WO2004083954A1 - 波長変換器 - Google Patents

波長変換器 Download PDF

Info

Publication number
WO2004083954A1
WO2004083954A1 PCT/JP2004/003567 JP2004003567W WO2004083954A1 WO 2004083954 A1 WO2004083954 A1 WO 2004083954A1 JP 2004003567 W JP2004003567 W JP 2004003567W WO 2004083954 A1 WO2004083954 A1 WO 2004083954A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
light
optical fiber
dispersion
optical
Prior art date
Application number
PCT/JP2004/003567
Other languages
English (en)
French (fr)
Inventor
Toshiaki Okuno
Masaaki Hirano
Takatoshi Kato
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Publication of WO2004083954A1 publication Critical patent/WO2004083954A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02228Dispersion flattened fibres, i.e. having a low dispersion variation over an extended wavelength range
    • G02B6/02238Low dispersion slope fibres
    • G02B6/02242Low dispersion slope fibres having a dispersion slope <0.06 ps/km/nm2
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02333Core having higher refractive index than cladding, e.g. solid core, effective index guiding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0281Graded index region forming part of the central core segment, e.g. alpha profile, triangular, trapezoidal core
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03627Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/03644Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - + -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • G02B6/03666Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only arranged - + - +
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3536Four-wave interaction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/365Non-linear optics in an optical waveguide structure

