of shooting as shown in FIG.
  • the appearance position of the stereoscopic image (the distance between the position where the stereoscopic image can be viewed and the observer) is displayed on the display screen as L d
  • the viewing distance the distance between the observer and the display screen
  • the configuration may be such that polarized light is applied to the Fresnel lens 3 from different positions.
  • reference numeral 3 denotes a Fresnel lens, and each light passing through each of the filter sections 6a and 6b is applied to the liquid crystal display element 2 as parallel light by the Fresnel lens 3.
  • the display panel 2a of the liquid crystal display element 2 is arranged such that, as shown in FIG. 14, pixels (L, R) constituting the first and second images viewed in a stereoscopic manner are two-dimensionally displayed. They are arranged in a checkered pattern that is alternately arranged.
  • Polarizing panels 2b and 2c are attached to both sides of the display panel on the light source side and the observer side, respectively.
  • the light that has passed through the right polarizing filter part a and the light that has passed through the left polarizing filter part b of the polarizing filter 6 enter the Fresnel lens 3 at different angles, The light is refracted by the Fresnel lens 3 and is radiated from the liquid crystal display panel 2 through different paths.
  • the repetition of the polarization characteristic of the checkered filter 7 is a pitch that is an integral multiple of the pitch of the display unit of the liquid crystal display panel 2. That is, the display unit may be changed to a plurality of display units. As described above, it is necessary to irradiate the display element of the liquid crystal display panel 2 with different light every time the polarization characteristic of the fine phase difference plate is repeated. The light applied to 2 needs to suppress the diffusion in the vertical direction. That is, the area 7a of the checker filter 7 that changes the phase of light transmits the light transmitted through the right-side polarization filter section a of the polarization filter 6 in a manner equal to the polarization of the light transmitted through the left-side polarization filter section b. .
  • the area 7 b of the checkered filter 7 in which the phase of the light does not change transmits the light transmitted through the left-side polarization filter part b of the polarization filter 6 as it is. Then, the light emitted from the checkered filter 7 has the same polarization as the light transmitted through the left polarizing filter part b, and enters the polarizing plate 2 b provided on the light source side of the liquid crystal display panel 2.
  • the polarizing plate 2b functions as a second polarizing plate, and has a polarization characteristic of transmitting the same polarized light as the light transmitted through the pine filter 7. That is, the light transmitted through the left polarizing filter portion b of the polarizing filter 6 transmits through the second polarizing plate 2c, and the light transmitted through the right polarizing filter portion a of the polarizing filter 6 has its polarization axis rotated 90 degrees. The light passes through the second polarizing plate 2b. Further, the polarizing plate 2c functions as a first polarizing plate, and has a polarizing property of transmitting light having a polarization 90 degrees different from that of the polarizing plate 21.
  • An image display device is configured by combining such a checkered filter 7, a checkered filter 7, a polarizing plate 2b, a liquid crystal panel 2a, and a polarizing plate 2c.
  • the left and right images are displayed so as to form a checkerboard pattern in a plane, and the filters are arranged on a plane in a checkerboard pattern.
  • a stereoscopic image can be displayed without reducing the resolution and the vertical resolution.
  • the screen size information and viewing distance position information output from the display means 121 are input to the display information acquisition means 104, and are converted into data in a format required by the stereoscopic video signal generation circuit 101, It is supplied to the stereoscopic video signal generation circuit 101.
  • the video information acquisition means 103 is adapted to obtain, from the stereoscopic video signal input to the display control circuit 100, suitable screen size information relating to a screen size suitable for reproducing the stereoscopic video, and a display screen suitable for an observer to see during reproduction.
  • suitable screen size information relating to a screen size suitable for reproducing the stereoscopic video
  • a display screen suitable for an observer to see during reproduction.
  • Compatible viewing distance information on the distance to the camera, camera distance information on the distance between the optical axis of the left-eye camera and the optical axis of the right-eye camera, and the optical axis of the left-eye camera and the right-eye camera It extracts cross-point information on the distance to the intersection with the optical axis, converts it into data in the format required by the stereoscopic video signal generation circuit 101, and converts this information into a stereoscopic video signal generation circuit. Feed to 101.
  • the stereoscopic video signal generation circuit 101 receives a stereoscopic degree adjustment signal from the input unit 105, and the left and right eye videos are input in accordance with the stereoscopicity specified by the viewer to the input unit 105.
  • the stereoscopic degree of the stereoscopic image displayed by offsetting and displayed on the display means 121 can be changed.
  • the manual input unit 105 is a switch, a variable resistor, or the like operated by the viewer, operated according to the taste of the observer, and changes the operation condition of the display control circuit. And supplies the screen size switching signal to the display information obtaining means 104.
  • the stereoscopic degree adjustment signal is output, and the stereoscopic degree adjustment signal is supplied to the stereoscopic video signal generation circuit 101 to adjust the amount of parallax for obtaining a stereoscopic effect according to the viewer's preference.
  • the left-eye image reaching the left eye and the right-eye image reaching the right eye of the viewer are alternately displayed in a checkered pattern on the display means 122. Then, the stereoscopic video signal generation circuit 101 controls the timing of reading the right-eye video from the right-eye frame memory 31 to be delayed or advanced, and the horizontal phase of the left-eye video and the right-eye video is delayed or advanced. , Set the shift amount (offset) between the left-eye image and the right-eye image, and adjust the stereoscopicity by adjusting the binocular disparity. Next, a case where the position of the observer changes will be described.
  • position information is detected by the observer position detecting means 122.
  • this information is acquired by the display information acquisition means 104, and the offset amount is calculated by the offset means setting means 105, so as to correspond to the observer's distance and the left and right positions, so that it looks normal.
  • the display means 102 is driven by the drive circuit 102
  • FIGS. 16 and 17 show examples in which the light source 5 of the liquid crystal display device is changed.
  • a plurality of white LEDs 201 are arranged side by side in a horizontal direction, and two rows of LED arrays 231 L and 231 R serving as left and right light sources and image display means (liquid crystal display) Plate) 2 32 and a Fresnel lens 2 14 serving as a convex lens and two polarizing elements 2 6 6 which form polarization directions perpendicular to each other and correspond to the LED arrays 2 3 1 L and 2 3 1 R.
  • the LED array 211 is controlled to be turned on and off by LED control means 213 provided in the display control circuit 100.
  • LEDs that emit light are represented by "Oka”, and LEDs that do not emit light are represented by " ⁇ " (the same applies hereinafter).
  • the displacement amount d 1 of the image display device (light source device 230 for the image display device) of the observer 90 from the optical axis O and the distance d 2 from the image display means 232 are measured, and the measurement signal is obtained.
  • observer position determining means 2 3 4 that emits light.
  • the observer position determination means 234 may use an ultrasonic method, an infrared method, or any other means.
  • the LED control means 2 3 3 controls the lighting locations 2 3 5 and 2 3 6 of the white LED 1 of the LED array 2 3 1 based on the above measurement signal, and emits the light of the LED array 2 3 1.
  • the position can be quickly moved to the position corresponding to the movement of the observer 90 (shown by arrow d) (shown by arrow D), and the observer 90 can always display a natural stereoscopic image. In monkey.
  • the number of observers and the image display device of each observer are determined by the position determination means 34. It is assumed that the position is measured and the position is output as a position signal. Can be.
  • the LED array 351 of the light source 5 is configured in two stages of an upper stage 351U and a lower stage 351D.
  • the left and right polarizing filters corresponding to the upper section 351 U and the lower section 351 D are located at positions corresponding to the white LEDs 301 of the upper section 35 1 U and the lower section 3 51 D, respectively. 3 5 4 are arranged.
  • This polarizing filter includes polarizing filters 3554U and 354D through which light from the upper section 351U and the lower section 35ID of the LED array 351 passes.
  • the polarization filters 354U and 354D are composed of polarization filters whose polarization directions are orthogonal to each other.
  • the LED control means 353 controls the blinking of each LED array 351U, 351D. First, the case where the observer 90 is a human will be described.
  • the position of the observer 90 is determined by the above-described observer position detecting means 122, and the upper and lower LED arrays 354U and 354D emit light at the light emitting portions 373, and the observer 90 receives the light. Display a stereoscopic image. At this time, the light emitting point is moved using the observer position detecting means 122 shown in the above example so that a stereoscopic image corresponding to the position of the observer 90 can be displayed.
  • the LED control means 3 5 3 obtains a signal from the observer position detection means 1 2 2 and sets two light emitting areas 3 7 3 and 3 7 4 on the two LED arrays 3 5 1, Lighting control of these light emitting regions is performed alternately at high speed. Therefore, at this time, the LED 1 other than the light emitting regions 37 3 and 37 4 does not emit light, and at some point, either one of the light emitting regions 37 3 or 37 4 emits light.
  • the left and right LEDs are separated and arranged vertically, so that the left and right are displayed. The distance between the displayed LEDs is increased, and the interference of light from each LED is reduced, so that the crosstalk between the left and right images, which adversely affects the stereoscopic image, is reduced.
  • the present invention according to claim 1 includes a plurality of image pickup means mounted on a vehicle and photographing the periphery of the vehicle, and a stereoscopic image display means for displaying an image picked up by the image pickup means to a passenger as a stereoscopic image. And a control means for adjusting the depth of the stereoscopic video displayed on the stereoscopic video display means.
  • an image around a vehicle can be displayed as a stereoscopic image with a sense of reality, and the situation around the vehicle can be intuitively and reliably recognized.
  • the imaging unit captures an image of a rear side of the vehicle.
  • the image behind the vehicle can be displayed as a stereoscopic image with a sense of reality, and the situation behind the vehicle can be intuitively and reliably recognized.
  • the imaging unit captures an image of a side of the vehicle.
  • the image of the side of a vehicle can be displayed with a sense of reality as a three-dimensional image, and the situation of the side of the vehicle can be intuitively and reliably recognized.
  • the imaging unit captures an image of an upper part of the vehicle.
  • the image above the vehicle can be displayed as a three-dimensional image with a sense of reality, and the situation above the vehicle can be reliably recognized.
  • the display means includes a switching means capable of displaying one or both of a rear side and a side side of the vehicle. It is characterized by having.
  • an image in a desired direction selected on one display unit can be displayed. Also, both images can be displayed so that the surrounding situation can be recognized.
  • the present invention described in claim 6 ′ is described in any one of claims 1 to 5.
  • the present invention it is possible to specify a necessary photographing place and a photographing range from inside the vehicle, so that the situation of the necessary place can be displayed three-dimensionally.
  • the three-dimensional image display unit displays a vehicle image representing a transit of the vehicle.
  • Vehicle contour display means for displaying a three-dimensional image is provided. According to the present invention, since the outline of the own vehicle is displayed on the three-dimensional screen, the position of the own vehicle in the surrounding situation can be more intuitively and accurately recognized.
  • the present invention described in claim 8 is a vehicle image display device according to any one of claims 1 to 7, wherein a distance dimension to an object displayed on the stereoscopic image display means is displayed. A distance display means is provided.
  • the distance to the display object since the distance to the display object is displayed, the distance to the display object can be numerically recognized, and accurate situation recognition can be performed.
  • the present invention described in claim 9 is the vehicle image display device according to any one of claims 1 to 7, wherein the interval indicating the interval dimension of a plurality of objects displayed in the stereoscopic image is displayed.
  • a display device is provided.
  • the present invention since the distance between display objects is displayed, it is possible to objectively determine whether or not the display object can pass through.
  • an expected course image of the vehicle is displayed on the three-dimensional image display means. It is characterized by providing an expected course display means.
  • the predicted course is displayed in the three-dimensional image, so that the vehicle can be operated while predicting the course of the own vehicle in advance.
  • the present invention described in claim 11 is a vehicle image display device according to any one of claims 1 to 9, wherein the three-dimensional image display means includes a power navigation device. It is characterized in that it also serves as a video display means of the stem.
  • the display means of a force navigation system can be shared with the periphery of a vehicle by one display means, and the number of parts and cost can be reduced.
  • the present invention described in claim 12 is the vehicle image display device according to claim 11, wherein the map of the car navigation system is stereoscopically displayed. It is.
  • the course which the own vehicle should drive can be recognized based on the map displayed three-dimensionally, and the course can be recognized more intuitively and accurately.
  • the present invention described in claim 13 is the vehicle image display device according to any one of claims 1 to 12, wherein the three-dimensional image display means includes an image software image display means. It is also characterized by serving as a combination.
  • image software can be displayed as a stereoscopic image in a vehicle.
  • the present invention according to claim 14 is the vehicle image display device according to any one of claims 1 to 13, wherein the display of the stereoscopic image display means is a normal image screen or a mirror image.
  • a display switching means for switching to a screen is provided.
  • the present invention when displaying the rear side, it is possible to switch between a normal image (corresponding to a state in which the user looks back) or a mirror image in which the left and right are reversed (corresponding to a back mirror).
  • the image that the user is used to can be displayed, and the situation can be recognized more accurately.
  • the present invention described in claim 15 is the vehicle image display device according to any one of claims 1 to 14, wherein the stereoscopic image display device includes a head-up display (HUD). It is characterized by comprising.
  • HUD head-up display
  • the driver can recognize the situation around the host vehicle without changing the driver's line of sight.
  • the present invention described in claim 16 is the vehicle image display device according to any one of claims 1 to 15, wherein the image display device includes two image pickup units and includes image information from the image pickup unit.
  • Image output device that outputs images
  • 3D image display that displays different images to both eyes of the viewer
  • a stereoscopic image pickup device comprising: cross-point measuring means for measuring CP information relating to a cross point (CP) of an optical axis of the image pickup means; and transmitting information including the CP information and the video information.
  • the three-dimensional image display device shifts and displays an image different from the former one based on the image information, the aforementioned cross-point information, and the size information of the image displayed by the three-dimensional image display device.
  • Special feature is that it has setting means.
  • the present invention it is possible to obtain a stereoscopic video adjusted to an optimal stereoscopic degree (depth amount) corresponding to a video display apparatus for a vehicle.
  • the present invention described in claim 17 is the vehicle image display device according to any one of claims 1 to 16, wherein the stereoscopic image display device includes information on a position of a viewer with respect to a display screen.
  • a viewer position information measuring means for measuring the image information, the cross point information, the size information of the image displayed by the stereoscopic image display device, and the viewer's position information.
  • An offset setting means for shifting and displaying an image is provided.
  • a stereoscopic image having an optimum stereoscopic degree (depth amount) corresponding to the stereoscopic image photographing and displaying means and the position of the viewer.
  • the present invention described in claim 18 is the vehicle image display device according to any one of claims 16 and 17, wherein the cross-point measuring means is provided in two imaging means. It is characterized in that the crosspoint position is calculated based on the intersection of the optical axis and the angle.
  • the present invention it is possible to measure the distance between the cross point and the imaging target (subject) based on the distance between the two imaging units and the value of the intersection angle of the optical axis based on the principle of triangulation. . Also, the distance between two objects can be measured.
  • the present invention described in claim 19 is the vehicle image display device according to any one of claim 16 and claim 17, wherein the cross point measuring means is arranged in parallel.
  • the method is characterized in that a crosspoint position is calculated based on an imaging position of a subject in one of the imaging units.
  • the distance to the crosspoint and the object to be imaged (subject) can be measured based on the distance between the two imaging means and the value of the angle of intersection of the optical axes. . It can also measure the distance between two subjects
  • the present invention described in claim 20 is the vehicle video display device according to any one of claims 16 to 19, wherein the stereoscopic video imaging device is arranged before and after an imaged area; ! : Offset that sends information about the depth, and shifts and displays the different images based on the depth, the size information of the image displayed by this stereoscopic image display device, and the position information of the viewer. It is characterized by comprising setting means.
  • the display means can obtain more accurate information on the photographing conditions, so that a more appropriate stereoscopic image can be displayed.
  • the present invention described in claim 21 is the vehicle image display device according to claim 17, wherein the observer position detecting means is integrally disposed in the vehicle image display device main body. It is characterized by the following.
  • the observer position detecting unit is arranged at a position separated from the vehicle image display device main body. It is characterized by the following.
  • an observer position detection means can be arrange
  • the present invention described in claim 23 is the vehicle image display device according to any one of claims 21 and 22, wherein the observer position detecting means is an ultrasonic transmitter and an ultrasonic wave. A receiver is provided.
  • ADVANTAGE OF THE INVENTION According to this invention, it is hard to be influenced by surrounding noise etc. compared with the detection of an observer by other means, such as infrared rays, and can perform accurate detection.
  • the present invention described in claim 24 is the vehicle image display device according to any one of claims 21 and 22, wherein the observer position detecting unit captures an image of a viewer. It is characterized in that position detection is performed based on an image.
  • ADVANTAGE OF THE INVENTION According to this invention, it is hard to be influenced by surrounding noise etc. compared with the detection of an observer by other means, such as infrared rays, and can perform accurate detection.
  • the present invention described in claim 25 is the vehicle image display device according to any one of claims 16 to 24, wherein the offset setting means is input to the input means.
  • An offset between the left-eye image and the right-eye image is set based on the information, and the stereoscopic effect of the image displayed on the display means is adjusted.
  • the present invention it is possible to obtain a stereoscopic image in which the stereoscopic degree (depth amount) is adjusted according to the viewer's preference.
  • the present invention described in claim 26 is a vehicle image display device according to any one of claims 16 to 25, further comprising: a left-eye image frame memory that stores a left-eye image; A right-eye video frame memory for storing video, wherein the offset setting means controls the timing of reading video data from the left-eye video frame memory and Z or the right-eye video frame memory. Wherein the timing control means reads the video data from one of the left-eye video frame memory and the right-eye video frame memory, and reads the video data from the other frame memory. Setting an offset between the left-eye image and the right-eye image by advancing or delaying the timing compared to timing. Than it is.
  • the offset of the left and right eye images can be set with a simple circuit.
  • the present invention described in claim 27 is a vehicle image display device according to any one of claims 16 to 25, wherein a stereoscopic video frame memory storing a stereoscopic video, Signal switching means for switching between left-eye video data read from the left-eye video frame memory and right-eye video data read from the right-eye video frame memory and inputting the data to the stereoscopic video frame memory. It is characterized by the following.
  • ADVANTAGE OF THE INVENTION According to this invention, it can synthesize
  • the present invention described in claim 28 may be any one of claims 16 to 27
  • an offset between the left-eye image and the right-eye image is set by advancing or delaying a horizontal phase between the left-eye image and the right-eye image. It is.
  • the present invention it is possible to easily control the setting of the offset of the left and right eye images.
  • the present invention described in claim 29 is the present invention according to any one of claims 16 to 28 In the image display device for a vehicle according to the above, when an offset between the left-eye image and the right-eye image is set, an area where information is missing at left and right edges of the left-eye image and the right-eye image is in the vicinity of the missing area. And displaying one or both of the left-eye image and the right-eye image in the horizontal and vertical directions.
  • the present invention described in claim 30 is the vehicle image display device according to any one of claims 16 to 29, wherein the display unit displays an image using transmitted light.
  • the light source device includes a display device and a light source device, and the light source device is configured by an LED array in which white LEDs or RGB LEDs are arranged as one body. LED control means for controlling lighting based on the above.
  • the light source can be freely turned on by controlling the LED control means.
  • power consumption can be reduced.
  • the present invention described in claim 31 is the vehicle image display device according to claim 29, wherein the LED control means of the offset setting means is configured to control an observer based on the observer position information.
  • the white LED or the RGB LED is controlled to be turned on so as to maintain the observation image.
  • video can be displayed even if an observer moves and an observer exists in several different positions.
  • the present invention described in claim 32 is a vehicle image display device according to claim 29.
  • Each of the LED arrays provided above and below the light source device forms a right-eye image display unit and a left-eye image display unit.
  • display control of a stereoscopic image can be performed with a high degree of freedom by controlling light emission of the right-eye image display unit and the left-eye image display unit of the LED array by the LED control means.

Abstract

A video display for vehicle being mounted on a vehicle (40) and comprising a plurality of imaging means (402L, 402R) for photographing the circumference of the vehicle, means (121) for displaying an image picked up by the imaging means as a stereoscopic image to a crew, and a control section (100) for regulating the depth of the stereoscopic image being displayed by a stereoscopic image display means, wherein the image on the circumference of the vehicle can be displayed stereoscopically.

Description

明 細 書  Specification
車両用映像表示装置  Video display device for vehicles
技術分野.  Technical field.
本発明は車両用画像表示装置に係り、 特に車両に搭載され、 車両周辺の画像を立体 と して表示する車両用映像表示装置に関する  The present invention relates to an image display device for a vehicle, and more particularly to an image display device for a vehicle mounted on a vehicle and displaying an image around the vehicle as a three-dimensional image.
技術背景  Technology background
車両用映像表示装置と して、 車両の後部に C C Dカメラ等の撮像装置を取り付け、 運転者の近傍に前記撮像装置が撮影した映像を表示する液晶表示装置等の映像表示装 置を配置したものがある。  An image display device for a vehicle, in which an image pickup device such as a CCD camera is attached to the rear of the vehicle, and an image display device such as a liquid crystal display device that displays images taken by the image pickup device is arranged near the driver. There is.
このよ うな装置によれば、 運転者は車両後方の様子を映像表示装置で監視すること ができる。  According to such a device, the driver can monitor the situation behind the vehicle on the video display device.
また、 車両用映像表示装置と して、 車両の輪郭の一部を映像表示装置に描画するよ うにしたり、 車両の進路を表示したりするものもある。  Some image display devices for vehicles are designed to draw a part of the outline of the vehicle on the image display device or to display the route of the vehicle.
更に、 複数の撮像装置を配置し、 取得した複数の画像をモデリ ング処理して立体モ デルと して画像表示装置に表示するものがある。 、 しかしながら、 上記の車両用映像表示装置にあっては表示される画像が平面である ため、 実際の状態とは異なるため、 運転者の車両感覚と一致させることは簡単ではな レヽ  Further, there is a device in which a plurality of imaging devices are arranged, and a plurality of acquired images are modeled and displayed on an image display device as a three-dimensional model. However, in the above-described image display device for a vehicle, the displayed image is a plane, which is different from an actual state, so that it is not easy to match with the driver's vehicle feeling.
即ち、 運転者は平面表示された画像情報を立体物と して認識し直し、 運転者の持つ ている車両感覚と比較しなければならない。  In other words, the driver must re-recognize the image information displayed on the plane as a three-dimensional object and compare it with the driver's vehicle sensation.
そこで本発明は、 車両周辺の画像を立体と して表示するこ とができる車両用映像表 示装置を提供することを課題とする。  Therefore, an object of the present invention is to provide a vehicular image display device capable of displaying an image around a vehicle as a three-dimensional image.
発明の開示  Disclosure of the invention
請求の範囲 1 に記載の発明は、 車両に搭載され、 車両周辺を撮影する複数の撮像手 段と、 この撮像手段によって撮像された画像を立体画像と して乗員に表示する立体映 像表示手段と、 立体映像表示手段に表示される立体映像の奥行き度を調整する制御部 とを備えたことを特徴とする車両用映像表示装置である。 本発明によれば、 車両周辺の画像を立体画像と して現実感を持って表示でき、 車两 周辺の状況を直感的にかつ確実に認識できる The invention described in claim 1 is mounted on a vehicle, and includes a plurality of imaging means for photographing the periphery of the vehicle, and a stereoscopic image display means for displaying an image captured by the imaging means as a stereoscopic image to an occupant. And a control unit for adjusting the depth of the stereoscopic video displayed on the stereoscopic video display means. According to the present invention, an image around a vehicle can be displayed as a stereoscopic image with a sense of reality, and the situation around the vehicle can be intuitively and reliably recognized.
請求の範囲 2に記載の発明は、請求の範囲 1 に記載の車両用映像表示装置において、 前記撮像手段は、 車两の後方を撮影することを特徴とするものである。  According to a second aspect of the present invention, in the vehicle image display device according to the first aspect, the imaging unit captures an image of a rear side of the vehicle 两.
本発明によれば、 車両後方の画像を立体画像と して現実感を持って表示でき、 車両 後方の状況を直感的にかつ確実に認識できる。  According to the present invention, the image behind the vehicle can be displayed as a stereoscopic image with a sense of reality, and the situation behind the vehicle can be intuitively and reliably recognized.
請求の範囲 3に記載の発明は、請求の範囲 1に記載の車両用映像表示装置において、 前記撮像手段は車両の側方を撮影することを特徴とするものである。  According to a third aspect of the present invention, in the image display device for a vehicle according to the first aspect, the imaging unit captures an image of a side of the vehicle.
本発明によれば、 車両側方の画像を立体画像と して現実感を持って表示でき、 車両 の側方の状況を直感適かつ確実に認識できる。  ADVANTAGE OF THE INVENTION According to this invention, the image of the side of a vehicle can be displayed with a sense of reality as a three-dimensional image, and the situation of the side of the vehicle can be intuitively and reliably recognized.
請求の範囲 4に記載の発明は、請求の範囲 1に記載の車両用映像表示装置において、 前記撮像手段は車両の上方を撮影することを特徴とするものである。  According to a fourth aspect of the present invention, in the vehicle image display device according to the first aspect, the imaging unit captures an image of an upper part of the vehicle.
本発明によれば、 車両上方の画像を立体画像と して現実感を持って表示でき、 車両 の上方の状況を確実に認識できる。  According to the present invention, the image above the vehicle can be displayed as a three-dimensional image with a sense of reality, and the situation above the vehicle can be reliably recognized.
請求の範囲 5に記載の発明は、請求の範囲 1に記載の車両用映像表示装置において、 前記表示手段は、 車両後方及び車両側方のいずれか又は両方を表示出来る切り換手段 を備えたことを特徴とするものである。  According to a fifth aspect of the present invention, in the vehicle image display device according to the first aspect, the display unit includes a switching unit capable of displaying one or both of a vehicle rear side and a vehicle side side. It is characterized by the following.
本発明によれば、 1つの表示手段に選択した所望の方向の画像を表示できる。 また 両方の画像を表示できよ り周辺の状況を認識できる。  According to the present invention, an image in a desired direction selected on one display unit can be displayed. Also, both images can be displayed so that the surrounding situation can be recognized.
請求の範囲 6に記載の発明は、 請求の範囲 1乃至請求の範囲 5のいずれかに記載の 車両用映像表示装置において、 前記撮像手段には車内からの操作によ り、 撮影個所及 び撮影範囲のうち少なく とも 1つを変更できる撮像操作手段を備えたことを特徴とす るものである。  The invention according to claim 6 is the vehicle image display device according to any one of claims 1 to 5, wherein the imaging unit is operated by an operation from inside the vehicle, and It is characterized by having imaging operation means capable of changing at least one of the ranges.
本発明によれば、 車内から必要な撮影個所や撮影範囲を指定できるから、 必要な個 所の状況を立体的に表示できる。  According to the present invention, it is possible to specify a necessary photographing place and a photographing range from inside the vehicle, so that the situation of the necessary place can be displayed three-dimensionally.
請求の範囲 7に記載の発明は、 請求の範囲 1乃至請求の範囲 6のいずれかに記載の 車両用映像表示装置において、 前記立体映像表示手段に車両の輸郭を表す車両画像を 立体的に表示させる車両輪郭表示手段を備えたことを特徴とするものである。 The invention according to claim 7 is the vehicle image display device according to any one of claims 1 to 6, wherein the stereoscopic image display means displays a vehicle image representing a transit of the vehicle. Vehicle contour display means for displaying a three-dimensional image is provided.
本発明によれば、 立体画面中に自車両の輪郭が表示されるから、 周囲の状況中の自 車両の位置をより直感的かつ正確に認識できる。  According to the present invention, since the outline of the own vehicle is displayed on the three-dimensional screen, the position of the own vehicle in the surrounding situation can be more intuitively and accurately recognized.
請求の範囲 8に記載の発明は、 請求の範囲 1乃至請求の範囲 7のいずれかに記載の 車両用映像表示装置において、 前記立体映像表示手段に表示された物体までの距離寸 法を表示する距離表示手段を設けたことを特徴とするものである。  The invention according to claim 8 is the vehicle image display device according to any one of claims 1 to 7, wherein the distance dimension to the object displayed on the stereoscopic image display means is displayed. A distance display means is provided.
本発明によれば、 表示物体までの距離が表示されるので、 表示物体までの距離を数 値的に認識することができ、 正確な状況認識ができる。  According to the present invention, since the distance to the display object is displayed, the distance to the display object can be numerically recognized, and accurate situation recognition can be performed.
請求の範囲 9に記載の発明は、 請求の範囲 1乃至請求の範囲 7のいずれかに記載の 車両用映像表示装置において、 前記立体映像に表示された複数物体の間隔寸法を表示 する間隔表示手段を設けたことを特徴とするものである。  The invention according to claim 9 is the image display device for a vehicle according to any one of claims 1 to 7, wherein the interval display means displays an interval dimension of a plurality of objects displayed in the stereoscopic image. Is provided.
本発明によれば、 表示物体間の間隔寸法が表示されるので、 表示物体間を通り抜け できるかを客観的に判断できる。  According to the present invention, since the distance between display objects is displayed, it is possible to objectively determine whether or not the display object can pass through.
請求の範囲 1 0に記載の発明は、 請求の範囲 1乃至請求の範囲 9のいずれかに記載 の車両用映像表示装置において、 前記立体映像表示手段に車両の予想進路画像を表示 する予想進路表示手段を設けたことを特徴とするものである。  An invention according to claim 10 is the vehicle image display device according to any one of claims 1 to 9, wherein the stereoscopic image display means displays an expected course image of the vehicle. A means is provided.
本発明によれば、 立体画像中に予想進路が表示されるので、 自車両の進路を予め予 想して車両の操作を行うことができる。  According to the present invention, the predicted course is displayed in the three-dimensional image, so that the vehicle can be operated by predicting the course of the own vehicle in advance.
請求の範囲 1 1に記載の発明は、 請求の範囲 1乃至請求の範囲 9のいずれかに記載 の車両用映像表示装置において、 前記立体映像表示手段は、 力一ナビゲ一シヨ ンシス テムの映像表示手段を兼ねることを特徴とするものである。  The invention according to claim 11 is the vehicle image display device according to any one of claims 1 to 9, wherein the stereoscopic image display means displays an image of a power navigation system. It is characterized in that it also serves as a means.
本発明によれば、 1台の表示手段で、 車両の周辺と力一ナビゲ一シヨ ンシステムの 表示手段を共用でき部品点数及びコス トを低減できる。 ■  ADVANTAGE OF THE INVENTION According to this invention, the display means of a force navigation system can be shared with the periphery of a vehicle by one display means, and the number of parts and cost can be reduced. ■
請求の範囲 1 2に記載の発明は、 請求の範囲 1 1 に記載の車両用映像表示装置にお いて、 前記力一ナビゲ一ショ ンシステムの地図は立体的に表示されることを特徴とす るものである。  An invention according to claim 12 is the vehicle image display device according to claim 11, wherein the map of the power navigation system is stereoscopically displayed. Things.
本発明によれば、 立体的に表示された地図に基づいて自車両の走行すべき進路を認 識でき、 より直感的かつ的確に進路を認識できる。 ADVANTAGE OF THE INVENTION According to this invention, the course which own vehicle should drive is recognized based on the map displayed three-dimensionally. And more intuitively and accurately recognize the course.
請求の範囲 1 3に記載の発明は、 請求の範囲 1乃至請求の範囲 1 2のいずれ力 に記 載の車両用映像表示装置において、 前記立体映像表示手段は、 画像ソフ ト ウェア の映 像表示手段を兼ねることを特徴とするものである。  The invention according to claim 13 is the vehicle image display device according to any one of claims 1 to 12, wherein the three-dimensional image display means includes an image software. It is characterized in that it also serves as a means.
本発明によれば、 車両中で画像ソフ トウェアを立体映像と して表示できる。  According to the present invention, image software can be displayed as a stereoscopic image in a vehicle.
請求の範囲 1 4に記載の発明は、 請求の範囲 1乃至請求の範囲 1 3のいずれ力 に記 載の車両用映像表示装置において、 前記立体画像表示手段の表示を正像画面ある いは 鏡像画面に切り換える表示切換手段を備えたことを特徴とするものである。  The invention according to claim 14 is the vehicle image display device according to any one of claims 1 to 13, wherein the display of the stereoscopic image display means is a normal image screen or a mirror image. A display switching means for switching to a screen is provided.
本発明によれば、後方を表示するに際して、正像(後を振り返っている状態に相当)、 あるいは左右が反転した鏡像 (バック ミラ一をみている場合に相当) を切り換えるこ とができるので、 使用者の慣れている画像を表示でき、 より的確な状況認識をするこ とができる。  According to the present invention, when displaying the rear, it is possible to switch between a normal image (corresponding to a state of looking back) or a mirror image in which the left and right are inverted (corresponding to a back mirror). Images that the user is accustomed to can be displayed, and more accurate situation recognition can be performed.
請求の範囲 1 5に記載の発明は、 請求の範囲 1乃至請求の範囲 1 4のいずれかに記 載の車両用映像表示装置において、 前記立体画像表示装置は、 ヘッ ドアップディ スプ レイ (H U D ) を構成することを特徴とするものである。  The invention according to claim 15 is the video display device for a vehicle according to any one of claims 1 to 14, wherein the stereoscopic image display device is a head-up display (HUD). Is characterized.
本発明によれば、 立体像を運転者の視線上に表示することができるので、 運転者は 運転中視線を変更することなく 自車両周辺の状況を認識できる。  According to the present invention, since a stereoscopic image can be displayed on the driver's line of sight, the driver can recognize the situation around the host vehicle without changing the driver's line of sight.
請求の範囲 1 6に記載の発明は、 請求の範囲 1乃至請求の範囲 1 5のいずれかに記 載の車両用映像表示装置において、 2台の撮像手段を備え該撮像手段からの映像情報 を出力する立体映像撮像装置と、 観者の両眼に異なる映像を表示する立体映像表示装 置とを備え、 前記立体映像撮像装置は、 撮像手段の光軸のク ロスポイン ト (C P ) に 関する C P情報を測定するクロスボイン ト測定手段を備え、 この C P情報と映像情報 とを含んだ情報を送出すると ともに、 前記立体映像表示装置は、 前記映像情報、 前記 ク ロスポイン ト情報、 この立体映像表示装置が表示する画像の大きさ情報に基づいて 前記異なる映像をずらして表示させるオフセッ ト設定手段を備えたことを特徴とする ものである。  The invention described in claim 16 is the vehicle image display device according to any one of claims 1 to 15, further comprising: two image pickup units, wherein image information from the image pickup units is provided. A stereoscopic image pickup device that outputs different images to both eyes of the viewer, and the stereoscopic image pickup device includes a stereoscopic image pickup device that outputs a cross point (CP) of the optical axis of the image pickup unit. Cross-point measuring means for measuring information; transmitting information including the CP information and the video information; and the stereoscopic video display device includes the video information, the cross-point information, and the stereoscopic video display device. And offset setting means for shifting and displaying the different images based on the size information of the image to be displayed.
本発明によれば、 車両用映像表示装置に対応した最適な立体度 (奥行き量) に調整 した立体映像を得ることができる。 ADVANTAGE OF THE INVENTION According to this invention, it adjusts to the optimal three-dimensional degree (depth amount) corresponding to the video display apparatus for vehicles. A stereoscopic image can be obtained.
請求の範囲 1 7に記載の発明は、 請求の範囲 1乃至請求の範囲 1 6のいずれかに記 載の車両用映像表示装置において、 前記立体映像表示装置は、 表示画面に対する観者 の位置情報を測定する観者位置情報測定手段を備え、 前記映像情報、 前記ク ロスボイ ン ト情報、 この立体映像表示装置が表示する画像の大きさ情報、 及び観者の位置情報 に基づいて前記異なる映像をずらして表示させるオフセッ 卜設定手段を備えたことを 特徴とする。  The invention according to claim 17 is the vehicle image display device according to any one of claims 1 to 16, wherein the stereoscopic image display device includes: The cross-point information, the size information of the image displayed by the three-dimensional image display device, and the viewer's position information. Offset setting means for shifting the display is provided.
本発明によれば、立体映像撮影表示手段及び観者の位置に対応した最適な立体度(奥 行き量) を備えた立体映像を得ることができる。  According to the present invention, it is possible to obtain a stereoscopic image having an optimum stereoscopic degree (depth amount) corresponding to the stereoscopic image photographing and displaying means and the position of the viewer.
請求の範囲 1 8に記載の発明は、 請求の範囲 1 6又は請求の範囲 1 7のいずれかに 記載の車両用映像表示装置において、 前記ク ロスポイン ト測定手段は、 2台の撮像手 段における光軸の交差角度に基づいてク ロスポイ ン ト位置を算出することを特徴とす るものである。  The invention according to claim 18 is the vehicle image display device according to any one of claims 16 and 17, wherein the cross-point measuring means is provided in two imaging means. It is characterized in that the crosspoint position is calculated based on the crossing angle of the optical axis.
本発明によれば、 三角測量の原理に基づいて 2台の撮像手段の距離と光軸の交差角 度の値に基づいて、 ク ロスポイン ト及び撮像対象物 (被写体) までの距離を測定でき る。 また、 2つの被写体間の間隔距離を測定できる。  According to the present invention, it is possible to measure the distance between the cross point and the imaging target (subject) based on the distance between the two imaging units and the value of the intersection angle of the optical axis based on the principle of triangulation. . Also, the distance between two objects can be measured.
請求の範囲 1 9に記載の発明は、 請求の範囲 1 6又は請求の範囲 1 7のいずれかに 記載の車両用映像表示装置において、 前記ク ロスポイン ト測定手段は、 平行に配置さ れた 2台の撮像手段における被写体の撮像位置に基づいてクロスポイン ト位置を算出 することを特徴とするものである。  The invention described in claim 19 is the vehicle image display device according to any one of claims 16 and 17, wherein the crosspoint measuring means is arranged in parallel. The method is characterized in that a crosspoint position is calculated based on an imaging position of a subject in one imaging unit.
本発明によれば、 三角測量の原理に基づいて 2台の撮像手段の距離と光軸の交差角 度の値に基づいて、 ク ロスポイン ト及び撮像対象物 (被写体) までの距離を測定でき る。 また、 2つの被写体間の間隔距離を測定できる  According to the present invention, it is possible to measure the distance between the cross point and the imaging target (subject) based on the distance between the two imaging units and the value of the intersection angle of the optical axis based on the principle of triangulation. . It can also measure the distance between two subjects
請求の範囲 2 0に記載の発明は、 請求の範囲 1 6乃至請求の範囲 1 9のいずれかに 記載の車両用映像表示装置において、 前記立体映像撮像装置は、 撮像した領域の前後 に亘る奥行き量についての情報を送出し、 奥行き量、 この立体映像表示装置が表示す る画像の大きさ情報、 及び観者の位置情報に基づいて前記異なる映像をずら して表示 させるオフセッ ト設定手段を備えたことを特徴とするものである。 The invention according to claim 20 is the vehicle image display device according to any one of claims 16 to 19, wherein the stereoscopic video imaging device has a depth extending before and after a captured area. The different images are shifted and displayed based on the depth amount, the size information of the image displayed by the stereoscopic image display device, and the position information of the viewer. Offset setting means for causing the offset to be set.
本発明によれば、 表示手段は撮影条件についてよ り正確な情報を得ることができる ので、 よ り適切な立体画像表示をすることができる。  According to the present invention, the display means can obtain more accurate information on the photographing conditions, so that a more appropriate stereoscopic image can be displayed.
請求の範囲 2 1 に記載の発明は、 請求の範囲 1 7に記載の車両用映像表示装置にお いて、 前記観察者位置検出手段は、 車両用映像表示装置本体に一体的に配置されたこ とを特徴とするものである。  The invention according to claim 21 is the vehicle image display device according to claim 17, wherein the observer position detecting means is disposed integrally with the vehicle image display device main body. It is characterized by the following.
本発明によれば、 観察者位置検出手段を車両用映像表示装置本体の他に別途設置す る必要がない。  According to the present invention, there is no need to separately install the observer position detecting means in addition to the vehicle image display device main body.
請求の範囲 2 2に記載の発明は、 請求の範囲 1 7に記載の車両用映像表示装置にお いて、 前記観察者位置検出手段は車両用映像表示装置本体と離れた位置に配置された ことを特徴とする。  The invention according to claim 22 is the vehicle image display device according to claim 17, wherein the observer position detecting means is arranged at a position separated from the vehicle image display device main body. It is characterized by.
本発明によれば、 観察者位置検出手段を観察者の位置を検出するために適切な個所 に配置でき、 観察者の位置を正確に検出することができる。  ADVANTAGE OF THE INVENTION According to this invention, an observer position detection means can be arrange | positioned in the appropriate place for detecting the position of an observer, and the position of an observer can be detected correctly.
請求の範囲 2 3に記載の発明は、 請求の範囲 2 1又は請求の範囲 2 2のいずれかに 記載の車両用映像表示装置において、 前記観察者位置検出手段は超音波発信器及び超 音波受信器を備えたことを特徴とするものである。  The invention according to claim 23 is the vehicle image display device according to any one of claims 21 and 22, wherein the observer position detecting means is an ultrasonic transmitter and an ultrasonic receiver. It is characterized by having a vessel.
本発明によれば、 赤外線等他の手段による観察者の検出などに比べて周囲の雑音な どなどの影響を受けにく く、 正確な検出を行うことができる。  ADVANTAGE OF THE INVENTION According to this invention, it is hard to be influenced by surrounding noise etc. compared with the detection of an observer by other means, such as infrared rays, and can perform accurate detection.
請求の範囲 2 4に記載の発明は、 請求の範囲 2 1又は請求の範囲 2 2のいずれかに 記載の車両用映像表示装置において、 前記記観察者位置検出手段は観者を撮影した画 像に基づいて位置検出をすることを特徴とするものである。  The invention according to claim 24 is the vehicle image display device according to any one of claims 21 and 22, wherein the observer position detection means is an image of a viewer. The position is detected based on
