WO2004084339A1 - バラン - Google Patents

バラン

Info

Publication number
WO2004084339A1
WO2004084339A1 PCT/JP2003/003340 JP0303340W WO2004084339A1 WO 2004084339 A1 WO2004084339 A1 WO 2004084339A1 JP 0303340 W JP0303340 W JP 0303340W WO 2004084339 A1 WO2004084339 A1 WO 2004084339A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
terminal
balun
center
height direction
Prior art date
Application number
PCT/JP2003/003340
Other languages
English (en)
French (fr)
Inventor
Akira Saitou
Toshimasa Yamazaki
Koichi Watanabe
Original Assignee
Ykc Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ykc Corporation filed Critical Ykc Corporation
Priority to US10/549,672 priority Critical patent/US7274267B2/en
Priority to PCT/JP2003/003340 priority patent/WO2004084339A1/ja
Priority to JP2004569578A priority patent/JP4195944B2/ja
Priority to CN03826180.4A priority patent/CN1759501A/zh
Publication of WO2004084339A1 publication Critical patent/WO2004084339A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced with unbalanced lines or devices

Definitions

  • the present invention relates to a balun having three lines arranged parallel to a ground plane.
  • balun balanced-unbalanced conversion circuit
  • a balun can be constructed by branching into a 1/4 wavelength line and a 3/4 wavelength line.
  • an object of the present invention is to provide a balun in which the phase shift is significantly reduced. Disclosure of the invention
  • the inventor of the present invention has conducted intensive studies to solve the above-mentioned problems, and as a result, the line length of the three lines constituting the balanced circuit has been set to 1/4 of the wavelength of the center frequency in the operating band.
  • the inventors have found that the conventional problems can be solved and completed the present invention.
  • the balun of the present invention is a balun having three lines of a first line, a second line, and a third line arranged in parallel to a ground plane, wherein the second line and the third line At the same height from the ground plane, the first line, the second line and the The length of the third line in the longitudinal direction is 1Z4 of the wavelength of the center frequency in the operating band, and the capacitance between the second line and the ground plane is the capacitance between the second line and the first line. It is equal to the capacity.
  • the distance between the center of the second line and the third line in the height direction and the ground plane closer to the second line and the third line is the center of the height of the first line. And the distance between the second line and the center of the third line in the height direction.
  • the dielectric constant of the dielectric between the plane formed by the center in the height direction of the second line and the third line and the ground plane close to the second line and the third line is calculated.
  • the dielectric constant of the dielectric between the plane formed by the center in the height direction of the first line and the plane formed by the center in the height direction of the second line and the third line can also be made smaller. .
  • the lengths of the second line and the third line in the width direction are made equal, and the second line and the third line are left and right with respect to a plane formed by the center in the width direction of the first line.
  • one end of the first line is used as an unbalanced signal input terminal, the input terminal of the unbalanced signal is connected to one end of the third line, and the other end of the first line is connected.
  • one end terminal of the second line is connected to a ground plane, the other end terminal of the second line and the other end terminal of the third line are used as an output terminal for a balanced signal, and an input terminal for the unbalanced signal.
  • the impedance of the output terminal of the balanced signal can satisfy the following relationship.
  • C a is the capacitance between the second line and the ground plane (C)
  • Cac is the capacitance between the second line and the third line (C)
  • Z air is the characteristic impedance in a vacuum ( ⁇ )
  • Z in is the impedance ( ⁇ ) of the input terminal of the unbalanced signal
  • Z. ut is the impedance ( ⁇ ) of the output terminal of the balanced signal.
  • FIG. 1 is a sectional view showing an embodiment of the balun of the present invention
  • FIG. 2 is a top view showing an embodiment of the balun of the present invention.
  • the lengths of the first line b, the second line a, and the third line c in the longitudinal direction are all 1 of the wavelength of the center frequency in the operating band, and the second line a and the third line
  • the distance between the center of the second line a and the third line c in the height direction and the ground plane GC closer to the second line a and the third line c Is longer than the distance between the center of the first line b in the height direction and the center of the second line a and the third line c in the height direction (hereinafter sometimes referred to as “h2”). (Hereinafter, it may be referred to as “h2 ⁇ h3”.)
  • the distance between the center of the first track b in the height direction and the ground plane GC near the first track b may be referred to as hi.
  • the plane formed by the center in the height direction of the second line a and the third line c and the second line a and the third line c The dielectric constant of the dielectric (hereinafter, sometimes referred to as “D3”) between the ground plane GC and the plane near the center of the first line b in the height direction and the second line a and the second line a
  • the dielectric constant between the planes formed by the centers of the three lines c in the height direction (hereinafter, sometimes referred to as “D2”) is made smaller than the dielectric constant ⁇ 2 (hereinafter, “e 3 ⁇ £ 2”) It is also preferable.
  • the dielectric between the plane formed by the center of the first line b in the height direction and the ground plane GC close to the first line b may be referred to as D1.
  • the dielectric constants of the dielectrics 2 and 3 are each equal to £ ⁇ . is there.
  • the medium is not an isotropic medium, but its influence is small, and a balun can be formed in the same manner as in the case of h2 and h3.
  • the length of the second line a in the width direction (hereinafter, sometimes referred to as “Wa”) is equal to the length of the third line c in the width direction, and the width of the first line b in the width direction. It is preferably shorter than the length (hereinafter sometimes referred to as “Wb”). It is preferable that the first line b, the second line a, and the third line c have the same thickness in the height direction (hereinafter sometimes referred to as “t”).