Definitions

  • the present invention relates to a wavelength converter for generating converted light of a second wavelength from input light of a first wavelength using a nonlinear optical phenomenon.
  • a wavelength converter is an optical device that generates, from input light of a first wavelength, converted light of a second wavelength having the same information as the input light.
  • Such wavelength converters are provided at these nodes in an optical communication network in which a large number of nodes are interconnected by an optical fiber transmission network. At that node, the wavelength converter outputs converted light whose wavelength has been converted from the wavelength of the input light that has arrived, as output light.
  • the inventors have studied the above-described highly nonlinear fiber, and as a result, have found the following problems.
  • the phase matching condition is not satisfied when the wavelength of the pump light departs from the zero-dispersion wavelength of the optical fiber used.
  • the optical power of the converted light is reduced. Therefore, with such a wavelength converter, it is difficult to realize variable wavelength conversion that converts input signal light to a desired wavelength with pump light of only one channel.
  • the present invention has been made to solve the above-described problems, and can generate high-power converted light even when the difference between the pumping light wavelength and the zero-dispersion wavelength is large. It is an object of the present invention to provide a wavelength converter having a structure to make
  • a wavelength converter according to the present invention is a wavelength converter using an optical fiber, wherein the wavelength is converted from input light of a first wavelength by using a nonlinear optical phenomenon. A converted light having a second wavelength different from the wavelength is generated.
  • the optical fiber applied to the wavelength converter according to the present invention has a dispersion slope having an absolute value of 0.01 ps / nm 2 / km or less at a wavelength of 150 nm. Is preferred. In this case, even if Detuning, which is the difference between the wavelength of the light input to the optical fiber and the zero-dispersion wavelength of the optical fiber, is large, high-power converted light can be generated.
  • the optical fiber applied to the wavelength converter according to the present invention has a dispersion slope having an absolute value of 0.01 ps Znm 2 Zkm or less at the wavelength of the supplied pump light. May be provided. This is because, in a wavelength converter using the pump light, the converted light can be extracted more efficiently by making the dispersion fiber of the optical fiber through which the pump light propagates sufficiently small. In particular, by reducing the dispersion slope of the optical fiber with respect to the pumping light of high optical power, even if the difference between the pumping light and the zero-dispersion wavelength of the optical fiber, Detuning, increases, the high-power converted light Can be generated. [0099]
  • the optical fiber applied to the wavelength converter according to the present invention has at least 15 30 nil!
  • It may have a chromatic dispersion having an absolute value of 0.2 ps / nmZ km or less in a wavelength range of 11565 nm. This is because the chromatic dispersion of the optical fiber is sufficiently suppressed in the range of the C band, thereby enabling wavelength conversion in a wider band. In addition, within this wavelength range, even if the pumping light wavelength is changed, the change in the optical power of the converted light is small, so that converted light having a wider band and higher optical power is generated.
  • the optical fiber applied to the wavelength converter according to the present invention preferably has at least two zero dispersion wavelengths in a wavelength range of 1300 nm to 1700 nm.
  • the wavelength converter according to the present invention is characterized in that at least one channel of converted light is converted from the pump light of at least one pump channel and the signal light of at least one signal channel using a nonlinear optical phenomenon. Generate.
  • the wavelength converter includes a pump light source having a variable pump channel wavelength and a dispersion throw having an absolute value of 0.01 ps Znni 2 Zkm or less at the wavelength of the pump light supplied from the pump light source.
  • an optical fiber having a pump This is because, in the configuration in which the pump light and the signal light are input, the converted light can be generated more efficiently by keeping the dispersion slope at the pump light wavelength small.
  • the dispersion aperture of the fiber particularly for pumping light of high optical power even if the detuning, which is the difference between the pumping light and the zero-dispersion wavelength of the optical fiber, increases, the high power It is possible to generate converted light.
  • the optical fiber having the above-described structure has a nonlinearity of 8 (1 / W / km) or more and 10 (1 / W / km) or more at a wavelength of 150 nm. It preferably has the constant If the nonlinear constant is above this value, a practical input It is possible to efficiently generate converted light with optical power. Even if the fiber length is reduced to 1 km or less, a sufficiently wide band and high power converted light can be obtained.
  • the optical fiber preferably has a transmission loss of 1 dBZ km or less at a wavelength of 1550 nm.
  • the transmission loss low, the effective fiber length at which nonlinear optical phenomena occur can be made sufficiently long, and converted light with higher power can be obtained. In other words, the effective length of the optical fiber can be maintained long enough to generate high-power converted light.
  • the threshold value of the above-mentioned optical fiber for generating stimulated Brillouin scattering with respect to the input excitation light is 10 dBm or more. If the generation threshold is 10 dBm or more, it is possible to avoid a reduction in the effective fiber length in which nonlinear optical phenomena occur, and the input pump light can be sufficiently distributed to the converted light. is there. That is, if this generation threshold is 10 dBm or more, practically usable high-power converted light is generated.
  • the allowable variable width of the wavelength of the converted light output from the optical fiber is 20 nm or more.
  • the allowable variable width of the wavelength of the converted light outputted from the optical fiber is preferably 20 nm or more.
  • the wavelength converter according to the present invention further includes an optical component for blocking the excitation light propagating in the optical fiber.
  • This optical component is arranged on the optical output end side of the optical fiber. With this optical component, it is possible to avoid the effect on the transmission system at the subsequent stage due to the output of the high-power pump light from the optical fiber. it can.
  • FIGS. 1A and 1B are a cross-sectional view showing the structure of a highly nonlinear dispersion flat fiber suitable for the wavelength converter according to the present invention, and a refractive index profile thereof.
  • FIG. 2 is a table summarizing the specifications of a plurality of samples (No. 1 to No. 7) prototyped as the highly nonlinear dispersion flat fiber shown in FIGS. 1A and 1B.
  • FIGS. 3A and 3B are other refractive index profiles of a highly nonlinear dispersion flat fiber suitable for the wavelength converter according to the present invention.
  • FIG. 4 is a diagram showing a configuration of an optical fiber sample evaluation system applied to the wavelength converter according to the present invention.
  • FIG. 5 is a table summarizing the specifications of a plurality of samples (No. 8, No. 9) and the fibers to be compared which were prototyped as evaluation targets in the evaluation system shown in FIG.
  • FIG. 6 is a graph showing the chromatic dispersion characteristics of the optical fiber of Sample No. 8 (highly nonlinear dispersion flat fiber) and the optical fiber of Sample No. 10 (ordinary highly nonlinear fiber).
  • FIG. 7 is a graph showing measurement results of FWM optical power.
  • Fig. 8 is a graph obtained by computer simulation of the wavelength dependence of the FWM bandwidth while changing the chromatic dispersion value with a fixed dispersion slope based on the optical fiber of Sample No. 9 (highly nonlinear dispersion flat fiber). .
  • the simulation results for the optical fiber of sample No. 10 ordinary highly nonlinear fiber are also described. The measured values of sample No. 9 optical fiber are plotted.
  • FIG. 9 is a graph showing the relationship between chromatic dispersion and FWM bandwidth.
  • FIGS. 10A to 10E are diagrams showing the configuration of the first embodiment of the optical communication system to which the wavelength converter according to the present invention is applied.
  • FIGS. 11 to 11 are diagrams showing the configuration of a second embodiment of the optical communication system to which the wavelength converter according to the present invention is applied.
  • the same elements will be denoted by the same reference symbols, without redundant description.
  • FIGS. 1A and 1B are a cross-sectional view showing the structure of a highly nonlinear dispersion flattened fiber (HNL-DFF) as an optical fiber suitable for the wavelength converter, and a refractive index profile thereof.
  • HNL-DFF highly nonlinear dispersion flattened fiber
  • an optical fiber 100 is provided on a core region 110 having a refractive index n1 having an outer diameter 2a and extending along a predetermined axis, and an outer periphery of the core region 110.
  • a clad region 120 Provided with a clad region 120.
  • the cladding region 120 is provided on the outer periphery of the core region 110, and has an outer diameter 2 b and an inner cladding 12 1 having a refractive index n 2 ( ⁇ n 1), and is provided on the outer periphery of the inner cladding 121.
  • an outer cladding 122 having a given refractive index n 3 (n 1,> n 2).
  • the relative refractive index difference of the core region 110 with respect to the outer cladding 122 is +
  • the relative refractive index difference ⁇ — of the inner cladding 122 is given by the following equations.
  • FIG. 1 1 is the refractive index profile 150 of the optical fiber 100 shown in FIG. 1 ⁇ .
  • the region 151 is the core.
  • the refractive index of each part on the line L of the region 110, the region 152 is the refractive index of each part on the line L of the inner cladding 121, and the region 153 is on the line L of the outer cladding 122.
  • Such an optical fiber 100 is mainly composed of, for example, silica glass, and Ge 2 is added to the core region 110 and fluorine is added to the inner cladding 121.
  • the outer cladding 122 is made of pure silica, and is made of silica glass added with chlorine.
  • the optical fiber suitable for the wavelength converter according to the present invention has various refractive index profiles 160 and 170 as shown in FIGS. 3A and 3B. Is also good.
  • the intermediate cladding is provided between the inner cladding 121 and the outer cladding 122 of the optical fin 100 shown in FIG. 1A.
  • the region 16 1 has a refractive index n 1, the refractive index of a core region having an outer diameter 2 a, the region 16 2 is provided on the outer periphery of the core region,
  • the refractive index of the inner cladding having an outer diameter of 2 ( ⁇ n 1) and an outer diameter of 2 b, is provided on the outer circumference of the inner cladding, and has a refractive index of n 3 (> n 2, n 1) and an outer diameter of
  • the refractive index of the intermediate cladding having c and the region 16 4 represent the refractive index of the outer cladding provided on the outer periphery of the intermediate cladding and having a refractive index n 4 (g n 3> n 2), respectively. I have.
  • the refractive index profile 170 shown in FIG. 3B is obtained by combining the inner clad 1 2 1 and the outer clad 1 2 2 of the optical fiber 100 shown in FIG. 1A. Between This is realized by providing two layers of intermediate cladding. That is, in the refractive index profile 170, the region 17 1 is provided with a refractive index n 1 and a refractive index of a core region having an outer diameter 2a, and the region 172 is provided on the outer periphery of the core region.
  • the refractive index of the first intermediate cladding having a region 174 is provided on the outer periphery of the first intermediate cladding and has a refractive index n 4 (> n 2, ⁇ n 3) and an outer diameter 2 d.
  • the refractive index and region 175 are provided on the outer periphery of the second intermediate cladding and indicate the refractive index of the outer cladding having the refractive index n5 ( ⁇ n3,> n4).
  • FIG. 2 is a table summarizing the specifications of a plurality of samples (No. 1 to No. 7) prototyped as the highly nonlinear dispersion flat fibers shown in FIGS. 1A and 1B.
  • Each of the optical fibers of Samples No. 1 to No. 7 has the cross-sectional structure and the refractive index profile shown in FIGS. 1A and 1B.
  • the relative refractive index difference ⁇ + of the core region with respect to the outer cladding as the reference region is 1.37%
  • the relative refractive index difference ⁇ of the inner cladding with respect to the outer cladding is 0.82. %.
  • the ⁇ value for determining the profile shape of the core region is 3.0.
  • the outer diameter 2a of the core region is 4.890 m
  • the optical fiber of this sample No-1 has a transmission loss of 0.48 dBZZ, a chromatic dispersion of 0.063 ps / nm / km, and a characteristic of wavelength of 155 O nm. It has a dispersion slope ps / nm 2 / km. The cutoff wavelength is 989 nm.
  • various characteristics at a wavelength of 1550 nm N o. 1 of the optical fiber 1 6. and 4 ⁇ ⁇ 2 of effective area A eff, 1 0. and nonlinear constant of 4 (1 / W / km) , 4. the 6 mu m mode field diameter MFD And a polarization mode dispersion PMD of 0.05 ps ⁇ knT 1/2 .
  • the relative refractive index difference ⁇ + of the core region with respect to the outer cladding, which is the reference region, is 1.37%
  • the relative refractive index difference ⁇ ⁇ of the inner cladding with respect to the outer cladding is 0.8. 2%.
  • the CK value for determining the profile shape of the core area is 3.0.
  • the outer diameter 2a of the core region is 4.908 ⁇ m
  • the optical fiber of sample No. 2 has a transmission loss of 0.448 dBZ km and a wavelength dispersion of 0.525 ps nm / km as the characteristics at a wavelength of 150 nm. When, having a dispersion slope of 0. 0 0 0 6 p sZnm 2 / km. The cutoff wavelength is 995 nm. Further, as characteristics at a wavelength of 1550 nm, the optical fiber of sample No. 2 has an effective area A eff of 16.5 ⁇ 2 and an effective area of 10.3 (1 / W / km). It has a nonlinear constant ⁇ , a mode field diameter MFD of 4.6 ⁇ m, and a polarization mode dispersion PMD of 0.06 ps' knT 1/2 .
  • the relative refractive index difference ⁇ + of the core region with respect to the outer cladding as the reference region is 1.37%
  • the relative refractive index difference ⁇ of the inner cladding with respect to the outer cladding is 0.8. 2%.
  • the ⁇ value for determining the profile shape of the core region is 3.0.
  • the outer diameter 2a of the core region is 4.860 m
  • the optical fiber of No. 3 has a transmission loss of 0.47 dB km and a wavelength dispersion of 0.771 psZnm / km as the characteristics at the wavelength of 150 nm. And — 0.004 5 ps nm with a dispersion slope of nm 2 / km.
  • the cutoff wavelength is 980 nm.
  • the characteristics at the wavelength of 1550 nm The optical fiber of No. 3 has an effective area A eff of 16.3 zm 2 , a nonlinear constant ⁇ of 10.5 (1 / W / km), and a mode field diameter MF of 4.6 / zm. D and 0.0
  • the relative refractive index difference ⁇ + of the core region with respect to the outer cladding as the reference region is 1.37%
  • the relative refractive index difference ⁇ of the inner cladding with respect to the outer cladding is 0.1. 8 2%.
  • the a value for determining the profile shape of the core area is 3.0.
  • the outer diameter 2a of the core region is 4.892 m
  • the optical fiber of Sample No. 4 has various characteristics at a wavelength of 150 nm, a transmission loss of 0.51 dBBZkm, a chromatic dispersion of 0.097 ps Znm / km, It has a dispersion slope of 0.00 15 ps / nm 2 , km.
  • the cut-off wavelength is 987 nm.
  • the optical fiber of Sample No. 4 has an effective area A eff of 16.4 m 2 and a nonlinearity of 10.4 (1 / W / km). Constant ⁇ , mode field diameter MFD of 4.6 ⁇ m, and 0.0
  • the optical fiber of sample No. 5 has a dispersion management fining fiber whose chromatic dispersion changes along the longitudinal direction from one end (hereinafter referred to as A end) to the other end (hereinafter referred to as B end).
  • a end one end
  • B end the other end
  • DMF Dispersion-Managed Fiber
  • the relative refractive index difference ⁇ + of the core region with respect to the outer cladding as the reference region is 1.37%, and the relative refractive index difference ⁇ of the inner cladding with respect to the outer cladding is 0.82%. is there.
  • the cd number for determining the profile shape of the core region is 3.0.
  • the outer diameter 2a of the core region is 4.888 on the A end side and 5.36 ⁇ m on the B end side.
  • the optical fiber of this sample No. 5 has a wavelength of 1 5 5 As the characteristics at 0 nm, transmission loss of 0.55 dBZkm on average and average value of 5.4
  • the wavelength dispersion and dispersion scan port at the A-end side-loop is respectively Leh 0. 2 ps / n / km, one 0. 002 ps / n 2 / km der o.
  • the wavelength dispersion and dispersion wavelength at the B-end side are 9.0 ps / nmkm and 0.9 ps / nmkm, respectively.
  • 026 ps / nm is a 2 / km.
  • the cut-off wavelength is 987 nm at the A-end and 1084 nm at the B-end.
  • the optical fiber of sample No. 5 has a polarization mode dispersion PMD of an average value of 0.05 ps ⁇ km- 1 / 2 .
  • Effective area A eff at the A-end side, 16. a 4 ⁇ 2, the effective area A eff that put in ⁇ end side is 1 7. 4 ⁇ m 2.
  • the nonlinear constant ⁇ on the A-end side is 10.
  • the mode field diameter MFD at the A end is 4.6 ⁇ m
  • the mode field diameter MFD at the B end is 4.8 ⁇ .
  • the relative refractive index difference ⁇ + of the core region with respect to the outer cladding, which is the reference region, is 1.30%, and the relative refractive index difference ⁇ of the inner cladding with respect to the outer cladding is 1.75%. is there.
  • the threshold value for determining the profile shape of the core region is 2.8.
  • the optical fiber of Sample No. 6 has a transmission loss of 0.43 dBZZkm, a chromatic dispersion of 0.31 ps Zn mZZ km, and 0.001 p sZnm has a dispersion slope of 2 / miles.
  • the cutoff wavelength is 948 nm.
  • the optical fiber of Sample No. 6 is the effective cross-sectional ⁇ A eff of 18. 2.am 2, and ⁇ nonlinear constant of 9. 1 (1 / WZkni), 4. 9 It has a mode field diameter MFD of ⁇ um and a polarization mode dispersion PMD of 0.03 ps' k ⁇ 1/2 . [0 04 9] (Sample No. 7)
  • the relative refractive index difference ⁇ + of the core region with respect to the outer cladding, which is the reference region, is 1.30%
  • the relative refractive index difference ⁇ of the inner cladding with respect to the outer cladding is 0.75. %.
  • the ⁇ value for determining the profile shape of the core region is 2.8.
  • the outer diameter 2a of the core region is 5.274 ⁇ m
  • the filter 7 has a transmission characteristic of 0.40 dB / km and a wavelength loss of -0.10 ps / nmZ km as the characteristics of the wavelength of 150 nm. With a dispersion slope of 0.001 ps / nm 2 / km. Cut 1, the off wavelength is 944 nm. Further, as characteristics at a wavelength of 1550 nm, the sample No.
  • the optical fiber 7 has an effective area A efi of 18.2 urn 2 , a nonlinear constant ⁇ of 9.1 (1 / W / km), a mode field diameter MFD of 4.9 zm, lps'knTHas a polarization mode dispersion PMD of 1/2 .
  • the optical filter suitable for the wavelength converter according to the present invention has an absolute value of 2 ps / nmZ km or less as various characteristics at a wavelength of 150 nm. It has chromatic dispersion, a dispersion slope with an absolute value of 0.01 ps / nm 2 Zkm, and a nonlinear constant ⁇ of 8 (1 ZW / km) or more, preferably 10 (1 / W / km) or more. Further, dispersion management fiber, in ⁇ end side, +4 ten 1 5 and the wavelength dispersion of ps / n mZ miles, the absolute value of 0.
  • the effective area A eif is 20 ⁇ 2 or less, preferably 17 m 2 or less
  • the polarization mode dispersion PMD is 0.3 ps ⁇ km— 1 / 2 or less
  • the transmission loss is 1.0 dB preferably less than / km.
  • the relative refractive index difference ⁇ + of the reference core region is 1.2% or more and the relative refractive index difference of the inner cladding is 10.6% or less.
  • FIG. 4 is a diagram showing the configuration of an optical fiber sample evaluation system applied to the wavelength converter according to the present invention.
  • the evaluation system shown in FIG. 4 includes a 2 dB ⁇ 2 output 3 dB optical power plug 50.
  • a variable length laser source (TLS: Tunable Laser Source) 10a for supplying a probe light is optically connected to the first input end of the optical power bra 50.
  • An Erbium-Doped Fiber Amplifier (30a) and a variable non-linear filter (BPS: Band Pass Filter) 40a are arranged.
  • a TLS 10b for supplying the excitation light is optically connected to the second input end of the optical power plug 50, and the optical power plug 50 and the TLS 10b are connected to each other.
  • a PC 20b, an EDFA 30a, and a BPS 40a are arranged between them.
  • Optical spectrum analyzers (0SA: 70a, 70b) are arranged at the first output terminal and the second output terminal of the optical power blur 50, respectively. Since the evaluation target fiber 60 is disposed between the first output end of the optical power bra 50 and the OSA 70a, the OSA 70a monitors the output of the evaluation target fiber 60. ing.
  • Fig. 5 is a table that summarizes multiple samples (No. 8 and No. 9) prototyped as evaluation targets in the evaluation system shown in Fig. 4 and the dimensions of the fibers to be compared. is there.
  • the optical fibers of samples No. 8 and No. 9 The HNL-DFF (Highly Nonlinear Dispersion-Flattened Fiber) suitable for the wavelength converter according to the present invention, and the optical fiber of Sampnore No. 10 is a conventional highly nonlinear fiber (HNLF). Fiber), sample No. 11 is the dispersion flat fiber (DFF:
  • sample ⁇ .12 is a highly nonlinear dispersion-flattened photonic crystal fiber (HNL-DFPCF) disclosed in Reference 3 above.
  • HNL-DFPCF highly nonlinear dispersion-flattened photonic crystal fiber
  • the HNL-DFF of sample No. 8 has a length of 100 m, and has various characteristics at a wavelength of 150 nm, a transmission loss of 0.47 dB / km; It has a chromatic dispersion of 42 ps / nm / km, a dispersion slope of 0.0002 psZnmS / km, and a nonlinear constant ⁇ of 10.4 (1 / W / km).
  • the HNL-DFF of sample No. 9 has a length of 500 m, and as the characteristics at the wavelength of 550 nm, the transmission loss of 0.62 dB / km and 0.063 It has a chromatic dispersion of p sZnm / km, a dispersion slope of -0.0011 psZnm 2 Zkm, and a nonlinear constant ⁇ of 10.4 (1 / W / km).
  • the HNLF of sample No. 10 has a length of 1000 m, and as the characteristics at a wavelength of 150 nm, a transmission loss of 0.56 dB / km and 0.36 ps / nm It has a chromatic dispersion of / km, a dispersion slope of 0.025 ps / nm 2 / km, and a nonlinear constant ⁇ of 20.4 (1 / W / km).
  • the DFF of sample N 0.11 has a length of 1 000 m, and as the characteristics at a wavelength of 1550 nm, the transmission loss of 0.22 dB km and 0.32 p sZnm / km chromatic dispersion, 0.036 ps / nm 2 / km dispersion slope, 5.1 (1 / W / km).
  • the PCF of sample No. 12 has a length of 500 m, and has various characteristics at a wavelength of 150 nm, a transmission loss of more than 9.9 dBno km, and a chromatic dispersion of 1 psZnm / km. , 0.001 p sZnm 2 Zkni and a non-linear constant ⁇ of 11.2 (1 / W / km).
  • FIG. 6 is a graph showing the chromatic dispersion characteristics of the sample No. 8 optical fiber (HNL-DFF) and the sample No. 10 optical fiber (conventional HNL F). .
  • a graph 610 shows the chromatic dispersion characteristics of HNL-DFF
  • a graph G620 shows the chromatic dispersion characteristics of HNLF.
  • HNL-DFF has a small dispersion slope over a wider wavelength range, and is capable of efficient wavelength conversion.
  • FIG. 7 is a graph showing the measurement results of the FWM optical power.
  • HNL-DFF of Sample No. 9 described above was prepared. Then, with the pumping light wavelength fixed at 1540 nm, the input power of the pumping light and the probe light was set to 16 dBm, and the FWM light power for the probe light wavelength was measured.
  • the wavelength band that is 3 dB lower than the peak of the FWM optical power is defined as the FWM bandwidth.
  • a bandwidth of 20 ⁇ m can be obtained according to the above-described measurement method (see FIG. 7).
  • the result of plotting this FWM bandwidth with respect to different pump light wavelengths is a graph G860 in FIG.
  • the wavelength range from 15011 nm to l565 nm is 211111? ⁇ Bandwidth can be secured. This indicates that the detuning of the pump light wavelength is 30 nm or more, and the wavelength band that can be wavelength-converted can be greatly expanded by applying HNL-DFF. It means there is.
  • the conversion efficiency is about 1-19 With a fiber length of 50 Om, conversion efficiency higher than that of a conventional dispersion flat fiber is obtained, and a practical value is realized. Therefore, it is preferable that the nonlinear constant 7 is 10 (1 w / km) or more.
  • FIG. 8 is a graph showing the wavelength dependence of the FWM bandwidth when the peak dispersion is shifted while keeping the dispersion slope constant, based on the optical fiber (HNL-DFF) of Sample No. 9. It is a graph simulated.
  • graph G8 10 shows the FWM bandwidth with respect to the excitation light wavelength of HNLF (sample No. 10) for comparison, and graph G820 shows the wavelength dispersion of 0.065 ps / nm km (wavelength 1 545 nm).
  • graph G83 ⁇ shows HNL with chromatic dispersion of 0 ps / nm / km FWM bandwidth vs. DFF pump light wavelength
  • graph G84 Q is 0.065 ps Zn mZkm with chromatic dispersion HNL—FFF bandwidth vs. DFF pump light wavelength
  • Daraf G850 +0 The FWM bandwidth of the HNL-DFF with chromatic dispersion of 13 ps Znm / km with respect to the pump light wavelength is shown.
  • the graph G860 is a measurement result in which the FWM bandwidth is plotted for different pump light wavelengths, as described above. From this figure, it can be confirmed that the application of the HNL-DFF to the wavelength converter avoids a sharp narrowing of the FWM bandwidth even when the pumping light wavelength is greatly changed. As can be seen from the graph G810, the conventional HN LF needs to adjust the pumping light wavelength to the zero-dispersion wavelength. I do.
  • Stimulated Brillouin scattering poses a problem as to whether or not it appears under actual use conditions. Conversely, if the input threshold for signal light or pump light is less than 10 dBm as a condition for actual input, the conversion efficiency will be reduced, so the generation threshold is at least 10 dBm or more. This means that it is necessary to use an optical fiber and an excitation light source to secure the light.
  • FIG. 9 is a graph showing the relationship between the chromatic dispersion at the excitation wavelength and the FWM bandwidth.
  • the absolute value of the chromatic dispersion required for this is less than ⁇ 0.2 psZn mZkm. Therefore, the entire C band (1530 nm to 1565 nm)! : Therefore, to realize variable wavelength conversion, the absolute value of chromatic dispersion must be less than 0.2 ps / nmZkm in the wavelength range of 1530 nm to 1565 nm.
  • 10A to 10E are diagrams showing a configuration of a first embodiment of an optical communication system to which the wavelength converter according to the present invention is applied.
  • the EDFA 211, the DMF 221 and the transmission line branch line are provided on the transmission line from the optical transmission unit (TX) 201 to the optical reception unit (RX) 202. 231, EDFA21 to guide light from
  • the transmission line branch receives the pump light output from the pump light source 204 and the signal light output from the optical transmission means (TX) 203 and sequentially transmitted through the EFDA 216 and the transmission line fiber 224.
  • a wavelength converter 200 (a wavelength converter according to the present invention) that newly outputs converted light of a predetermined wavelength to the main line via the optical power blur 231 is provided. The wavelength converter 200 is output from the excitation light source 204.
  • An optical power plug 232 is provided to combine the pump light that has been input and passed through the EDF A214 and the variable BPF 261 in order, and the signal light output from the transmission path fiber 224 and passed through the EDFA 215 and the variable BPF 262 in that order.
  • HNL-DFF 223 is connected to the output end of the optical power plug 232. Further, a variable BPF 263 and a variable ATT 242 are disposed between the HNL-DFF 223 and the optical power plug 231.
  • FIG. 10B is a main signal light component at the output terminal A of the EDFA 211 located on the main line
  • FIG. 10C is an output terminal of the EDFA215 located on the branch line.
  • FIG. 10D is an additional signal light component at B, and FIG. 10D is a wavelength-converted converted light component at the output terminal C of the variable ATT 242 provided after the wavelength converter 200.
  • 0E indicates a combined signal light component at the output terminal D of the EDFA 212 located on the main line, respectively.
  • Figs. 11A to 11E are diagrams showing the configuration of a second embodiment of the optical communication system to which the wavelength converter according to the present invention is applied.
  • the EDFA 301 and the transmission line buffer are placed on the transmission line along the traveling direction of the signal light in which a plurality of channels are multiplexed.
  • An eyepiece 311, an optical power plug 320 for guiding light from a transmission line branch line, an EDFA 302, a transmission line fiber 312, and an EDFA 303 are arranged in this order.
  • a wavelength converter 300 is disposed on the transmission line branch line, and another signal light passes through the EDFA 304 and the transmission line fiber 313 and is guided to the wavelength converter 300. Then, the converted light output from the wavelength converter 300 is guided to the main line via the optical power plug 320.
  • WDM of the transmission line main line In the case of a flexible network, WDM of the transmission line main line
  • the wavelength converter according to the present invention has a wide band as a variable wavelength converter! This is suitable for generating converted light of a desired wavelength, which facilitates construction of an optical communication system.
  • FIG. 11B is a WDM signal light at the input terminal A of the EDFA 301 located on the main line
  • FIG. 11C is a signal light at the input terminal B of the EDFA 304 located on the branch line
  • FIG. D indicates the wavelength-converted converted light at the output terminal C of the wavelength converter 300
  • FIG. 11E indicates the WDM signal light at the output terminal D of the EDFA 302 located on the main line.
  • the dispersion slope is small with respect to the high-power pump light.
  • the difference between the pump light wavelength and the zero dispersion wavelength of the highly nonlinear dispersion flat fiber is obtained.

Abstract

 この発明は、励起光波長と零分散波長との差が大きくなっても高パワーの変換光の生成を可能にする構造を備えた波長変換器に関する。当該波長変換器は、例えば波長1550nmにおいて絶対値が0.01ps/nm2/km以下の分散スロープを有する光ファイバを含む。

Description

明糸田
波長変換器
技術分野
【0 0 0 1〗 この発明は、 第 1波長の入力光から、 非線形光学現象を利用して 第 2波長の変換光を発生させるための波長変換器に関するものである。
【0 0 0 2〗 一般に、 高パワーの光が媒質中を伝搬すると、 その媒質における 非線形分極に起因して種々の非線形光学現象が生じることが知られている。 この 非線形光学現象のうち、 四光波混合 (FWM: Four-Wave Mixing) は、 3次の非線形 効果により生じ、 具体的には、 3つの光子が媒質に入力したときにこれらから新 たな 1つの光子が生じる現象である。 このような非線形光学現象に関与する複数 個の光子間にエネルギー保存則及び運動量保存則がともに成り立つとき、 最も高 い効率で非線形光学現象が生じる。
【0 0 0 3】 従来から、 上述のような非線形光学現象を光ファイバ中で積極的 に発生させ、 該光ファイバを波長変換等に利用しょうとする研究が盛んに行われ ている。 例えば、 波長変換器は、 第 1波長の入力光から、 該入力光と同一の情報 を持つ第 2波長の変換光を発生させる光学デバイスである。 このような波長変換 器は、 多数ノ一ドが光ファィバ伝送路網により相互に接続されている光通信ネッ トワークにおいて、 これらノードに設けられる。 そのノードにおいて波長変換器 は、 到達した入力光の波長から波長変換された変換光を出力光として出力する。 【0 0 0 4】 なお、 内部で上述のような非線形光学現象を発生し易い高非線形 ファイノヽとし飞、 ί列 J 、 文献 1 : Jiro Hiroishi, et al. , Dispersion slope controlled HNL - DSF with high y 25 W- lkm- 1 and band conversion e4xperiment using this fiber", EC0C2002, PD1. 5には、 分散スロ一プを 0 · 0 1 3 p s / n m2Z k mまで低減した高非線形ファイバが開示されている。 文献 2 : Toshiaki Okuno, et a丄. , Generation of Ultra-Broad-Band Supercontinuum by Dispersion-Flattened and Decreasing Fiber", IEEE PHOTONICS TEC. LETT. , VOL. 10, NO. 1, JAN. 1998, pp. 72- 74には、 高非線形分散フラットファイバが開開示 されている。 文斷 3 : K. P. Hansen, et al. , "Fully Dispersion Controlled Triangular-Core Nonlinear Photonic Crystal Fiber , 0FC2003, PD2には、 失が大きいために実効長が短い分散フラット型高非線形フォトニッククリスタル フアイノくが示さ; |τている。 文献 4 : Ju Han Lee, et al. , "Four-Wave Mixing Based 10-Gb/s Tunable Wavelength Conversion Using a Holey Fiber With a High SBS Threshold", IEEE PHOTONICS TECH. LETT. , VOL. 15, NO. 3, MAR. 2003, pp. 440-442 には、 波長分散の絶対値が大きいため、 信号光と励起光との波長差が 1 O n m程 度しか許容されないが、 ホーリーファイバを利用した波長変換器が開示されてい る。 文献 5 : K. Inoue, Arrangement of fiber pieces for a wide wavelength conversion range by fiber four- wave mixing", OPTICS LETTERS, VOL. 19, NO. 16, Aug. 15, 1994には、 異なる零分散波長を有する複数の光ファイバを縦列接 続して、 帯域幅を約 2 T H zまで拡大する技術が開示されており、 さらに、 文献 6 : M. Onishi, et al. , Highly Nonlinear Dispersion-Shifted Fibers and Their
Application to Broadband Wavelength Converter", OPTICAL FIBER TECHNOLOGY, VOL. 4, 204-214 (1998)には、 高非線形ファイバの例が開示されている。
発明の開示
【0 0 0 5】 発明者らは、 上述の高非線形ファイバについて検討した結果、 以 下のような課題を発見した。 すなわち、 上述の文献 1〜6に開示された高非線形 ファイバを利用した波長変換器では、 励起光波長が利用される光ファイバの零分 散波長から離れると位相整合条件が満たされなくなるため、 急激に変換光の光パ ヮ一が低下してしまう。 そのため、 このような波長変換器では、 一チャネルのみ の励起光で入力信号光を所望の波長へ変換する可変波長変換を実現するのは困難 である。
L 0 0 0 6 i ま 、 文献 7 : Kyo Inoue, Tunable and Selective Wavelength Conversion Using Fiber Four-Wave Mixing with Two Pump Lights", IEEE PHOTONICS TECH. LETT. , VOL. 6, NO. 12, DEC. 1994には、 光ファイバに 2チャネルの励起 光を供給する波長変換器が紹介されている。 しかしながら、 励起光波長と光ファ ィパの零分散波長とが離れてしまうと、 やはり変換光の光パワーが低下する。 そ もそも 2チャネルの励起光を供給することは波長変換器の製造コストを引き上げ る要因になる。 このように、 文献 7に記載された波長変換器であっても、 より広 帯域に亘つて効率よく波長変換を行うのは困難である。
【0 0 0 7〗 この発明は、 上述のような課題を解決するためになされたもので あり、 励起光波長と零分散波長との差が大きくなつても高パワーの変換光の生成 を可能にする構造を備えた波長変換器を提供することを目的としている。
【 0 0 0 8】 この発明に係る波長変換器は、 光ファイバを利用した波長変換器 であって、 第 1波長の入力光から、 非線形光学現象を利用して波長変換された、 該第 1波長とは異なる第 2波長の変換光を発生させる。
【 0 0 0 9】 この発明に係る波長変換器に適用される光ファイバは、 波長 1 5 5 0 n mにおいて絶対値が 0 . 0 1 p s / n m2/ k m以下の分散スロープを有す るのが好ましい。 この場合、 上記光ファイバに入力される光の波長と、 該光ファ ィバの零分散波長との差である Detuningが大きくなつても、高パワーの変換光の 生成が可能になる。
【 0 0 1 0】 また、 この発明に係る波長変換器に適用される光ファイバは、 供 給される励起光の波長において絶対値が 0 . 0 1 p s Z n m2Z k m以下の分散ス ロープを有してもよい。 励起光を利用する波長変換器において、 該励起光が伝搬 する光フアイバの分散ス口ープを十分に小さくすることにより、 より効率的に変 換光を取り出すことができるからである。 特に高い光パワーの励起光に対して光 フアイバの分散スロープを小さくすることで、 励起光と該光フアイバの零分散波 長との差である Detuningが大きくなつたとしても、高パワーの変換光の生成が可 能になる。 【00 1 1】 この発明に係る波長変換器に適用される光ファイバは、 少なくと も 1 5 30 nil!〜 1 5 6 5 n mの波長範囲において絶対値が 0. 2 p s / nmZ k m以下の波長分散を有してもよい。 当該光ファィバの波長分散が Cバンドの範 囲で十分に抑えられることにより、 より広帯域での波長変換が可能になるからで ある。 また、 この波長範囲であれば励起光波長を変動させても得られる変換光の 光パワーの変動が小さいため、 より広帯域で高い光パワーを有する変換光が生成
^れ
【0 0 1 2】 この発明に係る波長変換器に適用される光ファイバは、 1 3 0 0 nm〜 1 700 n mの波長範囲において少なくとも 2つの零分散波長を有するの が好ましい。 零分散波長が 2つ以上存在するように光ファイバを設計することに より、 波長分散の絶対値が小さい波長範囲を拡大することができる。 この結果、 より広い波長帯域に亘つて効率的に四光波混合を発生させることができる。 【00 1 3】 この発明に係る波長変換器は、 少なくとも一励起チャネルの励起 光と少なくとも一信号チャネルの信号光から、 非線形光学現象を利用して波長変 換された、 少なくとも一チャネルの変換光を発生させる。 このとき、 当該波長変 換器は、 励起チャネルの波長が可変である励起光光源と、 励起光光源から供給さ れる励起光の波長において絶対値が 0. 0 1 p s Znni2Zkm以下の分散スロー プを有する光ファイバとを備えるのが好ましい。 励起光と信号光を入力する構成 において、 励起光波長における分散スロープを小さく抑えることで、 より効率的 に変換光を生成することができるからである。 また、 特に高い光パワーの励起光 に対してフアイバの分散ス口一プを小さくすることで、 励起光と該光ファイバの 零分散波長との差である Detuningが大きくなつたとしても、高パワーの変換光の 生成が可能になる。
【0 0 1 4】 上述のような構造を有する光ファイバは、 波長 1 5 5 0 nmにお いて 8 (1 /W/k m) 以上、 さらには 1 0 (1 /W/k m) 以上の非線形定数 を有するのが好ましい。 非線形定数がこのような値以上であれば、 実際的な入力 光パワーで効率よく変換光の生成が可能になる。 また、 ファイバ長を l km以下 まで短くしても、 十分広帯域かつ高パワーの変換光が得られる。
【001 5】 さらに、 上記光ファイバは、 波長 1 550 nmにおいて 1 dBZ km以下の伝送損失を有するのが好ましい。 伝送損失を低く抑えることにより、 非線形光学現象が起こる実効的なフアイバ長を十分に長く取ることができ、 より 高パワーの変換光が得られるからである。 換言すれば、 光ファイバファイバの実 効長を十分長く維持することができ、 高パワーの変換光が生成される。
[001 6] 上記光ファイバの、 入力される励起光に対する誘導ブリルアン散 乱の発生しきい値は、 10 d Bm以上であるのが好ましい。 この発生しきい値が 10 dBm以上であれば、 非線形光学現象が起こる実効的なファイバ長の低減を 回避することができ、 入力される励起光を十分に変換光に振り分けることができ るからである。 すなわち、 この発生しきい値が 10 d Bm以上であれば、 実用上 使用可能な高パワーの変換光が生成される。
【00 1 7】 さらに、 この発明に係る波長変換器において、 上記光ファイバか ら出力される変換光の波長の許容可変幅は、 20 nm以上である。 入力信号光を
20 nm以上の波長範囲で変換可能とすることで、 実際の光ネットワーク上で十 分実用レベルの波長変換器として適用することが可能となる。
【00 1 8】 この発明に係る波長変換器において、 少なくとも 1 530 nm〜
1 565 nmの波長範囲 (Cバンド) の信号チャネルに対し、 上記光ファイバか ら出力される変換光の波長の許容可変幅は、 20 nm以上であるのが好ましい。
Cバンドで十分実用的な波長変換が実現できるからである。 すなわち、 信号光波 長に依存することなく、 任意波長への変換が可能になる。
【00 1 9】 この発明に係る波長変換器は、 上記光ファイバ内を伝搬した励起 光を遮断するための光部品をさらに備えるのが好ましい。 この光部品は、 上記光 ファイバの光出力端側に配置される。 この光部品により、 高パワーの励起光が上 記光ファイバより出力されることによる後段の伝送系への影響を回避することが できる。
【0020】 なお、 この発明に係る各実施例は、 以下の詳細な説明及ぴ添付図 面によりさらに十分に理解可能となる。 これら実施例は単に例示のために示され るものであって、 この発明を限定するものと考えるべきではない。
【002 1】 また、 この発明のさらなる応用範囲は、 以下の詳細な説明から明 らかになる。 しかしながら、 詳細な説明及び特定の事例はこの発明の好適な実施 例を示すものではあるが、 例示のためにのみ示されているものであって、 この発 明の思想及ぴ範囲における様々な変形およぴ改良はこの詳細な説明から当業者に は自明であることは明らかである。
図面の簡単な説明
【0022】 図 1 A及ぴ 1 Bは、 この発明に係る波長変換器に適した高非線形 分散フラットファイバの構造を示す断面図、 及び、 その屈折率プロファイルであ る。
【0023】 図 2は、 図 1 A及び 1 Bに示された高非線形分散フラットフアイ バとして試作された複数サンプル (N o. l〜No. 7) の緒元を纏めた表であ る。
【0024】 図 3 A及び図 3 Bは、 この発明に係る波長変換器に適した高非線 形分散フラットフアイバの他の屈折率プロフアイルである。
【0025】 図 4は、 この発明に係る波長変換器に適用される光ファイバサン プルの評価系システムの構成を示す図である。
【0026】 図 5は、 図 4に示された評価系システムにおける評価対象として 試作された複数サンプル (No. 8、 No. 9) 及ぴ比較対象ファイバの緒元を 纏めた表である。
[0027] 図 6は、 サンプル No. 8の光ファイバ (高非線形分散フラット ファイバ) とサンプル No. 10の光ファイバ (通常の高非線形ファイバ) につ いて、 波長分散特性を示すグラフである。 【0028】 図 7は、 FWM光パワーの測定結果を示すグラフである。
【0029】 図 8は、 サンプル No. 9の光ファイバ (高非線形分散フラット ファイバ) を基準に、 分散スロープ固定で波長分散値を変えながら F WM帯域幅 の波長依存性を計算機シミュレーションしたグラフである。 更に、 比較のためサ ンプル No. 10の光ファイバ (通常の高非線形ファイバ) の場合のシミュレ一 ション結杲も記載してある。 また、 サンプル No. 9光ファイバの実測値をプロ ットしてある。
【0030〗 図 9は、 波長分散と FWM帯域幅の関係を示すグラフである。 【003 1】 図 1 0A〜10Eは、 この発明に係る波長変換器が適用された光 通信システムの第 1実施例の構成を示す図である。
【0032】 図1 1 〜1 1 £は、 この発明に係る波長変換器が適用された光 通信システムの第 2実施例の構成を示す図である。
発明を実施するための最良の形態
【0033】 以下、 この発明に係る波長変換器の実施例を、図 1 A、 1 B、 2、 3A、 3 B、 4〜9、 及び 10 A〜: L 1 Dを用いて詳細に説明する。 なお、 図面 の説明において同一の要素には同一符号を付して重複する説明を省略する。
【0034】 まず、 こ'の発明に係る波長変換器に適した光ファイバの構造につ いて説明する。 図 1A及び 1 Bは、 当該波長変換器に適した光ファイバとして高 非線开分散フラットファイバ (HNL-DFF: Highly Nonlinear Dispersion Flattened Fiber) の構造を示す断面図及ぴその屈折率プロファイルである。
【0035】 図 1 Aにおいて、 光ファイバ 100は、 所定軸に沿って伸びた、 外径 2 aを有する屈折率 n 1のコア領域 1 1 0と、 該コア領域 1 1 0の外周に設 けられたクラッド領域 1 20を備える。 このクラッド領域 1 20は、 コア領域 1 1 0の外周に設けられ、 外径 2 bを有する屈折率 n 2 (<n 1) の内側クラッド 1 2 1と、 該内側クラッド 1 21の外周に設けられた屈折率 n 3 (く n 1、 >n 2 ) の外側クラッド 1 22を備える。 【0 0 3 6】 なお、 クラッド領域 1 2 0の最外層である外側クラッド 1 2 2を 基準領域としたとき、 該外側クラッド 1 2 2に対するコア領域 1 1 0の比屈折率 差厶 +、内側クラッド 1 2 1の比屈折率差 Δ—は、それぞれ以下の式で与えられる。
【0 0 3 7】 Δ + (n 1— n 3 ) /' n 1 X 1 0 0
【0 0 3 8】 Δ ~= ( η 2 - η 3 ) /' η 2 X 1 0 0
[ 0 0 3 9 ] 図 1 Βは、 図 1 Αに示された光ファイバ 1 0 0の屈折率プロファ ィル 1 5 0であり、 この屈折率プロファイル 1 5 0において、 領域 1 5 1はコア 領域 1 1 0の線 L上における各部の屈折率、 領域 1 5 2は内側クラッド 1 2 1の 線 L上における各部の屈折率、 そして、 領域 1 5 3は外側クラッド 1 2 2の線 L 上における各部の屈折率をそれぞれ示している。このような光ファイバ 1 0 0は、 例えばシリカガラスを主成分とし、 コア領域 1 1 0には G e〇2が添カ卩され、内側 クラッド 1 2 1にはフッ素が添加される。 外側クラッド 1 2 2は純シリカで構成 される、 塩素が添カ卩されたシリカガラスで構成される。
【0 0 4 0】 なお、 この発明に係る波長変換器に適した光ファイバは、 図 3 A および Bに示されたように、 種々の屈折率プロファイル 1 6 0、 1 7 0を有して もよい。 図 3 Aに示された屈折率プロファイル 1 6 0は、 図 1 Aに示された光フ ァイノ 1 0 0の内側クラッド 1 2 1と外側クラッド 1 2 2との間に中間クラッド が設けられることにより実現される。 すなわち、 この屈折率プロファイル 1 6 0 において、 領域 1 6 1は屈折率 n 1、 外径 2 aを有するコア領域の屈折率、 領域 1 6 2は、 コア領域の外周に設けられ、 屈折率 n 2 (く n 1 )、外径 2 bを有する 内側クラッドの屈折率、 領域 1 6 3は、 内側クラッドの外周に設けられ、 屈折率 n 3 ( > n 2、 く n 1 )、 外径 2 cを有する中間クラッドの屈折率、 そして、領域 1 6 4は、 中間クラッドの外周に設けられ、 屈折率 n 4 (ぐ n 3、 > n 2 ) を有 する外側クラッドの屈折率をそれぞれ示している。
【0 0 4 1】 さらに、 図 3 Bに示された屈折率プロフアイル 1 7 0は、 図 1 A に示された光ファィバ 1 0 0の内側クラッド 1 2 1と外側クラッド、 1 2 2との間 に 2層の中間クラッドが設けられることにより実現される。 すなわち、 この屈折 率プロファイル 1 70において、 領域 1 7 1は屈折率 n 1、 外径 2 aを有するコ ァ領域の屈折率、 領域 1 72は、 コァ領域の外周に設けられ、 屈折率 n 2 (<n 1 )、外径 2 bを有する内側クラッドの屈折率、領域 1 73は、 内側クラッドの外 周に設けられ、 屈折率 n 3 (>n 2、 <n 1)、 外径 2 cを有する第 1中間クラッ ドの屈折率、領域 1 74は、第 1中間クラッドの外周に設けられ、屈折率 n 4 (> n 2、 <n 3)、 外径 2 dを有する第 2中間クラシドの屈折率、領域 1 75は、 第 2中間クラッドの外周に設けられ、 屈折率 n 5 (<n 3、 >n 4) を有する外側 クラッドの屈折率をそれぞれ示している。
【実施例 1】
【0042】 次に、 この発明に係る波長変換器に適した高非線形分散フラット ファイバの各実施例について説明する。 図 2は、 図 1 A及び 1 Bに示された高非 線形分散フラットファイバとして試作された複数サンプル (No. l〜No. 7) の緒元を纏めた表である。 なお、 これらサンプル No. l〜No. 7の光フアイ バは、 いずれも図 1 A及び図 1 Bに示された断面構造と屈折率プロファイルを有 する。
【0043】 (サンプル No. 1)
サンプル No. 1の光ファイバにおいて、 基準領域である外側クラッドに対す るコァ領域の比屈折率差 Δ+は 1. 37%、外側クラッドに対する内側クラッドの 比屈折率差 Δ—は一 0. 82%である。 また、 コア領域のプロファイル形状を決め るための α値は 3. 0である。 コア領域の外径 2 aは 4. 890 mであり、 内 側クラッドの外径 2 bに対するコア領域の外径 2 aの比 R a (= a/b) は 0. 52である。 このサンプル N o - 1の光ファイバは、 波長 1 55 O nmの諸特性 として、 0. 48 d BZ kmの伝送損失と、 0. 063 p s/nm/kmの波長 分散と、 —0. 001 1 p s /nm2/kmの分散スロープを有する。 カットオフ 波長は 989 nmである。 さらに、 波長 1 550 nmの諸特性として、 サンプル N o . 1の光ファイバは、 1 6. 4 μ πι2の実効断面積 Aeff と、 1 0. 4 ( 1 /W /km) の非線形定数 と、 4. 6 μ mのモードフィールド径 MFDと、 0. 0 5 p s · knT1/2の偏波モード分散 PMDを有する。
【0 0 44〗 (サンプル N o . 2)
サンプル N o . 2の光ファイバにおいて、 基準鎮域である外側クラッドに対する コア領域の比屈折率差 Δ+は 1. 3 7 %、外側クラッドに対する内側クラッドの比 屈折率差 ΔΊま一 0. 8 2 %である。 また、 コァ領域のプロフアイル形状を決める ための CK値は 3. 0である。 コア領域の外径 2 aは 4. 9 0 8 μ mであり、 内側 クラッドの外径 2 bに対するコァ領域の外径 2 aの比 R a (= a /b) は 0 · 5 2である。 このサンプル N o . 2の光ファイバは、 波長 1 5 5 0 nmの諸特性と して、 0. 4 8 d BZ kmの伝送損失と、 0. 5 2 5 p sノ n m/ k mの波長分 散と、 0. 0 0 0 6 p sZnm2/kmの分散スロープを有する。 カットオフ波長 は 9 9 5 nmである。さらに、波長 1 5 5 0 nmの諸特性として、サンプル N o . 2の光ファイバは、 1 6. 5 μ πι2の実効断面積 Aeff と、 1 0. 3 ( 1 /W/ k m) の非線形定数 γと、 4. 6 μ mのモードフィールド径 MFDと、 0. 0 6 p s ' knT1/2の偏波モード分散 PMDを有する。
【0 04 5】 (サンプル N o . 3)
サンプル N o . 3の光ファイバにおいて、 基準領域である外側クラッドに対する コア領域の比屈折率差 Δ+は 1. 3 7%、外側クラッドに対する内側クラッドの比 屈折率差 Δ—は一 0. 8 2%である。 また、 コア領域のプロファイル形状を決める ための α値は 3. 0である。 コア領域の外径 2 aは 4. 8 6 0 mであり、 内側 クラッドの外径 2 bに対するコァ領域の外径 2 aの比 R a (= a/b) は 0. 5 2である。 このサンプル N o . 3の光ファイバは、 波長 1 5 5 0 nmの諸特性と して、 0. 4 7 d Bノ kmの伝送損失と、 一 0. 7 7 1 p sZnm/kmの波長 分散と、 — 0. 0 04 5 p sノ nm2/ kmの分散スロープを有する。 カットオフ 波長は 9 8 0 nmである。 さらに、 波長 1 5 5 0 n mの諸特性として、 サンプル N o . 3の光ファイバは、 1 6. 3 z m2の実効断面積 Aeff と、 1 0. 5 ( 1 /W /km) の非線形定数 γと、 4. 6 /z mのモードフィールド径 MF Dと、 0. 0
2 p s · knT1/2の偏波モード分散 PMDを有する。
【0 0 4 6】 (サンプル N o . 4)
サンプル N o . 4の光ファイバにおいて、 基準領域である外側クラッドに対する コァ領域の比屈折率差 Δ+は 1. 3 7 %、外側クラッドに対する内側クラッドの比 屈折率差 Δ.Ίま一 0. 8 2%である。 また、 コァ領域のプロファィル形状を決める ための a値は 3. 0である。 コァ領域の外径 2 aは 4. 8 9 2 mであり、 内側 クラッドの外径 2 bに対するコァ領域の外径 2 aの比 R a (= a/b) は 0. 5 2である。 このサンプル N o . 4の光ファイバは、 波長 1 5 5 0 nmの諸特性と して、 0. 5 1 d BZkmの伝送損失と、 一0. 0 9 7 p s Znm/kmの波長 分散と、 一 0. 0 0 1 5 p s /nm2, kmの分散スロープを有する。 カツトオフ 波長は 9 8 7 nmである。 さらに、 波長 1 5 5 0 nmの諸特性として、 サンプル N o . 4の光ファイバは、 1 6. 4 m2の実効断面積 Aeff と、 1 0. 4 ( 1 /W /km) の非線形定数 γと、 4. 6 μ mのモードフィールド径 MFDと、 0. 0
3 p s · km— 1/2の偏波モード分散 PMDを有する。
【0 0 4 7】 (サンプル N o . 5)
サンプル N o . 5の光ファイバは、 波長分散が片端 (以下、 A端という) 側から 他端 (以下。 B端という) 側へ向かう長手方向に沿って変化している分散マネー ジメントファイノく (DMF: Dispersion-Managed Fiber)である。このサンプル N o .
5の光ファイバにおいて、 基準領域である外側クラッドに対するコア領域の比屈 折率差 Δ+は 1. 3 7 %、 外側クラッドに対する内側クラッドの比屈折率差 Δ—は 一 0. 8 2%である。 また、 コア領域のプロファイル形状を決めるための cd直は 3. 0である。 コァ領域の外径 2 aは A端側が 4. 8 8であり、 B端側が 5. 3 6 μ mである。内側クラッドの外径 2 bに対するコァ領域の外径 2 aの比 R a (= a/b ) は 0 · 5 2である。 このサンプル N o . 5の光ファイバは、 波長 1 5 5 0 nmの諸特性として、 平均値 0. 55 d BZkmの伝送損失と、 平均値 5. 4
32 p s Znm/kmの波長分散と、 平均値 0. 0168 p s / nm2Zkmの分 散スロープを有する。 なお、 A端側における波長分散と分散ス口ープは、 それぞ れー 0. 2 p s / n / k m、 一 0. 002 p s / n 2/ k mであ o。 一方、 B 端側における波長分散と分散ス口ープは、それぞれ 9. 0 p s / n m k m、 0.
026 p s /nm2/kmである。 カツトオフ波長は A端側で 987 nm, B端側 で 1 084 nmである。 さらに、 波長 1 550 nmの諸特性として、 サンプル N o. 5の光ファイバは、 平均値 0. 05 p s · km— 1/2の偏波モード分散 PMDを 有する。 A端側における実効断面積 Aeffは、 16. 4 μπι2であり、 Β端側におけ る実効断面積 Aeffは 1 7. 4 μ m2である。 A端側における非線形定数 γは 1 0.
4 ( 1 /W/ k m) であり、 B端側における非線形定数 γは 9. 8 ( 1 /W / k m) である。 さらに、 A端側におけるモードフィールド径 MFDは、 4. 6 μ m であり、 B端側におけるモードフィールド径 MFDは 4. 8 μηιである。
【0048】 (サンプル No. 6)
サンプル No. 6の光ファイバにおいて、 基準領域である外側クラッドに対する コア領域の比屈折率差 Δ+は 1. 30 %、外側クラッドに対する内側クラッドの比 屈折率差 Δ—は一 0. 75%である。 また、 コア領域のプロファイル形状を決める ためのひ値は 2. 8である。 コア領域の外径 2 aは 5. 288 /zmであり、 内側 クラッドの外径 2 bに対するコァ領域の外径 2 aの比 R a (= a/b) は 0. 5 5である。 このサンプル No. 6の光ファイバは、 波長 1 550 nmの諸特性と して、 0. 43 d BZkmの伝送損失と、 0. 3 1 p s Z n mZ k mの波長分散 と、 0. 00 1 p sZnm2/kmの分散スロープを有する。 カットオフ波長は 9 48 nmである。 さらに、 波長 1550 n mの諸特性として、 サンプル No. 6 の光ファイバは、 18. 2.a m2の実効断面稂 Aeff と、 9. 1 (1/WZkni) の 非線形定数 γと、 4. 9 ^umのモードフィールド径 MFDと、 0. 03 p s ' k π 1/2の偏波モード分散 PMDを有する。 【0 04 9】 (サンプル No. 7)
サンプル No . 7の光ファイバにおいて、 基準領域である外側クラッドに対する コア領域の比屈折率差 Δ+は 1. 3 0 %、外側クラッドに対する内側クラッドの比 屈折率差 Δ—は一0. 7 5%である。 また、 コア領域のプロファイル形状を決める ための α値は 2. 8である。 コア領域の外径 2 aは 5. 2 74 μ mであり、 内側 クラッドの外径 2 bに対するコァ領域の外径 2 aの比 R a (= a/b) は 0. 5 5である。 このサンプル N o. 7の光ファイバは、 波長 1 5 5 0 nmの諳特性と して、 0. 4 0 d B/k mの伝送損失と、 —0. 1 0 p s / n mZ k mの波長分 散と、 一 0. 00 1 p s/nm2/kmの分散スロープを有する。 カツ 1、オフ波長 は 944 nmである。さらに、波長 1 5 5 0 nmの諸特性として、サンプル N o .
7の光ファイバは、 1 8. 2 urn2の実効断面積 Aefiと、 9. 1 ( 1 /W/ k m) の非線形定数 γと、 4. 9 z mのモードフィールド径 MFDと、 0. O l p s ' knT1/2の偏波モード分散 PMDを有する。
【00 5 0】 以上の各実施例から、 この発明に係る波長変換器に適した光ファ ィパは、 波長 1 5 5 0 nmの諸特性として、 絶対値が 2 p sノ n mZ k m以下の 波長分散と、 絶対値が 0. 0 1 p s /nm2Zkmの分散スロープと、 8 ( 1 ZW /km) 以上、 好ましくは 1 0 (1/W/km) 以上の非線形定数 γを有する。 また、 分散マネージメントファイバは、 Α端側において、 + 4〜十 1 5 p s/n mZ kmの波長分散と、絶対値が 0. 04 p s / n m2/ k m以下の分散スロープ と、 8 ( 1 /W/ k m) 以上の非線形定数 γを有する一方、 Β端側において、 + 2〜一 2 p s ZnmZkmの波長分散と、絶対値が 0. 0 1 p s/nm^ km以 下の分散スロープと、 8 (l/W/km) 以上の非線形定数 γを有するのが好ま しレ、。 さらに、 実効断面積 Aeifは、 2 0 μπι2以下、 好ましくは 1 7 m2以下、 偏波モード分散 PMDは、 0. 3 p s · km— 1/2以下、 伝送損失は 1. 0 d B/k m以下であるのが好ましレ、。
[00 5 1 ] 好ましい屈折率プロファイル形状を得るため、 外側クラッドを基 準としたコア領域の比屈折率差 Δ+は 1. 2%以上、 内側クラッドの比屈折率差厶 一は一 0. 6%以下が好ましい。 また、 コア領域の屈折率プロファイルをパワー分 布で近似した際の a値は 2以上、 コァ領域の外径 2 aと内側クラッドの外径 2 b の比 R a (= a/b) は 0. 3 0〜0. 7 0であるのが好ましい。
【0 0 5 2】 続いて、 従来の高非線形ファイバ (HNLF) と比較して、 この 発明に係る波長変換器に適した高非線形分散フラットファイバ(HNL— DF F) の優位性を検証する。 図 4は、 この発明に係る波長変換器に適用される光フアイ バサンプルの評価系システムの構成を示す図である。
【0 0 5 3】 この図 4に示された評価系システムは、 2入力一 2出力の 3 d B 光力プラ 5 0を備える。 この光力ブラ 50の第 1入力端には、 プローブ光を供給 するための可変長レーザ光源 (TLS: Tunable Laser Source) 1 0 aが光学的に接 続されており、 これら光力プラ 50と TL S l O aとの間には、偏波制御器(PC: Polarization Controller) 20 a、 E r添加光ファイバ増幅器 (EDFA:
Erbium-Doped Fiber Amplifier) 30 aと、 可変ノ ンドノ プフイノレタ (BPS: Band Pass Filter) 4 0 aが配置されている。 一方、 光力プラ 50の第 2入力端には、 励起光を供給するための TL S 1 0 bが光学的に接続されており、 これら光力プ ラ 5 0と TL S 1 0 bとの間には、 P C 20 b、 EDFA3 0 aと、 B P S 40 aが配置されている。
[0 0 54] 光力ブラ 5 0の第 1出力端と第 2出力端には、 それぞれォプティ カルスぺクトノレアナライザ (0SA: Optical Spectrum Analyzer) 7 0 a、 7 0 b が配置されており、 評価対象ファイバ 6 0が光力ブラ 5 0の第 1出力端と OS A 70 aとの間に配置されることにより、 該 O SA7 0 aが評価対象ファイバ 6 0 の出力をモニタする構成になっている。
【0 0 5 5】 図 5は、 図 4に示された評価系システムにおける評価対象として 試作された複数サンプル (No. 8、 No. 9) 及ぴ比較対象ファイバの緖元を 纏めた表である。 なお、 サンプル N o - 8及び N o . 9の光ファイバは、 いずれ もこの発明に係る波長変換器に適した高非線形分散フラットファイバ (HNL- DFF: Highly Nonlinear Dispersion - Flattened Fiber)、 サンプノレ No. 1 0の光ファ ィパは従来の高非線形ファイバ (HNLF: Highly Nonlinear Fiber)、サンプル N o . 1 1は上記文献 2に開示された分散フラットファイバ (DFF:
Dispersion-Flattened Fiber) , サンプル Ν ο . 1 2は上記文献 3に開示された高 非線形分散フラットフォトニッククリスタルファイバ (HNL-DFPCF: Highly Nonlinear Dispersion- Flattened Photonic Crystal Fiber) である。
【00 5 6】 (サンプル NO. 8)
サンプル N o. 8の HNL— DF Fは、 1 0 0 0 mの長さを有し、 波長 1 5 5 0 nmの諸特性として、 0. 4 7 d B/ kmの伝送損失と、 0. 4 2 p s/nm/ kmの波長分散と、 0. 0 00 2 p sZnmS/kmの分散スロープと、 1 0. 4 ( 1 /W/ k m) の非線形定数 γを有する。
[0 0 5 7] (サンプル NO. 9)
サンプル No. 9の HNL— DFFは、 5 0 0 mの長さを有し、 波長 1 5 5 0 n mの諸特性として、 0. 6 2 d B/ kmの伝送損失と、 0. 0 6 3 p sZnm/ kmの波長分散と、 - 0. 00 1 1 p sZnm2Zkmの分散スロープと、 1 0. 4 (1/W/km) の非線形定数 γを有する。
【005 8】 (サンプル NO. 1 0)
サンプル No. 1 0の HNLFは、 1 00 0mの長さを有し、 波長 1 5 5 0 nm の諸特性として、 0. 56 d B/kmの伝送損失と、 一0. 3 6 p s/nm/k mの波長分散と、 0. 02 5 p s/nm2/kmの分散スロープと、 20. 4 ( 1 /W/ k m) の非線形定数 γを有する。
【0 0 5 9】 (サンプル NO. 1 1 )
サンプル N 0. 1 1の D F Fは、 1 0 00 mの長さを有し、 波長 1 5 5 0 nmの 諸特性として、 0. 2 2 d B k mの伝送損失と、 0. 3 2 p sZnm/kmの 波長分散と、 0. 0 0 36 p s /nm2/kmの分散スロープと、 5. 1 ( 1 /W /km) の非線形定数 を有する。
[00 6 0] (サンプル NO. 1 2)
サンプル No. 1 2の P C Fは、 500mの長さを有し、 波長 1 5 50 nmの諸 特性として、 9. 9 d Bノ kmより大きい伝送損失と、 一 1 p sZnm/kmの 波長分散と、 0. 00 1 p sZnm2Zkniの分散スロープと、 1 1. 2 (1 /W /km) の非線形定数 γを有する。
[00 6 11 なお、 図 6は、 サンプル N o. 8の光ファイバ (HNL— DF F) とサンプル N o . 1 0の光ファイバ (従来の HNL F) について、 波長分散特性 を示すグラフである。 図 6において、 グラフ 6 1 0は HNL—DF Fの波長分散 特性、 グラフ G 6 20は HNLFの波長分散特性をそれぞれ示す。 この図 6から 分かるように、 HNL— DFFは、 より広い波長範囲で分散スロープが小さく、 効率的な波長変換が可能であることが分かる。
【0 06 2】 さらに発明者らは、 図 4の評価系システムにおいて、 実際の励起 光波長を変えながら、 FWM変換光の光パワーを測定した。 図 7は、 FWM光パ ヮ一の測定結果を示すグラフである。 この測定では、 上述のサンプル No. 9の HNL— DF Fが用意された。 そして、 励起光波長は 1 540 nmに固定された 状態で、 励起光及びプローブ光の入力パワーは、 それぞれ 1 6 d Bmとしたとき の、 該プロープ光波長に対する FWM光パワーが測定された。
【00 6 3】 この明細書では、 FWM光パワーのピークより 3 d B低下する波 長帯域を FWM帯域幅と定義する。 この場合、 上述の測定方法によれば、 20 η mの帯域幅が得られることが分かる (図 7参照)。 この FWM帯域幅を異なる励起 光波長に対してプロットした結果が図 8中のグラフ G 8 6 0である。 図 8から分 かるように、 1 5 30 nm〜l 5 6 5 nmの波長範囲で 2 011111の?^^^^帯域幅 が確保できる。 このことは、励起光波長の Detuningが 3 0 nm以上であることを 示しており、 HNL— DF Fが適用されることにより、 波長変換可能な波長帯域 を従栾ょりも遥かに拡大可能であることを意味する。 また、 変換効率は約一 1 9 dBであり、 50 Omのファイバ長では従来の分散フラットファイバよりも高い 変換効率が得られ、 かつ実用可能な値が実現されている。 したがって、 非線形定 数 7 は 10 (1 w/km) 以上であるのが好ましい。
【0064】 図 8は、 サンプル No. 9の光ファイバ (HNL— DFF) を基 準に、 分散スロ一プは一定のままピーク分散値をシフトさせた場合の FWM帯域 幅の波長依存性を計算機シミュレ一ションしたグラフである。この図 8において、 グラフ G8 10は比較のための HNLF (サンプル No. 10) の励起光波長に 対する FWM帯域幅、 グラフ G 820は 0. 065 p s/nmノ kmの波長分散 (波長 1 545 nmにおけるサンプル N o .9の HN L— D F F本来の波長分散、 以下同様) を有する HNL— DFFの励起光波長に対する FWM帯域幅、 グラフ G83◦は 0 p sノnmノkmの波長分散を有するHNL— DFFの励起光波長 に対する FWM帯域幅、 グラフ G84 Qは一 0. 06 5 p s Zn mZk mの波長 分散を有する HNL— DFFの励起光波長に対する FWM帯域幅、 そして、 ダラ フ G 850は + 0. 1 3 p s Znm/kmの波長分散を有する HNL— DF Fの 励起光波長に対する FWM帯域幅をそれぞれ示す。 なお、 グラフ G 860は、 上 述のように、 FWM帯域幅を異なる励起光波長に対してプロットした測定結果で ある。 この図から、 波長変換器に HNL— DFFが適用されることにより、 大き く励起光波長を振つても FWM帯域幅の急激な狭窄化が回避されることが確認で きる。 なお、 グラフ G 8 10から明らかなように、 従来の HN L Fは励起光波長 を零分散波長に合わせ込むことが必要であり、 零分散波長から励起光波長が離れ ると急激に変換効率が低下する。
【0065】 なお、 上記光ファイバの伝送損失については、 図 5に示された表 にあるように、 1 d B/ kmを十分に下回る値が得られる。 ただし、 この発明に 係る波長変換器に適した光フアイバでは、 非線形定数 γが 1 0 (1 /W/ k m) 以上であれば、 伝送損失が 1 d B / k mでもフアイバ長 1 k m (1000m) 程 度で十分高い変換効率が得られるため、 該伝送損失が 1 dBZkm以下であれば 実用上問題ないと考えられる。
【0066】 また、 誘導ブリルアン散乱については、 実際の使用条件で発現す るかどうか問題になる。 これは逆に、 実際に入力される条件として信号光や励起 光に対する発生しきい値が 10 dBm以下である場合、 変換効率の低下が問題と なるため、 少なくとも 10 d Bm以上の発生しきい値を確保する光ファイバや励 起光光源を利用する必要があることを意味している。
【0067〗 さらに、 図 9は、 励起波長における波長分散と FWM帯域幅の関 係を示すグラフである。 実際には、 最低限の波長可変範囲が ± 6 nm (FWM帯 域幅 = 1 2 nm) であれば、 フレキシブル光ネットワークが実現できると考えら れる。 これに必要な波長分散の絶対値は、 図 9のグラフから、 ± 0. 2 p sZn mZkm以下となることが分かる。 したがって、 Cバンド (1 530 nm〜15 65 nm) 全域に!:つて可変波長変換を実現するためには、 1 530 nm〜1 5 65 nmの波長範囲において、 波長分散の絶対値が 0. 2 p s/nmZkm未満 である必要がある。
【0068】 次に、 この発明に係る波長変換器が適用された光通信システムに ついて説明する。 図 10A〜10Eは、 この発明に係る波長変換器が適用された 光通信システムの第 1実施例の構成を示す図である。
【0069】 図 1 OAに示された光通信システムでは、 光送信手段 (TX) 2 01から光受信手段(RX) 202へ向って、伝送路本線上に、 EDFA21 1、 DMF 221、 伝送路支線からの光を導くための光力プラ 231、 EDFA21
2、 DMF 222、 可変減衰器 241 (ATT)、 EDFA21 3、 AWG 250 が順に配置されている。 伝送路支線には、 励起光光源 204から出力された励起 光と、 光送信手段 (TX) 203から出力され、 EFDA21 6及ぴ伝送路ファ ィバ 224を順次伝搬してきた信号光とを入力し、 新たに所定波長の変換光を、 光力ブラ 231を介して本線に出力する波長変換器 200 (この発明に係る波長 変換器) が設けられている。 この波長変換器 200は、 励起光光源 204から出 力され、 EDF A214、 可変 B P F 26 1を順に通過した励起光と、 伝送路フ アイバ 224から出力され、 EDFA21 5、 可変 B P F 262を順に通過した 信号光とを合波する光力プラ 232が設けられており、 この光力プラ 232の出 力端に、 HNL— DFF 223が接続されている。 さらに、 HNL—DFF 22 3と光力プラ 231との間には、 可変 B P F 263と可変 AT T 242が配置さ てレヽる。
[00703 通常、 FWMはフェムト秒オーダーの高速現象であるため、 信号 光をバケツト加工する一方として、 変換に利用する励起光を適当に変調すること で、 得られる変換光にその変調成分を付加する方法が挙げられる。 図 1 OAに示 された光通信システムは、 伝送路本線に支線からの信号光を追加する場合を想定 しており、 本線を伝搬する信号光がバース トスィツチングしているため、 その空 いた時間に支線からのデータを乗せる、 いわゆる時間分割多重システムである。 実験では、 TDM (Time Division Multiplexing) 信号を受信して、 本茅泉からの 信号成分及び支線からの信号成分それぞれを調べたが、 良好な光伝送が実現でき ることを確認した。 なお、 当該波長変換器 200の後段には、 励起光 (及び入力 信号光) を除去するため、 可変 BPF 263が設けられている。
【007 1】 なお、 図 10 Bは、 本線上に位置する E D F A 21 1の出力端 A における主信号光成分、 図 10 Cは、 支線上に位置する EDFA21 5の出力端
Bにおける追加信号光成分、 図 10Dは、 波長変換器 200の後段に設けられた 可変 ATT 242の出力端 Cにおける波長変換された変換光成分、 そして、 図 1
0Eは、 本線上に位置する EDFA212の出力端 Dにおける合成信号光成分を それぞれ示す。
【0072】 さらに、 図 1 1 A〜 1 1 Eは、 この発明に係る波長変換器が適用 された光通信システムの第 2実施例の構成を示す図である。
〖0073〗 図 1 1 Aに示された光通信システムでは、 複数チャネルが多重化 された信号光の進行方向に沿つて、 伝送路本線上に、 E D F A 30 1、 伝送路フ アイパ 3 1 1、 伝送路支線からの光を導くための光力プラ 320、 EDFA30 2、 伝送路ファイバ 312、 EDFA303が順に配置されている。 伝送路支線 には、 波長変換器 300が配置されており、 別の信号光が EDFA304、 伝送 路ファイバ 31 3を通過して該波長変禽器 300に導かれる。 そして、 この波長 変換器 300から出力された変換光が光力プラ 320を介して本線に導かれる。 【0074】 フレキシブルネットワークの場合、 伝送路本線の WDM
(Wavelength Division Multiplexing) 信号の波長分布が時間的に変わることが 予想される。 そのため、 各信号チャネルの利用効率を高めるため、 支線から合流 する信号光は本線における信号チャネルの空き状況に合わせて、 適当に変換波長 をチューニングする必要が起こり得る。 この場合に、 この発明に係る波長変換器 は、 可変波長変換器として、 広帯域に!:つて所望波長の変換光を生成するのに適 しており、 光通信システムの構築が容易になる。
【0075】 なお、 図 1 1 Bは、 本線上に位置する E D F A 301の入力端 A における WDM信号光、 図 1 1 Cは、 支線上に位置する EDFA304の入力端 Bにおける信号光、 図 1 1 Dは、 波長変換器 300の出力端 Cにおける波長変換 された変換光、 そして、 図 1 1 Eは、 本線上に位置する EDFA302の出力端 Dにおける W D M信号光をそれぞれ示している。
【0076】 また、 この発明における HNL— DF Fを用いることで、 高効率 な SC (Supercontinuum) 光の生成や、 広帯域光パラメ トリック増幅器等の実現 が可能である。
【0077】 以上の本発明の説明から、 本発明を様々に変形しうることは明ら かである。 そのような変形は、 本発明の思想およぴ範囲から逸脱するものとは認 めることはできず、 すべての当業者にとって自明である改良は、 以下の請求の範 囲に含まれるものである。
産業上の利用可能性
【0078〗 この発明によれば、 高パワーの励起光に対して分散スロープの小 さい高非線形分散フラットファイバを利用して波長変換器を実現することにより、 励起光波長と該高非線形分散フラットフアイバの零分散波長との差である
Detuningが大きくなっても高パワーの変換光の生成が可能になる。 また、励起光 波長を幅 3 5 n m程度の波長範囲を変動させても、 この励起光波長に対応した波 長の変換光の光パワーは十分に維持されるので、 より広帯域での波長変換を実現 する可変波長変換器が得られる。

Claims

請求の範囲
1. 第 1波長の入力光から、非線形光学現象を利用して波長変換された、 該第 1波長とは異なる第 2波長の変換光を発生させるための波長変換器であって、 波長 1 550 nmにおいて絶対値が 0. 01 p s / n m2/ k rn以下の分散スロ ープを有する光ファイバを含む波長変換器。
2. 第 1波長の入力光から、非線形光学現象を利用して波長変換された、 該第 1波長とは異なる第 2波長の変換光を発生させるための波長変換器であって、 当該波長変換器に別途供給される励起光の波長において絶対値が 0. 01 p s / n mV k m以下の分散ス口ープを有する光フ了ィバを含む波長変換器。
3. 第 1波長の入力光から、非線形光学現象を利用して波長変換された、 該第 1波長とは異なる第 2波長の変換光を発生させるための波長変換器であって、 少なくとも 1 530 nm〜l 565 n mの波長範囲において絶対値が 0. 2 p s/nm/km以下の波長分散を有する光ファイバを含む波長変換器。
4. 第 1波長の入力光から、非線形光学現象を利用して波長変換された、 該第 1波長とは異なる第 2波長の変換光を発生させるための波長変換器であって、
1 300 nm〜 1 700 n mの波長範囲において少なくとも 2つの零分散波長 を有する光ファイバを含む波長変換器。
5. 少なくとも一励起チャネルの励起光と少なくとも一信号チャネルの 信号光から、 非線形光学現象を利用して波長変換された、 少なくとも一チャネル の変換光を発生させるための波長変換器であって、
前記励起チャネルの波長が可変である励起光光源と、
前記励起光光源から供給される励起光の波長において絶対値が 0. 01 p sZ n m2/ k m以下の分散ス口ープを有する光ファィバとを備えた波長変換器。
6. 請求項 1〜5のいずれか一項記載の波長変換器において、 前記光ファイバは、 波長 1 550 nmにおいて 10 (l/WZkm) 以上の非 線形定数を有する。
7. 請求項 1〜 5のいずれか一項記載の波長変換器において、 前記光ファイバは、 波長 1 550 nmにおいて 1 d B/km以下の伝送損失を 有する。
8. 請求項 1〜5のいずれか一項記载の波長変換器は、
入力される励起光に対し、 10 d Bm以上の誘導ブリルアン散乱の発生しきい 値を有する。 .
9. 請求項 5記载の波長変 ^奐器において、
前記光ファィバから出力される変換光の波長の許容可変幅は、 20 n m以上で ある。
10. 請求項 5記載の波長変換器において、
少なくとも 1 530 nm〜 1 565 n mの波長範囲の信号チャネルに対し、 前 記光ファイバから出力される変換光の波長の許容可変幅は、 20 nm以上である。
1 1. 請求項 1〜5のいずれか一項記載の波長変換器は、 さらに、 前記光フアイパの光出力端側に配置された、 該光ファイバ内を伝搬した励起光 を遮断するための光部品を備える。
PCT/JP2004/003567 2003-03-20 2004-03-17 波長変換器 WO2004083954A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US45587803P 2003-03-20 2003-03-20
US60/455,878 2003-03-20
US49334803P 2003-08-08 2003-08-08
US60/493,348 2003-08-08

Publications (1)

Publication Number Publication Date
WO2004083954A1 true WO2004083954A1 (ja) 2004-09-30

Family

ID=33032706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003567 WO2004083954A1 (ja) 2003-03-20 2004-03-17 波長変換器

Country Status (3)

Country Link
US (1) US7202994B2 (ja)
KR (2) KR100794852B1 (ja)
WO (1) WO2004083954A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8102507B2 (en) 2004-12-30 2012-01-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6925236B2 (en) * 2002-08-30 2005-08-02 Nagoya Industrial Science Research Institute Broadband optical spectrum generating apparatus and pulsed light generating apparatus
WO2005015303A1 (ja) * 2003-08-07 2005-02-17 The Furukawa Electric Co., Ltd. 非線形光ファイバ及びこの光ファイバを用いた光信号処理装置
JP4579710B2 (ja) * 2004-02-20 2010-11-10 フルカワ エレクトリック ノース アメリカ インコーポレーテッド 後処理による高非線形ファイバにおける光発生の変更、増強および調整
JP3920297B2 (ja) * 2004-09-01 2007-05-30 富士通株式会社 光スイッチおよび光スイッチを利用した光波形モニタ装置
US20060239604A1 (en) * 2005-03-01 2006-10-26 Opal Laboratories High Average Power High Efficiency Broadband All-Optical Fiber Wavelength Converter
JP4887675B2 (ja) * 2005-07-11 2012-02-29 住友電気工業株式会社 光ファイバおよびそれを用いた光デバイス
US7483614B2 (en) * 2005-09-07 2009-01-27 Sumitomo Electric Industries, Ltd. Optical fiber and optical device using the same
JP4492498B2 (ja) * 2005-09-07 2010-06-30 住友電気工業株式会社 光ファイバおよびそれを用いた光デバイス
JP4460065B2 (ja) * 2006-02-21 2010-05-12 古河電気工業株式会社 非線形光ファイバおよび非線形光デバイスならびに光信号処理装置
US20070258717A1 (en) * 2006-05-01 2007-11-08 Masaaki Hirano Optical device and wavelength conversion method and optical fiber suitable for them
JP5532759B2 (ja) * 2009-08-31 2014-06-25 住友電気工業株式会社 光ファイバ型デバイス
JP2019095649A (ja) * 2017-11-24 2019-06-20 住友電気工業株式会社 光ファイバおよび光源装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177266A (ja) * 2001-10-04 2003-06-27 Furukawa Electric Co Ltd:The 非線形分散シフト光ファイバおよびこの光ファイバを用いた光信号処理装置ならびに波長変換器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4852968A (en) 1986-08-08 1989-08-01 American Telephone And Telegraph Company, At&T Bell Laboratories Optical fiber comprising a refractive index trench
US5532868A (en) * 1994-09-23 1996-07-02 At&T Corp. Apparatus and method for compensating chromatic dispersion produced in optical phase conjugation or other types of optical signal conversion
US5619368A (en) * 1995-05-16 1997-04-08 Massachusetts Inst. Of Technology Optical frequency shifter
US5960146A (en) 1996-07-24 1999-09-28 Sumitomo Electric Industries, Ltd. Optical fiber and light source apparatus
US6043927A (en) * 1997-06-26 2000-03-28 University Of Michigan Modulation instability wavelength converter
TWI226464B (en) 2000-11-13 2005-01-11 Sumitomo Electric Industries Optical fiber, non-linear optical fiber, optical amplifier using the same optical fiber, wavelength converter and optical fiber manufacture method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177266A (ja) * 2001-10-04 2003-06-27 Furukawa Electric Co Ltd:The 非線形分散シフト光ファイバおよびこの光ファイバを用いた光信号処理装置ならびに波長変換器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OKUNO T. ET AL: "Generation of Ultra-Broad-Band Supercontinuum by Dispersion-Flattened and Decreasing Fiber", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 10, no. 1, January 1998 (1998-01-01), pages 72 - 74, XP000737127 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8102507B2 (en) 2004-12-30 2012-01-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Also Published As

Publication number Publication date
US20040234216A1 (en) 2004-11-25
KR100794852B1 (ko) 2008-01-15
US7202994B2 (en) 2007-04-10
KR20050109997A (ko) 2005-11-22
KR20070104476A (ko) 2007-10-25

Similar Documents

Publication Publication Date Title
JP5069825B2 (ja) 分散、利得傾斜、及び帯域ポンピング非線形性の光ファイバーの補償
JP5877280B2 (ja) 光増幅器、光増幅システム、波長変換器および光通信システム
Sayed et al. An enhanced WDM optical communication system using a cascaded fiber Bragg grating
Tahhan et al. Characteristics of Chirped Fiber Bragg Grating Dispersion Compensator Utilizing Two Apodization Profiles.
JPH10308706A (ja) 光伝送線路
Kasahara et al. Design of few-mode fibers for mode-division multiplexing transmission
WO2004083954A1 (ja) 波長変換器
KR20040021562A (ko) 소수 모드 광섬유 및 스위칭가능한 모드 변환기들을 갖는조절가능한 분산 보상기
JP5079664B2 (ja) 光波長分割多重通信システム並びに励振器及びモードフィルタ
US6768822B1 (en) Chromatic dispersion compensation
JP2004287382A (ja) 波長変換器
Chebaane et al. Trenched raised cosine FMF for differential mode delay management in next generation optical networks
JP5408313B2 (ja) 光デバイスおよび波長変換方法、並びにそれに適した光ファイバ
JP6092029B2 (ja) マルチモード光ファイバおよび光ファイバ伝送システム
JP2004184524A (ja) 光モジュール、光ファイバおよび光伝送システム
JP4040583B2 (ja) 光伝送システム
Zsigri et al. Demonstration of broadcast, transmission, and wavelength conversion functionalities using photonic crystal fibers
JP5261968B2 (ja) 光デバイスおよび波長変換方法、並びにそれに適した光ファイバ
Suche et al. Efficient Ti: PPLN multi-wavelength converter for high bitrate WDM-transmission systems
EP1460474A1 (en) Wavelength converter
Sakamoto et al. Wide-Range Tunable Optical Delay Line Using Dual Concentric Core Fiber With Dispersion Coefficient of-2800 ps/nm/km
Camerlingo et al. Multichannel wavelength conversion of 40-Gb/s nonreturn-to-zero DPSK signals in a lead–silicate fiber
Camerlingo et al. Multichannel wavelength conversion of 40Gbit/s NRZ DPSK signals in a highly nonlinear dispersion flattened lead silicate fibre
JP2019036880A (ja) 光伝送路及び光伝送システム
ZITOUNI et al. Design and Simulation of a WDM-OADM Optical Ring Communication System

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048061866

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057017190

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057017190

Country of ref document: KR

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP