WO2004079996A1 - Verfahren zur übertragung von informationen in einem netzwerk mit einem lokalen funkkommunikationssystem und einem zellularen funkkommunikationssystem und basisstation - Google Patents

Verfahren zur übertragung von informationen in einem netzwerk mit einem lokalen funkkommunikationssystem und einem zellularen funkkommunikationssystem und basisstation Download PDF

Info

Publication number
WO2004079996A1
WO2004079996A1 PCT/EP2004/001876 EP2004001876W WO2004079996A1 WO 2004079996 A1 WO2004079996 A1 WO 2004079996A1 EP 2004001876 W EP2004001876 W EP 2004001876W WO 2004079996 A1 WO2004079996 A1 WO 2004079996A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio
station
communication system
radio station
radio communication
Prior art date
Application number
PCT/EP2004/001876
Other languages
English (en)
French (fr)
Inventor
Hui Li
Egon Schulz
Dan Yu
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to KR1020057016261A priority Critical patent/KR101089351B1/ko
Priority to EP04714299A priority patent/EP1599971B1/de
Publication of WO2004079996A1 publication Critical patent/WO2004079996A1/de

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/16WPBX [Wireless Private Branch Exchange]

Definitions

  • the invention relates to a method for transmitting information in a network comprising at least one local radio communication system and at least one cellular, hierarchical radio communication system with at least one base station according to the preamble of claim 1.
  • the invention further relates to a base station in a network for transmitting information comprising at least one local radio communication system and at least one cellular, hierarchical radio communication system with at least the base station according to the preamble of claim 11 and an associated network.
  • information for example voice, image information, video information, SMS (Short Message Service), MMS (multimedia messaging
  • the electromagnetic waves are emitted at carrier frequencies that lie in the frequency band provided for the respective system.
  • Frequencies at 900, 1800 and 1900 MHz are used for the introduced GSM mobile radio system (Global System for Mobile Communication). These systems essentially communicate Voice, fax and short messages SMS (Short Message Service) and also digital data.
  • GSM Global System for Mobile Communication
  • UMTS Universal Mobile Telecommunication System
  • third generation systems frequencies in the frequency band of approximately 2000 MHz are provided. These third generation systems are developed with the objectives of a wide range
  • Radio interface which is the interface with the least resources in radio communication systems.
  • radio communication systems it should above all be possible through the flexible administration of the radio interface that a subscriber station can send and / or receive a large amount of data at high data speed if required.
  • the access of stations to the common radio resources of the transmission medium is with these stations.
  • Radio communication systems regulated by multiple access (MA) methods are provided.
  • each transmit and receive frequency band is divided into time slots, with one or more cyclically repeated time slots being allocated to the stations.
  • the radio resource time is separated station-specifically by TDMA.
  • FDMA frequency domain multiple access methods
  • FDMA frequency domain multiple access methods
  • the radio resource frequency is separated on a station-specific basis.
  • CDMA code area multiple access methods
  • the power / information to be transmitted is coded in a station-specific manner by means of a spreading code which consists of many individual so-called chips, as a result of which the power to be transmitted is randomly spread over a large frequency range due to the code.
  • the spreading codes used by different stations within a cell / base station are mutually orthogonal or essentially orthogonal, as a result of which a receiver recognizes the signal power intended for it and suppresses other signals.
  • CDMA uses radio codes to separate the radio resource power by station-specific.
  • orthogonal frequency division multiple access methods OFDM
  • the data are transmitted in broadband, with the
  • Frequency band is divided into equidistant, orthogonal subcarriers, so that the simultaneous phase shift of the subcarriers spans a two-dimensional data flow in the time-frequency range.
  • OFDM separates the radio resource frequency using station-specific orthogonal subcarriers.
  • the summarized data symbols transmitted on the orthogonal subcarriers during a time unit are referred to as OFDM symbols.
  • the multiple access methods can be combined.
  • Many radio communication systems use a combination of the TDMA and FDMA methods, whereby each narrowband frequency band is divided into time slots.
  • the TDD mode is characterized in particular by the fact that a common frequency band for both signal transmission in the upward direction (UL - uplink) and in the downward direction (DL -
  • Downlink is used while the FDD mode for the two Transmission directions each uses a different frequency band.
  • information can be channel-switched (CS circuit switched) or packet-switched (PS packet switched).
  • Base station and radio network control device are usually components of a base station subsystem (RNS radio network subsystem).
  • RNS radio network subsystem A cellular radio communication system usually comprises several base station subsystems that are connected to a core network (CN Core Network).
  • the radio network control device (RNC Radio Network Controller) of the base station subsystem is usually connected to an access device (SGSN Serving GPRS Support Node, with GPRS General Packet Radio Service) of the core network for packet-switched data transmissions.
  • This access facility for the core network fulfills a similar task to the nodes MSC (Mobile Services Switching Center) and VLR (Visitor Location Register) for the channel-switching part of the core network.
  • a gateway GGSN gateway GPRS support node
  • to other packet data networks such as the Internet is usually connected to the access device of the core network.
  • WLANs Wireless Local Area Networks
  • WLANs transmit data in a first version at a frequency around 2.4 GHz, in another Version in a frequency range around 5-6 GHz, where there are quasi-optical propagation characteristics.
  • the at least one local radio communication system and the at least one cellular, hierarchical radio communication system use different radio access technologies (RAT radio access technology).
  • RAT radio access technology can mean that, for example, different subscriber separation methods or combinations of
  • the at least one local radio communication system and the at least one cellular, hierarchical radio communication system will belong to differently standardized radio access technologies.
  • a wireless local communication network can be set up, whereby the subscriber stations (MNs Mobile Nodes) can communicate with one another by radio over one or more hops (hop, multihop) or via WLAN radio access devices (APs access points).
  • Radio access devices (APs access points) e.g. a connection to broadband data networks (BDN Broadband Data
  • Each radio access device usually supplies all subscriber stations located in its radio coverage area.
  • the cell size is usually limited to a few hundred meters.
  • a cellular radio network can be created with WLAN, in which, with a corresponding movement of the subscriber station, an existing data connection from Radio access device can be transferred to radio access device (roaming).
  • the maximum data rates depend on the respective WLAN technology and can be up to 54 Mbit / s.
  • WLANs to the generally broad-ranging cellular radio communication systems, for example of the second and / or third generation, is currently being discussed, for example in 3GPP standardization bodies (3GPP Third Generation Partnership Project). Due to the technical possibilities of WLANs, in particular the high data rates, there is great interest in using this technology as a supplement to supralocal radio communication systems - for example as a supplement to UMTS - in the so-called * hot spots ", ie in particular in locally restricted areas with a large number of subscribers such as airports, hotels or the like.
  • WLAN technologies can be used which enable broadband radio access to the broadband data networks and which are based, for example, on TCP / IP (TCP Transmission Control Protocol / IP Internet Protocol), ATM ( Asynchronous Transfer Mode) or B-ISDN (Broadband Integrated Services Digital Network)
  • TCP / IP Transmission Control Protocol / IP Internet Protocol
  • ATM Asynchronous Transfer Mode
  • B-ISDN Broadband Integrated Services Digital Network
  • broadband WLAN technologies are IEEE 802.11 technologies (IEEE Institute of Electrical and Electronics Engineers) such as IEEE 802.11a, - ' IEEE
  • V WLAN is used to represent the various broadband WLAN technologies.
  • WLANs For the connection of WLANs to a supra-regional or supra-regional hierarchical radio network such as UMTS, there is a very attractive possibility of connecting WLAN and UMTS by connecting the radio access devices of the WLAN to UMTS and / or using so-called dual mode subscriber stations who are able to to communicate both with the at least one local radio communication system - for example WLAN - and with the at least one cellular, hierarchical radio communication system - for example UMTS.
  • the hardware-related WLAN connection can be implemented by a corresponding module in such a way that the module e.g. is either already integrated as a WLAN radio part or as a WLAN PC card in the connections of a corresponding one
  • Interface of the subscriber station or the terminal for example a PCMCIA interface, is inserted.
  • This provides a method and an associated network comprising at least one local radio communication system and at least one cellular, hierarchical radio communication system with at least one base station, the at least one local radio communication system and the at least one cellular, hierarchical radio communication system using different radio access technologies and information about an air interface of the local radio communication system is transmitted from a first radio station with means for communication at least with the local radio communication system to a second radio station " with means for communication at least with the local radio communication system.
  • a suitable subscriber station which is fundamentally capable, both with a cellular, hierarchical radio communication system and with one To communicate local radio communication system and which is currently in a radio cell of the cellular, hierarchical radio communication system, can also be integrated in an information transmission using the at least one local radio communication system, suitable measures are to be taken to make this possible or easier.
  • the invention is therefore based on the object of demonstrating a method and a base station, and also a network of the type mentioned at the outset, which enable or provide such measures in a simple manner, without a strong connection or coupling between the local radio communication system or systems (s) and the cellular, hierarchical radio communication system may be required.
  • the existing infrastructure should, if possible - be used to the extent possible and / or sensible.
  • the first radio station and / or the second radio station provides measurement and / or status information for measurements of the specific ones
  • Conditions of the radio station and / or states of the radio station are transmitted to the at least one base station and signaling information relating to radio transmission between the first radio station and the second radio station is transmitted from the at least one base station to the first radio station and / or to the second radio station.
  • the radio cell that is assigned to the at least one base station can be divided into sectors.
  • the radio stations or subscriber stations can - but need not - be mobile.
  • a radio station can also be a relay station of the local radio communication system.
  • the range of a local radio communication network can be increased by relay stations.
  • Subscriber stations, but also generally stationary stations of a network operator or a service provider, can serve as relay stations.
  • a radio station also provides
  • Radio access devices of the local radio communication system are Radio access devices of the local radio communication system.
  • the measurement and / or status information of the radio station can include information regarding the neighboring stations, the traffic load in the area of the radio station, the power supply of the radio station and / or the transmission modes supported by the radio station. All circumstances, properties or states that may be relevant for a network control can be recorded and taken into account by the at least one base station.
  • the measurements of the specific conditions of the radio station and / or the state determination of the radio station can be carried out periodically and / or
  • the periodic implementation enables a reduced signaling communication towards the execution upon request.
  • the request can come from different points in the network, for example from the base station.
  • the signaling information relating to the radio transmission between the first radio station and the second radio station can include data on the transmission power, the radio frequency, the transmission mode and / or the like.
  • the at least one base station exercises an active control and
  • the signaling information can therefore basically contain all the data that are important for this.
  • the signaling information relating to the radio transmission between the first radio station and the second radio station is requested by the at least one base station, by a radio access device of the local radio communication system and / or by the first
  • Radio station and / or transmitted by the second radio station are referred to.
  • Communication with at least the local radio communication system can be transmitted to the second radio station, path information can advantageously be related.
  • a transmission path between the first radio station and the second radio station are transmitted from the at least one base station to the first radio station. This facilitates routing in the local radio communication system.
  • a path from the transmitter may have to pass the data packet over a number of data packets
  • Radio stations to the receiver can be found.
  • the selection of the route is called routing. Is it the Radio stations around mobile radio stations, so the topology of the network usually changes over time. A suitable routing procedure must take these constant changes into account.
  • the transmission of the path information relating to the transmission path can include a transmission via the cellular, hierarchical radio communication system. This means that routing information is at least also transmitted via a radio interface of the cellular, hierarchical radio communication system. This can relate to the implementation of the transmission of the path information itself, i.e. the information transmission, as well as the transmission path of the useful information via the path (route).
  • the at least one base station can send the signaling data as a broadcast, on a shared radio channel or on a dedicated radio channel.
  • the transmission of the signaling information to the first radio station and / or to the second radio station includes transmission via a radio access device of the local radio communication system.
  • the infrastructure of the local radio communication system is thus used profitably.
  • the at least one base station maintains a neighborhood table over at least a partial area of the local radio communication system with data on neighboring stations with means for communication at least with the local radio communication system.
  • the at least one base station can then quickly provide the desired path information if required.
  • the invention also relates to a base station in a network for transmitting information comprising at least one local radio communication system using a first radio access technology and at least one cellular, hierarchical radio communication system using at least the base station, wherein information about an air interface of the local radio communication system is provided by one the first radio station, which is equipped with means for communication at least with the local radio communication system, to a second radio station, which also has means for communication with at least the local radio communication system.
  • This base station is characterized by the fact that means are available from the first radio station and / or from the second
  • Radio station to receive measurement and / or status information relating to measurements of the specific conditions of the radio station and / or states of the radio station to at least one base station and signaling information relating to radio transmission between the first radio station and the second radio station from at least one base station to the first radio station and / or to transmit to the second radio station.
  • 'Base Station means may be at least provided at least over a partial area of the local radio communication system with data on adjacent stations with means for communication with the local radio communication system to at least temporarily Provision of a neighborhood table.
  • the means for requesting measurements of the specific conditions of the radio station and / or determining the state of the radio station and / or requesting signaling information relating to radio transmission between the first radio station and the second radio station may be present in the base station.
  • the network according to the invention for the transmission of data with at least two radio communication systems is characterized in that it comprises at least one base station according to the invention, the at least one local radio communication system and the at least one cellular, hierarchical radio communication system using different radio access technologies.
  • the base station according to the invention and the network according to the invention are particularly suitable for carrying out the method according to the invention.
  • appropriate means can be provided both in the base station according to the invention and in the network according to the invention in order to be able to carry out the method steps.
  • Network architecture of a network with a local radio communication system and a cellular, hierarchical radio communication system is a network architecture of a network with a local radio communication system and a cellular, hierarchical radio communication system.
  • the network comprises a local radio communication system - for example WLAN - with a radio access device AP and a cellular, hierarchical radio communication system - for example UMTS - with a base station BS, the radio coverage area (radio cell) of which is indicated in the figure by a hexagon.
  • the base station BS is connected to the backbone network Bbl, the radio access device AP to a backbone network Bb2.
  • the backbone networks Bbl and Bb2 are connected to one another. It There can furthermore - as shown in the figure - be an air interface between the base station and the radio access device AP. - This may make it easier to exchange information between the at least one base station BS and a radio access device AP.
  • This connection via the air is not required in principle, since there is a connection via the backbone networks Bbl and Bb2.
  • the subscriber stations MN1, MN2, MN3, MN4 and MN5 are located in the radio cell of the cellular, hierarchical radio communication system (e.g. UMTS).
  • the cellular, hierarchical radio communication system e.g. UMTS
  • the second category of type 2 also includes multi-mode radio stations which, despite their basic suitability, should not or should not be able to carry out any communication in the cellular, hierarchical radio communication system (for example because the resources available are too low or unfavorable).
  • radio stations can also be present in the radio cell (not shown) which only support an interface to the cellular, hierarchical radio communication system, but not an interface to the local radio communication system.
  • the stations MN3 and MN5 belong to the first category of the multi-mode radio stations of type 1, while the radio stations MN1, MN2 and MN4 count to the second category of type 2.
  • Each radio station MN1, MN2, MN3, MN4 and MN5 now preferably periodically provides measurement and / or status information for measurements of the specific conditions of the radio stations and / or for states of the radio stations to the base station BS.
  • the transmission can take place directly via the air interface of the cellular, hierarchical UMTS radio communication system, while the radio stations MN1, MN2 and MN4 transmit at least via the radio access device AP of the WLAN or via one of the radio stations with UMTS interface such as MN3 have to perform.
  • the radio station providing measurement and / or status information is a type 1 radio station, for example radio station MN3 or MN5.
  • the measurement and / or status information can be transmitted directly to the base station BS via the UMTS interface.
  • the radio station providing measurement and / or status information is a type 2 radio station, for example radio station MN1.
  • MNL radio station tries to transmit • the measurement and / or status information on a multi-hop path to the radio access device AP of the WLAN. Since the further-reaching radio station MN3 is a type 1 radio station with support for the UMTS interface, the information can be transmitted from the radio station MN3 directly to the base station BS via the UMTS air interface.
  • Radio station MN2 a radio station of type 2. Radio station MN2 also transmits the measurement and / or status information via a multi-hop path.
  • the relaying radio station MN4 is also a type 2 radio station and transmits the measurement and / or status information from the radio station MN2 to the
  • Radio access device AP of the WLAN from where the measurement and / or status information about the Bachkbone networks Bb2 and Bbl to be sent to the base station BS.
  • the radio access device AP of the WLAN can also send measurement and / or status information for measurements of the specific conditions of the radio access device AP to the base station BS as a radio station.
  • the base station BS can evaluate the transmitted information and transmit corresponding signaling information to one or more radio stations.
  • the base station BS can determine the load distribution in the network on the basis of the measurement information received. If there is a traffic congestion, the base station will locate it and, if necessary, e.g. propose suitable transmission powers for radio stations and transmit them to the radio access device AP so that the radio access device AP notifies the radio stations affected by the traffic congestion. In this way, the base station BS can control the network with heterogeneous radio stations.
  • the base station can transmit the signaling information to the radio stations of the WLAN via the radio access device AP. This is particularly suitable if the initiative comes from the base station BS.
  • the base station BS can transmit the signaling information to the radio station via a path of the local radio communication system. This is particularly useful if a request has been made by a radio station.
  • Each type 1 radio station can send a request for certain information to the base station.
  • the radio station MN1 in the figure wants to send useful information to the To transmit radio station MN2, radio station MN1 requires the path to radio station MN2.
  • MNl recognized its neighbor MN3 by signal measurement. This result is transmitted to the base station BS.
  • the radio stations MN2, MN3 and MN4 also transmit their neighboring knowledge to the base station. These are the radio station MNS for the radio station MN2, for the radio station MN3 these are the radio stations MN1, MN4 and the radio access device AP; for the radio station MN4 these are the radio stations MN2 and MN3.
  • the base station can compile this information in a neighborhood table.
  • the neighborhood information about the radio network part of the WLAN is advantageously held at least temporarily in the base station BS. Depending on determinable conditions, criteria can be selected as to when and which information about the WLAN no longer has to be stored or need to be stored.
  • radio station MN1 In order to find out a path for the planned transmission of user information to the radio station MN2, radio station MN1 broadcasts a request for a path (route request). Radio station MN3 receives this route request from radio station MN1 to radio station MN2 and forwards it to the base station BS. The base station BS searches in the neighborhood table for the desired paths. The base station BS signals this path information (in the example mentioned: MN1 to MN3 to MN4 to MN2) to radio station MN3. Radio station MN3 forwards the path information to radio station MN1. Using the communicated path, radio station MN1 can now communicate with radio station MN2 in the WLAN.
  • this path information in the example mentioned: MN1 to MN3 to MN4 to MN2

Abstract

Die Erfindung betrifft ein Verfahren zur Übertragung von Informationen und ein N etzwerk umfassend mindestens ein lokales Funkkommunikationssystem z.B. WLAN und mindestens ein zellulares, hierarchisches Funkkommunikationssystem z.B. UMTS mit mindestens einer Basisstation (BS) , wobei das mindestens eine lokale Funkkommunikationssystem und das mindestens eine zellulare, hierarchische Funkkommunikation ssystem unterschiedliche Funkzugangstechnologien verwenden und wobei Information en über eine Luftschnittstelle des lokalen Funkkommunikationssystems von einer ersten Funkstation (MN1) mit Mitteln zur Kommunikation zumindest mit dem lokalen Funkkommunikationssystem an eine zweite Funkstation (MN2) mit Mitteln zur Kommunikation zumindest mit dem lokalen Funkkommunikationssystem übertragen werden. Erf indungsgemäß werden von der ersten Funkstation (MN1) und/oder von der zweiten Funkstation (MN2) Mess- und/oder Zustandsinformationen zu Messungen der spezifis chen Bedingungen der Funkstation und/oder zu Zuständen der Funkstation an die mindestens eine Basisstation (BS) und Signalisierungsinformationen bezüglich der Funkübertragung zwischen der ersten Funkstation (MN1) und der zweiten Funkstation (MN2) von der mindestens einen Basisstation (BS) an die erste Funkstation (MN1) und/oder an die zweite Funkstation (MN2) übermittelt.

Description

Beschreibung
Verfahren zur Übertragung von Informationen in einem Netzwerk mit einem lokalen Funkkommunikationssystem und einem zellularen Funkkommunikationssystem und Basisstation
Die Erfindung betrifft ein Verfahren zur Übertragung von Informationen in einem Netzwerk umfassend mindestens ein lokales Funkkommunikationssystem und mindestens ein zellulares, hierarchisches Funkkommunikationssystem mit mindestens einer Basisstation nach dem Oberbegriff des Anspruchs 1.
Die Erfindung betrifft ferner eine Basisstation in einem Netzwerk zur Übertragung von Informationen umfassend mindestens ein lokales Funkkommunikationssystem und mindestens ein zellulares, hierarchisches Funkkommunikationssystem mit mindestens der Basisstation nach dem Oberbegriff des Anspruchs 11 und ein zugehöriges Netzwerk.
In Funkkommunikationssystemen werden Informationen (beispielsweise Sprache, Bildinformation, Videoinformation, SMS (Short Message Service) , MMS (Multimedia Messaging
Service) oder andere Daten) mit Hilfe von elektromagnetischen Wellen über eine Funkschnittstelle zwischen sendender und empfangender Station (Basisstation bzw. Teilnehmerstation) übertragen. Das Abstrahlen der elektromagnetischen Wellen erfolgt dabei mit Trägerfrequenzen, die in dem für das jeweilige System vorgesehenen Frequenzband liegen.
Für das eingeführte GSM-Mobilfunksystem (Global System for Mobile Communication) werden Frequenzen bei 900, 1800 und 1900 MHz genutzt. Diese Systeme übermitteln im wesentlichen Sprache, Telefax und Kurzmitteilungen SMS (Short Message Service) und auch digitale Daten.
Für der zweiten Mobilfunkgeneration (2G) nachfolgende Mobilfunkkom unikationssysteme mit CDMA- oder TD/CDMA-
Übertragungsverfahren, wie beispielsweise UMTS (Universal Mobile Telecommunication System) oder andere Systeme der dritten Generation, sind Frequenzen im Frequenzband von ca. 2000 MHz vorgesehen. Diese Systeme der dritten Generation werden entwickelt mit den Zielen eines großen Angebots an
Diensten zur Datenübertragung und vor allem einer flexiblen Verwaltung der Kapazität der Funkschnittstelle, die bei FunkkommunikationsSystemen die Schnittstelle mit den geringsten Ressourcen ist. Bei diesen Funkkommunikationssyste en soll es vor allem durch die flexible Verwaltung der Funkschnittstelle möglich sein, dass einer Teilnehmerstation bei Bedarf eine große Datenmenge mit hoher Datengeschwindigkeit senden und/oder empfangen kann.
Der Zugriff von Stationen auf die gemeinsamen Funkressourcen des Übertragungsmedium, wie zum Beispiel Zeit, Frequenz, Leistung oder Raum, wird bei diesen
FunkkommunikationsSystemen durch Vielfachzugriffsverfahren (Multiple Access, MA) geregelt.
Bei Zeitbereichs-Vielfachzugriffsverfahren (TDMA) wird jedes Sende- und Empfangsfrequenzband in Zeitschlitze unterteilt, wobei ein oder mehrere zyklisch wiederholte Zeitschlitze den Stationen zugeteilt werden. Durch TDMA wird die Funkressource Zeit stationsspezifisch separiert.
Bei Frequenzbereichs-Vielfachzugriffsverfahren (FDMA) wird der gesamte Frequenzbereich in sch albandige Bereiche unterteilt, wobei ein oder mehrere schmalbandige Frequenzbänder den Stationen zugeteilt werden. Durch FDMA wird die Funkressource Frequenz stationsspezifisch separiert. Bei Codebereichs-Vielfachzugriffsverfahren (CDMA) wird durch einen Spreizcode, der aus vielen einzelnen sogenannten Chips besteht, die zu übertragende Leistung/Information stations- spezifisch codiert, wodurch die zu übertragende Leistung codebedingt zufällig über einen großen Frequenzbereich gespreizt wird. Die von unterschiedlichen Stationen benutzten Spreizcodes innerhalb einer Zelle/Basisstation sind jeweils gegenseitig orthogonal oder im wesentlichen orthogonal, wodurch ein Empfänger die ihm zugedachte Signalleistung erkennt und andere Signale unterdrückt. Durch CDMA wird die Funkressource Leistung durch Spreizcodes stationsspezifisch separiert.
Bei orthogonalen Frequenz-Vielfachzugriffsverfahren (OFDM) werden die Daten breitbandig übermittelt, wobei das
Frequenzband in äquidistante, orthogonale Unterträger eingeteilt wird, so dass die simultane Phasenverschiebung der Unterträger einen zwei-dimensionalen Datenfluss im Zeit- Frequenz Bereich aufspannt. Durch OFDM wird die Funkressource Frequenz mittels orthogonalen Unterträgern stationsspezifisch separiert. Die während einer Zeiteinheit auf den orthogonalen Unterträgern übermittelten .zusammengefassten Datensymbole werden als OFDM Symbole bezeichnet.
Die Vielfachzugriffsverfahren können kombiniert werden. So benutzen viele FunkkommunikationsSysteme eine Kombination der TDMA und FDMA Verfahren, wobei jedes schmalbandige Frequenzband in Zeitschlitze unterteilt ist.
Für das erwähnte UMTS-Mobilfunksystem wird zwischen einem sogenannten FDD-Modus (Frequency Division Duplex) und einem TDD-Modus (Time Division Duplex) unterschieden. Der TDD-Modus zeichnet sich insbesondere dadurch aus, dass ein gemeinsames Frequenzband sowohl für die Signalübertragung in Aufwärts- richtung (UL - Uplink) als auch in Abwärtsrichtung (DL -
Downlink) genutzt wird, während der FDD-Modus für die beiden Ubertragungsrichtungen jeweils ein unterschiedliches Frequenzband nutzt.
In Funkkommunikationsverbindungen beispielsweise der zweiten und/oder dritten Generation können Informationen kanalvermittelt (CS Circuit Switched) oder paketvermittelt (PS Packet Switched) übertragen werden.
Die Verbindung zwischen den einzelnen Stationen erfolgt über eine Funkkommunikations-Schnittstelle (Luftschnittstelle) . Basisstation und Funknetzwerkkontrolleinrichtung sind üblicherweise Bestandteile eines Basisstationssubsyste s (RNS Radio Network Subsystem) . Ein zellulares Funkkommunikationssystem umfasst in der Regel mehrere Basisstationssubsysteme, die an ein Kernnetz (CN Core Network) angeschlossen sind. Dabei ist die Funknetzwerkkontrolleinrichtung (RNC Radio Network Controller) des Basisstationssubsystems in der Regel bei paketvermittelten Datenübertragungen mit einer Zugangseinrichtung (SGSN Serving GPRS Support Node, mit GPRS General Packet Radio Service) des Kernnetzes verbunden. Diese Zugangseinrichtung des Kernnetzes erf llt eine ahnliche Aufgabe wie die Knoten MSC (Mobile-services Switching Centre) und VLR (Visitor Location Register) für den kanalvermittelnden Teil des Kernrietzes. An die Zugangsemrichtung des Kernnetzes ist üblicherweise eine Ubergangseinrichtung (GGSN Gateway GPRS Support Node) in andere Paketdatennetze wie beispielsweise das Internet angeschlossen.
Außer den beschriebenen gewohnlich weiträumig organisierten (supralokalen) zellularen, hierarchischen Funknetzen gibt es auch drahtlose lokale Netze (WLANs Wireless Local Area Networks) mit einem in der Regel raumlich deutlich mehr begrenztem Funkabdeckungsbereich. Diese eignen sich beispielsweise hervorragend für einen hochbitratigen Internetzugang. WLANs übertragen Daten in einer ersten Version bei einer Frequenz um 2,4 GHz, in einer weiteren Version in einem Frequenzbereich bei etwa 5-6 GHz, wo quasi optische Ausbreitungsmerkmale herrschen.
Im Rahmen der Erfindung verwenden das mindestens eine lokale Funkkommunikationssystem und das mindestens eine zellulare, hierarchische Funkkommunikationssystem unterschiedliche Funkzugangstechnologien (RAT Radio Access Technology) . Unterschiedliche Funkzugangstechnologien können bedeuten, dass beispielsweise verschiedene Teilnehmerseparierungsverfahren oder Kombinationen von
Teilnehmerseparierungsverfahren, verschiedene Frequenzbänder, verschiedene Zeitschlitze und/oder verschiedene Codes Anwendung finden. In der Regel werden das mindestens eine lokale Funkkommunikationssystem und das mindestens eine zellulare, hierarchische Funkkommunikationssystem unterschiedlich standardisierten Funkzugangstechnologien zugehören.
Ohne Einschränkung der Erfindung wird im folgenden die Erfindung am Beispiel eines UMTS-Systems als zellularem, hierarchischem Funkkommunikationssystem und einem WLAN-System als lokalem Funkkommunikationssystem erläutert.
Mit WLAN kann ein drahtloses lokales Kommunikationsnetz aufgebaut werden, 'wobei die Teilnehmerstationen (MNs Mobile Nodes) per Funk über einen oder mehrere Sprünge (Hop, Multihop) oder über WLAN-Funkzugangseinrichtungen (APs Access Points) miteinander kommunizieren können, wobei über die WLAN-Funkzugangseinrichtungen (APs Access Points) z.B. eine Anbindung an Breitband-Datennetze (BDN Broadband Data
Networks) erfolgen kann. Jede Funkzugangseinrichtung versorgt üblicherweise alle in ihrem Funkabdeckungsbereich befindlichen Teilnehmerstationen. Dabei ist die Zellengröße in der Regel auf bis zu einigen hundert Meter begrenzt. Prinzipiell kann mit WLAN ein zellulares Funknetz erstellt werden, in dem bei einer entsprechenden Bewegung der Teilnehmerstation eine bestehende Datenverbindung von Funkzugangseinrichtung zu Funkzugangseinrichtung übergeben werden kann (Roaming) . Die maximalen Datenraten sind abhängig von der jeweiligen WLAN-Technologie und können bis zu 54 Mbit/s betragen.
Derzeit wird die Anbindung von WLANs an die räumlich in der Regel weit reichenden, zellularen Funkkommunikationssysteme beispielsweise der zweiten und/oder dritten Generation diskutiert, zum Beispiel in 3GPP-Standardisierungsgremien (3GPP Third Generation Partnership Project) . Aufgrund der technischen Möglichkeiten von WLANs wie insbesondere der hohen Datenraten besteht ein großes Interesse, diese Technologie als Ergänzung zu supralokalen Funkkommunikations- systemen - beispielsweise als Ergänzung zu UMTS - in den sog. *Hot-Spots" zu nutzen, d.h. in lokal begrenzten Bereichen insbesondere mit großer Teilnehmerdichte wie z.B. Flughäfen, Hotels oder dergleichen. Hierbei können verschiedene WLAN- Technologien Verwendung finden, die einen breitbandigen Funkzugang zu den Breitband-Datennetzen ermöglichen und die beispielsweise auf TCP/IP (TCP Transmission Control Protocol / IP Internet Protocol) , ATM (Asynchronous Transfer Mode) oder B-ISDN (Broadband Integrated Services Digital Network) basieren können. Beispiele für Breitband-WLAN-Technologien sind IEEE 802.11-Technologien (IEEE Institute of Electrical and Electronics Engineers) wie z.B. IEEE 802.11a,-' IEEE
802.11b oder Hiperlan/2 (High Performance Local Area Network Type 2), OpenAir oder SWAP (Shared Wireless Access Protocol). Im Rahmen der vorliegenden Erfindung wird die Bezeichnung VWLAN" stellvertretend für die einzelnen verschiedenen Breitband-WLAN-Technologien verwendet.
Für die Anbindung von WLANs an ein überörtliches bzw. überregionales hierarchisches Funknetz wie das UMTS besteht eine sehr attraktive Möglichkeit in einer Anbindung von WLAN und UMTS dadurch, dass die Funkzugangseinrichtungen des WLAN mit dem UMTS verbunden sind und/oder dass sog. Dual Mode Teilnehmerstationen genutzt werden, welche in der Lage sind, sowohl mit dem mindestens einen lokalen Funkkommunikationssystem - z.B. WLAN - als auch mit dem mindestens einen zellularen, hierarchischen FunkkommunikationsSystem - z.B. UMTS - zu kommunizieren.
In einer UMTS-Teilnehmerstation kann beispielsweise die hardware-mäßige WLAN-Anbindung durch ein entsprechendes Modul in der Form bewerkstelligt werden, dass das Modul z.B. entweder als WLAN-Funkteil bereits mitintegriert ist oder als WLAN-PC-Karte in die Anschlüsse einer entsprechenden
Schnittstelle der Teilnehmerstation bzw. des Terminals, beispielsweise einer PCMCIA-Schnittstelle, eingeschoben wird.
Damit steht ein Verfahren und ein zugehöriges Netzwerk umfassend mindestens ein lokales Funkkommunikationssystem und mindestens ein zellulares, hierarchisches Funkkommunikationssystem mit mindestens einer Basisstation zur Verfügung, wobei das mindestens eine lokale Funkkommunikationssystem und das mindestens eine zellulare, hierarchische Funkkommunika- tionssystem unterschiedliche Funkzugangstechnologien verwenden und wobei Informationen über eine Luftschnittstelle des- lokalen FunkkommunikationsSystems von einer ersten Funkstation mit Mitteln zur Kommunikation zumindest mit dem lokalen Funkkommunikationssystem an eine zweite Funkstation"mit Mitteln zur Kommunikation zumindest mit dem lokalen Funkkommunikationssystem übertragen werden.
Aufgrund des bevorzugten AnwendungsSzenarios von WLAN in den Hot-Spots wird angenommen, dass es zukünftig weltweit eine Vielzahl von öffentlichen wie auch von privaten WLAN-
Providern geben wird, die ihre Netze mit gleichen oder aber auch mit jeweils verschiedenen WLAN-Technologien betreiben können .
Damit eine dafür geeignete Teilnehmerstation, welche grundsätzlich in der Lage ist, sowohl mit einem zellularen, hierarchischen Funkkommunikationssystem als auch mit einem lokalen Funkkommunikationssystem zu kommunizieren und welche sich aktuell in einer Funkzelle des zellularen, hierarchischen Funkkommunikationssystems befindet, auch in einer Informationsübertragung unter Nutzung des mindestens eines lokalen FunkkommunikationsSystems eingebunden werden kann, sind geeignete Maßnahmen zu ergreifen, die dies ermöglichen bzw. erleichtern sollen.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren und eine Basisstation, sowie ein Netzwerk der eingangs genannten Art aufzuzeigen, welche derartige Maßnahmen auf einfache Art und Weise ermöglichen bzw. bereitstellen, ohne dass eine starke Anbindung oder Kopplung zwischen dem bzw. den lokalen Funkkommunikationssystem(en) und dem zellularen, hierarchischen Funkkommunikationssystem erforderlich sein uss. Die vorhandene Infrastruktur sollte dabei gegebenenfalls - soweit dies möglich und/oder sinnvoll ist - ausgenutzt werden.
Die Aufgabe wird für das Verfahren mit den Merkmalen des
Anspruchs 1, für die Basisstation mit den Merkmalen des
Anspruchs 11 und für das Netzwerk mit den Merkmalen des Anspruchs 14 gelöst.
Vorteilhafte, Ausgestaltung und Weiterbildungen' sind Gegenstand der abhängigen Ansprüche.
Erfindungsgemäß werden von der ersten Funkstation und/oder von der zweiten Funkstation Mess- und/oder Zustandsinformationen zu Messungen der spezifischen
Bedingungen der Funkstation und/oder zu Zuständen der Funkstation an die mindestens eine Basisstation übermittelt und es werden Signalisierungsinformationen bezüglich der Funkübertragung zwischen der ersten Funkstation und der zweiten Funkstation von der mindestens einen Basisstation an die erste Funkstation und/oder an die zweite Funkstation übermittelt. Damit ist es möglich, unter Nutzung der vorhandenen Struktur des zellularen, hierarchischen Funkkommunikationsnetzes eine Erweiterung des Netzwerks durch ein oder mehrere lokale Funkkommunikationssysteme vorzunehmen, wobei es gelingt, durch die Steuerung über die mindestens eine Basisstation des zellularen, hierarchischen Funkkommunikationsnetzes die Performance des Netzwerkes insgesamt zu erhöhen.
Die Funkzelle, die der mindestens einen Basisstation zugeordnet ist, kann in Sektoren aufgeteilt sein.
Die Funkstationen bzw. Teilnehmerstationen können - müssen aber nicht - mobil sein. Eine Funkstation kann auch eine Relaisstation des lokalen Funkkommunikationssystems sein. Durch Relaisstationen kann die Reichweite eines lokalen Funkkommunikationsnetzes vergrößert werden. Als Relaisstationen können Teilnehmerstationen, aber auch in der Regel ortsfeste Stationen eines Netzbetreibers oder eines Diensteanbieters dienen. Eine Funkstation stellt auch
Funkzugangseinrichtungen des lokalen Funkkommunikationssystems dar.
In Weiterbildung der Erfindung können die Mess- und/oder Zustandsinformationen der Funkstation Informationen bezüglich der Nachbarstationen, der Verkehrslast im Bereich der Funkstation, der Stromversorgung der Funkstation und/oder der von der Funkstation unterstützten Übertragungsmodi umfassen. Alle für eine Netzwerkkontrolle möglicherweise relevanten Umstände, Eigenschaften oder Zustände können erfasst und von der mindestens einen Basisstation berücksichtigt werden.
In Ausgestaltung der Erfindung können die Messungen der spezifischen Bedingungen der Funkstation und/oder die Zustandsermittlung der Funkstation periodisch und/oder auf
Anforderung durchgeführt werden. Die periodische Durchführung ermöglicht eine verringerte Signalisierungsko munikation gegenüber der Durchführung auf eine Anforderung hin. Die Anforderung kann von unterschiedlichen Stellen des Netzwerkes kommen, beispielsweise von der Basisstation.
Die Signalisierungsinformationen bezüglich der Funkübertragung zwischen der ersten Funkstation und der zweiten Funkstation können Daten zur Sendeleistung, zur Funkfrequenz, zum Übertragungsmodus und/oder dergleichen umfassen. Durch die Übermittlung der Signalisierungsinformationen übt die mindestens eine Basisstation eine aktive Kontrolle und
Steuerung im Netzwerk aus. Die Signalisierungsinformationen können daher grundsätzlich alle dafür wichtigen Daten enthalten.
Weiterhin kann im erfindungsgemäßen Verfahren vorgesehen sein, dass die Signalisierungsinformationen bezüglich der Funkübertragung zwischen der ersten Funkstation und der zweiten Funkstation auf Anforderung durch die mindestens eine Basisstation, durch eine Funkzugangseinrichtung des lokalen Funkkommunikationssystems und/oder durch die erste
Funkstation und/oder durch die zweite Funkstation übermittelt werden.
Im Falle, dass Nutzinformation von der ersten Funkstation über' indestens eine dritte Funkstation mit ^Mitteln zur
Kommunikation zumindest mit dem lokalen Funkkommunikationssystem an die zweite Funkstation übertragen werden, können vorteilhafterweise Pfadinformationen bezüglich. eines Übertragungspfades zwischen der erste Funkstation und der zweiten Funkstation von der mindestens einen Basisstation an die erste Funkstation übermittelt werden. Dies erleichert das Routing im lokalen Funkkommunikationssystem. In einem aus mehreren Funkstationen beste enden Funkkommunikationssystem muss für ein Datenpaket ein Pfad von dem Sender gegebenen- falls über mehrere das Datenpaket weiterleitende
Funkstationen zu dem Empfänger gefunden werden. Die Auswahl des Weges bezeichnet man als Routing. Handelt es sich bei den Funkstationen um mobile Funkstationen, so ändert sich in der Regel die Topologie des Netzwerkes mit der Zeit. Ein geeignetes Routing Verfahren muss diesen ständigen Veränderungen Rechnung tragen.
Dabei kann die Übermittlung der Pfadinformationen bezüglich des Übertragungspfades eine Übertragung über das zellulare, hierarchische Funkkommunikationssystem einschließen. Das bedeutet, dass Informationen zum Routing zumindest auch über eine Funkschnittstelle des zellularen, hierarchischen Funkkommunikationssystems übertragen werden. Dies kann sich sowohl auf die Durchführung der Übermittlung der Pfadinformation an sich, d.h. die Informationsübertragung, als auch auf den Übertragungsweg der Nutzinformationen über den Pfad (Route) beziehen.
Die mindestens eine Basisstation kann die Signalisierungs- daten als Broadcast, auf einem geteilten Funkkanal oder auf einem dedizierten Funkkanal senden.
In Ausgestaltung der Erfindung schließt die Übermittlung der Signalisierungsinformationen an die erste Funkstation und/oder an die zweite Funkstation eine Übertragung über eine Funkzugangseinrichtung des lokalen Funkkommunikationssystems ein. Damit wird die Infrastruktur des lokalen Funkkommunikationssystems gewinnbringend genutzt.
Nach einer Ausbildung der Erfindung ist vorgesehen, dass die mindestens eine Basisstation eine Nachbarschaftstabelle über zumindest einen Teilbereich des lokalen Funkkommunikations- syste s mit Daten zu Nachbarstationen mit Mitteln zur Kommunikation zumindest mit dem lokalen Funkkommunikationssystem vorhält. Dann kann die mindestens eine Basisstation bei Bedarf schnell die gewünschten Pfadinformationen zur Verfügung stellen. Die Erfindung betrifft auch eine Basisstation in einem Netzwerk zur Übertragung von Informationen umfassend mindestens ein eine erste Funkzugangstechnologie verwendendes, lokales Funkkommunikationssystem und mindestens ein eine zweite Funkzugangstechnologie verwendendes, zellulares, hierarchisches Funkkommunikationssystem mit mindestens der Basisstation, wobei Informationen über eine Luftschnittstelle des lokalen Funkkommunikationssystems von einer ersten Funkstation, welche mit Mitteln zur Kommunikation zumindest mit dem lokalen Funkkommunikationssystem ausgestattet ist, an eine zweite Funkstation, welche ebenfalls Mittel zur Kommunikation zumindest mit dem lokalen Funkkommunikationssystem aufweist, übertragen werden. Diese Basisstation zeichnet sich dadurch aus, dass Mittel vorhanden sind, von der ersten Funkstation und/oder von der zweiten
Funkstation Mess- und/oder Zustandsinformationen zu Messungen der spezifischen Bedingungen der Funkstation und/oder zu Zuständen der Funkstation an mindestens die eine Basisstation zu empfangen und Signalisierungsinformationen bezüglich der Funkübertragung zwischen der ersten Funkstation und der zweiten Funkstation von mindestens der einen Basisstation an die erste Funkstation und/oder an die zweite Funkstation zu übermitteln.
In der 'Basisstation können Mittel zum zumindest zeitweise Vorhalten einer Nachbarschaftstabelle über zumindest einen Teilbereich des lokalen Funkkommunikationssystems mit Daten zu Nachbarstationen mit Mitteln zur Kommunikation zumindest mit dem lokalen Funkkommunikationssystem vorgesehen sein.
In der Basisstation können die Mittel zum Anfordern der Messungen der spezifischen Bedingungen der Funkstation und/oder der Zustandsermittlung der Funkstation und/oder zum Anfordern der Signalisierungsinformationen bezüglich der Funkübertragung zwischen der ersten Funkstation und der zweiten Funkstation vorhanden sein. Das erfindungsgemäße Netzwerk zur Übertragung von Daten mit mindestens zwei Funkkommunikationssystemen zeichnet sich dadurch aus, -.dass es zumindest eine Basisstation nach der Erfindung umfasst, wobei das mindestens eine lokale Funkkommunikationssystem und das mindestens eine zellulare, hierarchische Funkkommunikationssystem unterschiedliche Funkzugangstechnologien verwenden .
Die erfindungsgemäße Basisstation und das erfindungsgemäße Netzwerk eignen sich insbesondere zur Durchführung des erfindungsgemäßen Verfahrens . Im übrigen können sowohl in erfindungsgemäße Basisstation als auch im erfindungsgemäßen Netzwerk entsprechende Mittel vorgesehen sein, um die Verfahrensschritte ausführen zu können.
Nachfolgend soll die Erfindung bzw. Einzelheiten und Details der Erfindung anhand von in einer Figur dargestellten Ausführungsbeispielen näher erläutert werden.
Hierbei zeigt
die Figur: ein vereinfachtes Schema für eine
Netzarchitektur eines Netzwerks mit einem lokalen Funkkommunikationssystem und einem zellulares, hierarchischen Funkkommunikationssystem.
In der Figur ist ein vereinfachtes Schema für eine mögliche Netzarchitektur als Beispiel illustriert. Das Netzwerk umfasst ein lokales Funkkommunikationssystem - z.B. WLAN - mit einer Funkzugangseinrichtung AP und ein zellulares, hierarchischen Funkkommunikationssystem - z.B. UMTS - mit einer Basisstation BS, deren Funkabdeckungsbereich (Funkzelle) in der Figur durch ein Sechseck angedeutet ist. Die Basisstation BS ist an Backbone-Netz Bbl angebunden, die Funkzugangseinrichtung AP an ein Backbone-Netz Bb2. Die Backbone-Netze Bbl und Bb2 sind miteinander verbunden. Es kann ferner - wie in der Figur gezeigt - eine Luftschnittstelle zwischen der Basisstation und der Funkzugangseinrichtung AP bestehen.'- Damit kann der Informationsaustausch zwischen der mindestens einen Basisstation BS und einer Funkzugangseinrichtung AP gegebenenfalls erleichtert werden. Diese Verbindung über die Luft ist nicht grundsätzlich erforderlich, da ja eine Verbindung über die Backbone-Netze Bbl und Bb2 besteht.
In der Funkzelle des zellularen, hierarchischen Funkkommuni- kationssystems (z.B. UMTS) befinden sich räumlich die Teilnehmerstationen MNl, MN2, MN3, MN4 und MN5. Im Beispiel sind zwei Typen von Teilnehmerstationen vorhanden: Einerseits Multi Mode Geräte des Typs 1 mit der Fähigkeit mit beiden Funkkommunikationssystemen, dem lokalen und dem zellularen hierarchischen System, kommunizieren zu können, und andererseits Funkstationen des Typs 2, die ausschließlich mit dem lokalen Funkkommunikationssystem kommunizieren können. In die zweite Kategorie des Typs 2 fallen auch Multi Mode Funkstationen, welche trotz grundsätzlicher Eignung aktuell keine Kommunikation im zellularen, hierarchischen Funkkommunikationssystem durchführen wollen, sollen oder können (beispielsweise wegen zu geringen oder ungünstigen verfügbaren Ressourcen) .
Selbstverständlich können in der Funkzelle auch Funkstationen vorhanden sein (nicht dargestellt) , welche nur eine Schnittstelle zum zellularen, hierarchischen Funkkommunikationssystem unterstützen, aber eine Schnittstelle zum lokalen Funkkommunikationssystem dagegen nicht.
Zur ersten Kategorie der Multi Mode Funkstationen des Typs 1 zählen in Figur 1 die Stationen MN3 und MN5, während zur zweiten Kategorie des Typs 2 die Funkstationen MNl, MN2 und MN4 zählen. Jede Funkstation MNl, MN2, MN3, MN4 und MN5 liefert nun vorzugsweise periodisch Mess- und/oder Zustandsinformationen zu Messungen der spezifischen Bedingungen der Funkstationen und/oder zu Zuständen der Funkstationen an die Basisstation BS. Für die Funkstationen MN3, MN4 und MN5 kann die Übermittlung direkt über die Luftschnittstelle des zellularen, hierarchischen UMTS Funkkommunikationssystems erfolgen, während die Funkstationen MNl, MN2 und MN4 eine Übermittlung mindestens über die Funkzugangseinrichtung AP des WLAN oder über eine der Funkstationen mit UMTS Interface wie MN3 durchführen müssen. Insgesamt gibt es daher drei Arten der Übermittlung der Mess- und/oder Zustandsinformationen an die Basisstation BS : i) Die Mess- und/oder Zustandsinformationen liefernde Funkstation ist eine Funkstation des Typs 1, beispielsweise Funkstation MN3 oder MN5. Die Mess- und/oder Zustandsinformationen können direkt an die Basisstation BS über die UMTS Schnittstelle übertragen werden. ii) Die Mess- und/oder Zustandsinformationen liefernde Funkstation ist eine Funkstation des Typs 2, beispielsweise Funkstation MNl. Funkstation MNl versucht die Mess- und/oder Zustandsinformationen über eine Multi Hop Pfad an die Funkzugangseinrichtung AP des WLAN zu übermitteln. Da die weiterreichende Funkstation MN3 eine Typ 1 Funkstation mit Unterstützung der UMTS Schnittstelle ist, können die Informationen von der Funkstation MN3 direkt an die Basisstation BS über die UMTS Luftschnittstelle übertragen werden. iii) Funkstation MN2 eine Funkstation des Typs 2. Auch Funkstation MN2 überträgt die Mess- und/oder Zustandsinformationen über einen Multi Hop Pfad. Die weiterleitende Funkstation MN4 ist ebenfalls eine Funkstation des Typs 2 und überträgt die Mess- und/oder Zustandsinformationen vo Funkstation MN2 an die
Funkzugangseinrichtung AP des WLAN, von wo die Mess- und/oder Zustandsinformationen über die Bachkbone-Netze Bb2 und Bbl an die an die Basisstation BS gesendet werden.
Auch die Funkzugangseinrichtung AP des WLAN kann als Funk- Station Mess- und/oder Zustandsinformationen zu Messungen der spezifischen Bedingungen der Funkzugangseinrichtung AP an die Basisstation BS senden.
Die Basisstation BS kann die übermittelten Informationen aus- werten und entsprechende Signalisierungsinformationen an eine oder mehrere Funkstationen übermitteln.
Beispielsweise kann die Basisstation BS auf der Grundlage der empfangenen Messinformationen die Lastverteilung im Netzwerk ermitteln. Wenn sich eine Verkehrsüberlastung zeigt, wird die Basisstation diese lokalisieren und anhand der Messinformationen gegebenenfalls z.B. geeignete Sendeleistungen für Funkstationen vorschlagen und an die Funkzugangseinrichtung AP übertragen, damit die Funkzugangseinrichtung AP diese den von der Verkehrsüberlastung betroffenen Funkstationen mitteilt. Auf diese Weise kann die Basisstation BS mit heterogenen Funkstationen das Netzwerk kontrollieren.
Für die Übertragung der Signalisierungsinformationen von der Basisstation stehen mehrere Möglichkeiten offen: Die
Basisstation kann die Signalisierungsinformationen über die Funkzugangseinrichtung AP an die Funkstationen des WLAN übermitteln. Dies ist insbesondere geeignet, wenn die Initiative von der Basisstation BS ausgeht. Die Basisstation BS kann die Signalisierungsinformationen über einen Pfad des lokalen Funkkommunikationssystems an die Funkstation übermitteln. Dies ist insbesondere dann sinnvoll, wenn eine Anforderung von einer Funkstation erfolgt ist.
Jede Funkstation des Typs 1 kann eine Anfrage zu bestimmten Informationen an die Basisstation senden. Will beispielsweise die Funkstation MNl in der Figur NutzInformationen an die Funkstation MN2 übertragen, benötigt Funkstation MNl den Pfad zur Funkstation MN2. Durch Signalmessung hat MNl seinen Nachbarn MN3 erkannt. Dieses Ergebnis wird an die Basisstation BS übermittelt. Ebenso übermitteln die Funkstatione MN2, MN3 und MN4 ihre Nachbarkenntnisse an die Basisstation. Dies sind für die Funkstation MN2 die Funkstation MNS, für die Funkstation MN3 sind dies die Funkstationen MNl, MN4 und die Funkzugangseinrichtung AP; für die Funkstation MN4 sind dies diee Funkstationen MN2 und MN3. Die Basisstation kann diese Informationen in einer Nachbarschaftstabelle zusammenstellen.
Mit Vorteil werden die Nachbarschaftsinformationen über den Funknetzteil des WLAN in der Basisstation BS zumindest zeitweise vorgehalten. In Abhängigkeit von bestimmbaren Bedingungen können Kriterien gewählt werden, wann welche Informationen über das WLAN nicht mehr gespeichert bleiben bzw. werden müssen.
Um für die geplante Übertragung von Nutzinformationen an die Funkstation MN2 einen Pfad zu erfahren, sendet Funkstation MNl im Broadcast eine Anfrage nach einem Pfad (Route Request) . Funkstation MN3 erhält diese Routen-Anfrage von Funkstation MNl zu Funkstation MN2 und leitet sie an die Basisstation BS weiter. Die Basisstation BS sucht in der Nachbarschaftstabelle nach den gewünschten Pfaden. Die Basisstation BS signalisiert diese Pfadinformation (im erwähnten Beispiel: MNl zu MN3 zu MN4 zu MN2) an Funkstation MN3. Funkstation MN3 leitet die Pfadinformation an Funkstation MNl weiter. Unter Nutzung des mitgeteilten Pfades kann Funkstation MNl nun mit Funkstation MN2 im WLAN kommunizieren.

Claims

Patentansprüche
1. Verfahren zur Übertragung von Informationen in einem Netzwerk umfassend mindestens ein lokales Funkkommunikationssystem und mindestens ein zellulares, hierarchisches Funkkommunikationssystem mit mindestens einer Basisstation (BS) , wobei das mindestens eine lokale Funkkommunikationssystem und das mindestens eine zellulare, hierarchische Funkkommunikationssystem unterschiedliche Funkzugangstechnologien verwenden, wobei Informationen über eine Luftschnittstelle des lokalen Funkkommunikationssystems von einer ersten Funkstation (MNl) mit Mitteln zur Kommunikation zumindest mit dem lokalen Funkkommunikationssystem an eine zweite
Funkstation (MN2) mit Mitteln zur Kommunikation zumindest mit dem lokalen Funkkommunikationssystem übertragen werden, dadurch gekennzeichnet, dass von der ersten Funkstation (MNl) und/oder von der zweiten Funkstation (MN2) Mess- und/oder Zustandsinformationen zu Messungen der spezifischen Bedingungen der Funkstation und/oder zu Zuständen der Funkstation an die mindestens eine Basisstation (BS) übermittelt werden und dass Signalisierungsinformationen bezüglich der Funkübertragung zwischen der ersten Funkstation (MNl) und der zweiten Funkstation (MN2) von,der mindestens einen Basisstation (BS) an die erste Funkstation (MNl) und/oder an die zweite Funkstation (MN2) übermittelt werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Mess- und/oder Zustandsinformationen der Funkstation (MNl, MN2) Informationen bezüglich der Nachbarstationen, der Verkehrslast im Bereich der Funkstation, der Stromversorgung der Funkstation und/oder der von der Funkstation unterstützten Übertragungsmodi umfassen.
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Messungen der spezifischen Bedingungen der Funkstation (MNl, MN2 ) und/oder die Zustandsermittlung der Funkstation periodisch und/oder auf Anforderung durchgeführt werden.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeich e , dass die Signalisierungsinformationen bezüglich der Funkübertragung zwischen der ersten Funkstation (MNl) und der zweiten Funkstation (MN2) Daten zur Sendeleistung, zur Funkfrequenz, zum Übertragungsmodus und/oder dergleichen umfassen.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeic net, dass die Signalisierungsinformationen bezüglich der Funkübertragung zwischen der ersten Funkstation (MNl) und der zweiten Funkstation (MN2) auf Anforderung durch die mindestens eine Basisstation (BS) , durch eine Funkzugangseinrichtung (AP) des lokalen Funkkommunikationssystems und/oder durch die erste Funkstation (MNl) und/oder durch die zweite Funkstation (MN2) übermittelt werden.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass Nutzinformation von der ersten Funkstation (MNl) über mindestens eine dritte Funkstation (MN3, MN4) mit Mitteln zur Kommunikation zumindest mit dem lokalen Funkkommunika- tionssystem an die zweite Funkstation (MN2) übertragen werden und dass Pfadinformationen bezüglich eines Übertragungspfades zwischen der erste Funkstation (MNl) und der zweiten Funkstation (MN2) von der mindestens einen Basisstation (BS) an die erste Funkstation (MNl) übermittelt werden.
7. Verfahren nach Anspruch 6, dadurch geken zeic et, dass die Übermittlung der Pfadinformationen bezüglich des Übertragungspfades eine Übertragung über das zellulare, hierarchische Funkkommunikationssystem einschließt.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die mindestens eine Basisstation (BS) die Signalisierungsdaten als Broadcast, auf einem geteilten Funkkanal oder auf einem dedizierten Funkkanal sendet.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Übermittlung der Signalisierungsinformationen an die erste Funkstation (MNl) und/oder an die zweite Funkstation (MN2) eine Übertragung über eine Funkzugangseinrichtung (AP) des lokalen Funkkommunikationssystems einschließt.
10.Verfahren nach einem der Ansprüche 1 bis 9, ; dadurch gekennzeichnet, dass die mindestens eine Basisstation (BS) eine Nachbarschaftstabelle über zumindest einen Teilbereich des lokalen Funkkommunikationssystems mit Daten zu Nachbarstationen mit Mitteln zur Kommunikation zumindest mit dem lokalen Funkkommunikationssystem vorhält.
11.Basisstation (BS) in einem Netzwerk zur Übertragung von Informationen umfassend mindestens ein eine erste Funkzugangstechnologie verwendendes, lokales
Funkkommunikationssystem und mindestens ein eine zweite Funkzugangstechnologie verwendendes, zellulares, hierarchisches Funkkommunikationssystem mit mindestens der Basisstation (BS) , wobei Informationen über eine Luftschnittstelle des lokalen Funkkommunikationssystems von einer ersten Funkstation (MNl) mit Mitteln zur Kommunikation zumindest mit dem lokalen Funkkommunikationssystem an eine zweite Funkstation (MN2) mit Mitteln zur Kommunikation zumindest mit dem lokalen Funkkommunikationssystem übertragen werden, dadurch gekennzeic et, dass Mittel vorhanden sind, von der ersten Funkstation (MNl) und/oder von der zweiten Funkstation (MN2) Mess- und/oder Zustandsinformationen zu Messungen der spezifischen Bedingungen der Funkstation und/oder zu Zuständen der Funkstation an mindestens die eine Basisstation (BS) zu empfangen und
Signalisierungsinformationen bezüglich der Funkübertragung zwischen der ersten Funkstation (MNl) und der zweiten Funkstation (MN2) von mindestens der einen Basisstation (BS) an die erste Funkstation (MNl) und/oder an die zweite Funkstation (MN2) zu übermitteln.
12.Basisstation (BS) nach Anspruch 11, dadurch gekennzeich et, dass Mittel zum zumindest zeitweise Vorhalten einer Nachbarschaftstabelle über zumindest einen Teilbereich des lokalen Funkkommunikationssystems mit Daten zu Nachbarstationen mit Mitteln zur Kommunikation zumindest mit dem lokalen Funkkommunikationssystem vorgesehen sind.
13.Basisstation (BS) nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass die Mittel zum Anfordern der Messungen der spezifischen Bedingungen der Funkstation (MNl, MN2) und/oder der Zustandsermittlung der Funkstation und/oder zum Anfordern der Signalisierungsinformationen bezüglich der Funkübertragung zwischen der ersten Funkstation (MNl) und der zweiten Funkstation (MN2) vorhanden sind.
14. etzwerk zur Übertragung von Informationen umfassend mindestens ein lokales Funkkommunikationssystem und mindestens ein zellulares, hierarchisches Funkkommuni ationssystem mit mindestens einer Basisstation (BS) nach Anspruch 11, 12 oder 13, wobei das mindestens eine lokale Funkkommunikationssystem und das mindestens eine zellulare, hierarchische Funkkommunikationssystem unterschiedliche Funkzugangstechnologien verwenden.
PCT/EP2004/001876 2003-03-03 2004-02-25 Verfahren zur übertragung von informationen in einem netzwerk mit einem lokalen funkkommunikationssystem und einem zellularen funkkommunikationssystem und basisstation WO2004079996A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020057016261A KR101089351B1 (ko) 2003-03-03 2004-02-25 로컬 무선통신시스템 및 셀룰러 무선통신시스템을 갖는네트워크에서 정보를 전송하기 위한 방법 및 기지국
EP04714299A EP1599971B1 (de) 2003-03-03 2004-02-25 Verfahren zur uebertragung von informationen in einem netzwerk mit einem lokalen funkkommunikationssystem und einem zellularen funkkommunikationssystem und basisstation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP03004675.9 2003-03-03
EP03004675A EP1455485A1 (de) 2003-03-03 2003-03-03 Verfahren zur Übertragung von Informationen in einem heterogenen Netzwerk bestehend aus einem lokalen (WLAN) und einem zellularen Funkkommunikationssystem unter Kontrolle der Basisstation des zellularen Funkkommunikationssystems

Publications (1)

Publication Number Publication Date
WO2004079996A1 true WO2004079996A1 (de) 2004-09-16

Family

ID=32798757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/001876 WO2004079996A1 (de) 2003-03-03 2004-02-25 Verfahren zur übertragung von informationen in einem netzwerk mit einem lokalen funkkommunikationssystem und einem zellularen funkkommunikationssystem und basisstation

Country Status (5)

Country Link
EP (2) EP1455485A1 (de)
KR (1) KR101089351B1 (de)
CN (1) CN100417111C (de)
AT (1) ATE330401T1 (de)
WO (1) WO2004079996A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10350889A1 (de) * 2003-10-31 2005-06-09 Siemens Ag Verfahren zur Ermittlung eines Pfades in einem Adhoc-Funkkommunikationssystem

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612948A (en) * 1994-11-18 1997-03-18 Motorola, Inc. High bandwidth communication network and method
EP1195948A2 (de) * 2000-10-06 2002-04-10 Mitsubishi Denki Kabushiki Kaisha Drahtloses mobiles Netzwerk zur örtlichen Leitweglenkung von Multimedia-Daten
US20030022667A1 (en) * 2001-07-28 2003-01-30 Samsung Electronics Co., Ltd. Multimedia service providing system and method using bluetooth communications in mobile communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612948A (en) * 1994-11-18 1997-03-18 Motorola, Inc. High bandwidth communication network and method
EP1195948A2 (de) * 2000-10-06 2002-04-10 Mitsubishi Denki Kabushiki Kaisha Drahtloses mobiles Netzwerk zur örtlichen Leitweglenkung von Multimedia-Daten
US20030022667A1 (en) * 2001-07-28 2003-01-30 Samsung Electronics Co., Ltd. Multimedia service providing system and method using bluetooth communications in mobile communication system

Also Published As

Publication number Publication date
CN1757199A (zh) 2006-04-05
KR101089351B1 (ko) 2011-12-02
ATE330401T1 (de) 2006-07-15
KR20050117530A (ko) 2005-12-14
EP1599971B1 (de) 2006-06-14
EP1455485A1 (de) 2004-09-08
EP1599971A1 (de) 2005-11-30
CN100417111C (zh) 2008-09-03

Similar Documents

Publication Publication Date Title
EP1537704B1 (de) Verfahren zum routen einer verbindung von einer ersten mobilstation zu einer zweiten mobilstation, funkkommunikationssystem, zentrale routingeinrichtung sowie mobilstation
DE60210015T2 (de) System und Verfahren zur Auswahl einer Basisstation sowie Basisstation in einem Mobilfunksystem
DE102005049103A1 (de) Funkkommunikation mit einem Repeater
EP1608110A1 (de) Verfahren zur Funkkommunikation und Funkkommunikationssystem mit Relaisfunkstationen in Zick-Zack-Anordnung
EP1389856A1 (de) Verfahren zur Vergabe von Funkressourcen in einem selbstorganidierenden Funkkommunikationssystem
WO2004079995A1 (de) Verfahren und basisstation zur übertragung von informationen in einem mittels ad hoc verbindungen erweiterten zellularen funkkommunikationssystem
DE10309228B4 (de) Verfahren zur Übertragung von Informationen in einem Netzwerk mit einem lokalen Funkkommunikationssystem und einem zellularen Funkkommunikationssystem und Basisstation
EP1540973B1 (de) Verfahren und funkkommunikationssystem zur übertragung von nutzinformationen als dienst an mehrere teilnehmerstationen
EP1678890B1 (de) Verfahren und einrichtung zur bestimmung von pfaden und zuweisung von funkressourcen für die bestimmten pfade in einem funkkommunikationssystem
EP1678877B1 (de) Verfahren zur übertragung von informationen in einem kommunikationssystem unter verwendung eines pfades
DE60026699T2 (de) Verfahren zur leistungssteuerung
WO2005096563A1 (de) Verfahren zur kommunikation in einem wlan mit einer gruppe aus relaisstationen und funkzugangspunkten
DE10145759A1 (de) Verfahren und Funk-Kommunikationssystem zur Datenübertragung
WO2005032055A2 (de) Verfahren zur kommunikation in einem adhoc-funkkommunikationssystem
EP1599971B1 (de) Verfahren zur uebertragung von informationen in einem netzwerk mit einem lokalen funkkommunikationssystem und einem zellularen funkkommunikationssystem und basisstation
WO2004075437A1 (de) Verfahren zur signalübertragung in einem funk-kommunikationssystem
EP1678883B1 (de) Verfahren zur signalisierung eines pfades an funkstationen eines funkkommunikationssystems
DE10302404B4 (de) Verfahren zur Übertragung von Daten in einem lokalen und einem supralokalen Funkkommunikationssystem und zugehöriges Netzwerk
EP1441468A1 (de) Verfahren zur Übertragung von Daten in einem lokalen und einem supralokalen Funkkommunikationssystem und zugehöriges Netzwerk
WO2005096561A1 (de) Verfahren zur kommunikation zwischen einer wlan-funkstation und einer basisstation eines zellularen funkkommunikationssystems, sowie entsprechende funkstation und basisstation
EP1919236B1 (de) Weiterleitung von Nutz- und Kontrollinformationen beim Soft Handover
DE102004019106B4 (de) Verfahren zur mehrfachen Verwendung einer zellularen Funkschnittstelle
EP2087757B1 (de) Verfahren und vorrichtung zur weiterleitung von mbms-inhalten
WO2005043833A1 (de) Verfahren zur ermittlung eines pfades in einem ad hoc-funkkommunikationssystem
DE10350908B4 (de) Verfahren zur Ermittlung eines Pfades und zur Übertragung von Daten über den ermittelten Pfad

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004714299

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20048056783

Country of ref document: CN

Ref document number: 1020057016261

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004714299

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057016261

Country of ref document: KR

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWG Wipo information: grant in national office

Ref document number: 2004714299

Country of ref document: EP