  • the second line a and the third line c are preferably arranged at positions symmetrical with respect to a line formed by the center in the width direction of the first line b and an extension thereof, and the first line b Of the third line c is preferably connected to one end of the third line c, and the other end of the first line b and one end of the second line a are Each of them is preferably connected to a ground plane GC, and the other end of the second line a and the other end of the third line c are preferably output terminals of a balanced signal.
  • Ca is the capacitance (C) between the second line a and the ground plane GC
  • Cab is the capacitance between the second line a and the first line b (C)
  • Cac is the second line a
  • the third line c-Cold capacitance (C) £.
  • £ r is the relative dielectric constant
  • Z air is the characteristic impedance of vacuum (Omega)
  • Z. ut is the impedance ( ⁇ ) of the balanced signal output terminal.
  • the Y matrix (6 rows and 6 columns) of the three-line balun shown in Fig. 2 with the line length set to 1/4 of the wavelength of the center frequency in the operating band is given as follows.
  • is a frequency
  • u jxt an (kL) (k is a phase constant in a dielectric, L is a line length).
  • Cb is the capacitance (C) between the first line and the ground plane.
  • the Y matrix can be rearranged as follows.
  • the six terminals are called u terminal, V terminal, w terminal, X terminal, y terminal, and z terminal, respectively, and input terminal 1 (P in l), V terminal of the first line, and The w terminal of the three lines is electrically connected, the y terminal of the first line and the u terminal of the second line are respectively connected to the ground, and the X terminal and the output terminal 2 (P out 2) of the second line, Consider the case where the z terminal of the third line and the output terminal 3 (P. ut 3) are electrically connected.
  • J 1 (current of input terminal 1) Jv (current of terminal V) + Jw (current of terminal w) Vx (voltage of X terminal) 2 V2 (voltage of output terminal 2)
  • Vz (voltage of z terminal) V3 (voltage of output terminal 3)
  • J l current of the input terminal 1
  • J 1 j ⁇ ⁇ -CabxV2-CabxV3-CacxV2 + (Ca + Ca b + Ca c) V3 ⁇ / k z
  • Yb Yb 12.
  • the three-terminal Y matrix was given as
  • the width in the width direction of the second line a and the third line c By selecting Wa and the spacing S ac between the second line a and the third line c, a balun having a desired input / output impedance can be produced.
  • the width Wb of the first line b in the width direction was fixed at 16 micrometers.
  • the stripline type balun of the present invention if the aspect ratio is the same, the characteristics do not change even if the absolute dimensions are changed, so that the same characteristics can be obtained even if the vertical and horizontal dimensions are expanded or contracted. Nor. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a sectional view showing an example of the balun of the present invention.
  • a is the second track
  • b is the first track
  • c is the third track
  • GC is the ground plane.
  • Wa is the length in the width direction of the second line a and the third line c
  • Wb is the length in the width direction of the first line b
  • t is the height of the first line b
  • the second line a and the third line c Thickness in the vertical direction.
  • Sac is the widthwise distance between the second line a and the third line c
  • Sab is the widthwise position of one end of the second line a with respect to one end of the first line b.
  • the second track a and the third track c are symmetrical with respect to the line AA '.
  • h is the distance between the ground planes GC
  • h1 is the distance between the center of the first track b in the height direction and the ground plane GC near the first track b
  • h2 is the center of the first track b in the height direction.
  • h3 is the distance between the center of the second line a and the third line c in the height direction and the second line a and the third line c. This is the distance from the closer ground plane GC. 01 is dielectric 1, D2 is dielectric 2, and D 3 is dielectric 3.
  • FIG. 2 is a top view showing an example of an equivalent circuit diagram of the balun of the present invention.
  • the P in l input terminal 1 P. ut 2 is output terminal 2
  • P. ut 3 is output terminal 3
  • u, v, w, x, y, and z are six terminals.
  • 1st line b, 2nd line The length in the longitudinal direction of each of a and the third line c is 1 of the wavelength of the center frequency in the operating band.
  • FIG. 4 is a graph showing a change in capacitance when the distance between the second line and the third line is changed when h 2 ⁇ h 3.
  • Z in xZ. ut) is a graph showing changes in the respective values for 1/2.
  • FIG. 6 is a graph showing transmission characteristics to the output terminal 2 (S 21 ) and transmission characteristics to the output terminal 3 (S 31 ).
  • FIG. 7 is a graph showing a phase difference between output terminal 2 and output terminal 3 when a signal is input from input terminal 1.
  • FIG. 8 is a graph showing the reflection coefficient (S) of the input terminal 1 and the reflection when the differential amplitude is applied to the output terminals 2 and 3.
  • the line length is 2.45 GHz, which is approximately equal to the quarter wavelength in the case of a dielectric constant of 3.6. It was about 15.5 mm.
  • Figures 6 to 8 show the results of the electromagnetic field simulation.
  • Figure 6 is input to the input terminal 1 is a non-balanced terminals, transmission characteristics to the output terminal 2 is a balanced terminal (S 21) and transmission characteristics of the output terminal 3 is balanced terminals (S 31) shown This is a graph. From Fig. 6, it can be seen that the amplitudes are almost equal at 2.45 GHz.
  • FIG. 7 is a graph showing a phase difference between the output terminal 2 and the output terminal 3 when a signal is input from the input terminal 1. From Fig. 7, it can be seen that the phase is almost 180 degrees, and the phase shift is significantly reduced.
  • Figure 8 is reflected when inserting a differential amplitude reflection coefficient of the input terminal 1 (S) and the output terminal 2 and output terminal 3 ((S 22 + S 23 - 2 x S 23) / 2 3/2
  • S 22 is the reflection coefficient of the output terminal 2
  • S 23 is a graph showing the a transmission coefficient from the output terminal 3 to the output terminal 2.
  • the balun according to the present invention can provide performance equivalent to that of a commercially available chip component, and can significantly reduce the phase shift. Therefore, it is useful as a balun built in a multilayer substrate. It is easy to respond to production requirements for products and short-term production, and is suitable for parts that require drastic miniaturization.

Abstract

本発明は、位相のずれを大幅に小さくしたバランである。本発明のバランは、接地面に対して平行に配置された第一線路b、第二線路a及び第三線路cの3つの線路を有するバランであって、第二線路a及び第三線路bを接地面GCから同一の高さに配置し、第一線路b、第二線路a及び第三線路cの長手方向の長さをいずれも動作帯域における中心周波数の波長の1/4とし、第二線路aと接地面GC間の静電容量Caを第二線路aと第一線路b間の静電容量Cabと等しくしたものであり、さらに、第二線路a及び第三線路cの高さ方向の中心と第二線路a及び第三線路cに近い方の接地面GCとの距離h3を第一線路bの高さ方向の中心と第二線路a及び第三線路cの高さ方向の中心との距離h2より長くしたもの又は誘電体D3の誘電率が、誘電体D2の誘電率より小さくしたものである。

Description

バラン 技術分野
この発明は、 接地面に対して平行に配置された 3つの線路を有するバランに関 する。
^景技術
近年の無線 L A N、 ブルートゥース用の高速 L S Iでは信号の雑音余裕度をあ げるため平衡モードの信号が出力される場合が多レ、。
一方、 無線回路は、 一般に非平衡回路が用いられるためこの変換のためのバラ ン (平衡非平衡変換回路) が必須となっている。
バランは、 1 / 4波長線路と 3 /4波長線路に分岐することにより構成するこ とができる。 ,
しかし、 1 /4波長線路と 3 /4波長線路に分岐すると、 線路長が異なるため 、 中心周波数に対して位相が 1 8 0度にできても帯域内でも周波数がずれると位 相のずれが大きくなる。
そこで、 本発明は、 上記の点に鑑み、 位相のずれを大幅に小さくしたバランを 提供することを目的とするものである。 発明の開示
本発明者は、 前記課題を解決すべく、 鋭意研究を重ねた結果、 平衡回路を構成 する 3つの線路の線路長を動作帯域における中心周波数の波長の 1 /4としたこ となどにより、 前記従来の問題点を解決することができることを見い出し、 本発 明を完成した。
即ち、 本発明のバランは、 接地面に対して平行に配置された第一線路、 第二線 路及び第三線路の 3つの線路を有するバランであって、 当該第二線路及び当該第 三線路を接地面から同一の高さに配置し、 当該第一線路、 当該第二線路及び当該 第三線路の長手方向の長さをいずれも動作帯域における中心周波数の波長の 1Z 4とし、 当該第二線路と接地面間の静電容量を当該第二線路と当該第一線路間の 静電容量と等しくしたものである。
本発明においては、 当該第二線路及び当該第三線路の高さ方向の中心と当該第 二線路及び当該第三線路に近い方の接地面との距離を当該第一線路の高さ方向の 中心と当該第二線路及び当該第三線路の高さ方向の中心との距離より長くするこ とができる。 また、 その代わりに、 当該第二線路及び当該第三線路の高さ方向の 中心により形成される平面と当該第二線路及び当該第三線路に近い接地面間にお ける誘電体の誘電率を当該第一線路の高さ方向の中心により形成される平面と当 該第二線路及び当該第三線路の高さ方向の中心により形成される平面間における 誘電体の誘電率より小さくすることもできる。
さらに、 当該第二線路及び当該第三線路の幅方向の長さを等しくし、 当該第二 線路と当該第三線路を当該第一線路の幅方向の中心によって形成される平面に対 して左右対称の位置に配置し、 当該第一線路の一端端子を不平衡信号の入力端子 として、 当該不平衡信号の入力端子を当該第三線路の一端端子と接続し、 当該第 一線路の他端端子及び当該第二線路の一端端子をそれぞれ接地面に接続し、 当該 第二線路の他端端子及び当該第三線路の他端端子を平衡信号の出力端子とし、 か つ当該不平衡信号の入力端子のインピーダンスと当該平衡信号の出力端子のィン ビ一ダンスを以下の関係を満たすようにすることができる。
(Ca + Cac) /£。 = ε Γ 1/2 x Z ai r/ (ZlnxZ0Ut) 1/2
但し、 C aは当該第二線路と接地面間の静電容量 (C) 、 Cacは当該第二線 路と当該第三路線間の静電容量 (C) 、 £。は真空中の誘電率、 は比誘電率、 Zairは真空中の特性インピーダンス (Ω) 、 Zinは当該不平衡信号の入力端子 のインピーダンス (Ω) 、 Z。utは当該平衡信号の出力端子のインピーダンス ( Ω) である。
第 1図は、 本発明のバランの一実施例を示す断面図であり、 第 2図は、 本発明 のバランの一実施例を示す上面図である。
本発明において、 第一線路 b、 第二線路 a及び第三線路 cの長手方向の長さは いずれも動作帯域における中心周波数の波長の 1/4であり、 第二線路 a及び第 三檢路 cは、 接地面 GCから同一の高さにあり、 第二線路 aと接地面 GC間の静 電容量 C aは、 第二線路 aと第一線路 b間の静電容量 Cabと等しい (以下、 「 Ca = Cab」 ということがある。 ) 。
本発明のバランにおいては、 第二線路 a及び第三線路 cの高さ方向の中心と第 二線路 a及び第三線路 cに近い方の接地面 GCとの距離 (以下、 「h3」 という ことがある。 ) を、 第一線路 bの高さ方向の中心と第二線路 a及び第三線路 cの 高さ方向の中心との距離 (以下、 「h2」 ということがある。 ) より長くする ( 以下、 「h2<h3」 ということがある。 ) ことは好ましい。 なお、 以下の記載 において、 第一線路 bの高さ方向の中心と第一路線 bに近い接地面 GCとの距離 を h iということがある。
また、 本発明のバランにおいては、 h 2 <h 3とする代わりに、 第二線路 a及 び第三線路 cの高さ方向の中心により形成される平面と第二線路 a及び第三線路 cに近い接地面 GC間における誘電体 (以下、 「D3」 ということがある。 ) の 誘電率 £ 3を、 第一線路 bの高さ方向の中心により形成される平面と第二線路 a 及び第三線路 cの高さ方向の中心により形成される平面間における誘電体 (以下 、 「D2」 ということがある。 ) の誘電率 ε 2より小さくする (以下、 「e 3< £ 2」 ということがある。 ) ことも好ましい。 なお、 以下の記載において、 第一 線路 bの高さ方向の中心により形成される平面と第一線路 bに近い接地面 GC間 における誘電体を D 1ということがある。
なお、 h 2 <h 3にした本発明のバランは、 比誘電率 £ rの誘電体で埋められ ているため、 誘電体 誘電体 2及び誘電体 3の誘電率はそれぞれ £Ρとなり、 同じである。
以下に、 第二線路 aと接地面 G C間の静電容量 C a及び第二線路 aと第 線路 b間の静電容量 C a bについて、 デバイスシミュレ一夕を用いた電磁界解析の結 果を示す。
最初に、 h2 = h3 = 2マイクロメートルとし、 第二線路 aと第 線路 cの間 隔 Sacを変えて、 静電容量 C aと静電容量 Cabの変化を調べた。 その結果を 第 3図に示す。
第 3図から、 変化させた間隔 Sa cのすべてにおいて Ca>Cabとなってお り、 Ca = Cabは満たさないことがわかる。
従って、 以下のいずれかの条件を具備する場合には、 少なくとも Ca = Cab を満たすことがわかる。
a) h2<h3
この場合には、 間隔 Sacを増加させると、 静電容量 Caの增加量は、 静電容 量 Cabの増加量より大きくなる。 もし、 間隔 S a cが狭い場合に C aく Cab にしておけば、 間隔 S a cを順次拡げていくと、 Ca<Cab、 Ca = Cab、 C a > C a bと変化するため、 C a = C a bを満たす間隔 Sacを推定すること ができるからである。
なお、 h2 = l. 5マイクロメートル、 h3二 2マイクロメ一トルとして、 隔 S a cを変えた場合における静電容量 C aと静電容量 Cabの変化の様子を第 4図に示す。 第 4図から、 間隔 Sa cが約 10. 3マイクロメートルの場合にお いて、 Ca = Cabを満たすことがわかる。
b) £ 3<ε 2
この場合には、 h 2 =h 3にしたとしても、 C a二 Cabを満たす間隔 S a c が存在するからである。
なお、 £ 3く £ 2の場合には、 厳密にいうと、 等方性媒質ではなくなるが、 そ の影響は小さく、 h 2く h 3の場合と同様にバランを構成することができる。 本発明においては、 さらに、 第二線路 aの幅方向の長さ (以下、 「Wa」 とい うことがある。 ) が第三線路 cの幅方向の長さと等しく、 第一線路 bの幅方向の 長さ (以下、 「Wb」 ということがある。 ) より短いのが好ましい。 第一線路 b 、 第二線路 a及び第三線路 cの高さ方向の厚み (以下、 「t」 ということがある 。 ) は、 いずれも同じにするのが好ましい。
また、 第二線路 aと第三線路 cは、 第一線路 bの幅方向の中心によって形成さ れる線及びその延長線に対して左右対称の位置に配置されるのが好ましく、 第一 線路 bの一端端子は、 非平衡信号の入力端子となり、 さらに、 第三線路 cの一 端孑に接続されるのが好ましく、 第一線路 bの他端端子及び第二線路 aの一端端 子は、 それぞれ接地面 GCと接続されるのが好ましく、 第二線路 aの他端端子及 び第三線路 cの他端端子は、 平衡信号の出力端子となるのが好ましい。 第二線路 a及び第三線路 cの幅方向の長さ (Wa) と第二線路 aと第三線路 c の幅方向の間隔 (以下、 「S ac」 ということがある。 ) は、 Ca = Cabとレ、 う条件の他、 以下に示す関係を満たすように適宜選択されるのが好ましい。
(Ca + Ca c) /£。 = £r 1z2xZair/ (ZinxZ。ut) 1/2
但し、 Caは、 第二線路 aと接地面 GC間の静電容量 (C) 、 Cabは、 第二 線路 aと第一路線 b間の静電容量 (C) 、 Cacは、 第二線路 aと第三路線 c鬨 の静電容量 (C) 、 £。は、 真空中の誘電率、 £rは、 比誘電率、 Zairは、 真空 中の特性インピーダンス (Ω) 、 Zinは、 不平衡信号の入力端子のインビーダン ス (Ω) 、 Z。utは、 平衡信号の出力端子のインピーダンス (Ω) である。
以下に、 この関係を導き出した過程を示す。 なお、 通常線路の導体損失及び誘 電体の損失は小さいため、 損失がないものとする。
動作帯域における中心周波数の波長の 1/4を線路長とする第 2図に示した 3 線路のバランの Y行列 (6行 6列) は以下のように与えられる。
Y=1Zku ωθ, -ωΟ(1 -u2)1/2
、一 OJC(1— u2)1/2, ωθ 一
但し、 ωは周波数、 u=jxt an (kL) (kは誘電体中での位相定数、 Lは路線長) である。
Cは 3線路の C行列で、 C= Ca + Cab + Cac, —Cab, —Cac
-Cab, Cb + 2Cab, —Cab
— Cac, —Cab, Ca + Cab + Cac ノ 但し、 Cbは第一線路と接地面間の静電容量 (C) である。
線路長 Lを動作帯域における中心周波数の波長の 1/4にしているので、 1Z uは 0に近似することができ、 ( 1— u2) 1/2/uは一 jに近似することができ る o
従って、 Y行列は、 以下のように整理することができる。
Y=jOJZk 0 C
C 0
Figure imgf000008_0001
第 2図のように、 6つの端子を、 それぞれ、 u端子、 V端子、 w端子、 X端子 、 y端子、 z端子として、 入力端子 1 (Pinl) と第一線路の V端子と第三線路 の w端子を電気的に接続し、 第一線路の y端子と第二線路の u端子をそれぞれ接 地面に接続し、 かつ第二線路の X端子と出力端子 2 (Pout2)、 第三線路の z 端子と出力端子 3 (P。ut3) をそれぞれ電気的に接続した場合を考える。
この条件下では、 以下の等式が成り立つ。
Vu (u端子の電圧) =Vy (y端子の電圧) =0
Vv (V端子の電圧) =Vw (w端子の電圧) =V1 (入力端子 1の電圧)
J 1 (入力端子 1の電流) =Jv (端子 Vの電流) +Jw (端子 wの電流) Vx (X端子の電圧) 二 V2 (出力端子 2の電圧)
J (X端子の電流) =J2 (出力端子 2の電流)
Vz (z端子の電圧) =V3 (出力端子 3の電圧)
J z (z端子の電流) =J3 (出力端子 3の電流)
従って、 以下の式が成り立つ。
Figure imgf000008_0002
Figure imgf000009_0001
また、 J l (入力端子 1の電流) は、 以下の関係を有する。
J l =Jv + Jw
J 1 = j ω {-CabxV2-CabxV3-CacxV2 + (Ca + Ca b + Ca c) V3} /kz
J 1 = j ω {- (Cab + Cac) xV2 + (Ca + Cac) V3} /kz 従って、 3端子の Y行列は、 以下に示す式として与えられる。
Figure imgf000009_0002
上記の Y行列がバランの条件を満たす場合を考える。 無損失のバランは、 中心 対称を考慮すると、 以下の条件を満たす。
St l = 0
S21 = -S31=21/2xexp ( jひ) /2
0 22— S 32 = 0 33— S 23 = 0
無損失なので、 以下の式が成り立つ。
I S21 I 2+ I S22 I 2+ I S23 I 2= 1
S i j = S j i i, j = 1, 2 , 3 よって S行列は、 以下のようになる。 r 、
S = 0, 2"1/2xexp(jQf), 一 2一 1/2xexp(jひ)
2— 1/'xexp(jひ), S22, S '22
— 2_1/2xexp(jひ), S22, S '22
但し、 I S22 I 2= 1/4、 よって S22 = exp ( j ?) /2である <
S = 0, 2_1/2xexp(ja), — 2_1/2xexp(j a)
2一1 /2xexp(j ), 1/2xexp(j ?), 1/2xexp(j ?)
-2_1/2xexp(ja), 1Z2xexp(j ?), 1/2xexp(j ?) 上記は入出力端子がすべて基準ィンピーダンスの場合における表現であるが、 入出力の端子ィンピーダンスを Z i n, Z。u t/ 2の場合について上記の S行列を Y行列に変換すると、 この Y行列 Ybは以下のようになる。
Yb= Yb12. Yb12
Yb12, Yb22, Yb23
し Yb12, Yb23, Yb22
但し、 Yb, = -(1+exp(2j )/ {Zin(-1+exp(¾ひ ))}
Yb12 = 2exp(j ) /{ (ZinxZout) 1 /2(— 1 +exp(2jひ ))}
Yb22=— 2(1+exPG(2ひ + ?)) )ノに out (— 1+exp(¾ひ)) (1+expO ?))}
Yb23 = 2(exPG2ひ) +expO β ))/ {Zout( - 1 +exp(2j )) (1+6 (| ?))}でぁる(
3端子の Y行列は以下の式として与えられた。
Figure imgf000010_0001
-れが入出力の端子インピーダンス Zin, 2。^/2の¥行列に等しくなるた めには、 exp (2 a j ) =ー 1、 exp (j3 j ) = 1である必要がある。 ひ 7Γノ 2、 ? = 7Γとおくと、 Ybは以下のようにあらわせる。 r ヽ
Yb= 0, 一 jZ(ZinxZout) 11//22, jZ(Zinx: ,1/2
in •outノ
一 jZ(ZinxZout)1/2, 0, 0
jZ(ZinxZout)1/2, 0, 0
Yと Ybを比較して以下の式を満たす C行列の構造を設計すればバランができ る。
ω (Cab + Ca c) = kz/ ( Z in x Z out) 1/2
ω (Ca + Cac) =kz/ (ZinxZ。ut) 1/2
すなわち
ω (Cab + Cac) =ω (Ca + Cac) =kz/ (ZinxZ。ut) 1/2 従って、 必要な条件は以下の 2つの式になる。
Ca = Cab
vp (Ca + Cac) = l/ (ZinxZ0Ut) 1/2
比透磁率は通常の金属ではほぼ 1なので、 Zair= (〃。/£。) 1/2= 120 7Γを用いて位相速度 V pは以下のように表すことができる。
vp= 1/ {εμ.) 1/2
νρ= 1/ ( 〃。) 1/2
νρ= 1/ (ど。 XZairr 1/2)
従って、 (Ca + Cac) = l/vp (ZinxZ0Ut) 1/2
(Ca + Cac) =£。xZairx 1/2/ (ZinxZ0Ut) 1/2 よって、
(Ca + Cac) /£。=£r 1/2 xZair/ (ZinxZ0Ut) 1/2 本発明においては、 バランの入出力インピーダンスが指定されていたとしても 、 第二線路 a及び第三線路 cの幅方向の長さ W aと第二線路 aと第三線路 cの間 隔 S a cを選ぶことにより、 所望の入出力インピーダンスのバランを作製するこ とができる。 第二線路 a及び第三線路 cの幅方向の長さ W aを変え、 C a = C a bの条件を 満たす、 間隔 Sac、 静電容量 (Ca + Cac) 、 入出力インピーダンス (Zi n X Zout) 1/2の値を第 5図に示す。 なお、 第一線路 bの幅方向の長さ Wbは 1 6マイクロメートルに固定した。
第 5図から、 バランの入出力インピーダンスが指定されていたとしても、 幅方 向の長さ Waと間隔 S a cを選ぶことにより、 所望の入出力インピーダンスのバ ランを作製することができることが明らかとなった。
なお、 本発明のストリップ線路型バランにおいては、 縦横比を同じにすれば、 絶対寸法は変えても特性は変わらないため、 縦横の寸法を伸縮しても、 同じ特性 が得られることはいうまでもない。 図面の簡単な説明
第 1図は、 本発明のバランの一例を示す断面図である。 図中、 aは第二線路、 bは第一線路、 cは第三線路であり、 GCは接地面である。 Waは第二線路 a及 び第三線路 cの幅方向の長さ、 Wbは第一線路 bの幅方向の長さ、 tは第一線路 b、 第二線路 a及び第三線路 cの高さ方向の厚みである。 Sacは第二線路 aと 第三線路 cの幅方向の間隔であり、 S a bは第一線路 bの一端を基準とした場合 における第二線路 aの一端の幅方向位置である。 なお、 Sabが正であるときは 、 第二線路の一端が第一線路の一端より外側にある状態となり、 Sabが負であ るときは、 第二線路の一端が第一線路の一端より内側にある状態となる。 第二線 路 aと第三線路 cは線 AA' に対して左右対称である。 hは接地面 GC間の距離 、 h 1は第一線路 bの高さ方向の中心と第一路線 bに近い接地面 GCとの距離、 h 2は第一線路 bの高さ方向の中心と第二線路 a及び第三線路 cの高さ方向の中 心との距離、 h 3は第二線路 a及び第三線路 cの高さ方向の中心と第二線路 a及 び第三線路 cに近い方の接地面 GCとの距離である。 01は誘電体1、 D2は誘 電体 2、 D 3は誘電体 3である。
第 2図は、 本発明のバランについての等価回路図の一例を示す上面図である。 図中、 Pinlは入力端子 1、 P。ut2は出力端子 2、 P。ut3は出力端子 3であ り、 u、 v、 w、 x、 y、 zは 6つの端子である。 なお、 第一線路 b、 第二線路 a及び第三線路 cについての長手方向の長さはいずれも動作帯域における中心周 波数の波長の 1/4である。
第 3図は、 h 2 = h 3における第二線路と第三線路の間隔を変えた場合の静電 容量の変化を示すグラフである。
第 4図は、 h 2 <h 3における第二線路と第三線路の間隔を変えた場合の静電 容量の変化を示すグラフである。
第 5図は、 第二線路及び第三線路の幅方向の長さを変えた場合の C a = C a b の条件を満たす、 間隔 Sab、 静電容量 (Ca + Cac) 、 入出力インピーダン ス (ZinxZ。ut) 1/2についてのそれぞれの値の変化を示すグラフである。 第 6図は、 出力端子 2への透過特性 (S21) 及び出力端子 3への透過特性 (S 31) を示すグラフである。
第 7図は、 入力端子 1から信号を入れたときの、 出力端子 2と出力端子 3の間 の位相差を示すグラフである。
第 8図は、 入力端子 1の反射係数 (S ) 及び出力端子 2及び出力端子 3に差 動振幅を入れたときの反射を示すグラフである。 発明を実施するための最良の形態
以下、 本発明の好ましい実施形態を説明するが、 本発明はかかる実施形態に限 定されるものではなく、 特許請求の範囲の記載から把握される技術的範囲におい て種々の態様に変更可能である。
(実施例 1 )
第 1図及び第 2図に示す構造を採用した、 本発明となる 2. 45 GHz帯、 入 力インピーダンス 50 Ω、 出力インピーダンス 100 Ωのバランについて、 性能 の確認実験を行った。
(Zinx Zout) 2=70. 7 Ωであるため、 h2 = l. 5マイクロメート ル、 h3 = 2マイクロメートル、 Wa=3. 35マイクロメートル、 Sab = 0 . 17マイクロメ一トル、 Sac = 8. 96マイクロメートル、 Wb= 16マイ クロメートルとした。
線路長は、 2. 45 GHzで、 誘電率 3. 6の場合の 1/4波長に概ね一致す る 15. 5 mm程度とした。
なお、 実際のプリント基板では、 100マイクロメートル程度の寸法になるの で、 100倍すると h2二 150マイクロメートル、 h3 = 200マイクロメ一 トル、 Wa = 335マイクロメ一トル、 S ab= 17マイクロメ一トル、 Sa c = 896マイクロメートル、 Wb= 1600マイクロメートルとなる。
電磁界シミュレーションの結果を第 6図〜第 8図に示す。
第 6図は、 非平衡端子である入力端子 1に入力し、 平衡端子である出力端子 2 への透過特性 (S21) 及び平衡端子である出力端子 3への透過特性 (S31) を示 すグラフである。 第 6図より、 2. 45GHzで振幅がほとんど等しくなつてい ることがわかる。
第 7図は、 入力端子 1から信号を入れたときの、 出力端子 2と出力端子 3の間 の位相差を示すグラフである。 第 7図より、 位相がほぼ 180度にできており、 位相のずれが大幅に小さくなつていることがわかる。
第 8図は、 入力端子 1の反射係数 (S ) 及び出力端子 2及び出力端子 3に差 動振幅を入れたときの反射 ( (S22 + S23— 2 x S 23) / 23/2 但し、 S22 は、 出力端子 2の反射係数であり、 S23は、 出力端子 3から出力端子 2への透過 係数である。 ) を示すグラフである。 第 8図より、 2. 45GHzで 25dB以 下であり、 所望の入出力インピーダンスが得られていることがわかる。 産業上の利用可能性
以上のように、 本発明にかかるバランは、 市販チップ部品相当の性能が得られ 、 位相のずれを大幅に小さくすることができるため、 多層基板内に内蔵されるバ ランとして有用であり、 多品種製造要求、 短納期製造要求に対して対応が取りや すく、 抜本的な小型化が要求される部分に適している。

Claims

請 求 の 範 囲
1. 接地面に対して平行に配置された第一線路、 第二線路及び第三線路の 3つの 線路を有するバランであって、 当該第二線路及び当該第三線路を接地面から同一 の高さに配置し、 当該第一線路、 当該第二線路及び当該第三線路の長手方向の長 さをいずれも動作帯域における中心周波数の波長の 1/4とし、 当該第二線路と 接地面間の静電容量を当該第二線路と当該第一-線路間の静電容量と等しくしたこ とを特徴とするバラン。
2. 当該第二線路及び当該第三線路の高さ方向の中心と当該第二線路及び当該第 三線路に近い方の接地面との距離を当該第一線路の高さ方向の中心と当該第二線 路及び当該第三線路の高さ方向の中心との距離より長くしたことを特徴とする請 求の範囲第 1項に記載のバラン。
3. 当該第二線路及び当該第三線路の高さ方向の中心により形成される平面と当 該第二線路及び当該第三線路に近い接地面間における誘電体の誘電率を当該第一 線路の高さ方向の中心により形成される平面と当該第二線路及び当該第三線路の 高さ方向の中心により形成される平面間における誘電体の誘電率より小さくした ことを特徴とする請求の範囲第 1項に記載のバラン。
4. 当該第二線路及び当該第三線路の幅方向の長さを等しくし、 当該第二線路と 当該第三線路を当該第一線路の幅方向の中心によって形成される平面に対して左 右対称の位置に配置し、 当該第一線路の一端端子を不平衡信号の入力端子として 、 当該不平衡信号の入力端子を当該第三線路の一端端子と接続し、 当該第一線路 の他端端子及び当該第二線路の一端端子をそれぞれ接地面と接続し、 当該第二線 路の他端端子及び当該第三線路の他端端子を平衡信号の出力端子とし、 かつ当該 不平衡信号の入力端子のインピーダンスと当該平衡信号の出力端子のインビーダ ンスを以下の関係を満たすようにしたことを特徴とする請求の範囲第 1項〜第 3 項のいずれか 1つの項に記載のバラン。
(Ca + Cac) /£Q = er 1/2xZair/ (ZinxZ0Ut) 1/2
但し、 C aは当該第二線路と接地面間の静電容量 (C) 、 Cacは当該第二線 路と当該第三路線間の静電容量 (C) 、 £。は真空中の誘電率、 £rは比誘電率、 Zairは真空中の特性インピーダンス (Ω)、 Zinは当該不平衡信号の入力端 のインピーダンス (Ω)、 Z。utは当該平衡信号の出力端子のインピーダンス C Ω である。
PCT/JP2003/003340 2003-03-19 2003-03-19 バラン WO2004084339A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/549,672 US7274267B2 (en) 2003-03-19 2003-03-19 Balun
PCT/JP2003/003340 WO2004084339A1 (ja) 2003-03-19 2003-03-19 バラン
JP2004569578A JP4195944B2 (ja) 2003-03-19 2003-03-19 バラン
CN03826180.4A CN1759501A (zh) 2003-03-19 2003-03-19 平衡非平衡变换器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/003340 WO2004084339A1 (ja) 2003-03-19 2003-03-19 バラン

Publications (1)

Publication Number Publication Date
WO2004084339A1 true WO2004084339A1 (ja) 2004-09-30

Family

ID=33018157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003340 WO2004084339A1 (ja) 2003-03-19 2003-03-19 バラン

Country Status (4)

Country Link
US (1) US7274267B2 (ja)
JP (1) JP4195944B2 (ja)
CN (1) CN1759501A (ja)
WO (1) WO2004084339A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210617A (ja) * 2005-01-27 2006-08-10 Kyocera Corp バラントランス
KR101342100B1 (ko) 2009-11-03 2013-12-18 한국전자통신연구원 수평 및 수직 커패시턴스를 형성하는 머쳔더 발룬 장치

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8248180B2 (en) * 2009-05-29 2012-08-21 Werlatone, Inc. Balun with intermediate conductor
US8248181B2 (en) * 2009-09-30 2012-08-21 Werlatone, Inc. Transmission-line transformer
US8354892B2 (en) * 2009-11-03 2013-01-15 Electronics And Telecommunications Research Institute Marchand balun device for forming parallel and vertical capacitance
KR101159456B1 (ko) * 2010-09-15 2012-06-25 숭실대학교산학협력단 신호 효율이 최대화된 전송선 변압기
US8502620B2 (en) * 2010-11-12 2013-08-06 Taiwan Semiconductor Maufacturing Company, Ltd. Balun system and method
US8598964B2 (en) 2011-12-15 2013-12-03 Werlatone, Inc. Balun with intermediate non-terminated conductor
EP2814113B1 (en) 2013-06-14 2019-08-07 Ampleon Netherlands B.V. Marchand balun and power amplifier using the same
TWI517556B (zh) * 2014-11-05 2016-01-11 Univ Nat Chi Nan Multi - differential single - ended converters
US10818996B1 (en) 2019-10-10 2020-10-27 Werlatone, Inc. Inductive radio frequency power sampler
US11011818B1 (en) 2020-08-04 2021-05-18 Werlatone, Inc. Transformer having series and parallel connected transmission lines
US10978772B1 (en) 2020-10-27 2021-04-13 Werlatone, Inc. Balun-based four-port transmission-line networks

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU915140A1 (ru) * 1980-04-16 1982-03-23 Ki Polt I Двухканальный делитель мощности 1
JPH10163715A (ja) * 1996-11-26 1998-06-19 Murata Mfg Co Ltd 不平衡−平衡変換器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304959A (en) * 1992-10-16 1994-04-19 Spectrian, Inc. Planar microstrip balun
US6294965B1 (en) * 1999-03-11 2001-09-25 Anaren Microwave, Inc. Stripline balun
US6982609B1 (en) * 2002-05-15 2006-01-03 Zeevo System method and apparatus for a three-line balun with power amplifier bias

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU915140A1 (ru) * 1980-04-16 1982-03-23 Ki Polt I Двухканальный делитель мощности 1
JPH10163715A (ja) * 1996-11-26 1998-06-19 Murata Mfg Co Ltd 不平衡−平衡変換器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210617A (ja) * 2005-01-27 2006-08-10 Kyocera Corp バラントランス
KR101342100B1 (ko) 2009-11-03 2013-12-18 한국전자통신연구원 수평 및 수직 커패시턴스를 형성하는 머쳔더 발룬 장치

Also Published As

Publication number Publication date
JPWO2004084339A1 (ja) 2006-06-29
US7274267B2 (en) 2007-09-25
US20060175680A1 (en) 2006-08-10
CN1759501A (zh) 2006-04-12
JP4195944B2 (ja) 2008-12-17

Similar Documents

Publication Publication Date Title
WO2004084339A1 (ja) バラン
US8264300B2 (en) Tunable transmission line time delay circuit having conductive floating strip segments connected by switches
US8237520B2 (en) Capacitor devices with a filter structure
WO2002060001A1 (en) Multilayered tapered transmission line and device
US7999634B2 (en) Layered low-pass filter having a conducting portion that connects a grounding conductor layer to a grounding terminal
Chaudhary et al. Negative group delay phenomenon analysis using finite unloaded quality factor resonators
JP2007208395A (ja) 高周波フィルタ
CN111509348A (zh) 传输线路及空气桥结构
US10218331B2 (en) Quadrature hybrid with multi-layer structure
JP4210248B2 (ja) 集積回路の並走配線
US20040130427A1 (en) Mode-switching transformer
CN109728390B (zh) 一种双层堆叠式差分微波带通滤波器
KR100741736B1 (ko) 밸룬
TW201315010A (zh) 平衡不平衡轉換器
JP2012129350A (ja) 多層プリント基板
JP4303207B2 (ja) 高周波差動信号用フィルタ
Sharma et al. Characteristic impedance of a microstrip-like interconnect line in presence of ground plane aperture
CN109713417B (zh) 电容加载亚四分之一波长太赫兹单片电路巴伦结构
CN116093568B (zh) 一种超宽带微带线转微带线平行过渡结构
KR20000064229A (ko) 길이가 다른 비결합선로와 다중 결합선로를 이용한방향성결합기
Chaudhary et al. Realization of negative group delay network using defected microstrip structure
JP2006270235A (ja) 高周波差動信号フィルタの構造
TWI751892B (zh) 微型帶通濾波器
Ma et al. Novel slow-wave coupled lines with coupling enhancement
CN100350672C (zh) 微型多层式平衡转非平衡信号转换器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN ID JP KR MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004569578

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057017276

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006175680

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 20038261804

Country of ref document: CN

Ref document number: 10549672

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057017276

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10549672

Country of ref document: US