本発明によれば、 赤外線等他の手段による観察者の検出などに比べて周囲の雑音な どなどの影響を受けにく く、 正確な検出を行うことができる。  ADVANTAGE OF THE INVENTION According to this invention, it is hard to be influenced by surrounding noise etc. compared with the detection of an observer by other means, such as infrared rays, and can perform accurate detection.
請求の範囲 2 5に記載の発明は、 請求の範囲 1 6乃至請求の範囲 2 4のいずれかに 記載の車両用映像表示装置において、 前記オフセッ ト設定手段は、 前記入力手段に入 力された情報に基づいて左目映像と右目映像とのオフセッ トを設定して、 前記表示手 段に表示される映像の立体感を調整することを特徴とするものである。 本発明によれば、 観察者の好みに合わせて立体度 (奥行き量) を調整した立体映像 を得ることができる。 The invention according to claim 25 is the vehicle image display device according to any one of claims 16 to 24, wherein the offset setting means is input to the input means. An offset between the left-eye image and the right-eye image is set based on the information, and the stereoscopic effect of the image displayed on the display means is adjusted. According to the present invention, it is possible to obtain a stereoscopic image in which the stereoscopic degree (depth amount) is adjusted according to the viewer's preference.
請求の範囲 2 6に記載の発明は、 請求の範囲 1 6乃至請求の範囲 2 5のいずれかに 記載の車両用映像表示装置が、 左目映像を記憶する左目映像用フ レームメモリ と、 右 目映像を記憶する右目映像用フ レームメモリ とを備え、 前記オフセッ ト設定手段は、 前記左目映像用フレームメモリ及びノ又は右目映像用フレームメモリから映像データ を読み出すタイ ミングを制御するタイ ミング制御手段を備え、 前記タイ ミ ング制御手 段は、 前記左目映像用フレームメモリ と前記右目映像用フ レームメモリ との一方から 映像データを読み出すタイ ミ ングを、 他方のフレームメモリから映像データを読み出 すタイ ミングと比較して早める又は遅らせることによって前記左目映像と前記右目映 像とのオフセッ トを設定することを特徴とするものである。  The invention according to claim 26 is a vehicle image display device according to any one of claims 16 to 25, further comprising: a left-eye image frame memory that stores a left-eye image; A right-eye video frame memory for storing a video, wherein the offset setting means includes a timing control means for controlling timing of reading video data from the left-eye video frame memory and the right or left-eye video frame memory. The timing control means includes a timing for reading video data from one of the left-eye video frame memory and the right-eye video frame memory, and a timing for reading video data from the other frame memory. Setting an offset between the left-eye image and the right-eye image by advancing or delaying as compared to the video signal. It is.
本発明によれば、 簡単な回路で左右目映像のオフセッ トを設定することができる。 請求の範囲 2 7に記載の発明は、 請求の範囲 1 6乃至請求の範囲 2 5のいずれかに 記載の車両用映像表示装置が、 立体映像を記憶する立体映像用フ レームメモリ と、 前 記左目映像用フレームメモリから読み出された左目映像データと前記右目映像用フレ —ムメモリから読み出された右目映像データとを切り換えて立体映像用フ レームメモ リに入力する信号切換手段と、 を備えることを特徴とするものである。  According to the present invention, the offset of the left and right eye images can be set with a simple circuit. The invention according to claim 27 is a vehicle image display device according to any one of claims 16 to 25, further comprising: a stereoscopic image frame memory that stores a stereoscopic image; Signal switching means for switching between left-eye video data read from the left-eye video frame memory and right-eye video data read from the right-eye video frame memory and inputting the data to the stereoscopic video frame memory. It is characterized by the following.
本発明によれば、 左右目映像のオフセッ トが設定された映像を合成してフレームメ モリ に記憶することができる。  ADVANTAGE OF THE INVENTION According to this invention, it can synthesize | combine the image by which the offset of the left-right image was set, and memorize | stored in frame memory.
請求の範囲 2 8に記載の発明は、 請求の範囲 1 6乃至請求の範囲 2 7のいずれかに 記載の車両用映像表示装置において、 前記左目映像と前記右目映像との水平位相を進 める又は遅らせることによって、 前記左目映像と前記右目映像とのオフセッ トを設定 することを特徴とするものである。  The invention according to claim 28 is the vehicle image display device according to any one of claims 16 to 27, wherein a horizontal phase of the left-eye image and the right-eye image is advanced. Alternatively, an offset between the left-eye image and the right-eye image is set by delaying the offset.
本発明によれば、 左右目映像のオフセッ 卜の設定を容易に制御することができる 請求の範囲 2 9に記載の発明は、 請求の範囲 1 6乃至請求の範囲 2 8のいずれかに 記載の車両用映像表示装置において、 前記左目映像と前記右目映像とのオフセッ トを 設定した際に、 前記左目映像と前記右目映像との左右縁部において情報が欠落した領 域に、 当該欠落領域近傍の前記左目映像と前記右目映像との一方又は双方を水平及び 垂直方向に拡大して表示することを特徴とするものである。 According to the present invention, the setting of the offset of the left and right eye images can be easily controlled. The invention according to claim 29 is the invention according to any one of claims 16 to 28 In an image display device for a vehicle, when an offset between the left-eye image and the right-eye image is set, a region where information is missing at left and right edges of the left-eye image and the right-eye image. And displaying one or both of the left-eye image and the right-eye image in the vicinity of the missing area in a horizontal and vertical direction.
本発明によれば、 左右目映像をずら して表示した場合にも画面が欠けることのない 違和感のない表示をすることができる。  ADVANTAGE OF THE INVENTION According to this invention, even if it displays by shifting the left-right image, the display which does not lack a screen and which does not have a sense of strangeness can be performed.
請求の範囲 3 0に記載の発明は、 請求の範囲 1 6乃至請求の範囲 2 9のいずれかに 記載の車両用映像表示装置において、 前記表示手段は、 透過光で映像を表示する映像 表示手段と光源装置とを備え、 光源装置は、 白色 L E Dまたは R G Bの L E Dを一体 に配歹 ljした L E Dア レイで構成され、 前記オフセッ ト設定手段はこの L E Dア レイの 白色 L E D又は R G Bの L E Dを前記オフセッとに基づいて点灯制御する L E D制御 手段を備えたことを特徴とするものである。  The invention according to claim 30 is the image display device for a vehicle according to any one of claims 16 to 29, wherein the display means displays an image with transmitted light. And a light source device. The light source device is configured by an LED array in which white LEDs or RGB LEDs are integrally arranged, and the offset setting means controls the white LEDs or the RGB LEDs of the LED array. LED control means for controlling lighting based on the offset is provided.
本発明によれば、 光源と して消費電力が少なくオンオフのスィ ツチング速度が早い 白色 L E D又は R G Bの L E Dを使用しているので、 L E D制御手段の制御によ り 自 由な光源の点灯を行うことができる他、 消費電力を少ないものとすることができる。 請求の範囲 3 1 に記載の発明は、 請求の範囲 2 9に記載の車両用映像表示装置にお いて、 オフセッ ト設定手段の L E D制御手段は前記観察者位置情報に基づいて、 観察 者の観察映像を維持するよ う前記白色 L E D又は R G Bの L E Dを点灯制御すること を特徴とするものである。  According to the present invention, since a white LED or an RGB LED having low power consumption and fast on / off switching speed is used as the light source, the light source can be freely turned on by controlling the LED control means. In addition, power consumption can be reduced. The invention according to claim 31 is the vehicle image display device according to claim 29, wherein the LED control means of the offset setting means observes the observer based on the observer position information. The white LED or the RGB LED is controlled to be turned on so as to maintain an image.
本発明によれば、 観察者が移動しても、 また観察者が複数の異なる位置にいても適 切な映像を表示することができる。  ADVANTAGE OF THE INVENTION According to this invention, an appropriate image | video can be displayed even if an observer moves and an observer exists in several different positions.
請求の範囲 3 2に記載の発明は、 請求の範囲 2 9に記載の車両用映像表示装置にお いて、 前記光源装置の上下に設けられた各 L E Dアレイは右目用映像表示用部と左目 用映像表示用部をなすことを特徴とするものである。  The invention according to claim 32 is the vehicle image display device according to claim 29, wherein each of the LED arrays provided above and below the light source device includes a right-eye image display portion and a left-eye image display portion. It is characterized by forming an image display section.
本発明によれば、 L E Dアレイの右目用映像表示用部と左目用映像表示用部を L E D制御手段で発光制御することにより立体映像の表示制御を高い自由度で行う ことが できる。  According to the present invention, display control of a stereoscopic image can be performed with a high degree of freedom by controlling light emission of the right-eye image display unit and the left-eye image display unit of the LED array by the LED control unit.
図面の簡単な説明 図 1は、 本発明の実施の一形態例に係る車両用映像表示装置の基本構成を示すプロ ック図である。 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a professional diagram showing a basic configuration of a video display device for a vehicle according to an embodiment of the present invention. FIG.
図 2は、 図 1 に示した車両用映像表示装置の構成を示すプロック図である。  FIG. 2 is a block diagram showing the configuration of the vehicle image display device shown in FIG.
図 3は、 図 1 に示した車両用映像表示装置の表示の状態を示す斜視図である。  FIG. 3 is a perspective view showing a display state of the vehicle image display device shown in FIG.
図 4は、 図 1 に示した車両用映像表示装置の表示の状態を示す斜視図である。  FIG. 4 is a perspective view showing a display state of the vehicle image display device shown in FIG.
図 5は、図 1 に示した車両用映像表示装置の表示制御回路を示すプロ ック図である。 図 6は、 観察者の立体像の見え方と、 表示制御回路の詳細構成を示すブロック図で ある。  FIG. 5 is a block diagram showing a display control circuit of the vehicle image display device shown in FIG. FIG. 6 is a block diagram showing how a viewer views a stereoscopic image and the detailed configuration of a display control circuit.
図 7は、 観察者の立体像の見え方を示す図である。  FIG. 7 is a view showing how a viewer sees a stereoscopic image.
図 8は、 観察者の立体像の見え方を示す図である。  FIG. 8 is a diagram showing how a viewer sees a stereoscopic image.
図 9は、 観察者の立体像の見え方を示す図である。  FIG. 9 is a diagram showing how a viewer sees a stereoscopic image.
図 1 0は、 観察者の立体像の見え方を示す図である。  FIG. 10 is a diagram showing how a viewer sees a stereoscopic image.
図 1 1は、 観察者の立体像の見え方を示す図である。  FIG. 11 is a diagram showing how a viewer sees a stereoscopic image.
図 1 2は、 表示手段の構成を示す図である。  FIG. 12 is a diagram showing the configuration of the display means.
図 1 3は、 表示装置の詳細な構成を示す分解斜視図である。  FIG. 13 is an exploded perspective view showing a detailed configuration of the display device.
図 1 4は、 表示装置の液晶の表示状態を示す図である。  FIG. 14 is a diagram illustrating a display state of the liquid crystal of the display device.
図 1 5は、 表示装置の市松状板の偏光方向を示す図である。  FIG. 15 is a diagram illustrating the polarization direction of the checkerboard of the display device.
図 1 6は、 本発明に係る他の例に係る車両用映像表示装置の構成を示す図である。 図 1 7は、 本発明に係るさらに他の例に係る車両用映像表示装置の構成を示す図で ある。 発明を実施するための最良の形態  FIG. 16 is a diagram showing a configuration of a vehicle image display device according to another example of the present invention. FIG. 17 is a diagram showing a configuration of a video display device for a vehicle according to yet another example of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について、 図面を参照して説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1乃至図 1 7は、 本発明に係る車両用映像表示装置の構成例を示すものである。 図 1 は本形態例に係る車両用映像表示装置の基本構成を示すプロ ック図を、 図 2は図 1に示した車両用映像表示装置の構成を示すプロ ック図を、 図 3は図 1 に示した車両 用映像表示装置の表示の状態を示す斜視図を、 図 4は図 1 に示した車両用映像表示装 置の表示の状態を示す斜視図を、 図 5は図 1 に示した立体映像表示装置の表示制御回 路を示すブロック図を、 図 6は観察者の立体像の見え方と表示制御回路の詳細埯成を 示すブロ ック図を、 図 7乃至図 9は観察者の立体像の見え方を示す図を、 図 1 0 およ び図 1 1 は立体像の出現位置を説明する図を、 図 1 2は表示手段の構成を示す図を、 図 1 3は表示装置の詳細な構成を示す分解斜視図を、 図 1 4は表示装置の液晶の表示 状態を示す図を、 図 1 5は表示装置の市松状板の偏光方向を示す図を、 図 1 6は本発 明に係る他の例に係る車両用映像表示装置の構成を示す図を、 図 1 7は本発明に係る さらに他の例に係る車両用映像表示装置の構成を示す図を、 夫々示している。 本発明の実施の形態に係る車両用映像表示装置システムは、 図 1及び図 2に示すよ うに、 たとえば自動車である車両 4 0 0の後方設けられた 2台の撮像手段 (カメ ラ) 4 0 2 L , 4 0 2 Rと、 のカメ ラ 4 0 2 L、 4 0 2 Rが撮影した画像に基づいて観者 9 0に立体表示するたとえば液晶表示画面を備えた立体映像表示手段 1 2 1 と、 前記 カメラからの信号に基づいて、 表示する画像の奥行きを調整する制御部 (表示制御回 路) 1 0 0 とを備えている。 また、 この制御部 1 0 0には様々なデジタル画像処理を 行う画像処理部 1 1 0を備えている。 1 to 17 show a configuration example of a video display device for a vehicle according to the present invention. FIG. 1 is a block diagram showing the basic configuration of the vehicle image display device according to the present embodiment, FIG. 2 is a block diagram showing the configuration of the vehicle image display device shown in FIG. 1, and FIG. FIG. 4 is a perspective view showing a display state of the vehicle image display device shown in FIG. 1, FIG. 4 is a perspective view showing a display state of the vehicle image display device shown in FIG. 1, and FIG. The display control circuit of the indicated stereoscopic image display device Fig. 6 is a block diagram showing how the observer sees a stereoscopic image and the detailed configuration of the display control circuit. Figs. 7 to 9 show how the observer sees the stereoscopic image. FIGS. 10 and 11 are diagrams illustrating the appearance position of the stereoscopic image, FIG. 12 is a diagram illustrating the configuration of the display means, and FIG. 13 is an exploded view illustrating the detailed configuration of the display device. FIG. 14 is a perspective view, FIG. 14 is a diagram showing a display state of a liquid crystal of the display device, FIG. 15 is a diagram showing a polarization direction of a checkerboard of the display device, and FIG. 16 is another example according to the present invention. FIG. 17 is a diagram showing a configuration of a vehicular image display device according to the present invention, and FIG. 17 is a diagram showing a configuration of a vehicular video display device according to still another example of the present invention. As shown in FIG. 1 and FIG. 2, a vehicle image display device system according to an embodiment of the present invention includes two image pickup means (cameras) 40 provided behind a vehicle 400, for example, an automobile. 2L, 402R, and 3D image display means provided with a liquid crystal display screen, for example, which provides a three-dimensional display to a viewer 90 based on images taken by the cameras 402L, 402R. And a control unit (display control circuit) 100 for adjusting the depth of an image to be displayed based on a signal from the camera. The control unit 100 includes an image processing unit 110 that performs various digital image processing.
本形態例では、 カメラはたとえば C C D撮像素子を備えた小型力メラを 2台 1組と しており、 このようなカメラは車体左右側部に設けることができる (符号 4 0 3 , 4 0 4 ) 0 In this embodiment, the camera is, for example, a set of two small force cameras each having a CCD image sensor, and such cameras can be provided on the left and right sides of the vehicle body (reference numerals 400, 404). ) 0
また、 本形態例では、 前記表示制御回路は、 画像を処理して、 立体画像と して、 立 体画像表示手段 1 2 1に表示するため、 これらのカメ ラの光軸の角度から被写体まで の距離及びク ロスポイン ト情報 (C P情報) を計測する C P測定手段と、 画像情報及 び C P情報を立体画像表示手段. 1 2 1 に向け送出する画像信号送出手段と、 を備えて いる。  Further, in the present embodiment, the display control circuit processes the image and displays it as a stereoscopic image on the stereoscopic image display means 121. It is provided with: CP measuring means for measuring distance and cross-point information (CP information); and image signal transmitting means for transmitting image information and CP information to stereoscopic image display means.
なお、 この C P情報は、 平行に配置された 2台の撮像手段における被写体の撮像位 置に基づいてク ロスポイン ト位置を算出することができる。 また本形態例では、 撮像 した領域の前後に亘る奥行き量についての情報を送出し、 前記立体映像表示装置で、 前記映像情報、 前記ク ロスポイン ト情報に加えて奥行き量を用いて表示することによ り適切な立体画像表示をすることができる。 更に本形態例に係る車両用映像表示装置 では、 観者の位置を測定する観者位置測定手段 1 2 2 と、 観者が操作し、 表意制御回 路 1 0 0にその操作内容が入力され、 表示される画像の奥行き量を好みの状態に変化 させる手動入力部と してのコン トローラ 1 0 5を備えている。 また、 このコントロー ラによ り立体画像表示手段 1 2 1 に表示する画像を切り換表示両後方及び車両側方の いずれか又は両方を表示するよ う切り換えることができる。 It should be noted that the CP information can calculate the crosspoint position based on the imaging position of the subject in the two imaging units arranged in parallel. Further, in the present embodiment, information on the depth amount before and after the imaged area is transmitted, and the stereoscopic video display device displays the information using the depth amount in addition to the video information and the crosspoint information. Yo Thus, an appropriate stereoscopic image can be displayed. Further, in the vehicular image display device according to the present embodiment, the viewer's position measuring means 122 for measuring the position of the viewer, the viewer operates and the operation content is input to the ideographic control circuit 100. In addition, a controller 105 is provided as a manual input unit for changing the depth of the displayed image to a desired state. Further, by this controller, it is possible to switch the image displayed on the stereoscopic image display means 121 so as to display one or both of the rear display and the side of the vehicle.
また更に、 コン トローラ 1 0 5は、 カメ ラに設けた駆動手段 4 0 5を作動させ、 撮 影する個所及び撮影範囲のうち少なく とも 1つを変更できる撮像操作手段を備えるこ とができる。 これによ り、 車内から必要な撮影個所や撮影範囲を指定でき、 必要な個 所の状況を立体的に表示できる。 そして、 本形態例では表示手段の表示を正像画面あ るいは鏡像画面に切り換えことができるよ うにする。 これはコン トローラ 1 0 5から の指示により、 画像処理手段 1 1 0で反転画像処理を行う ことにより実現する。 これ によ り、 後方を表示するに際して、 正像 (後を振り返つている状態に相当)、 あるいは 左右が反転した鏡像 (バック ミラーをみている場合に相当) を切り換えることができ るので、 使用者の慣れている画像を表示でき、 より的確な状況認識をすることができ る。  Further, the controller 105 can be provided with an imaging operation means capable of activating a driving means 405 provided on the camera to change at least one of an imaging location and an imaging range. This makes it possible to specify the required shooting location and shooting range from inside the vehicle, and to display the status of the required location in three dimensions. In this embodiment, the display of the display means can be switched to a normal image screen or a mirror image screen. This is realized by performing inversion image processing in the image processing means 110 according to an instruction from the controller 105. This allows the user to switch between a normal image (equivalent to looking back) or a mirror image with inverted left and right (equivalent to looking at the rearview mirror) when displaying the rear. You can display images that you are used to, and you can recognize the situation more accurately.
また、 本形態例に係る車両用映像表示装置ではカメラで車両の上方を撮影すること ができる。 このよ うに車両上方の画像を立体画像と して現実感を持って表示でき、 車 両の上方の状況を確実に認識できる。 これは特に低い橋の下を通過したり、 タワー式 の駐車用ゴンドラに車両を入庫させたりするときに有効である。  Further, in the vehicle image display device according to the present embodiment, the upper part of the vehicle can be photographed by the camera. In this way, the image above the vehicle can be displayed as a three-dimensional image with a sense of reality, and the situation above the vehicle can be reliably recognized. This is especially useful when passing under low bridges or getting vehicles into a tower-type parking gondola.
そして、 本形態例では表示制御回路 1 0 0の画像処理装置 1 1 0に車両輪郭表示手 段と して自車両の輪郭情報を格納しておき、 前記立体映像表示手段に車両の輸郭を表 す車両画像を立体的に表示させる。 前記奥行き量を変化させること とこの輪郭位置を かえることにより、 任意の位置から見た場景を再現することができる。 即ちバンバ先 端から後方をみた状態や、 運転者の位置から後方を見た状態、 その他任意に視点を前 後させることができる。  In the present embodiment, the contour information of the own vehicle is stored in the image processing device 110 of the display control circuit 100 as a vehicle contour display means, and the outline of the vehicle is stored in the stereoscopic image display means. The vehicle image to be displayed is displayed three-dimensionally. By changing the depth and changing the contour position, a scene viewed from an arbitrary position can be reproduced. In other words, it is possible to make the viewpoint look backward from the front end of the Bamba, look backward from the driver's position, or arbitrarily move the viewpoint forward or backward.
また、 本形態例では、 車両用映像表示装置前記立体映像表示手段に表示された物体 までの距離寸法を表示することができる。 このため、 表示物体までの距離が表示され るので、 表示物体までの距離を数値的に認識することができ、 正確な状況認識ができ る。 In the present embodiment, the object displayed on the vehicle image display device is displayed on the stereoscopic image display means. The distance dimension to can be displayed. For this reason, the distance to the display object is displayed, so that the distance to the display object can be numerically recognized, and accurate situation recognition can be performed.
そして、 また、 本形態例では、 前記立体映像に表示された複数物体の間隔寸法を表 示することができ、 表示物体間を通り抜けできるかを客観的に判断できる。  Further, in the present embodiment, the distance between a plurality of objects displayed on the stereoscopic image can be displayed, and it can be objectively determined whether or not the object can pass between the displayed objects.
そして、 本形態例に係る車両用映像表示装置では立体映像表示手段に車両の予想進 路画像を表示することができる。 これは予め入力されている車両寸法とハン ドルの舵 角から予測するものであり、 タイヤの軌跡.を示したり、 車体通過の限界面を立体的に 表示することにより実現される。 これにより、 立体画像中に予想進路が表示されるの で、 自車両の進路を予め予想して車両の操作を行う ことができる。  Then, the vehicle image display device according to the present embodiment can display the predicted course image of the vehicle on the stereoscopic image display means. This is predicted from the vehicle dimensions and the steering angle of the handle, which are input in advance, and is realized by indicating the trajectory of the tires and displaying the limit surface of the vehicle passage three-dimensionally. As a result, the predicted course is displayed in the three-dimensional image, and the vehicle can be operated while predicting the course of the own vehicle in advance.
このよ うな本形態例に係る車两用映像表示装置を使用した場合の画像について図 3、 図 4及び図 1 7に基づいて説明する。  An image when the vehicle image display device according to this embodiment is used will be described with reference to FIGS. 3, 4, and 17. FIG.
図 4に示すよ うに、 車両 4 0 0が後退して、 車庫 6 0 0に入庫しょ う と してレ、る場 合について説明する。この場合車庫 6 0 0の奥には奥壁 6 0 1、両側には側壁 6 0 2 , 6 0 3、 上方には天井 6 0 4があり、 車止め 6 0 5, 6 0 6が設置されている。  As shown in FIG. 4, a case where the vehicle 400 moves backward and tries to enter the garage 600 will be described. In this case, there is an inner wall 601 in the back of the garage 600, side walls 602 and 603 on both sides, a ceiling 604 above, and car stops 605 and 606. I have.
この状態で車両を後退させるため、 セレクタ レバ一をバックにすると自動的に車両 後方に設置されたカメラ 4 0 2 L、 4 0 2 Rからの画像が表示制御回路 1 0 0を介し て立体表示手段 1 2 1に表示される。  In order to move the vehicle backward in this state, when the selector lever is turned back, images from cameras 402 L and 402 R installed at the rear of the vehicle are automatically displayed in three dimensions via the display control circuit 100. Means displayed on 1 2 1.
この画像は、 図 3及び図 4に示すよ うに立体的に立体画像表示装置 1 2 1から浮き 出て、 奥壁の像 6 1 1、 側壁の像 6 1 2, 6 1 3、 天井の像 6 1 4及び、 車止めの像 6 1 5 , 6 1 6からなる車庫の立体画像 6 1 0 と車両の画像 4 1 0が表示される。 こ のとき、 上述したよ うに視点をどこにするかを選択することができる。  This image emerges three-dimensionally from the stereoscopic image display device 121 as shown in FIGS. 3 and 4, and the image of the back wall 611, the image of the side wall 61, 2, 613, and the image of the ceiling A garage stereoscopic image 6 10 and an image 4 10 of the vehicle, which are composed of 6 14 and the image of the car stop 6 15 and 6 16, are displayed. At this time, it is possible to select a viewpoint as described above.
そして、 本形態例では、 画像内には天井の高さ A m、 両壁の間隔寸法 B m、 奥壁ま での奥行き寸法 C mの値が表示される。 更に本形態例では、 このまま進行した場合の 車両の車輪の軌跡 6 2 1 , 6 2 2が表示される。 これにより、 後方の状態を直感的、 的確に確認できる。  In the present embodiment, the values of the ceiling height Am, the distance Bm between the two walls, and the depth Cm to the back wall are displayed in the image. Further, in the present embodiment, the trajectories 62 1 and 62 2 of the wheels of the vehicle when the vehicle proceeds as it is are displayed. This makes it possible to intuitively and accurately check the state behind the vehicle.
なお、 画像は、 上述したよ うに鏡像と して表示することができるほか、 車両の軌跡 は限界を示す壁と して表したりすることができる。 The image can be displayed as a mirror image as described above, and in addition to the trajectory of the vehicle Can be expressed as a wall showing the limits.
また、 車両の横側についても従来のサイ ドミ ラーの画像に相当するものを表示させ ることもできる。  Also, on the side of the vehicle, an image equivalent to a conventional side mirror image can be displayed.
なお、 本形態例に係る車両用映像表示装置は、 カーナビゲ一シヨ ンシステムの映像 表示手段を兼ねることができ、 この場合力一ナビゲ一ショ ンシステムの地図は立体的 に表示されることが望ま しい。 このよ う にすれば、 立体的に表示された地図に基づい て自車両の走行すべき進路を認識でき、 よ り直感的かつ的確に進路を認識できる。 更に、 車両用映像表示装置の前記立体映像表示手段は、 テレビ画面や、 ビデオ再生 画像、 D V D再生画像等の画像ソフ トウェアの映像表示手段をかねるようにすること ができる。 このよ うに構成することによ り、 車両中で画像ソフ トウェアを立体映像と して表示できる。  Note that the vehicle image display device according to the present embodiment can also serve as the image display means of the car navigation system. In this case, it is desirable that the map of the power navigation system be displayed three-dimensionally. New This makes it possible to recognize the course on which the vehicle should travel based on the three-dimensionally displayed map, and to recognize the course more intuitively and accurately. Further, the stereoscopic video display means of the vehicular video display device can also serve as a video display means of image software such as a television screen, a video playback image, and a DVD playback image. With this configuration, the image software can be displayed as a stereoscopic image in the vehicle.
なお、 上記例では液晶表示装置で液晶画面に垂直方向に奥行きを持つ立体画像を表 示させる例を説明したが、 立体画像表示装置は、 へッ ドアップディ スプレイ (H U D ) と して、 立体像を運転者の視線上に表示することができる。 この場合、 運転者は運転 中視線を変更することなく 自車両周辺の状況を認識できる。  In the above example, an example in which the liquid crystal display device displays a stereoscopic image having a depth in the vertical direction on the liquid crystal screen has been described. However, the stereoscopic image display device uses a stereoscopic image as a head-up display (HUD). Can be displayed on the driver's line of sight. In this case, the driver can recognize the situation around the own vehicle without changing the line of sight during driving.
次に、 表示制御回路 1 0 0について説明する。 表示制御回路 1 0 0は、 図 5に示す よ うに、 左目映像と右目映像とからなる立体映像信号を生成する立体映像信号生成回 路 1 0 1 と、 表示手段 1 2 1 を駆動する駆動回路 1 0 2 と、 を備えてなり、 立体映像 信号生成回路 1 0 1は、 前記立体視可能な映像に関する映像情報、 即ち制作時におい て想定される表示画像のサイズ、 観察者の位置、 ク ロスポイ ン ト情報を取得する映像 情報取得手段 1 0 3 と、 表示手段の表示領域に関する表示装置情報、 即ち実際に表示 される画像サイズ、 観察者の表示装置に対する位置情報を取得する情報取得手段 1 0 4 と、 前記映像情報及び前記表示装置情報に基づいて前記左目映像と前記右目映像と をずらして表示するためのオフセッ ト値を設定して、 異なる条件の映像情報、 表示情 報に対して観察者に同一の立体感を与える立体画像信号を前記表示手段 1 2 1 に表示 させるオフセッ ト設定手段 1 0 6 と、 を備えている。  Next, the display control circuit 100 will be described. As shown in FIG. 5, the display control circuit 100 includes a stereoscopic video signal generation circuit 101 that generates a stereoscopic video signal composed of a left-eye video and a right-eye video, and a drive circuit that drives the display unit 122. The stereoscopic video signal generation circuit 101 includes video information related to the stereoscopically visible video, that is, a size of a display image assumed at the time of production, a position of an observer, and a Video information acquiring means 103 for acquiring point information, and information acquiring means 10 for acquiring display device information relating to the display area of the display means, that is, the image size to be actually displayed, and the position information of the observer with respect to the display device. 4 and setting an offset value for displaying the left-eye image and the right-eye image while being shifted based on the image information and the display device information, and observing image information and display information under different conditions. To the person It includes a offset setting means 1 0 6 for displaying a stereoscopic image signal to provide a first three-dimensional effect on the display unit 1 2 1, the.
本形態例に係る立体映像信号生成回路 1 0 1 には、 図 6に示すよ うに、 撮影時に記 録されたデータと して、 左目映像 1 0、 右目映像 1 1、 撮影時のク ロスポイント まで の距離 (C P情報) 1 3が入力される。 この左目映像 1 0は左目用カメラによって、 右目映像 1 1 は左目用カメラに並べて配置された右目用カメ ラによって撮影されてい る。 また、 左目用カメラと右目用カメ ラとは、 互いの光軸が交差するよ うに光軸が平 行となる位置よ り傾けて配置されており、 この光軸が交わる点が撮影対象面上に存在 するク ロスポイン ト (C P ) である。 As shown in FIG. 6, the stereoscopic video signal generation circuit 101 according to the present embodiment has a As recorded data, left-eye image 10, right-eye image 11, and distance to the cross point during shooting (CP information) 13 are input. The left-eye image 10 is taken by the left-eye camera, and the right-eye image 11 is taken by the right-eye camera arranged side by side with the left-eye camera. The left-eye camera and the right-eye camera are arranged at an angle from the position where the optical axes are parallel so that their optical axes cross each other. Is a crosspoint (CP) that exists in
また、 撮影装置には、 立体映像の撮影時には C Pまでの距離を、 レーザ測距や、 左 目用カメ ラと右目用カメ ラとの傾きによって測定したり、 撮影者が入力するクロスポ イン トデータ入力装置 1 2が備わっており、 立体映像の撮影時には C Pまでの距離の 情報は C P情報と して立体映像と ともに記録されている。 また、 左目用カメ ラと右目 用カメラとの間の距離 (眼間距離) も C P情報と して記録されている。 この眼間距離 情報は、 人間の目の間の距離に相当 し、 6 3 m mから 6 8 m mの間で選択されるもの である。  In addition, the shooting device measures the distance to the CP when shooting stereoscopic images by laser distance measurement, the inclination of the left-eye camera and the right-eye camera, and cross-point data input by the photographer. A device 12 is provided, and when capturing a stereoscopic image, information on the distance to the CP is recorded as CP information together with the stereoscopic image. The distance between the left-eye camera and the right-eye camera (interocular distance) is also recorded as CP information. This interocular distance information corresponds to the distance between human eyes and is selected from 63 mm to 68 mm.
立体映像信号生成回路に入力された左目映像 1 0は、 A Dコンバータ 2 0によって デジタル化されて、 左目映像用フレームメモリ 3 0に記録される。 同様に、 入力され た右目映像 1 1は A Dコンバータ 2 1によってデジタル化されて、 右目映像用フ レー ムメモリ 3 1 に記録される。 また、 A Dコンバータ 2 0、 2 1には切換制御部 4 1か ら A D変換のためのクロ ック信号 2 2が入力されている。  The left-eye video 10 input to the stereoscopic video signal generation circuit is digitized by the AD converter 20 and recorded in the left-eye video frame memory 30. Similarly, the input right-eye image 11 is digitized by the AD converter 21 and recorded in the right-eye image frame memory 31. A clock signal 22 for AD conversion is input from the switching control section 41 to the AD converters 20 and 21.
デジタル化されてフレームメモリ 3 0、 3 1 に記録された左目映像及び右目映像は、 信号切り換器 4 0に入力される。 信号切り換器 4 0は、 左目映像と右目映像とを切り 換えて読み出すことによって、 合成立体映像を合成フレームメモリ 5 0に記録して、 合成立体映像信号を生成する。 この信号切り換器 4 0は、 切換制御部 4 1から指示さ れたタイ ミング信号によって動作するスィ ッチ (半導体スイ ッチング素子) である。 本実施の形態の立体映像信号生成回路では、 左目映像 1 0 と右目映像 1 1 とから、 左 目映像 1 0 と右目映像 1 1 とが 1水平ライン毎に合成された合成立体映像信号を生成 する。 すなわち、 イ ンターレース方式の場合は、 走査線一本おきに映像が表示される ので、 信号切り換器 4 0によってフィールド毎 (例えば、 N T S C方式の垂直同期タ イ ミングである 1 6 . 6 8 3 3 m秒毎) に合成フ レームメモリ 5 0 ί 書き込む映像信 号を助り換える。 一方、 ノ ンインタ一レース方式の場合は、 走査線を順に表示するの で左目映像と右目映像とを走査線 1 ラインおきに表示するために、 信号切り換器 4 0 によって走査線毎 (例えば、 N T S C方式の水平同期タィ ミ ングでfcる 6 3 · 5 5 5 5 μ秒毎) に合成フレームメモリ 5 0に書き込む映像信号を切り換 ^る。 The left-eye video and right-eye video that have been digitized and recorded in the frame memories 30 and 31 are input to the signal switch 40. The signal switch 40 switches the left-eye video and the right-eye video and reads them out, thereby recording the composite stereoscopic video in the composite frame memory 50 and generating a composite stereoscopic video signal. The signal switch 40 is a switch (semiconductor switching element) that operates according to a timing signal instructed by the switching control section 41. The stereoscopic video signal generation circuit according to the present embodiment generates a composite stereoscopic video signal in which the left-eye video 10 and the right-eye video 11 are synthesized for each horizontal line from the left-eye video 10 and the right-eye video 11. I do. That is, in the case of the interlace method, the image is displayed every other scanning line, so that the signal switching unit 40 uses the signal switch 40 for each field (for example, the NTSC vertical synchronization timer). At the timing of 16.683 (milliseconds), the composite frame memory 50 ί Replace the video signal to be written. On the other hand, in the case of the non-interlaced method, since the scanning lines are displayed in order, the left-eye image and the right-eye image are displayed every other scanning line. The video signal to be written to the composite frame memory 50 is switched every 6 3 6 5 5 5 5 s by the NTSC horizontal synchronization timing.
この合成フレームメモリ 5 0に書き込むための右目映像データを右目映像用フ レー ムメモリ 3 1から読み出すタイ ミングは、 読み出しタイ ミング制御部 3 2によって制 御されている。 読み出しタイ ミング制御部 3 2には、 C P情報 1 3、 切換制御部 4 1 からの信号切り換器 4 0のタイ ミング信号、 画面サイズ情報及び立 ί本度調整信号が入 力される。 読み出しタイ ミング制御部 3 2では、 これらの情報から右目映像用フ レー ムメモリ 3 1から読み出すタイ ミ ングを算出し、 右目映像用フ レームメモ リ 3 1から のデータの読み出しクロ ックを発生して、 右目用映像を正規のタイ ミ ングから遅れて (又は、 早めて) 読み出すことによって、 適切な立体感が得られる視差量を与えるタ イ ミングを調整する。 すなわち、 右目映像用フレームメモリ 3 1 からの右目信号の読 み出しタイ ミングを、 C Ρ情報 1 3及び画面サイズ情報によって、 左目信号の読み出 しタイ ミングに対して制御して、 立体感が最適になるタイ ミ ングで読み出されるよう にしている。  The timing for reading the right-eye video data to be written to the composite frame memory 50 from the right-eye video frame memory 31 is controlled by the read timing control unit 32. The read timing controller 32 receives the CP information 13, the timing signal of the signal switch 40 from the switching controller 41, the screen size information, and the normality adjustment signal. The read timing control unit 32 calculates the timing to read from the right-eye video frame memory 31 from these information, and generates a clock to read data from the right-eye video frame memory 31. By adjusting the timing that gives the amount of parallax that provides an appropriate stereoscopic effect, by reading out the right-eye image later (or earlier) than the normal timing. That is, the reading timing of the right-eye signal from the right-eye video frame memory 31 is controlled with respect to the reading timing of the left-eye signal based on the CΡ information 13 and the screen size information, so that the stereoscopic effect is obtained. Reading is performed at the optimal timing.
切換制御部 4 1は、 信号切り換器 4 0を制御するもので、 同期信号発生器 7 0から 入力される水平同期信号 7 1、 垂直同期信号 7 2、 ドッ ト同期信号 7 3及び左右基準 信号 7 4に基づいて信号切り換器 4 0の動作を制御する。すなわち、前述したように、 どのようなタイ ミングで信号切り換器 4 0を切り換えて、 合成立体映像信号を生成す るために映像データの合成フレームメモリ 5 0への書き込みタイ ミングを設定する。 同期信号発生部 7 0は、 立体映像信号生成回路の外部 (例えば、 ディスプレイ コン トローラ) から入力された映像同期信号 8 2に基づいて水平同期信号 7 1及び垂直同 期信号 7 2を生成する。 また、 外部から入力された ドッ トサンプリ ング信号 8 3に基 づいて ドッ ト同期信号 7 3を生成する。 また、 映像同期信号 8 2に基づいて左右基準 信号 7 4を生成する。 この左右基準信号 7 4は、 ビデオ信号などの一般的な映像信号 を用いて立体映像信号を表示し伝送する場合、 映像信号が左の映像のものか、 右の映 像のものかを識別するための信号であり、 切換制御部 4 1に入力される他、 立体映像 信号生成回路の外部に対して出力される。 The switching control section 41 controls the signal switch 40, and outputs a horizontal synchronization signal 71, a vertical synchronization signal 72, a dot synchronization signal 73, and a left / right reference signal inputted from the synchronization signal generator 70. The operation of the signal switch 40 is controlled based on the signal 74. That is, as described above, the timing at which the signal switch 40 is switched at any timing and the timing at which the video data is written to the composite frame memory 50 is set in order to generate a composite stereoscopic video signal. The synchronizing signal generator 70 generates a horizontal synchronizing signal 71 and a vertical synchronizing signal 72 based on a video synchronizing signal 82 input from outside of the stereoscopic video signal generating circuit (for example, a display controller). Further, it generates a dot synchronization signal 73 based on the dot sampling signal 83 input from the outside. Further, a left and right reference signal 74 is generated based on the video synchronization signal 82. The left and right reference signals 74 are common video signals such as video signals. Is used to display and transmit a stereoscopic video signal using a signal for identifying whether the video signal is for a left video or a right video, and is input to the switching control unit 41, Output to the outside of the stereoscopic video signal generation circuit.
D Aコンバータ 6 0は、 デジタル化された映像信号をアナログ信号に変換して、 合 成立体映像信号と して出力する。  The DA converter 60 converts the digitized video signal into an analog signal and outputs it as a composite stereoscopic video signal.
なお、 前述した実施の形態では、 C P情報 1 3及び画面サイズ情報によって、 右目 映像データの読み出しタイ ミ ングを制御して適切な立体感が得られるよ うにしたが、 C Pまでの距離が無限大である (C P情報 1 3がない) 場合でも画面サイズ情報に応 じて、 右目映像データの読み出しタイ ミングを制御して、 視差量を調整することがで さる。  In the above-described embodiment, the right eye video data readout timing is controlled based on the CP information 13 and the screen size information so that an appropriate stereoscopic effect can be obtained. However, the distance to the CP is infinite. Even if there is no CP information 13, it is possible to adjust the amount of parallax by controlling the read timing of the right-eye video data according to the screen size information.
また、 前述した立体映像信号生成回路に供給される立体映像信号は、 左右一対の力 メラ (レンズ及び撮像素子) を有した立体映像撮影装置を用いて、 左右の映像記録と 同時に左右撮像素子の間隔 (眼間距離) 及び左目映像用カメ ラの光軸と右目映像用力 メラの光軸との交差点 (ク ロスポイン ト) までの距離をク ロスポイント情報と して記 録する機能を備えた立体映像撮影装置によって記録される。 すなわち、 該立体映像撮 影装置は、 立体映像と共に立体感に関するデータを記録している。  In addition, the stereoscopic video signal supplied to the above-described stereoscopic video signal generation circuit is transmitted to the left and right imaging elements simultaneously with the left and right video recording using a stereoscopic imaging apparatus having a pair of right and left power lenses (lens and imaging element). A 3D object with the function of recording the distance (interocular distance) and the distance to the intersection (crosspoint) between the optical axis of the left-eye image camera and the optical axis of the right-eye image camera as crosspoint information. Recorded by the video shooting device. That is, the three-dimensional image capturing apparatus records data relating to the three-dimensional effect together with the three-dimensional image.
さらに、 前述した立体映像信号生成回路に供給される立体映像信号を、 左右一対映 像をコンピュータグラフィ ック (C G ) で制作する機能を有する立体映像制作装置を 用いて、左右の映像記録と共に左右眼間距離と左右映像の光学上のクロスポイン ト(左 右視線の交差する点) までの距離をクロスポイン ト情報と して記録する機能を備えた 立体映像制作装置によって生成される。 すなわち、 該立体映制作装置は、 立体 C G映 像と共に立体感に関するデータを生成し記録している。  In addition, the stereoscopic video signal supplied to the stereoscopic video signal generation circuit described above is produced by using a stereoscopic video production device that has the function of producing a pair of left and right video images using computer graphics (CG). It is generated by a stereoscopic video production device equipped with a function that records the interocular distance and the distance to the optical crosspoint (the point where the left and right lines of sight intersect) of the left and right images as crosspoint information. That is, the stereoscopic picture production apparatus generates and records data relating to the stereoscopic effect together with the stereoscopic CG image.
図 7から図 9は、 本発明の実施の形態における、 左右映像の相対位置の変化による 立体度の調整を説明する図である。  FIG. 7 to FIG. 9 are diagrams illustrating the adjustment of the stereoscopic degree by changing the relative positions of the left and right images in the embodiment of the present invention.
図 7は、 右目映像と左目映像とが撮影時の位置にある場合を示す。  FIG. 7 shows a case where the right-eye image and the left-eye image are at the positions at the time of shooting.
ォリ ジナル立体映像 3 0 0は、 左目映像 3 0 1 と右目映像 3 ◦ 2 とによつて構成さ れている。 この状態では、 左目映像 3 0 1 と右目映像 3 0 2 との位置は撮影時と等し い位置にあり、 左右映像の相対位置が正しく再現されている。 よって、 ク ロスポイ ン ト 3 0 3は撮影時 (オリ ジナルク ロスポイン ト) の位置にある。 The original stereoscopic image 300 is composed of a left-eye image 301 and a right-eye image 3 2. In this state, the positions of the left-eye image 301 and the right-eye image 302 are the same as when shooting. And the relative position of the left and right images is correctly reproduced. Therefore, the cross point 303 is in the position at the time of shooting (original cross point).
図 8は、 右目映像を右側にずらして表示した状態を示す。  FIG. 8 shows a state in which the right-eye image is displayed shifted to the right.
立体映像 3 1 0は、 左目映像 3 1 1 と右目映像 3 1 2 とによつて構成されている。 左目映像の読み込みタイ ミングに対して、 右目映像の読み込みタイ ミングを遅く して (右目信号の位相を遅らせて)、左目映像に対して右目映像を右側にずらすオフせッ ト を設定して表示した場合、 左目で左目映像を見た視線と、 右目で右目映像を見た視線 とは表示画面の奥側で交差して、 クロスポイン ト 3 1 3が撮影時の位置よ り遠方に移 動する。 よって、 オリ ジナル立体映像より も、 飛び出し度が弱ま り、 奥行き感が強調 され、 '全体に遠方に遠ざかった映像となる。  The stereoscopic image 310 is composed of a left-eye image 311 and a right-eye image 312. Delays the reading timing of the right-eye image (delays the phase of the right-eye signal) with respect to the reading timing of the left-eye image, and sets and displays an offset to shift the right-eye image to the right with respect to the left-eye image In this case, the line of sight looking at the left eye image with the left eye and the line of sight looking at the right eye image with the right eye intersect at the far side of the display screen, and the cross point 3 13 moves farther from the shooting position. I do. Therefore, the degree of protrusion is weaker than that of the original stereoscopic image, and the sense of depth is emphasized.
図 9は、 右目映像を左側にずら して表示した状態を示す。  Figure 9 shows a state where the right-eye image is displayed shifted to the left.
立体映像 3 2 0は、 左目映像 3 2 1 と右目映像 3 2 2 とによつて構成されている。 左目映像の読み込みタイ ミングに対して、 右目映像の読み込みタイ ミングを早く して (右目信号の位相を進めて)、左目映像に対して右目映像を左側にずらすオフセッ トを 設定して表示した場合、 左目で左目映像を見た視線と、 右目で右目映像を見た視線と は表示画面の手前側で交差して、 ク ロスポイン ト 3 2 3が撮影時の位置よ り手前とな る。 よって、 オリ ジナル立体映像よ り も、 飛び出し度が強調され、 奥行き感が弱ま り、 全体に手前に近づいた映像となる。  The three-dimensional image 320 is composed of a left-eye image 3221 and a right-eye image 3222. When the reading timing of the right-eye image is advanced (leading the phase of the right-eye signal) to the timing of reading the left-eye image, and an offset is set to shift the right-eye image to the left with respect to the left-eye image. In addition, the line of sight of the left eye with the left eye and the line of sight of the right eye with the right eye intersect on the near side of the display screen, and the cross point 3 23 3 is closer to the position at the time of shooting. Therefore, compared to the original stereoscopic image, the degree of protrusion is emphasized, the sense of depth is weakened, and the image becomes closer to the front as a whole.
なお、 オフセッ トを設定して左眼映像と右眼映像とを表示したときに、 左右眼映像 の左右端部の各々一方が欠けるが、 この映像が不足する領域の近傍の映像を横方向に 拡大して表示するとよい。 このとき、 表示画面の縦横比 (ァスぺク ト比) に基づいて、 映像を縦方向にも拡大して表示する。 具体的には、 4に示すオフセッ ト状態では、 右 眼映像の左端が欠けるが、 右眼映像の左端の映像を表示画面の左端部まで伸長して右 眼映像を表示する。 また、 図 9に示すオフセッ ト状態では、 右眼映像の右端が欠ける が、 右眼映像の右端の映像を表示画面の右端部まで伸長して右眼映像を表示する。 こ れらのオフセッ ト した映像の側部を伸長すると ともに、 表示画面のァスぺク ト比で側 部の映像を縦方向にも伸長して、 映像を拡大して表示することによって、 表示画面か らオフセッ ト した映像が欠落して、 何も映像が表示されない領域 (黒色に表示される 領域) を生じさせることがなく、 自然な立体映像を表示することができる。 When an offset is set and the left-eye image and the right-eye image are displayed, one of the left and right ends of the left- and right-eye images is missing. It is good to enlarge and display. At this time, the image is enlarged and displayed in the vertical direction based on the aspect ratio of the display screen (aspect ratio). Specifically, in the offset state shown in 4, the left end of the right-eye image is missing, but the left-end image of the right-eye image is extended to the left end of the display screen to display the right-eye image. Also, in the offset state shown in FIG. 9, the right end of the right eye image is missing, but the right end image of the right eye image is extended to the right end of the display screen to display the right eye image. By expanding the side of these offset images, and also expanding the side images vertically by the aspect ratio of the display screen, the image is enlarged and displayed. Screen It is possible to display a natural 3D image without causing the image that is offset from the image to be lost and creating a region where no image is displayed (a region displayed in black).
次に、 左右眼映像のオフセッ ト量の算出について説明する。  Next, the calculation of the offset amount of the left and right eye images will be described.
図 1 0は、 オリ ジナル立体映像の視差量と立体像出現位置との関係を示す。 オリ ジ ナル立体映像 3 0 0においては、 図 1 0に示すよ うに右目映像と左目映像とが撮影時 の位置関係にある。 このとき、 立体像出現位置 (立体像の見える位置と観察者との間 の距離) を L d、 視距離 (観察者と表示画面との間の距離) を L s 、 表示画面上に表 示される左眼映像と右眼映像との視差量を X 1、 眼間距離を d e (約 6 5 mm) とす ると、 上記パラメータは図 1 0に示す式 ( 1 ) によって表される。 そして、 立体像出 現位置 L dは、 この式を解く ことによって、 視差量 X 1 の関数と して求めることがで きる。 ここで X I は、 表示画面の大きさによって (表示画面サイズに比例して) 変化 する。  FIG. 10 shows the relationship between the amount of parallax of the original stereoscopic video and the appearance position of the stereoscopic image. In the original three-dimensional image 300, the right-eye image and the left-eye image have a positional relationship at the time of shooting as shown in FIG. At this time, the appearance position of the stereoscopic image (the distance between the position where the stereoscopic image can be viewed and the observer) is displayed on the display screen as L d, the viewing distance (the distance between the observer and the display screen) as L s. Assuming that the amount of parallax between the left-eye image and the right-eye image is X1 and the interocular distance is de (approximately 65 mm), the above parameters are expressed by equation (1) shown in FIG. Then, the stereoscopic image appearance position L d can be obtained as a function of the amount of parallax X 1 by solving this equation. Here, XI varies depending on the size of the display screen (in proportion to the display screen size).
図 1 1 は、 左右眼画像にオフセッ トを与えた場合の左右眼映像の視差量と立体像出 現位置との関係を示す。 このとき、 立体像出現位置 (立体像の見える位置と観察者と の間の距離) を L d、 視距離 (観察者と表示画面との間の距離) を L s、 左右眼映像 のオフセッ ト量を X o、 表示画面上に表示される左眼映像と右眼映像との視差量を X 1、 眼間距離を d e (約 6 5 mm) とすると、 上記パラメータは図 1 1に示す式 ( 2 ) によって表される。そして、オリ ジナル映像と同じ立体像出現位置 L dを得るために、 図 1 0に示す式 ( 1 ) によって求めた L dを式 ( 2 ) に代入する。 そして、 左右眼映 像のオフセッ ト量を X oを求める。  Figure 11 shows the relationship between the amount of parallax between left and right eye images and the stereoscopic image appearance position when an offset is given to the left and right eye images. At this time, the appearance position of the stereoscopic image (the distance between the position where the stereoscopic image can be viewed and the observer) is L d, the viewing distance (the distance between the observer and the display screen) is L s, and the offset of the left and right eye images If the amount is X o, the amount of parallax between the left and right eye images displayed on the display screen is X 1, and the interocular distance is de (approximately 65 mm), the above parameters are expressed by the equations shown in Fig. 11. (2). Then, in order to obtain the same stereoscopic image appearance position Ld as that of the original video, the Ld obtained by equation (1) shown in FIG. 10 is substituted into equation (2). Then, Xo is obtained as the offset amount of the left and right eye images.
図 1 2乃至図 1 7は、 本発明の実施の形態の立体映像表示装置の構成図である。 表示手段 1 2 1は液晶を用いた表示装置によって構成されており、 図 1 2及び図 1 3に示すように、 平面光源 5の発光面左右に偏光方向が直交する右眼用偏光フィルタ 部 6 a と、 左眼用偏光フィルタ部 6 b とを配置している。 なお、 発光素子と偏光フィ ルタを用いなくても、 異なる偏光の光を異なる位置から照射するよ うに構成すればよ く、 例えば、 異なる偏光の光を発生する発光素子を二つ設けて、 異なる偏光の光を異 なる位置からフ レネルレンズ 3に照射するよ うに構成してもよい。 また、 本形態例において 3はフレネルレンズであり、 各フィルタ部 6 a , 6 b を通 過した各光は、 このフ レネルレンズ 3で平行光と して液晶表示素子 2に照射される。 そして本実施形態例では液晶表示素子 2の表示パネル 2 a は、 図 1 4に示すよ う に、 立体視される第一及び第二の画像を構成する画素 (L、 R ) を平面的に交互に配置さ れる市松模様をなすよ うに配置するものと している。 そして、 この表示パネルの光源 側及び観察者側の両面にはそれぞれ偏光パネル 2 b , 2 cが貼付されている。 FIGS. 12 to 17 are configuration diagrams of the stereoscopic video display device according to the embodiment of the present invention. The display means 121 is constituted by a display device using a liquid crystal, and as shown in FIGS. 12 and 13, the right-eye polarization filter unit 6 whose polarization direction is orthogonal to the left and right of the light emitting surface of the flat light source 5. a and the left-eye polarization filter unit 6 b. It should be noted that the light emitting element and the polarizing filter may not be used, and the light having different polarization may be irradiated from different positions.For example, two light emitting elements that generate light of different polarizations may be provided and different. The configuration may be such that polarized light is applied to the Fresnel lens 3 from different positions. Further, in the present embodiment, reference numeral 3 denotes a Fresnel lens, and each light passing through each of the filter sections 6a and 6b is applied to the liquid crystal display element 2 as parallel light by the Fresnel lens 3. In the present embodiment, the display panel 2a of the liquid crystal display element 2 is arranged such that, as shown in FIG. 14, pixels (L, R) constituting the first and second images viewed in a stereoscopic manner are two-dimensionally displayed. They are arranged in a checkered pattern that is alternately arranged. Polarizing panels 2b and 2c are attached to both sides of the display panel on the light source side and the observer side, respectively.
本形態例では、 液晶表示パネル 2は、 2枚の透明板(例えば、 ガラス板)の間に所定 の角度(例えば 9 0度)ねじれて配向された液晶が配置されており、 例えば、 T F T型 の液晶表示パネルを構成している。 液晶表示パネルに入射した光は、 液晶に電圧が加 わっていない状態では、 入射光の偏光が 9 0度ずらして出射される。 一方、 液晶に電 圧が加わっている状態では、 液晶のねじれが解けるので、 入射光はそのままの偏光で 出射される。  In the present embodiment, the liquid crystal display panel 2 has a liquid crystal that is twisted and oriented at a predetermined angle (for example, 90 degrees) between two transparent plates (for example, glass plates). Of the liquid crystal display panel. In the state where no voltage is applied to the liquid crystal, the light incident on the liquid crystal display panel is emitted with the polarization of the incident light shifted by 90 degrees. On the other hand, when a voltage is applied to the liquid crystal, the liquid crystal is untwisted, and the incident light is emitted with the same polarization.
そして、 本形態例では、 表示パネル 2の光源側に市松状フィルタ 7が貼付されてい る。  In this embodiment, a checkered filter 7 is attached to the light source side of the display panel 2.
即ち、 偏光フィルタ 6 を透過した光はフレネルレンズ 3 に照射され、 フ レネノレレン ズ 3では光源 5から拡散するよ うに放射された光の光路を略平行になり市松状フィル タを透過して、 液晶表示パネル 2に照射される。  That is, the light transmitted through the polarizing filter 6 is applied to the Fresnel lens 3, and the light path of the light radiated from the light source 5 in the Fresnel lens 3 is made substantially parallel so that the light passes through the checkered filter and becomes liquid crystal. The display panel 2 is irradiated.
このとき、 市松状フィルタ 7から照射される光は、 上下方向に広がることがないよ うに出射され、 液晶表示パネル 2に照射される。 すなわち、 市松状フィルタ 7の特定 の領域を透過した光が、 液晶表示パネル 2の特定表示単位の部分を透過するよ うにな つている  At this time, the light emitted from the checkered filter 7 is emitted so as not to spread in the vertical direction, and is emitted to the liquid crystal display panel 2. That is, light transmitted through a specific area of the checkered filter 7 is transmitted through a specific display unit of the liquid crystal display panel 2.
また、 液晶表示パネルに照射される光のうち、 偏光フィルタ 6の右側偏光フィルタ 部 aを通過した光と左側偏光フィルタ部 bを通過した光とは、 異なる角度でフ レネル レンズ 3に入射し、 フレネルレンズ 3で屈折して左右異なる経路で液晶表示パネル 2 から放射される。  Also, of the light applied to the liquid crystal display panel, the light that has passed through the right polarizing filter part a and the light that has passed through the left polarizing filter part b of the polarizing filter 6 enter the Fresnel lens 3 at different angles, The light is refracted by the Fresnel lens 3 and is radiated from the liquid crystal display panel 2 through different paths.
市松状フィルタ 7は、 透過する光の位相を変える領域が、 図 1 5 ( 1 ) に示すよ う に微細な間隔の市松状模様で繰り返して配置されている。 具体的には、 図 1 5 ( 2 ) に示すよ うに光透過性の基材 1 7 1 に、 微細な幅の 1 2波長板 1 7 2が設けられた 領域 7 a と、 1 / 2波長板 1 7 2の幅と同一の微細な間隔で、 1 / 2波長板 1 7 2が 設けられていない領域 7 b とが微細な間隔で繰り返して設けられた列が位相をずら し て設けられている。 なお、 この 1 Z 2波長板は光源側に設けても、 表示パネル側に設 けても差し支えない。 The checkerboard filter 7 has areas in which the phase of transmitted light is changed repeatedly arranged in a checkerboard pattern at fine intervals as shown in FIG. 15 (1). Specifically, Fig. 15 (2) As shown in the figure, the area 7a where the 12-wavelength plate 172 with a fine width is provided on the light-transmitting substrate 171, and the fine A row in which a half-wave plate 172 in which the half-wave plate 172 is not provided is repeatedly provided at a fine interval and the phase is shifted. Note that the 1Z2 wavelength plate may be provided on the light source side or on the display panel side.
このよ うな構成によ り、 設けられた 1 / 2波長板 1 7 2によって透過する光の位相 を変える領域 7 a と、 1ノ 2波長板 1 7 2が設けられていないために透過する光の位 相を変えない領域 7 b とが微細な間隔の巿松模様と して規則的に設けられているもの である。 1 / 2波長板は、 透過する光の位相を変化させる位相差板と して機能する。 1 / 2波長板 1 7 2は、 その光学軸を偏光フィルタ 6の右側偏光ブイルタ部 aを透過 する光の偏光軸と 4 5度傾けて配置して、 右側偏光フィルタ部 aを透過した光の偏光 軸を 9 0度回転させて出射する。 すなわち、 右側偏光フィルタ部 aを透過した光の偏 光軸を 9 0度回転させて、 左側偏光フィルタ部 bを透過する光の偏光と等しくする。 すなわち、 1ノ 2波長板 7 2が設けられていない領域 7 b は左側偏光フィルタ部 b を 通過した、 偏光板 2 b と同一の偏光を有する光を透過し、 1 2波長板 7 2が設けら れた領域 7 a は右側偏光フィルタ部 a を通過した、 偏光板 2 1 と偏光軸が直交した光 を、 偏光板 2 bの偏光軸と等しく なるよ うに回転させて出射する。  With such a configuration, the area 7a for changing the phase of the light transmitted by the provided half-wave plate 172 and the light transmitted by the absence of the 1-wavelength plate 172 are provided. The region 7b in which the phase of the above does not change is regularly provided as a fine pine pattern at a fine interval. The half-wave plate functions as a phase difference plate that changes the phase of transmitted light. The half-wave plate 1 72 is arranged such that its optical axis is tilted by 45 degrees with respect to the polarization axis of the light passing through the right-hand polarizing filter section a of the polarizing filter 6 so that the light passing through the right-hand polarizing filter section a The light is emitted with the polarization axis rotated 90 degrees. That is, the polarization axis of the light transmitted through the right-side polarization filter section a is rotated by 90 degrees to be equal to the polarization of the light transmitted through the left-side polarization filter section b. That is, the region 7b where the 1-wavelength plate 72 is not provided transmits light having the same polarization as the polarizing plate 2b that has passed through the left-side polarization filter portion b, and the 12-wavelength plate 72 is provided. The separated area 7a emits the light that has passed through the right-hand polarization filter section a and whose polarization axis is orthogonal to the polarization plate 21 so as to be rotated so as to be equal to the polarization axis of the polarization plate 2b.
この市松状フィルタ 7の偏光特性の繰り返しは、 液晶表示パネル 2の表示単位と同 一のピッチと して、 表示単位毎(すなわち、 表示単位の横方向の水平ライン及び縦方向 の垂直ライン)に透過する光の偏光が異なるよ うにする。 よって、 液晶表示パネル 2の 走査方向と副走査方向の表示単位毎に対応する微細位相差板の偏光特性が異なるよ う になって、 隣り合う画素毎に出射する光の方向が異なる。  The repetition of the polarization characteristic of the checkered filter 7 is performed at the same pitch as the display unit of the liquid crystal display panel 2 for each display unit (that is, the horizontal horizontal line and the vertical vertical line of the display unit). The transmitted light is polarized differently. Therefore, the polarization characteristics of the fine phase difference plate corresponding to each display unit in the scanning direction and the sub-scanning direction of the liquid crystal display panel 2 are different, and the direction of the emitted light is different for each adjacent pixel.
なお、 本発明では、 市松状フィルタ 7の偏光特性の繰り返しは、 液晶表示パネル 2 の表示単位のピツチに対する整数倍のピツチと して、 巿松状フィルタ 7の偏光特性が 複数の表示単位毎(すなわち、 複数の表示単位の毎)に変わるよ うにしてもよい。 このよ うに、 微細位相差板の偏光特性の繰り返し毎に異なる光を液晶表示パネル 2 の表示素子に照射する必要があるため、 市松状フィルタ 7を透過して液晶表示パネル 2に照射される光は、 上下方向の拡散を抑制したものである必要がある。 すなわち、 市松状フィルタ 7の光の位相を変化させる領域 7 aは、 偏光フィルタ 6 の右側偏光フィルタ部 aを透過した光を、 左側偏光フィルタ部 bを透過した光の偏光 と等しく して透過する。 また、 市松状フィルタ 7の光の位相を変化させない領域 7 b は、 偏光フィルタ 6の左側偏光フィルタ部 b を透過した光をそのまま透過する。 そし て市松状フィルタ 7を出射した光は、 左側偏光フィルタ部 b を透過した光と同じ偏光 を有して、 液晶表示パネル 2の光源側に設けられた偏光板 2 bに入射する。 In the present invention, the repetition of the polarization characteristic of the checkered filter 7 is a pitch that is an integral multiple of the pitch of the display unit of the liquid crystal display panel 2. That is, the display unit may be changed to a plurality of display units. As described above, it is necessary to irradiate the display element of the liquid crystal display panel 2 with different light every time the polarization characteristic of the fine phase difference plate is repeated. The light applied to 2 needs to suppress the diffusion in the vertical direction. That is, the area 7a of the checker filter 7 that changes the phase of light transmits the light transmitted through the right-side polarization filter section a of the polarization filter 6 in a manner equal to the polarization of the light transmitted through the left-side polarization filter section b. . The area 7 b of the checkered filter 7 in which the phase of the light does not change transmits the light transmitted through the left-side polarization filter part b of the polarization filter 6 as it is. Then, the light emitted from the checkered filter 7 has the same polarization as the light transmitted through the left polarizing filter part b, and enters the polarizing plate 2 b provided on the light source side of the liquid crystal display panel 2.
偏光板 2 bは第 2偏光板と して機能し、 巿松状フィルタ 7を透過した光と同一の偏光 の光を透過する偏光特性を有する。 すなわち、 偏光フィルタ 6の左側偏光フィルタ部 b を透過した光は第 2偏光板 2 c を透過し、 偏光フィルタ 6の右側偏光フィルタ部 a を透過した光は偏光軸を 9 0度回転させられて第 2偏光板 2 bを透過する。 また、 偏 光板 2 cは第 1偏光板と して機能し、 偏光板 2 1 と 9 0度異なる偏光の光を透過する 偏光特性を有する。 The polarizing plate 2b functions as a second polarizing plate, and has a polarization characteristic of transmitting the same polarized light as the light transmitted through the pine filter 7. That is, the light transmitted through the left polarizing filter portion b of the polarizing filter 6 transmits through the second polarizing plate 2c, and the light transmitted through the right polarizing filter portion a of the polarizing filter 6 has its polarization axis rotated 90 degrees. The light passes through the second polarizing plate 2b. Further, the polarizing plate 2c functions as a first polarizing plate, and has a polarizing property of transmitting light having a polarization 90 degrees different from that of the polarizing plate 21.
このよ うな市松状フィルタ 7、 市松状フィルタ 7、 偏光板 2 b、 液晶パネル 2 a及 び偏光板 2 c を組み合わせて画像表示装置を構成する。  An image display device is configured by combining such a checkered filter 7, a checkered filter 7, a polarizing plate 2b, a liquid crystal panel 2a, and a polarizing plate 2c.
従って、 本形態例に係る立体映像表示装置によれば、 左右の画像が平面的に市松模 様をなすように表示され、 各画像がフィルタも市松模様で平面上に配置されているか ら、 水平解像度と垂直解像度を低下させることなく立体画像を表示できる。  Therefore, according to the stereoscopic video display device according to the present embodiment, the left and right images are displayed so as to form a checkerboard pattern in a plane, and the filters are arranged on a plane in a checkerboard pattern. A stereoscopic image can be displayed without reducing the resolution and the vertical resolution.
立体映像信号生成回路 1 0 1 は、 前述したよ うに、 入力された立体映像信号から合 成立体映像信号を生成し、 生成した合成立体映像信号を駆動回路 1 0 2を介して、 表 示手段 1 2 1 に供給する。 表示手段 1 2 1からは、 表示手段 1 2 1 に備えられた表示 素子の表示可能領域の大きさに関する画面サイズ情報が出力されている。 この画面サ ィズ情報は表示手段毎に設定されており、 表示手段に備えられた記憶部 (メモリ ) に 記憶された縦横の ドッ ト数、 表示領域の大きさの情報である。 また、 表示手段 1 2 1 からは、 表示手段 1 2 1 に表示された映像を観察者が視聴する距離に関する視距離情 報が出力されている。この視距離情報は表示領域の大きさに対応して定めてもよいし、 表示手段 1 2 1 に観察者を検出する観察者位置検出手段 1 2 2を設け、 表示手段 1 2 1で敏察者 9 0 と表示手段 1 2 1 との位置関係を測定して、 位置離情報を得るよ うに してレ、る。 As described above, the stereoscopic video signal generation circuit 101 generates a composite stereoscopic video signal from the input stereoscopic video signal, and displays the generated composite stereoscopic video signal via the driving circuit 102 through the display unit. 1 2 1 to supply. Display size information relating to the size of the displayable area of the display element provided in the display means 121 is output from the display means 122. This screen size information is set for each display means, and is information on the number of vertical and horizontal dots and the size of the display area stored in a storage unit (memory) provided in the display means. The display means 122 outputs viewing distance information relating to the distance at which the observer views the video displayed on the display means 122. The viewing distance information may be determined according to the size of the display area, or the display means 1 2 1 is provided with an observer position detecting means 1 2 2 for detecting an observer, and the display means 1 2 In step 1, the position relationship between the detective 90 and the display means 122 is measured to obtain position separation information.
表示手段 1 2 1から出力された画面サイズ情報及び視距位置情報は表示情報取得手 段 1 0 4に入力され、 立体映像信号生成回路 1 0 1が必要とする形式のデータに変換 されて、 立体映像信号生成回路 1 0 1 に供給される。  The screen size information and viewing distance position information output from the display means 121 are input to the display information acquisition means 104, and are converted into data in a format required by the stereoscopic video signal generation circuit 101, It is supplied to the stereoscopic video signal generation circuit 101.
映像情報取得手段 1 0 3は、 表示制御回路 1 0 0に入力された立体映像信号から、 該立体映像の再生に適する画面サイズに関する適合画面サイズ情報、 再生時に観察者 が見るのに適する表示画面までの距離に関する適合視距離情報、 左目映像用カメ ラの 光軸と右目映像用カメラの光軸との間の距離に関するカメラ距離情報、 及び、 左目映 像用カメラの光軸と右目映像用カメラの光軸との交差点までの距離に関するク ロ スポ イント情報を抽出して、 立体映像信号生成回路 1 0 1が必要とする形式のデータに変 換して、 これらの情報を立体映像信号生成回路 1 0 1 に供給する。  The video information acquisition means 103 is adapted to obtain, from the stereoscopic video signal input to the display control circuit 100, suitable screen size information relating to a screen size suitable for reproducing the stereoscopic video, and a display screen suitable for an observer to see during reproduction. Compatible viewing distance information on the distance to the camera, camera distance information on the distance between the optical axis of the left-eye camera and the optical axis of the right-eye camera, and the optical axis of the left-eye camera and the right-eye camera It extracts cross-point information on the distance to the intersection with the optical axis, converts it into data in the format required by the stereoscopic video signal generation circuit 101, and converts this information into a stereoscopic video signal generation circuit. Feed to 101.
また、 立体映像信号生成回路 1 0 1 には、 入力部 1 0 5から立体度調整信号が入力 されており、 視聴者が入力部 1 0 5に指示した立体度に応じて、 左右目映像をオフセ ッ 卜 して表示し、 表示手段 1 2 1 に表示される立体映像の立体度が変更できるよ うに なっている。  In addition, the stereoscopic video signal generation circuit 101 receives a stereoscopic degree adjustment signal from the input unit 105, and the left and right eye videos are input in accordance with the stereoscopicity specified by the viewer to the input unit 105. The stereoscopic degree of the stereoscopic image displayed by offsetting and displayed on the display means 121 can be changed.
手動入力部 1 0 5は、 視聴者による操作されるスィ ツチ、 可変抵抗等であり、 観察 者の嗜好により操作され、 表示制御回路の動作条件を変えるもので、 前述した画面サ ィズ切換信号を出力し、該画面サイズ切換信号を表示情報取得手段 1 0 4に供給する。 また、 前述した立体度調整信号を出力し、 該立体度調整信号を立体映像信号生成回路 1 0 1に供給して、 観察者の好みに応じた立体感が得られる視差量を調整する。  The manual input unit 105 is a switch, a variable resistor, or the like operated by the viewer, operated according to the taste of the observer, and changes the operation condition of the display control circuit. And supplies the screen size switching signal to the display information obtaining means 104. In addition, the stereoscopic degree adjustment signal is output, and the stereoscopic degree adjustment signal is supplied to the stereoscopic video signal generation circuit 101 to adjust the amount of parallax for obtaining a stereoscopic effect according to the viewer's preference.
視鹧者の左目に到達する左目映像と右目に到達する右目映像とは、 表示手段 1 2 1 の市松模様状に交互に表示される。 そして、 立体映像信号生成回路 1 0 1 によって、 右目フレームメモリ 3 1から右目映像を読み出すタイ ミ ングを遅らせる又は早める制 御をして、 左目映像と右目映像との水平位相を遅らせて又は早めて、 左目映像と右目 映像とのずらし量 (オフセッ ト) を設定して、 両眼視差を調整することによって、 立 体度を調整する。 次に観察者の位置が変動した場合について説明する。 The left-eye image reaching the left eye and the right-eye image reaching the right eye of the viewer are alternately displayed in a checkered pattern on the display means 122. Then, the stereoscopic video signal generation circuit 101 controls the timing of reading the right-eye video from the right-eye frame memory 31 to be delayed or advanced, and the horizontal phase of the left-eye video and the right-eye video is delayed or advanced. , Set the shift amount (offset) between the left-eye image and the right-eye image, and adjust the stereoscopicity by adjusting the binocular disparity. Next, a case where the position of the observer changes will be described.
まず、 観察者位置検出手段 1 2 2で位置情報を検出する。 次にこの情報を表示情報 獲得手段 1 0 4で獲得し、オフセッ ト手段設定手段 1 0 5でオフセッ ト量を算出して、 観察者の距離及び、 左右位置に対応させ、 正常に見えるよ う、 駆動回路 1 0 2で表示 手段 1 0 2を駆動する  First, position information is detected by the observer position detecting means 122. Next, this information is acquired by the display information acquisition means 104, and the offset amount is calculated by the offset means setting means 105, so as to correspond to the observer's distance and the left and right positions, so that it looks normal. The display means 102 is driven by the drive circuit 102
次に、 本発明に係る他の実施の形態例について説明する。  Next, another embodiment according to the present invention will be described.
図 1 6及び図 1 7は液晶表示装置の光源 5を変更した例である。 図 1 Ίに示した例 では、 複数の白色 L E D 2 0 1 を複数水平方向に併設し、 左右の光源をなす 2列の L E Dアレイ 2 3 1 L , 2 3 1 Rと画像表示手段 (液晶表示板) 2 3 2 と、 凸レンズの 作用をなすフレネルレンズ 2 1 4 と互いに直角の偏光方向をなし前記 L E Dアレイ 2 3 1 L , 2 3 1 Rに対応する 2つの偏光素子 2 6 6備える。  FIGS. 16 and 17 show examples in which the light source 5 of the liquid crystal display device is changed. In the example shown in Fig. 1 Ί, a plurality of white LEDs 201 are arranged side by side in a horizontal direction, and two rows of LED arrays 231 L and 231 R serving as left and right light sources and image display means (liquid crystal display) Plate) 2 32 and a Fresnel lens 2 14 serving as a convex lens and two polarizing elements 2 6 6 which form polarization directions perpendicular to each other and correspond to the LED arrays 2 3 1 L and 2 3 1 R.
L E Dアレイ 2 1 1 は表示制御回路 1 0 0に設けられた L E D制御手段 2 1 3によ つて点灯及び点滅制御される。 図 1 6では発光している L E Dを 「翁」、 発光していな い L E Dを 「〇」 で表している (以下同じ)。  The LED array 211 is controlled to be turned on and off by LED control means 213 provided in the display control circuit 100. In Fig. 16, LEDs that emit light are represented by "Oka", and LEDs that do not emit light are represented by "〇" (the same applies hereinafter).
本形態では観察者 9 0の画像表示装置 (画像表示装置用光源装置 2 3 0 ) の光軸 O からの変位量 d 1及び画像表示手段 2 3 2からの距離 d 2を測定して測定信号を発す る観察者位置判定手段 2 3 4を備える。 本形態例において、 観察者位置判定手段 2 3 4は超音波方式、 赤外線方式その他任意の手段を用いることができる。  In this embodiment, the displacement amount d 1 of the image display device (light source device 230 for the image display device) of the observer 90 from the optical axis O and the distance d 2 from the image display means 232 are measured, and the measurement signal is obtained. Is provided with observer position determining means 2 3 4 that emits light. In the present embodiment, the observer position determination means 234 may use an ultrasonic method, an infrared method, or any other means.
L E D制御手段 2 3 3は、 上記測定信号に基づいて、 L E Dアレイ 2 3 1の白色 L E D 1の点灯個所 2 3 5, 2 3 6 を点灯させるよ う制御し、 L E Dアレイ 2 3 1 の発 光位置を観察者 9 0の移動 (矢印 dで示した) に対応させた位置に高速に移動させる (矢印 Dに示した) ことができ観察者 9 0に常に自然な立体画像を表示することがで さる。  The LED control means 2 3 3 controls the lighting locations 2 3 5 and 2 3 6 of the white LED 1 of the LED array 2 3 1 based on the above measurement signal, and emits the light of the LED array 2 3 1. The position can be quickly moved to the position corresponding to the movement of the observer 90 (shown by arrow d) (shown by arrow D), and the observer 90 can always display a natural stereoscopic image. In monkey.
この際、 画像表示装置用光源装置の制御に機械的動作は伴わないから高速、 高精度 で、 高い耐久性を持つものとができる他、 サ一ボ制御等の制御機構の構成を簡単なも のとすることができる。  At this time, since no mechanical operation is involved in controlling the light source device for the image display device, it is possible to achieve a high-speed, high-accuracy, high-durability device. And can be.
なお、 位置判定手段 3 4により観察者の数、 及びそれぞれの観察者の画像表示装置 に対する位置を測定し位置信号と して出力するものと し、 L E D制御手段 2 3 3で L E Dアレイ 2 3 1 を点灯制御すれば複数の異なる位置にいる観察者に適切な立体画像 を表示することができる。 In addition, the number of observers and the image display device of each observer are determined by the position determination means 34. It is assumed that the position is measured and the position is output as a position signal. Can be.
図 1 7に示した例では、 光源 5の L E Dアレイ 3 5 1 を上段部 3 5 1 U、 下段部 3 5 1 Dの 2段に構成したものである。 また本形態例では上段部 3 5 1 U、 下段部 3 5 1 Dの各白色 L E D 3 0 1 に対応する位置に上段部 3 5 1 U、 下段部 3 5 1 Dに対応 する左右の偏光フィルタ 3 5 4を配置している。 この偏光フィルタは前記 L E Dァレ ィ 3 5 1の上段部 3 5 1 U、 下段部 3 5 I Dからの光が透過する偏光フィルタ 3 5 4 U , 3 5 4 Dを備えている。 またこの偏光フィルタ 3 5 4 U , 3 5 4 Dは互いに偏光 方向が直交する偏光フィルタからなっている。  In the example shown in FIG. 17, the LED array 351 of the light source 5 is configured in two stages of an upper stage 351U and a lower stage 351D. In this embodiment, the left and right polarizing filters corresponding to the upper section 351 U and the lower section 351 D are located at positions corresponding to the white LEDs 301 of the upper section 35 1 U and the lower section 3 51 D, respectively. 3 5 4 are arranged. This polarizing filter includes polarizing filters 3554U and 354D through which light from the upper section 351U and the lower section 35ID of the LED array 351 passes. The polarization filters 354U and 354D are composed of polarization filters whose polarization directions are orthogonal to each other.
L E D制御手段 3 5 3は、 各 L E Dアレイ 3 5 1 U、 3 5 1 Dの点滅制御を行う。 まず、 観察者 9 0がー人の場合について説明する。  The LED control means 353 controls the blinking of each LED array 351U, 351D. First, the case where the observer 90 is a human will be described.
観察者 9 0の位置を上述した観察者位置検出手段 1 2 2で判定して、 上下の L E D アレイ 3 5 4 U、 3 5 4 Dの発光個所 3 7 3を発光させ、 観察者 9 0に立体画像を表 示する。 この際上記例で示した観察者位置検出手段 1 2 2を用いて観察者 9 0の位置 に応じた立体画像が表示できるよ う発光個所を移動させる。  The position of the observer 90 is determined by the above-described observer position detecting means 122, and the upper and lower LED arrays 354U and 354D emit light at the light emitting portions 373, and the observer 90 receives the light. Display a stereoscopic image. At this time, the light emitting point is moved using the observer position detecting means 122 shown in the above example so that a stereoscopic image corresponding to the position of the observer 90 can be displayed.
次に、複数の観察者たとえば二人の観察者 9 0 , 9 1がいた場合について説明する。 このときには、 L E D制御手段 3 5 3は、観察者位置検出手段 1 2 2から信号を得て、 2つの L E Dアレイ 3 5 1上に 2つの発光領域 3 7 3 , 3 7 4を設定して、 これらの 発光領域を高速で交互に点灯制御する。 従ってこの際これらの発光領域 3 7 3 , 3 7 4以外の L E D 1は発光せず、 ある時点では発光領域 3 7 3, 3 7 4のいずれか一方 が発光する。  Next, a case where there are a plurality of observers, for example, two observers 90 and 91 will be described. At this time, the LED control means 3 5 3 obtains a signal from the observer position detection means 1 2 2 and sets two light emitting areas 3 7 3 and 3 7 4 on the two LED arrays 3 5 1, Lighting control of these light emitting regions is performed alternately at high speed. Therefore, at this time, the LED 1 other than the light emitting regions 37 3 and 37 4 does not emit light, and at some point, either one of the light emitting regions 37 3 or 37 4 emits light.
従って、 画像表示手段 5 2の同期信号やブランキング期間は、 白色 L E 1 をオフ状 態とする点滅制御を行う ことにより、 不要な残像や干渉を除去できると共に、 消費電 力が少なくすることができる他、 平面画像表示装置において少ない L E Dを用い、 フ レネルレンズと相まつて限られた光源で広い視野角の画像を得ることができる。 本形態例によれば、 左右用 L E Dを上下に分けて分離配置しているので、 左右を表 示する L E Dの間隔が大きく なり各 L E Dからの光の干渉が少なくなるため立体画像 に悪影響となるの左右画像のクロス トークが少なくなる。 Therefore, during the synchronizing signal of the image display means 52 and the blanking period, unnecessary afterimages and interference can be removed and power consumption can be reduced by performing the blinking control with the white LE 1 turned off. In addition to this, an image with a wide viewing angle can be obtained with a limited light source in combination with a Fresnel lens using a small number of LEDs in a flat panel image display device. According to this embodiment, the left and right LEDs are separated and arranged vertically, so that the left and right are displayed. The distance between the displayed LEDs is increased, and the interference of light from each LED is reduced, so that the crosstalk between the left and right images, which adversely affects the stereoscopic image, is reduced.
産業上の利用可能性  Industrial applicability
請求の範囲 1 に記載の本発明は、 車両に搭載され、 車両周辺を撮影する複数の撮像 手段と、 この撮像手段によって撮像された画像を立体画像と して乗員に表示する立体 映像表示手段と、 立体映像表示手段に表示される立体映像の奥行き度を調整する制御 手段とを備えたことを特徴とする車両用映像表示装置である。  The present invention according to claim 1 includes a plurality of image pickup means mounted on a vehicle and photographing the periphery of the vehicle, and a stereoscopic image display means for displaying an image picked up by the image pickup means to a passenger as a stereoscopic image. And a control means for adjusting the depth of the stereoscopic video displayed on the stereoscopic video display means.
本発明によれば、 車両周辺の画像を立体画像と して現実感を持って表示でき、 車両 周辺の状況を直感的にかつ確実に認識できる。  According to the present invention, an image around a vehicle can be displayed as a stereoscopic image with a sense of reality, and the situation around the vehicle can be intuitively and reliably recognized.
請求の範囲 2に記載の本発明は、 請求の範囲 1 に記載の車両用映像表示装置におい て、 前記撮像手段は、 車両の後方を撮影することを特徴とするものである。  According to a second aspect of the present invention, in the vehicle image display device according to the first aspect, the imaging unit captures an image of a rear side of the vehicle.
本発明によれば、 車両後方の画像を立体画像と して現実感を持って表示でき、 車両 後方の状況を直感的にかつ確実に認識できる。  According to the present invention, the image behind the vehicle can be displayed as a stereoscopic image with a sense of reality, and the situation behind the vehicle can be intuitively and reliably recognized.
請求の範囲 3に記載の本発明は、 請求の範囲 1 に記載の車両用映像表示装置におい て、 前記撮像手段は車両の側方を撮影することを特徴とするものである。  According to a third aspect of the present invention, in the vehicle image display device according to the first aspect, the imaging unit captures an image of a side of the vehicle.
本発明によれば、 車両側方の画像を立体画像と して現実感を持って表示でき、 車両 の側方の状況を直感適かつ確実に認識できる。  ADVANTAGE OF THE INVENTION According to this invention, the image of the side of a vehicle can be displayed with a sense of reality as a three-dimensional image, and the situation of the side of the vehicle can be intuitively and reliably recognized.
請求の範囲 4に記載の本発明は、 請求の範囲 1に記載の車両用映像表示装置におい て、 前記撮像手段は、 車両の上方を撮影することを特徴とするものである。  According to a fourth aspect of the present invention, in the image display device for a vehicle according to the first aspect, the imaging unit captures an image of an upper part of the vehicle.
本発明によれば、 車両上方の画像を立体画像と して現実感を持って表示でき、 車両 の上方の状況を確実に認識できる。  According to the present invention, the image above the vehicle can be displayed as a three-dimensional image with a sense of reality, and the situation above the vehicle can be reliably recognized.
請求の範囲 5に記載の本発明は、 請求の範囲 1 に記載の車両用映像表示装置におい て、 前記表示手段は、 車両後方及び車両側方のいずれか又は両方を表示出来る切り換 手段を備えたことを特徴とするものである。  According to a fifth aspect of the present invention, in the vehicle image display device according to the first aspect, the display means includes a switching means capable of displaying one or both of a rear side and a side side of the vehicle. It is characterized by having.
本発明によれば、 1つの表示手段に選択した所望の方向の画像を表示でき る。 また 両方の画像を表示できよ り周辺の状況を認識できる。  According to the present invention, an image in a desired direction selected on one display unit can be displayed. Also, both images can be displayed so that the surrounding situation can be recognized.
請求の範囲 6'に記載の本発明は、 請求の範囲 1乃至請求の範囲 5のいずれかに記載 の車両用映像表示装置において、 前記撮像手段には、 車内からの操作によ り、 撮影個 所及び撮影範囲のうち少なく とも 1つを変更できる撮像操作手段を備えたことを特徴 とするものである。 The present invention described in claim 6 ′ is described in any one of claims 1 to 5. The image display device for a vehicle according to the above, characterized in that the image pickup means includes image pickup operation means capable of changing at least one of a photographing place and a photographing range by an operation from inside the vehicle. is there.
本発明によれば、 車内から必要な撮影個所や撮影範囲を指定できるから、 必要な個 所の状況を立体的に表示できる。  According to the present invention, it is possible to specify a necessary photographing place and a photographing range from inside the vehicle, so that the situation of the necessary place can be displayed three-dimensionally.
請求の範囲 7に記載の本発明は、 請求の範囲 1乃至請求の範囲 6のいずれかに記載 の車両用映像表示装置において、 前記立体映像表示手段に、 車両の輸郭を表す車両画 像を立体的に表示させる車両輪郭表示手段を備えたことを特徴とするものである。 本発明によれば、 立体画面中に自車両の輪郭が表示されるから、 周囲の状況中の自 車両の位置をよ り直感的かつ正確に認識できる。  According to a seventh aspect of the present invention, in the vehicle image display device according to any one of the first to sixth aspects, the three-dimensional image display unit displays a vehicle image representing a transit of the vehicle. Vehicle contour display means for displaying a three-dimensional image is provided. According to the present invention, since the outline of the own vehicle is displayed on the three-dimensional screen, the position of the own vehicle in the surrounding situation can be more intuitively and accurately recognized.
請求の範囲 8に記載の本発明は、 請求の範囲 1乃至請求の範囲 7のいずれかに記載 の車両用映像表示装置において、 前記立体映像表示手段に表示された物体までの距離 寸法を表示する距離表示手段を設けたことを特徴とするものである。  The present invention described in claim 8 is a vehicle image display device according to any one of claims 1 to 7, wherein a distance dimension to an object displayed on the stereoscopic image display means is displayed. A distance display means is provided.
本発明によれば、 表示物体までの距離が表示されるので、 表示物体までの距離を数 値的に認識することができ、 正確な状況認識ができる。  According to the present invention, since the distance to the display object is displayed, the distance to the display object can be numerically recognized, and accurate situation recognition can be performed.
請求の範囲 9に記載の本発明は、 請求の範囲 1乃至請求の範囲 7のいずれかに記載 の車両用映像表示装置において、 前記立体映像に表示された複数物体の間隔寸法を表 示する間隔表示手段を設けたことを特徴とするものである。  The present invention described in claim 9 is the vehicle image display device according to any one of claims 1 to 7, wherein the interval indicating the interval dimension of a plurality of objects displayed in the stereoscopic image is displayed. A display device is provided.
本発明によれば、 表示物体間の間隔寸法が表示されるので、 表示物体間を通り抜け できるかを客観的に判断できる。  According to the present invention, since the distance between display objects is displayed, it is possible to objectively determine whether or not the display object can pass through.
請求の範囲 1 0に記載の本発明は、 請求の範囲 1乃至請求の範囲 9のいずれかに記 載の車両用映像表示装置において、 前記立体映像表示手段に車両の予想進路画像を表 示する予想進路表示手段を設けたことを特徴とするものである。  According to a tenth aspect of the present invention, in the vehicle video display device according to any one of the first to ninth aspects, an expected course image of the vehicle is displayed on the three-dimensional image display means. It is characterized by providing an expected course display means.
本発明によれば、 立体画像中に予想進路が表示されるので、 自車両の進路を予め予 想して車両の操作を行う ことができる。  According to the present invention, the predicted course is displayed in the three-dimensional image, so that the vehicle can be operated while predicting the course of the own vehicle in advance.
請求の範囲 1 1に記載の本発明は、 請求の範囲 1乃至請求の範囲 9のいずれかに記 載の車両用映像表示装置において、 前記立体映像表示手段は、 力一ナビゲ一シヨ ンシ ステムの映像表示手段を兼ねることを特徴とするものである。 The present invention described in claim 11 is a vehicle image display device according to any one of claims 1 to 9, wherein the three-dimensional image display means includes a power navigation device. It is characterized in that it also serves as a video display means of the stem.
本発明によれば、 1台の表示手段で、 車両の周辺と力一ナビゲ一シヨ ンシステムの 表示手段を共用でき部品点数及びコス トを低減できる。  ADVANTAGE OF THE INVENTION According to this invention, the display means of a force navigation system can be shared with the periphery of a vehicle by one display means, and the number of parts and cost can be reduced.
請求の範囲 1 2に記載の本発明は、 請求の範囲 1 1に記載の車両用映像表示装置に おいて、 前記カーナビゲ一シヨ ンシステムの地図は立体的に表示されることを特徴と するものである。  The present invention described in claim 12 is the vehicle image display device according to claim 11, wherein the map of the car navigation system is stereoscopically displayed. It is.
本発明によれば、 立体的に表示された地図に基づいて自車両の走行すべき進路を認 識でき、 よ り直感的かつ的確に進路を認識できる。  ADVANTAGE OF THE INVENTION According to this invention, the course which the own vehicle should drive can be recognized based on the map displayed three-dimensionally, and the course can be recognized more intuitively and accurately.
請求の範囲 1 3に記載の本発明は、 請求の範囲 1乃至請求の範囲 1 2のいずれかに 記載の車両用映像表示装置において、 前記立体映像表示手段は、 画像ソフ トウェアの 映像表示手段を兼ねることを特徴とするものである。  The present invention described in claim 13 is the vehicle image display device according to any one of claims 1 to 12, wherein the three-dimensional image display means includes an image software image display means. It is also characterized by serving as a combination.
本発明によれば、 車両中で画像ソフ トウェアを立体映像と して表示できる。  According to the present invention, image software can be displayed as a stereoscopic image in a vehicle.
請求の範囲 1 4に記載の本発明は、 請求の範囲 1乃至請求の範囲 1 3のいずれかに 記載の車両用映像表示装置において、 前記立体画像表示手段の表示を正像画面あるい は鏡像画面に切り換える表示切換手段を備えたことを特徴とするものである。  The present invention according to claim 14 is the vehicle image display device according to any one of claims 1 to 13, wherein the display of the stereoscopic image display means is a normal image screen or a mirror image. A display switching means for switching to a screen is provided.
本発明によれば、後方を表示するに際して、正像(後を振り返つている状態に相当)、 あるいは左右が反転した鏡像 (バック ミ ラ一をみている場合に相当) を切り換えるこ とができるので、 使用者の慣れている画像を表示でき、 より的確な状況認識をするこ とができる。  According to the present invention, when displaying the rear side, it is possible to switch between a normal image (corresponding to a state in which the user looks back) or a mirror image in which the left and right are reversed (corresponding to a back mirror). The image that the user is used to can be displayed, and the situation can be recognized more accurately.
請求の範囲 1 5に記載の本発明は、 請求の範囲 1乃至請求の範囲 1 4のいずれかに 記載の車両用映像表示装置において、 前記立体画像表示装置は、 ヘッ ドアップデイス プレイ (H U D ) を構成することを特徴とするものである。  The present invention described in claim 15 is the vehicle image display device according to any one of claims 1 to 14, wherein the stereoscopic image display device includes a head-up display (HUD). It is characterized by comprising.
本発明によれば、 立体像を運転者の視線上に表示することができるので、 運転者は 運転中視線を変更することなく 自車両周辺の状況を認識できる。  According to the present invention, since a stereoscopic image can be displayed on the driver's line of sight, the driver can recognize the situation around the host vehicle without changing the driver's line of sight.
請求の範囲 1 6に記載の本発明は、 請求の範囲 1乃至請求の範囲 1 5のいずれかに 記載の車両用映像表示装置において、 2台の撮像手段を備え該撮像手段からの映像情 報を出力する立体映像撮像装置と、 観者の両眼に異なる映像を表示する立体映像表示 装置 を備え、 前記立体映像撮像装置は、 撮像手段の光軸のク ロスポイン ト (C P ) に関する C P情報を測定するクロスポイン ト測定手段を備え、 この C P情報と映像情 報とを含んだ情報を送出すると ともに、 前記立体映像表示装置は、 前記映像情報、 前 記ク ロスポイン ト情報、 この立体映像表示装置が表示する画像の大きさ情報に基づい て前貧己異なる映像をずらして表示させるオフセッ ト設定手段を備えたことを特 1¾とす る。 The present invention described in claim 16 is the vehicle image display device according to any one of claims 1 to 15, wherein the image display device includes two image pickup units and includes image information from the image pickup unit. Image output device that outputs images, and 3D image display that displays different images to both eyes of the viewer A stereoscopic image pickup device, comprising: cross-point measuring means for measuring CP information relating to a cross point (CP) of an optical axis of the image pickup means; and transmitting information including the CP information and the video information. At the same time, the three-dimensional image display device shifts and displays an image different from the former one based on the image information, the aforementioned cross-point information, and the size information of the image displayed by the three-dimensional image display device. Special feature is that it has setting means.
本発明によれば、本発明によれば、車両用映像表示装置に対応した最適な立体度(奥 行き量) に調整した立体映像を得ることができる。  According to the present invention, according to the present invention, it is possible to obtain a stereoscopic video adjusted to an optimal stereoscopic degree (depth amount) corresponding to a video display apparatus for a vehicle.
請求の範囲 1 7に記載の本発明は、 請求の範囲 1乃至請求の範囲 1 6のいずれかに 記載の車両用映像表示装置において、 前記立体映像表示装置は、 表示画面に対する観 者の位置情報を測定する観者位置情報測定手段を備え、 前記映像情報、 前記ク ロ スポ イン ト情報、 この立体映像表示装置が表示する画像の大きさ情報、 及び観者の位置情 報に基づいて前記異なる映像をずらして表示させるオフセッ ト設定手段を備えたこと を特徴とするものである。  The present invention described in claim 17 is the vehicle image display device according to any one of claims 1 to 16, wherein the stereoscopic image display device includes information on a position of a viewer with respect to a display screen. A viewer position information measuring means for measuring the image information, the cross point information, the size information of the image displayed by the stereoscopic image display device, and the viewer's position information. An offset setting means for shifting and displaying an image is provided.
本発明によれば、立体映像撮影表示手段及び観者の位置に対応した最適な立体度(奥 行き量) を備えた立体映像を得ることができる。  According to the present invention, it is possible to obtain a stereoscopic image having an optimum stereoscopic degree (depth amount) corresponding to the stereoscopic image photographing and displaying means and the position of the viewer.
請求の範囲 1 8に記載の本発明は、 請求の範囲 1 6又は請求の範囲 1 7のいずれか に記載の車両用映像表示装置において、 前記ク ロスポイン ト測定手段は、 2台の撮像 手段における光軸の交差.角度に基づいてクロスポイ ン ト位置を算出することを特徴と するものである。  The present invention described in claim 18 is the vehicle image display device according to any one of claims 16 and 17, wherein the cross-point measuring means is provided in two imaging means. It is characterized in that the crosspoint position is calculated based on the intersection of the optical axis and the angle.
本発明によれば、 三角測量の原理に基づいて 2台の撮像手段の距離と光軸の交差角 度の値に基づいて、 ク ロスポイン ト及び撮像対象物 (被写体) までの距離を測定でき る。 また、 2つの被写体間の間隔距離を測定できる。  According to the present invention, it is possible to measure the distance between the cross point and the imaging target (subject) based on the distance between the two imaging units and the value of the intersection angle of the optical axis based on the principle of triangulation. . Also, the distance between two objects can be measured.
請求の範囲 1 9に記載の本発明は、 請求の範囲 1 6又は請求の範囲 1 7のいずれか に記載の車両用映像表示装置において、 前記ク ロスポイン ト測定手段は、 平行に配置 された 2台の撮像手段における被写体の撮像位置に基づいてクロスポイン ト位置を算 出することを特徴とするものである。 本発明によれば、 三角測量の原理に基づいて 2台の撮像手段の距離と光軸の交差角 度の値に基づいて、 クロスポイン ト及び撮像対象物 (被写体) までの距離を測定でき る。 また、 2つの被写体間の間隔距離を測定できる The present invention described in claim 19 is the vehicle image display device according to any one of claim 16 and claim 17, wherein the cross point measuring means is arranged in parallel. The method is characterized in that a crosspoint position is calculated based on an imaging position of a subject in one of the imaging units. According to the present invention, based on the principle of triangulation, the distance to the crosspoint and the object to be imaged (subject) can be measured based on the distance between the two imaging means and the value of the angle of intersection of the optical axes. . It can also measure the distance between two subjects
請求の範囲 2 0に記載の本発明は、 請求の範囲 1 6乃至請求の範囲 1 9のいずれか に記載の車両用映像表示装置において、 前記立体映像撮像装置は、 撮像した領域の前 後に;!:る奥行き量についての情報を送出し、 奥行き量や、 この立体映像表示装置が表 示する画像の大きさ情報、 及び観者の位置情報に基づいて前記異なる映像をずら して 表示させるオフセッ ト設定手段を備えたことを特徴とするものである。  The present invention described in claim 20 is the vehicle video display device according to any one of claims 16 to 19, wherein the stereoscopic video imaging device is arranged before and after an imaged area; ! : Offset that sends information about the depth, and shifts and displays the different images based on the depth, the size information of the image displayed by this stereoscopic image display device, and the position information of the viewer. It is characterized by comprising setting means.
本発明によれば、 表示手段は撮影条件についてよ り正確な情報をえることができる ので、 より適切な立体画像表示をすることができる。  According to the present invention, the display means can obtain more accurate information on the photographing conditions, so that a more appropriate stereoscopic image can be displayed.
請求の範囲 2 1に記載の本発明は、 請求の範囲 1 7に記載の車両用映像表示装置に おいて、 前記観察者位置検出手段は車両用映像表示装置本体に一体的に配置されたこ とを特徴とするものである。  The present invention described in claim 21 is the vehicle image display device according to claim 17, wherein the observer position detecting means is integrally disposed in the vehicle image display device main body. It is characterized by the following.
本発明によれば、 観察者位置検出手段を車両用映像表示装置本体の他に別途設置す る必要がない。  According to the present invention, there is no need to separately install the observer position detecting means in addition to the vehicle image display device main body.
請求の範囲 2 2に記載の本発明は、 請求の範囲 1 Ίに記載の車両用映像表示装置に おいて、 前記観察者位置検出手段は車両用映像表示装置本体と離れた位置に配置され たことを特徴とする。  According to a second aspect of the present invention, in the vehicle image display device according to the first aspect, the observer position detecting unit is arranged at a position separated from the vehicle image display device main body. It is characterized by the following.
本発明によれば、 観察者位置検出手段を観察者の位置を検出するために適切な個所 に配置でき、 観察者の位置を正確に検出することができる。  ADVANTAGE OF THE INVENTION According to this invention, an observer position detection means can be arrange | positioned in the appropriate place for detecting the position of an observer, and the position of an observer can be detected correctly.
請求の範囲 2 3に記載の本発明は、 請求の範囲 2 1又は請求の範囲 2 2のいずれか に記載の車両用映像表示装置において、 前記観察者位置検出手段は超音波発信器及び 超音波受信器を備えたことを特徴とするものである。  The present invention described in claim 23 is the vehicle image display device according to any one of claims 21 and 22, wherein the observer position detecting means is an ultrasonic transmitter and an ultrasonic wave. A receiver is provided.
本発明によれば、 赤外線等他の手段による観察者の検出などに比べて周囲の雑音な どなどの影響を受けにく く、 正確な検出を行う ことができる。  ADVANTAGE OF THE INVENTION According to this invention, it is hard to be influenced by surrounding noise etc. compared with the detection of an observer by other means, such as infrared rays, and can perform accurate detection.
請求の範囲 2 4に記載の本発明は、 請求の範囲 2 1又は請求の範囲 2 2のいずれか に記載の車両用映像表示装置において、 前記記観察者位置検出手段は観者を撮影した 画像に基づいて位置検出をすることを特徴とするものである。 The present invention described in claim 24 is the vehicle image display device according to any one of claims 21 and 22, wherein the observer position detecting unit captures an image of a viewer. It is characterized in that position detection is performed based on an image.
本発明によれば、 赤外線等他の手段による観察者の検出などに比べて周囲の雑音な どなどの影響を受けにく く、 正確な検出を行う ことができる。  ADVANTAGE OF THE INVENTION According to this invention, it is hard to be influenced by surrounding noise etc. compared with the detection of an observer by other means, such as infrared rays, and can perform accurate detection.
請求の範囲 2 5に記載の本発明は、 請求の範囲 1 6乃至請求の範囲 2 4のいずれか に記載の車両用映像表示装置において、 前記オフセッ ト設定手段は、 前記入力手段に 入力された情報に基づいて左目映像と右目映像とのオフセッ トを設定して、 前記表示 手段に表示される映像の立体感を調整することを特徴とするものである。  The present invention described in claim 25 is the vehicle image display device according to any one of claims 16 to 24, wherein the offset setting means is input to the input means. An offset between the left-eye image and the right-eye image is set based on the information, and the stereoscopic effect of the image displayed on the display means is adjusted.
本発明によれば、 観察者の好みに合わせて立体度 (奥行き量) を調整した立体映像 を得ることができる。  According to the present invention, it is possible to obtain a stereoscopic image in which the stereoscopic degree (depth amount) is adjusted according to the viewer's preference.
請求の範囲 2 6に記載の本発明は、 請求の範囲 1 6乃至請求の範囲 2 5のいずれか に記載の車両用映像表示装置が、 左目映像を記憶する左目映像用フ レームメモリ と、 右目映像を記憶する右目映像用フレームメモリ とを備え、前記オフセッ ト設定手段は、 前記左目映像用フ レームメモリ及び Z又は右目映像用フ レームメモリから映像データ を読み出すタイ ミングを制御するタイ ミング制御手段を備え、 前記タイ ミ ング制御手 段は、 前記左目映像用フ レームメモリ と前記右目映像用フ レームメモリ との一方から 映像データを読み出すタイ ミ ングを、 他方のフレームメモリから映像データを読み出 すタイ ミングと比較して早める又は遅らせることによつて前記左目映像と前記右目映 像とのオフセッ トを設定することを特徴とするものである。  The present invention described in claim 26 is a vehicle image display device according to any one of claims 16 to 25, further comprising: a left-eye image frame memory that stores a left-eye image; A right-eye video frame memory for storing video, wherein the offset setting means controls the timing of reading video data from the left-eye video frame memory and Z or the right-eye video frame memory. Wherein the timing control means reads the video data from one of the left-eye video frame memory and the right-eye video frame memory, and reads the video data from the other frame memory. Setting an offset between the left-eye image and the right-eye image by advancing or delaying the timing compared to timing. Than it is.
本発明によれば、 簡単な回路で左右目映像のオフセッ トを設定することができる。 請求の範囲 2 7に記載の本発明は、 請求の範囲 1 6乃至請求の範囲 2 5のいずれか に記載の車両用映像表示装置において、 立体映像を記憶する立体映像用フレームメモ リ と、 前記左目映像用フ レームメモリから読み出された左目映像データと前記右目映 像用フレームメモリから読み出された右目映像データ とを切り換えて立体映像用フレ —ムメモリ に入力する信号切換手段と、 を備えることを特徴とするものである。  According to the present invention, the offset of the left and right eye images can be set with a simple circuit. The present invention described in claim 27 is a vehicle image display device according to any one of claims 16 to 25, wherein a stereoscopic video frame memory storing a stereoscopic video, Signal switching means for switching between left-eye video data read from the left-eye video frame memory and right-eye video data read from the right-eye video frame memory and inputting the data to the stereoscopic video frame memory. It is characterized by the following.
本発明によれば、 左右目映像のオフセッ トが設定された映像を合成してフ レームメ モリに記憶することができる。  ADVANTAGE OF THE INVENTION According to this invention, it can synthesize | combine the image with which the offset of the left-right image was set, and store it in frame memory.
請求の範囲 2 8に記載の本発明は、 請求の範囲 1 6乃至請求の範囲 2 7のいずれか に記皴の車両用映像表示装置において、 前記左目映像と前記右目映像との水平位相を 進める又は遅らせることによって、 前記左目映像と前記右目映像とのオフセッ ト を設 定することを特徴とするものである。 The present invention described in claim 28 may be any one of claims 16 to 27 In the video display device for a wrinkle vehicle, an offset between the left-eye image and the right-eye image is set by advancing or delaying a horizontal phase between the left-eye image and the right-eye image. It is.
本発明によれば、 左右目映像のオフセッ トの設定を容易に制御することができ る 請求の範囲 2 9に記載の本発明は、 請求の範囲 1 6乃至請求の範囲 2 8のいずれか に記載の車両用映像表示装置において、 前記左目映像と前記右目映像とのオフセッ ト を設定した際に、 前記左目映像と前記右目映像との左右縁部において情報が欠落した 領域に、 当該欠落領域近傍の前記左目映像と前記右目映像との一方又は双方を水平及 び垂直方向に拡大して表示することを特徴とするものである。  According to the present invention, it is possible to easily control the setting of the offset of the left and right eye images. The present invention described in claim 29 is the present invention according to any one of claims 16 to 28 In the image display device for a vehicle according to the above, when an offset between the left-eye image and the right-eye image is set, an area where information is missing at left and right edges of the left-eye image and the right-eye image is in the vicinity of the missing area. And displaying one or both of the left-eye image and the right-eye image in the horizontal and vertical directions.
本発明によれば、 左右目映像をずら して表示した場合にも画面が欠けることのない 違和感のない表示をすることができる。  ADVANTAGE OF THE INVENTION According to this invention, even if it displays by shifting the left-right image, the display which does not lack a screen and which does not have a sense of strangeness can be performed.
請求の範囲 3 0に記載の本発明は、 請求の範囲 1 6乃至請求の範囲 2 9のいずれか に記載の車両用映像表示装置において、 前記表示手段は、 透過光で映像を表示する映 像表示手段と光源装置とを備え、 光源装置は、 白色 L E Dまたは R G Bの L E Dを一 体に配列した L E Dァレイで構成され、 前記オフセッ ト設定手段はこの L E Dアレイ の白色 L E D又は R G Bの L E Dを前記オフセッとに基づいて点灯制御する L E D制 御手段を備えたことを特徴とするものである。  The present invention described in claim 30 is the vehicle image display device according to any one of claims 16 to 29, wherein the display unit displays an image using transmitted light. The light source device includes a display device and a light source device, and the light source device is configured by an LED array in which white LEDs or RGB LEDs are arranged as one body. LED control means for controlling lighting based on the above.
本発明によれば、 光源と して消費電力が少なくオンオフのスィ ツチング速度が早い 白色 L E D又は R G Bの L E Dを使用しているので、 L E D制御手段の制御によ り 自 由な光源の点灯を行う ことができる他、 消費電力を少ないものとすることができる。 請求の範囲 3 1 に記載の本発明は、 請求の範囲 2 9に記載の車両用映像表示装置に おいて、 オフセッ ト設定手段の L E D制御手段は前記観察者位置情報に基づいて、 観 察者の観察映像を維持するよ う前記白色 L E D又は R G Bの L E Dを点灯制御するこ とを特徴とするものである。  According to the present invention, since a white LED or an RGB LED having low power consumption and fast on / off switching speed is used as the light source, the light source can be freely turned on by controlling the LED control means. In addition, power consumption can be reduced. The present invention described in claim 31 is the vehicle image display device according to claim 29, wherein the LED control means of the offset setting means is configured to control an observer based on the observer position information. The white LED or the RGB LED is controlled to be turned on so as to maintain the observation image.
本発明によれば、 観察者が移動しても、 また観察者が複数の異なる位置にいても適 切な映像を表示することができる。  ADVANTAGE OF THE INVENTION According to this invention, an appropriate image | video can be displayed even if an observer moves and an observer exists in several different positions.
請求の範囲 3 2に記載の本発明は、 請求の範囲 2 9に記載の車両用映像表示装置に おいて、 前記光源装置の上下に設けられた各 L E Dア レイは右目用映像表示用部と左 目用映像表示用部をなすことを特徴とするものである。 The present invention described in claim 32 is a vehicle image display device according to claim 29. Each of the LED arrays provided above and below the light source device forms a right-eye image display unit and a left-eye image display unit.
本発明によれば、 L E Dァレイ の右目用映像表示用部と左目用映像表示用部を L E D制御手段で発光制御することによ り立体映像の表示制御を高い自由度で行う ことが できる。  According to the present invention, display control of a stereoscopic image can be performed with a high degree of freedom by controlling light emission of the right-eye image display unit and the left-eye image display unit of the LED array by the LED control means.

Claims

請求の範囲 The scope of the claims
1 . 車両に搭載され、 車両周辺を撮影する複数の撮像手段と、 この撮像手段によって 撮像された画像を立体画像と して乗員に表示する立体映像表示手段と、 立体映像表示 手段に表示される立体映像の奥行き度を調整する制御部とを備えたことを特徴とする 車両用映像表示装置。  1. A plurality of image pickup means mounted on the vehicle and photographing the periphery of the vehicle, a stereoscopic image display means for displaying an image picked up by the image pickup means to a passenger as a stereoscopic image, and a stereoscopic image display means A video display device for a vehicle, comprising: a control unit that adjusts a depth of a stereoscopic video.
2 . 前記撮像手段は、 車両の後方を撮影することを特徴とする請求の範囲 1 に記載の 車両用映像表示装置。  2. The image display device for a vehicle according to claim 1, wherein the imaging unit captures an image of the rear of the vehicle.
3 . 前記撮像手段は、 車両の側方を撮影することを特徴とする請求の範囲 1 に記載の 車両用映像表示装置。  3. The image display device for a vehicle according to claim 1, wherein the imaging unit images a side of the vehicle.
4 . 前記撮像手段は、 車両の上方を撮影することを特徴とする請求の範囲 1 に記載の 車両用映像表示装置。  4. The image display device for a vehicle according to claim 1, wherein the imaging unit captures an image of an upper part of the vehicle.
5 . 前記表示手段は、 車両後方及び車両側方のいずれか又は両方を表示できる切り換 手段を備えたことを特徴とする請求の範囲 1乃至請求の範囲 3のいずれかに記載の車 両用映像表示装置。  5. The vehicular image according to any one of claims 1 to 3, wherein the display means includes switching means capable of displaying one or both of a vehicle rear side and a vehicle side side. Display device.
6 . 前記撮像手段には、 車内からの操作によ り、 撮影個所及び撮影範囲のうち少なく とも 1つを変更できる撮像操作手段を備えたことを特徴とする請求の範囲 1乃至請求 の範囲 5のいずれかに記載の車両用映像表示装置。  6. The image pickup means includes an image pickup operation means capable of changing at least one of a photographing place and a photographing range by an operation from the inside of the vehicle. The video display device for a vehicle according to any one of the above.
7 . 前記立体映像表示手段に、 車両の輸郭を表す車両画像を立体的に表示させる車両 輪郭表示手段を備えたことを特徴とする請求の範囲 1乃至請求の範囲 6のいずれかに 記載の車両用映像表示装置。  7. The vehicle according to any one of claims 1 to 6, wherein the three-dimensional image display means includes a vehicle contour display means for displaying a vehicle image representing a transit of the vehicle in three dimensions. Video display device for vehicles.
8 . 前記立体映像表示手段に表示された物体までの距離寸法を表示する距離表示手段 を設けたことを特徴とする請求の範囲 1乃至請求の範囲 7のいずれかに記載の車両用 映像表示装置。  8. The image display device for a vehicle according to any one of claims 1 to 7, further comprising a distance display means for displaying a distance dimension to the object displayed on the stereoscopic image display means. .
9 . 前記立体映像に表示された複数物体の間隔寸法を表示する間隔表示手段を設けた ことを特徴とする請求の範囲 1乃至請求の範囲 7のいずれかに記載の車両用映像表示 装置。  9. The image display device for a vehicle according to any one of claims 1 to 7, further comprising an interval display unit that displays an interval dimension of the plurality of objects displayed on the stereoscopic image.
1 0 . 前記立体映像表示手段に、 車両の予想進路画像を表示する予想進路表示手段を 設けたことを特徴とする請求の範囲 1乃至請求の範囲 9のいずれかに記載の車两用映 像表^装置。 10. An expected course display means for displaying an expected course image of the vehicle on the three-dimensional image display means. The vehicle image display device according to any one of claims 1 to 9, characterized in that it is provided.
1 1 . 前記立体映像表示手段は、 力一ナビゲーシヨ ンシステムの映像表示手段を兼ね ることを特徴とする請求の範囲 1乃至請求の範囲 9のいずれかに記載の車両用映像表 示装置。  11. The image display device for a vehicle according to any one of claims 1 to 9, wherein the three-dimensional image display means also functions as an image display means of a force navigation system.
1 2 . 前記カーナビゲ一シヨ ンシステムの地図は、 立体的に表示されることを特徴と する請求の範囲 1 1 に記載の車両用映像表示装置。  12. The vehicle image display device according to claim 11, wherein the map of the car navigation system is displayed three-dimensionally.
1 3 . 前記立体映像表示手段は、 画像ソフ ト ウェアの映像表示手段を兼ねることを特 徴とする請求の範囲 1乃至請求の範囲 1 2のいずれかに記載の車両用映像表示装置。 13. The vehicular image display device according to any one of claims 1 to 12, wherein the three-dimensional image display means also functions as an image software image display means.
1 4 . 前記立体画像表示手段の表示を、 正像画面あるいは鏡像画面に切り換える表示 切り換手段を備えたことを特徴とする請求の範囲 1乃至請求の範囲 1 3のいずれかに 記載の車両用映像表示装置。 14. The vehicle according to any one of claims 1 to 13, further comprising display switching means for switching a display of the stereoscopic image display means to a normal image screen or a mirror image screen. Video display device.
1 5 . 前記立体画像表示装置は、 ヘッ ドアップディスプレイ (H U D ) を構成するこ とを特徴とする請求の範囲 1乃至請求の範囲 1 4のいずれかに記載の車両用映像表示 装置。  15. The vehicle image display device according to any one of claims 1 to 14, wherein the stereoscopic image display device forms a head-up display (HUD).
1 6 . 2台の撮像手段を備え、 該撮像手段からの映像情報を出力する立体映像撮像装 置と、 観者の両眼に異なる映像を表示する立体映像表示装置とを備え、 前記立体映像 撮像装置は、 撮像手段の光軸のク ロスポイン ト (C P ) に関する C P情報を測定する ク ロスポイン ト測定手段を備え、 この C P情報と映像情報とを含んだ情報を送出する とともに、 前記立体映像表示装置は、 前記映像情報、 前記ク ロスポイント情報、 この 立体映像表示装置が表示する画像の大きさ情報に基づいて前記異なる映像をずら して 表示させるオフセッ ト設定手段を備えたことを特徴とする請求の範囲 1乃至請求の範 囲 1 5のいずれかに記載の車両用映像表示装置。  16.2. A stereoscopic video imaging device, comprising: two imaging units, outputting video information from the imaging units; and a stereoscopic video display device, which displays different images to both eyes of a viewer, The imaging apparatus includes cross-point measuring means for measuring CP information relating to a cross-point (CP) of the optical axis of the imaging means, and transmits information including the CP information and the video information. The apparatus further comprises offset setting means for shifting and displaying the different images based on the image information, the cross point information, and the size information of the image displayed by the stereoscopic image display device. The vehicle image display device according to any one of claims 1 to 15.
1 7 . 前記立体映像表示装置は、 表示画面に対する観者の位置情報を測定する観者位 置情報測定手段を備え、 前記映像情報、 前記ク ロスポイ ン ト情報、 この立体映像表示 装置 表示する画像の大きさ情報、 及び観者の位置情報に基づいて前記異なる映像を ずらして表示させるオフセッ ト設定手段を備えたことを特徴とする請求の範囲 1 乃至 請求の範囲 1 6のいずれかに記載の車両用映像表示装置。 17. The stereoscopic image display device includes a viewer position information measuring unit that measures position information of a viewer with respect to a display screen, and the image information, the crosspoint information, and the image to be displayed by the stereoscopic image display device. Claims 1 to 3 characterized by comprising offset setting means for shifting and displaying the different images based on the size information of the image and the position information of the viewer. The vehicle image display device according to any one of claims 16.
1 8 . 前記ク ロスポイン ト測定手段は、 2台の撮像手段における光軸の交差角度に基 づいてク ロスポイン ト位置を算出することを特徴とする請求の範囲 1 6又は請求の範 囲 1 7のいずれかに記載の立体画像撮影表示システム。  18. The cross point measuring means calculates the cross point position based on the intersection angle of the optical axes of the two image pickup means, wherein the cross point measuring means calculates the cross point position. The stereoscopic image capturing and displaying system according to any one of the above.
1 9 . 前記ク ロスポイン ト測定手段は、 平行に配置された 2台の撮像手段における被 写体の撮像位置に基づいてクロスポイ ン ト位置を算出することを特徴とする請求の範 囲 1 6又は請求の範囲 1 7のいずれかに記載の車両用映像表示装置。  19. The cross-point measuring means calculates the cross-point position based on the imaging position of the object in the two imaging means arranged in parallel. The vehicle image display device according to claim 17.
2 0 . 前記立体映像撮像装置は、 撮像した領域の前後に亘る奥行き量についての情報 を送出し、 行き量、 この立体映像表示装置が表示する画像の大きさ情報、 及ぴ観者の 位置情報に基づいて前記異なる映像をずらして表示させるオフセッ ト設定手段を備え たことを特徴とする請求の範囲 1 6乃至請求の範囲 1 9のいずれかに記載の車両用映 像表示装置。  20. The stereoscopic video imaging device sends out information about the depth before and after the imaged area, the amount of travel, the size information of the image displayed by the stereoscopic video display device, and the position information of the viewer. An image display device for a vehicle according to any one of claims 16 to 19, further comprising an offset setting means for shifting and displaying said different images based on the image.
2 1 . 前記観察者位置検出手段は、 車両用映像表示装置本体に一体的に配置されたこ とを特徴とする請求の範囲 1 7に記載の車両用映像表示装置。  21. The vehicle image display device according to claim 17, wherein the observer position detection means is disposed integrally with a vehicle image display device main body.
2 2 . 前記観察者位置検出手段は、 車両用映像表示装置本体と離れた位置に酉己置され たことを特徴とする請求の範囲 1 7に記載の車両用映像表示装置。  22. The vehicle image display device according to claim 17, wherein the observer position detection means is located at a position separated from the vehicle image display device main body.
2 3 . 前記観察者位置検出手段は、 超音波発信器及び超音波受信器を備えたこ とを特 徴とする請求の範囲 2 1又は請求の範囲 2 2のいずれかに記載の車両用映像表示装置 c 2 4 . 前記観察者位置検出手段は、 観者を撮影した画像に基づいて位置検出をするこ とを特徴とする請求の範囲 2 1又は請求の範囲 2 2のいずれかに記載の車両用映像表 示装置。 23. The vehicle image display according to any one of claims 21 and 22, wherein the observer position detection means includes an ultrasonic transmitter and an ultrasonic receiver. Device c24 . The vehicle according to any one of claims 21 or 22, wherein the observer position detecting means detects a position based on an image of a viewer. Video display device.
2 5 . 前記オフセッ ト設定手段は、 前記入力手段に入力された情報に基づいて左目映 像と右目映像とのオフセッ トを設定して、 前記表示手段に表示される映像の立体感を 調整することを特徴とする請求の範囲 1 6乃至請求の範囲 2 4のいずれかに記載の車 両用^像表示装置。  25. The offset setting means sets an offset between a left-eye image and a right-eye image based on information input to the input means, and adjusts a three-dimensional effect of an image displayed on the display means. The vehicle image display device according to any one of claims 16 to 24, characterized in that:
2 6 . 左目映像を記憶する左目映像用フ レームメモリ と、 右目映像を記憶する右目映 像用クレームメモリ とを備え、 前記オフセッ ト設定手段は、 前記左目映像用フ レーム メモ リ及びノ又は右目映像用フ レームメモリから映像データを読み出すタイ ミ ングを 制御するタイ ミング制御手段を備え、 前記タイ ミング制御手段は、 前記左目映像用フ レームメモリ と前記右目映像用フ レームメモリ との一方から映像データを読み出すタ イ ミ ングを、 他方のフレームメモリから映像データを読み出すタイ ミ ングと比較して 早める又は遅らせることによって前記左目映像と前記右目映像とのオフセッ トを設定 することを特徴とする請求の範囲 1 6乃至請求の範囲 2 5のいずれかに記載の車両用 映像表示装置。 26. A left-eye image frame memory for storing a left-eye image, and a right-eye image claim memory for storing a right-eye image, wherein the offset setting means includes: A timing control unit for controlling timing of reading video data from the memory and the right-eye video frame memory, wherein the timing control unit includes the left-eye video frame memory and the right-eye video frame. The offset between the left-eye video and the right-eye video is set by making the timing for reading the video data from one of the memories earlier or later than the timing for reading the video data from the other frame memory. An image display device for a vehicle according to any one of claims 16 to 25, characterized in that:
2 7. 立体映像を記憶する立体映像用フ レームメモリ と、 前記左目映像用フレームメ モリから読み出された左目映像データと前記右目映像用フレームメモリから読み出さ れた右目映像データとを切り換えて立体映像用フレームメモリに入力する信号切換手 段と、 を備えることを特徴とする請求の範囲 1 6乃至請求の範囲 2 5のいずれかに記 載の車両用映像表示装置。  2 7. The 3D image frame memory for storing the 3D image, and the left-eye image data read from the left-eye image frame memory and the right-eye image data read from the right-eye image frame memory are switched to form a 3D image. The video display device for a vehicle according to any one of claims 16 to 25, further comprising: a signal switching unit that inputs the video frame memory.
2 8.前記左目映像と前記右目映像との水平位相を進める又は遅らせることによって、 前記左目映像と前記右目映像とのオフセッ トを設定することを特徴とする請求の範囲 1 6乃至請求の範囲 2 7のいずれかに記載の車両用映像表示装置。  2 8. An offset between the left-eye image and the right-eye image is set by advancing or delaying a horizontal phase between the left-eye image and the right-eye image. 8. The vehicle image display device according to any one of 7.
2 9. 前記左目映像と前記右目映像とのオフセッ トを設定した際に、 前記左目映像と 前記右目映像との左右縁部において情報が欠落した領域に、 当該欠落領域近傍の前記 左目映像と前記右目映像との一方又は双方を水平及び垂直方向に拡大して表示するこ とを特徴とする請求の範囲 1 6乃至請求の範囲 2 8のいずれかに記載の車両用映像表 示装置。  2 9. When an offset between the left-eye image and the right-eye image is set, the left-eye image and the left-eye image in the vicinity of the missing region are located in areas where information is missing at the left and right edges of the left-eye image and the right-eye image. The vehicle image display device according to any one of claims 16 to 28, wherein one or both of the right-eye image and the right-eye image are enlarged and displayed in the horizontal and vertical directions.
3 0. 前記表示手段は、 透過光で映像を表示する映像表示手段と光源装置とを備え、 光源装置は、 白色 L E Dまたは R G Bの L E Dを一体に配列した L E Dア レイで構成 され、 前記オフセッ ト設定手段はこの L E Dアレイの白色 L E D又は RG Bの L E D を前記オフセッとに基づいて点灯制御する L E D制御手段を備えたことを特徴とする 請求の範囲 1 6乃至請求の範囲 2 9のいずれかに記載の車両用映像表示装置。  30. The display means includes an image display means for displaying an image with transmitted light and a light source device, and the light source device is configured by an LED array in which white LEDs or RGB LEDs are integrally arranged, and the offset The setting means includes LED control means for controlling lighting of the white LED or the RGB LED of the LED array on the basis of the offset. The image display device for a vehicle according to claim 1.
3 1 . オフセッ ト設定手段の L E D制御手段は、 前記観察者位置情報に基づいて、 観 察者の観察映像を維持するよ う前記白色 L E D又は R G Bの L E Dを点灯制御するこ とを特徴とする請求の範囲 2 9に記載の車両用映像表示装置。 31. The LED control means of the offset setting means controls the lighting of the white LED or the RGB LED based on the observer position information so as to maintain the observation image of the observer. 30. The vehicular image display device according to claim 29, wherein:
3 2 . 前記光源装置の上下に設けられた各 L E Dアレイは右目用映像表示用部と左目 用映像表示用部をなすことを特徴とする請求の範囲 2 9に記載の車両用映像表示装置 <  32. The vehicular image display device according to claim 29, wherein each of the LED arrays provided above and below the light source device forms a right-eye image display portion and a left-eye image display portion.
PCT/JP2003/003404 2003-03-20 2003-03-20 Video display for vehicle WO2004084559A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2003236054A AU2003236054A1 (en) 2003-03-20 2003-03-20 Video display for vehicle
PCT/JP2003/003404 WO2004084559A1 (en) 2003-03-20 2003-03-20 Video display for vehicle
JP2004569586A JPWO2004084559A1 (en) 2003-03-20 2003-03-20 Video display device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/003404 WO2004084559A1 (en) 2003-03-20 2003-03-20 Video display for vehicle

Publications (1)

Publication Number Publication Date
WO2004084559A1 true WO2004084559A1 (en) 2004-09-30

Family

ID=33018165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003404 WO2004084559A1 (en) 2003-03-20 2003-03-20 Video display for vehicle

Country Status (3)

Country Link
JP (1) JPWO2004084559A1 (en)
AU (1) AU2003236054A1 (en)
WO (1) WO2004084559A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009232331A (en) * 2008-03-25 2009-10-08 Alpine Electronics Inc Vehicle drive supporting apparatus
WO2011038825A1 (en) * 2009-09-29 2011-04-07 Bayerische Motoren Werke Aktiengesellschaft Method for generating a stereo image by means of a projection unit for a head-up display, and projection unit for a head-up display
JP2013026770A (en) * 2011-07-20 2013-02-04 Nissan Motor Co Ltd Image display device for vehicle
JP2015041789A (en) * 2013-08-20 2015-03-02 日産自動車株式会社 Two-dimensional and three-dimensional display apparatus
JP2015041788A (en) * 2013-08-20 2015-03-02 日産自動車株式会社 Two-dimensional and three-dimensional display apparatus
US9408528B2 (en) 2013-03-29 2016-08-09 Olympus Corporation Stereoscopic endoscope system
WO2018109991A1 (en) * 2016-12-12 2018-06-21 シャープ株式会社 Display device, electronic mirror, display device control method, program, and storage medium
EP3418791A1 (en) * 2017-06-20 2018-12-26 Visteon Global Technologies, Inc. Mono-eye head-up display
US20190082167A1 (en) * 2017-09-14 2019-03-14 Omron Corporation Alert display system
WO2022138110A1 (en) * 2020-12-24 2022-06-30 株式会社村上開明堂 Display device for vehicles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9756319B2 (en) * 2014-02-27 2017-09-05 Harman International Industries, Incorporated Virtual see-through instrument cluster with live video
JP2015226146A (en) * 2014-05-27 2015-12-14 学校法人関東学院 Three-dimensional monitoring device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07105484A (en) * 1993-10-04 1995-04-21 Honda Motor Co Ltd On-vehicle information display device
JPH08205201A (en) * 1995-01-31 1996-08-09 Sony Corp Pseudo stereoscopic vision method
JPH08242443A (en) * 1995-03-02 1996-09-17 Yazaki Corp Equipment for monitoring surrounding of vehicle
JPH09113862A (en) * 1995-10-24 1997-05-02 Mitsubishi Electric Corp Sterescopic video display device
JPH10224823A (en) * 1997-02-05 1998-08-21 Sanyo Electric Co Ltd Stereoscopic video image display method and stereoscopic video image display device
JPH1178692A (en) * 1997-09-03 1999-03-23 Nissan Motor Co Ltd Image display device for vehicle
JP2001326948A (en) * 2000-05-12 2001-11-22 Sony Corp Stereoscopic image display device
JP2002277258A (en) * 2001-03-15 2002-09-25 Nissan Motor Co Ltd Display for vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2849313B2 (en) * 1993-09-21 1999-01-20 キヤノン株式会社 Image recording and playback device
JP2848291B2 (en) * 1995-08-24 1999-01-20 松下電器産業株式会社 3D TV device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07105484A (en) * 1993-10-04 1995-04-21 Honda Motor Co Ltd On-vehicle information display device
JPH08205201A (en) * 1995-01-31 1996-08-09 Sony Corp Pseudo stereoscopic vision method
JPH08242443A (en) * 1995-03-02 1996-09-17 Yazaki Corp Equipment for monitoring surrounding of vehicle
JPH09113862A (en) * 1995-10-24 1997-05-02 Mitsubishi Electric Corp Sterescopic video display device
JPH10224823A (en) * 1997-02-05 1998-08-21 Sanyo Electric Co Ltd Stereoscopic video image display method and stereoscopic video image display device
JPH1178692A (en) * 1997-09-03 1999-03-23 Nissan Motor Co Ltd Image display device for vehicle
JP2001326948A (en) * 2000-05-12 2001-11-22 Sony Corp Stereoscopic image display device
JP2002277258A (en) * 2001-03-15 2002-09-25 Nissan Motor Co Ltd Display for vehicle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009232331A (en) * 2008-03-25 2009-10-08 Alpine Electronics Inc Vehicle drive supporting apparatus
WO2011038825A1 (en) * 2009-09-29 2011-04-07 Bayerische Motoren Werke Aktiengesellschaft Method for generating a stereo image by means of a projection unit for a head-up display, and projection unit for a head-up display
JP2013026770A (en) * 2011-07-20 2013-02-04 Nissan Motor Co Ltd Image display device for vehicle
US9408528B2 (en) 2013-03-29 2016-08-09 Olympus Corporation Stereoscopic endoscope system
JP2015041789A (en) * 2013-08-20 2015-03-02 日産自動車株式会社 Two-dimensional and three-dimensional display apparatus
JP2015041788A (en) * 2013-08-20 2015-03-02 日産自動車株式会社 Two-dimensional and three-dimensional display apparatus
WO2018109991A1 (en) * 2016-12-12 2018-06-21 シャープ株式会社 Display device, electronic mirror, display device control method, program, and storage medium
EP3418791A1 (en) * 2017-06-20 2018-12-26 Visteon Global Technologies, Inc. Mono-eye head-up display
US20190082167A1 (en) * 2017-09-14 2019-03-14 Omron Corporation Alert display system
WO2022138110A1 (en) * 2020-12-24 2022-06-30 株式会社村上開明堂 Display device for vehicles

Also Published As

Publication number Publication date
AU2003236054A1 (en) 2004-10-11
JPWO2004084559A1 (en) 2006-06-29

Similar Documents

Publication Publication Date Title
US7417664B2 (en) Stereoscopic image picking up and display system based upon optical axes cross-point information
JP4356763B2 (en) Operating device
KR100913933B1 (en) Image display device and image display method
JP4809142B2 (en) Stereoscopic video display device and 3D video-stereoscopic video converter
EP2177041B1 (en) Switchable optical imaging system and related 3d/2d image switchable apparatus
US9102269B2 (en) Field of view matching video display system
JP4857885B2 (en) Display device
US8094189B2 (en) Operating device
TWI523493B (en) Three-dimensional image display device and driving method thereof
JP2004180069A (en) Three-dimensional video signal generating circuit and three dimensional video displaying device
KR100815971B1 (en) Variable liquid crystal panel for displaying three dimensional picture and Apparatus using the liquid crystal panel
US9253470B2 (en) 3D camera
WO2004084559A1 (en) Video display for vehicle
JP2011133508A (en) Scanned type display-device optical system, three-dimensional display device and head-up display device
Honda et al. Three-dimensional display technologies satisfying" super multiview condition"
WO2004082297A1 (en) Stereoscopic image display device
TWI505708B (en) Image capture device with multiple lenses and method for displaying stereo image thereof
JPH07105484A (en) On-vehicle information display device
JPWO2004046788A1 (en) Light source device for image display device
JP2842735B2 (en) Multi-viewpoint three-dimensional image input device, image synthesizing device, and image output device thereof
KR100813492B1 (en) Head up display system for vehicle
JPH0795622A (en) Stereo image photographing device, stereoscopic image display device and stereoscopic image recording and/or reproducing
JP2000111834A (en) Stereoscopic picture display device for vehicle
WO2018101170A1 (en) Display device and electronic mirror
JP2005045338A (en) In-vehicle monitor system for three-dimensional display

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004569586

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase