WO2004079361A1 - 亀裂の定量的非破壊評価方法 - Google Patents

亀裂の定量的非破壊評価方法 Download PDF

Info

Publication number
WO2004079361A1
WO2004079361A1 PCT/JP2004/002582 JP2004002582W WO2004079361A1 WO 2004079361 A1 WO2004079361 A1 WO 2004079361A1 JP 2004002582 W JP2004002582 W JP 2004002582W WO 2004079361 A1 WO2004079361 A1 WO 2004079361A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
inspected
crack
cooled
cracks
Prior art date
Application number
PCT/JP2004/002582
Other languages
English (en)
French (fr)
Inventor
Masumi Saka
Tetsuo Shouji
Original Assignee
Tohoku Techno Arch Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Techno Arch Co., Ltd. filed Critical Tohoku Techno Arch Co., Ltd.
Priority to CA002517786A priority Critical patent/CA2517786A1/en
Priority to EP04716368A priority patent/EP1600770A1/en
Priority to US10/544,974 priority patent/US20060146907A1/en
Publication of WO2004079361A1 publication Critical patent/WO2004079361A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Definitions

  • the present invention relates to a nondestructive evaluation method for cracks in a metal tube using ultrasonic waves or X-rays.
  • X-rays that irradiate an object with X-rays are captured with a camera to obtain an image of a crack or the like.
  • Patent Document 2 X-rays that irradiate an object with X-rays are captured with a camera to obtain an image of a crack or the like.
  • the present invention has been made in view of such a problem, and detects a crack by opening a closed crack, or quantitatively evaluates the size of a crack with high accuracy. Disclosure of the invention aimed at providing a method
  • a quantitative non-destructive evaluation method for a crack is a non-destructive evaluation method for detecting a crack in a metal pipe by a predetermined inspection device, By performing a cooling process, a heating process, or a cooling / heating process at a predetermined position, strain is generated, and a crack existing in the pipe is opened to be exposed, and the inspection is performed. It is characterized in that the tube is inspected using an inspection device.
  • the quantitative nondestructive evaluation method for cracks according to the present invention is characterized in that at least a part of the entire cross section of the pipe is cooled to apply strain to the pipe, thereby making the cracks visible and using the inspection apparatus. It is preferable that the tube be inspected by using the above method.
  • the inspection target part of the pipe is cooled, and the inspection target part of the pipe is inspected using the inspection device. Is preferred.
  • the method for quantitatively evaluating non-destructive cracks according to the present invention includes heating at least a portion of the tube except for a portion to be inspected of the tube, and inspecting the tube using the inspection device. It is preferable to inspect the part where
  • the weld It can be heated at a very high temperature until it melts, giving high stress.
  • the method for quantitatively nondestructive evaluation of cracks includes the steps of: cooling a portion of the pipe to be inspected; heating a portion of the pipe other than the portion to be inspected; It is preferable to examine the part to be examined on the body.
  • the temperature of the cooled part to be inspected can be heated immediately, and vice versa, so that each part can be inspected continuously while moving the inspection equipment, reducing the inspection time. Can contribute to
  • the heated part of the pipe is opposed to a cooled part to be inspected of the pipe with a central axis of the pipe sandwiched therebetween. It is preferably a part.
  • the tube is inspected using the inspection device in a state where the tube is cooled by liquid nitrogen. .
  • FIG. 1 is a diagram showing a quantitative nondestructive evaluation method for a crack in the first embodiment.
  • FIG. 2 is a diagram showing a tube.
  • FIG. 3 is a diagram showing a quantitative nondestructive evaluation method for a crack in the second embodiment.
  • FIG. 4 is a diagram showing a quantitative nondestructive evaluation method for a crack in the third embodiment.
  • FIG. 5 is a diagram showing a quantitative nondestructive evaluation method for a crack in the fourth embodiment.
  • FIG. 1 is a diagram showing a quantitative nondestructive evaluation method of a crack in the first embodiment of the present invention.
  • Reference numeral 1 denotes a pipe used in a power plant, an aircraft, a ship, or the like.This pipe 1 is formed by welding metal pipes 2 and 3 made of stainless steel to each other. Part 4 is formed.
  • the weld 4 has a crack 5 due to long-term use.
  • a non-destructive inspection that detects the crack 5 using the ultrasonic inspection equipment 6, 7 It can be performed.
  • the inspection devices 6 and 7 using ultrasonic waves the ultrasonic waves transmitted from the transmitter 6 of the inspection device are reflected inside the tube 1, and the echoes are reflected by the receiver 7 of the inspection device.
  • the crack 5 existing inside the pipe 1 can be evaluated from the waveform of the received echo.
  • the position of crack 5 can be measured from the time until the transmitted ultrasonic wave is received, and the size of crack 5 can be measured from the height of the waveform of the received echo or the range where the echo appears. .
  • the waveform of the received echo will be small and it may be judged that crack 5 is smaller than it actually is, or crack 5 is detected. May disappear.
  • the above-mentioned problem caused by the closed crack 5 can be solved by opening the closed crack 5 so that the crack 5 becomes apparent.
  • the volume of the tube 1 is contracted by cooling the tube 1, and the tensile stress is generated by the strain generated by the contraction of the tube 1. Is generated inside the tubular body 1, and this stress acts so as to open the crack 5.
  • the stress is the force acting inside the object and the force per unit area acting on the cross section.
  • the stress is expressed by the following formula.
  • Young's modulus is one measure of the hardness of a material, represents the ratio of stress to strain, and is the proportional constant of stress to strain. Generally, it can be considered that the larger the value of the Young's modulus is, the harder the material is, and the more force is required to deform it.
  • the coefficient of linear expansion refers to the inherent property of a material, and indicates the amount of deformation when the temperature of the material rises or falls by 1 ° C. When the temperature of the material rises, the material expands, and when the temperature of the material falls, the material shrinks, causing a volume change.
  • Young's modulus E and linear expansion coefficient of stainless steel are examples of Young's modulus E and linear expansion coefficient of stainless steel.
  • the tube 1 was cooled using ice.However, the tube 1 was cooled by flowing liquid nitrogen 8 or the like into the tube 1 or by spraying the tube 1 from the outside. When cooled, the value of ⁇ ⁇ of the temperature change can be increased, so that a larger stress can be generated in the tube 1 or the tube 1 can be extremely low in a short time. Can be cooled to temperature. However, in the case of this embodiment, the tube 1 is cooled from the outside of the tube 1.
  • the position of the cooling area is the position of the left or right side in the longitudinal direction of the tube 1 or the site where the crack 5 exists, as shown in Fig. 2.
  • the same effect can be obtained everywhere, and when actually cooling the pipes of machines and structures, it is only necessary to cool a convenient location, so the cooling work for inspection is easy. Has become.
  • Fig. 2 describes the pipe 1 with both ends fixed
  • the pipe 1 actually used as a part of a machine or structure is not necessarily in a state where both ends are fixed. Not necessarily.
  • the inspection work can be performed in a short time by using a process of instantaneously and extremely natural restoration called a thermal change.
  • thermal change since only minimal equipment is required, there is no need for on-site equipment assembly, assembly, and removal operations.
  • the present invention is not limited to this.
  • the treatment can also generate a sufficient stress to make the crack 10 apparent.
  • liquid nitrogen 11 is sprayed onto a portion of the tube 9 to be inspected, and the portion to be inspected is cooled. At this time, the cooled part shrinks and a tensile stress is generated inside, and a compressive stress is generated in a part facing the inspection target part across the central axis of the pipe 9. It will be.
  • the crack 10 present at the inspection target site can be revealed, and the accuracy of the detection of the crack 10 by the inspection devices 12 and 13 and the evaluation of the size of the crack 10 can be improved. Can be improved.
  • the area of the pipe 9 to be cooled is an angle range of about 90 ° or less in the circumferential direction from the part to be inspected, and the lower half of the pipe 9 shown in FIG. It is valid.
  • heating is performed by spraying steam 16 from a portion to be inspected of the tube 14 to a portion facing the center axis of the tube 14.
  • the heated part expands and compressive stress is generated inside, and conversely, the part to be inspected generates tensile stress.
  • the crack 15 existing in the inspection object can be revealed, and the accuracy of the detection of the crack 15 by the inspection devices 17 and 18 and the evaluation of the size of the crack 15 can be improved.
  • the region of the tube 14 to be heat-treated is in an angular range of about 90 ° or more in the circumferential direction from the portion to be inspected, and the upper half of the tube 14 shown in FIG. Is valid.
  • liquid nitrogen 20 is sprayed onto the portion of the tube 19 to be inspected, and at the same time the portion of the tube 19 to be inspected is opposed to the portion to be inspected across the central axis of the tube 19.
  • Spray steam 2 1 on The cooled part shrinks, causing tensile stress inside, and the heated part expands, causing compressive stress inside.
  • the portions facing each other across the central axis of the tube 19 are subjected to a cooling process and a heating process, so that a greater stress can be applied to the portion to be inspected, and The cracks 22 present in the different parts will become more apparent. Therefore, the accuracy of detecting the crack 22 by the inspection devices 23 and 24 and evaluating the size of the crack 22 can be further improved.
  • the part to be inspected that has been cooled can be heated immediately after the inspection, so that the temperature of the cooled part naturally increases to the original temperature. Since the part to be inspected can be changed immediately without waiting for returning to the inspection, the inspection time can be shortened.
  • the cooled and heated tube 19 will be described with reference to FIG. 5.
  • the heated portion of the cooled and heated tube 19 expands, and the cooled portion is heated. Shrink, and cracks 22 in the part cooled by the stress balance become more apparent.
  • the tube 19 opens the crack 22 existing in the cooled part.
  • the cracks 22 can be easily detected by the inspection devices 23 and 24, and the actual size of the cracks 22 can be measured.
  • the pipe is subjected to cooling treatment, heating treatment, or a combination of cooling and heating treatment. Since the tube is distorted, it is not only possible to apply stress to the tube without using any jigs, etc.By stopping the heat treatment after the inspection, the temperature of the tube naturally increases As a result, inspection work can be performed easily.
  • liquid nitrogen was used to cool the tube, but the present invention is not limited to this, and similar effects can be expected by using liquid helium, liquid oxygen, liquid air, etc. it can.
  • the ultrasonic inspection apparatus used in the above embodiment performs inspection using two transmitters and receivers.
  • the present invention is not limited to this.
  • One or three or more ultrasonic inspection apparatuses can transmit and receive.
  • An ultrasonic inspection device can be used, and ultrasonic waves can be incident at various angles.
  • the present invention is not limited to the above embodiment, and it is obvious that various inspection apparatuses can be applied to the present invention.
  • the inspection is performed by using the inspection apparatus using ultrasonic waves.
  • the crack inspection method of the present invention is not limited to this, and the X-ray inspection technology, the leakage magnetic flux inspection technology, It can also be used for current flaw detection technology and other flaw detection techniques.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

本発明は、金属製の管体1の亀裂5を所定の検査装置6、7によって検出する非破壊評価方法であって、管体1の所定位置に冷却処理、加熱処理、または冷却・加熱処理を実施することにより歪みを発生させ、管体1に存在する亀裂5を開口させて顕在化させた状態で、検査装置6、7を用いて管体1を検査する。

Description

明細書 亀裂の定量的非破壊評価方法 技術分野
本発明は、 超音波または X線等を用いた金属製の管における亀裂 の非破壊評価方法に関する。 背景技術
発電所や航空機や船舶等で使用されている金属製の配管及び配管 の溶接部等には、 長年の使用によ り、 亀裂が生じるこ とがあ り、 こ れら亀裂の先端は鋭く、 それゆえ応力が集中するこ とにな り、 放置 しておく と亀裂が進展し、 配管が破壊されて しまう こ とがある。 そ のため、 従来から各種の検査装置を用いて亀裂の発見、 または亀裂 の大きさを評価する方法が開発されてきた。 例えば、 超音波を配管 の溶接部等の検査対象部位に照射して、 反射して く るエコーの大き さから亀裂の発見、または亀裂の大きさを知る方法がある。 (例えば、 特許文献 1参照)
また、 X線を対象物に照射して透過する X線をカメ ラで撮影し、 亀裂等の撮像を得るものがある。 (例えば、 特許文献 2参照)
【特許文献 1 】
特開 2 0 0 2 — 2 6 7 6 3 8号公報 (段落 0 0 1 3、 第 2 図)
【特許文献 2 】
特開平 9 — 2 9 7 1 1 1号公報 (段落 0 0 2 3、 第 4図) 機械や構造物の運転に伴い配管等には負荷がかか り、 亀裂が開口 して進展するよう にな り、 逆に運転を停止した状態で行われる検査 時においては、無負荷のために一般に亀裂は閉じている場合がある。 疲労亀裂の亀裂閉 Pはよ く知られてお り、応力腐蝕割れ【::おいても、 亀裂面間の酸化物は亀裂閉 □の要因とな り、 亀裂の早期発見の観点 から重要である微小な亀裂はヽ 大きい亀裂よ り も強く 閉じている可 能性がある。
しかしながら、 特許文献 1 にあっては 、 超音波のェコ一を用いて 亀裂の検出を行つているために 、 検査対象となる部位を測定した際 に、 閉口 した亀裂は 、 実 よ 小さい亀裂が存在する と誤つた評価 がなされるばかり か 、 ときには亀裂が発見されな く なる可能性があ り、 亀裂の検出や正確な大ぎさの評価が難し く な り、 精度の高い検 査ができな く なる
また、 特許文献 2 にめ ては 、 X線を用いて亀裂の検出を行って お り、 X線は体積を有する P している亀裂の検出には有効である が、 閉口 している小さい亀裂の体積は極めて小さ く、 それゆえ健全 な部分と亀裂の部分とで X線の減衰の変化が出難く、 精度の高い亀 裂の検出や評価が困難である。
本発明は、 このような問題点に着目 してなされたもので、 閉口 し た亀裂を開口させて亀裂の検出、 または精度よ く亀裂の大きさの評 価ができる亀裂の定量的非破壊評価方法を提供するこ とを目的とす る 発明の開示
上記の目的を解決するために、 本発明の亀裂の定量的非破壊評価 方法は、 金属製の管体の亀裂を所定の検査装置によつて検出する非 破壊評価方法であって、 前記管体の所定位置にヽ 冷却処理、 加熱処 理、 または冷却 · 加熱処理を実施するこ とによ り歪みを発生させ、 前記管体に存在する亀裂を開口させて顕在化させた状態で、 前記検 査装置を用いて前記管体を検査するこ とを特徴と している。
この特徴によれば、 管体にメカニカルな装置を取り付けた り 、 外 す手間な く、 外部からの熱変化を管体に与えるだけで、 管体の内部 に応力を与えるこ とができ、 管体に存在する亀裂が、 この応力で顕 在化されるよう にな り、 検査装置による亀裂の検出、 及び亀裂の大 きさの評価の精度を向上させる こ とができるよう になる。
本発明の亀裂の定量的非破壊評価方法は、 前記管体の少なく とも 一部の断面全域を冷却するこ とによって歪みを前記管体に与えて、 亀裂を顕在化させて前記検査装置を用いて前記管体を検査するよう にしたこ とが好ま しい。
このよう にすれば、 管体の断面全域を冷却するこ とによ り、 管体 の長手方向に沿って管体に引張応力が与えられるよう にな り、 管体 に存在する亀裂が顕在化されるよう になるので、 検査装置による亀 裂の検出、 及び亀裂の大きさの評価の精度を向上させるこ とができ るよつになる。
本発明の亀裂の定量的非破壊評価方法は、 前記管体の検査対象と なる部位を冷却し、 前記検査装置を用いて前記管体の検査対象とな る部位を検査するよう にしたこ とが好ま しい。
このよう にすれば、 冷却された部位には、 引張応力が作用し、 そ の他の部位には、 圧縮応力が作用するよう になるので、 冷却された 部位に存在する亀裂が顕在化される よう にな り、 検査装置による亀 裂の検出、 及び亀裂の大きさの評価の精度を向上させるこ とができ るよう になる。
本発明の亀裂の定量的非破壊評価方法は、 少な く とも前記管体の 検査対象となる部位を除く、 前記管体の部位を加熱し、 前記検査装 置を用いて前記管体の検査対象となる部位を検査するよう にしたこ とが好ま しい。
このよう にすれば、 加熱された部位には、 圧縮応力が作用し、 そ の他の部位には、 引張応力が作用するよう になるので、 管体の検査 対象となる部位に存在する亀裂が顕在化されるこ とにな り、 検査装 置による亀裂の検出、 及び亀裂の大きさの評価の精度を向上させる こ とができるよう になる。 特に加熱に関しては、 原理的に溶接部が 溶融するまでのかな り の高温加熱が可能とな り、 高い応力を与えら れる。
本発明の亀裂の定量的非破壊評価方法は、 前記管体の検査対象と なる部位を冷却し、 前記管体の検査対象となる部位以外の部位を加 熱し、 前記検査装置を用いて前記管体の検査対象となる部位を検査 するよう にしたこ とが好ま しい。
このよう にすれば、 高い温度差を管体に与えるこ とができ、 評価 精度が一段と向上する。 また、 冷却された検査対象となる部位の温 度を即座に加熱できる と ともに、 その逆も可能となるため、 検査装 置を移動させながら、 各部位を連続的に検査でき、 検査時間の短縮 に寄与できる。
本発明の亀裂の定量的非破壊評価方法は、 前記管体の加熱される 部位が、 前記管体の検査対象となる冷却される部位と、 前記管体の 中心軸を挟んで対向している部位である こ とが好ま しい。
このよう にすれば、 冷却された部位には、 引張応力が作用し、 加 熱された部分には、 圧縮応力が作用するので、 管体の中心軸を挟ん で対向している部位同士が、 冷却及び加熱されるこ とで、 よ り大き な応力を検査対象となる部位に与える こ とができ、 亀裂がよ り顕在 化し、 検査装置による亀裂の検出、 及び亀裂の大きさの評価の精度 を向上させるこ とができるよう になる。
本発明の亀裂の定量的非破壊評価方法は、 前記管体が液体窒素に よつて冷却処理された状態で、 前記検査装置を用いて前記管体を検 査するよう に したこ とが好ま しい。
このようにすれば、 液体窒素を用いるこ とで、 管体を短時間で極 めて低い温度に冷却させられるばか り か、 大きな応力を管体に作用 させるこ とができるよう にな り、管体を部分的に冷却させた状態で、 亀裂を顕在化させるこ とができる。 ' 図面の簡単な説明 第 1 図は、 第 1実施形態における亀裂の定量的非破壊評価方法を 示す図である。
第 2 図は、 管体を示した図である。
第 3 図は、 第 2実施形態における亀裂の定量的非破壊評価方法を 示す図である。
第 4図は、 第 3実施形態における亀裂の定量的非破壊評価方法を 示す図である。
第 5 図は、 第 4実施形態における亀裂の定量的非破壊評価方法を 示す図である。 発明を実施するための最良の形態
以下、本発明の実施例を図面に基づいて説明する と、先ず図 1 は、 本発明の第 1実施形態における亀裂の定量的非破壊評価方法を示す 図である。 符号 1 は、 発電所や航空機や船舶等で使用されている管 体であ り、 この管体 1 は、 ステンレス鋼で構成された金属製の配管 2、 3 同士が溶接されてお り、 溶接部 4が形成されている。
溶接部 4 には、 長年の使用によ り亀裂 5 が生じるため、 この亀裂 5 を検出するために、 超音波を用いた検査装置 6、 7 を使って、 亀 裂 5 を検出する非破壊検査を行う こ とができる。 超音波を用いた検 査装置 6、 7 を使用 した場合には、 検査装置の送信機 6 よ り送信さ れた超音波は管体 1 内部で反射し、 そのエコーが検査装置の受信機 7で受信されるこ とにな り、 受信されたエコーの波形から管体 1 内 部に存在する亀裂 5の評価を行う こ とができる。
亀裂 5 の位置は、 送信された超音波が受信されるまでの時間から 測定でき、 亀裂 5の大きさは、 受信されたエコーの波形の高さ、 あ るいはエコーが出現する範囲から測定できる。 しかし、 亀裂 5 が閉 口している場合には、 受信されるエコーの波形が小さ く な り、 実際 よ り小さい亀裂 5 がある と判断されるこ とがあるばか りか、 亀裂 5 が検出されな く なるこ とがある。 上記のような閉口した亀裂 5 による問題は、 閉じた亀裂 5 を開い た状態にさせるこ とで、 亀裂 5 が顕在化するよう になるので解消で きる。 亀裂 5 を顕在化させるためには、 先ず、 管体 1 を冷却処理す るこ とによって、 管体 1 の体積を収縮させ、 管体 1 が収縮する こ と で生じる歪みによ り、 引張応力を管体 1 内部に発生させ、 この応力 が亀裂 5 を開口させる よう に作用するよう になっている。
実際に管体 1 を検査する際には、 図 1 に示すよう に、 管体 1 の一 部の外周に沿って液体窒素 8 を噴き付け、 管体 1 の断面全域を冷却 処理させる。 金属製の管体 1 は、 冷却された部分が収縮するので、 管体 1 の全体には、 長手方向に沿って引張応力が作用するよう にな り、 この応力によ り亀裂 5 が顕在化されるようになる。 一般に大き な設備内の配管系は各管体 1 が連続的に繋がってお り、 瞬間的には 管体 1 は両端が固定されている と して、 本処理を実施できる。
亀裂 5 が顕在化された状態で、 検査装置の送信機 6から超音波を 送信し、 亀裂 5 に反射されたエコーを検査装置の受信機 7で受信す る。亀裂 5が顕在化されているので、検査装置による亀裂 5 の検出、 及び亀裂 5の実際の大きさの評価の精度を向上させるこ とができる よう になる。
次に、 管体 1 を冷却処理した際に管体 1 に働く応力について、 図 2 を参照して説明する。 応力とは、 物体の内部で作用する力で、 断 面に作用する単位面積当た りの力であ り、 応力を式で表すと以下の よつ ίしな る。
【数 1 】
Bf画に雄えお力
断醱積
図 2 に示すよう に、 長さ L。の管体 1 の両端が固定されてお り、 この管体 1 の長さ L の区間の領域の断面全体を冷却したときに、 亀裂 5 を顕在化させるための応力は、 ヤング率を E、 線膨張係数を α、 冷却領域の温度変化量を Δ Τ とする と、 発生する応力は以下の よう になる
【数 2 】
aし i ΔΤ"
ί&力 = Ε 上述したヤング率とは、 材質の固さの一つの目安であ り、 応力と 歪みとの比のこ とを表し、 歪みに対する応力の比例定数である。 一 般にこのヤング率の値が大きいほど材質は固く、 変形させるのに力 が必要である と考えてよい。 また、 線膨張係数とは、 材質の持って いる固有の性質を表してお り、 材質の温度が 1 °C上昇あるいは降下 したときの変形量を示し、 この線膨張係数と温度変化量によって、 材質の温度が上昇したときには材質は膨張し、 材質の温度が降下し たときには、 材質は収縮する という体積変化が生じるよう になって いる
図 2の冷却領域は、 管体 1 の任意の位置でよ く 、 管体 1全体を冷 却した場合を考える と、 L 1 = L。とな り、 発生する応力は、 応力: E ひ Δ Tである。 例えば、 ステンレス鋼を冷却した際に発生する応 力について説明する と、 ステンレス鋼のヤング率 E と線膨張係数ひ は、
E =約 2 1 0 0 0 kgf /mm 2
ひ =約 1 5 X 1 0 — 6 [ 1 /°C ] ( 2 0 °Cでの値)
であるので、 ステンレス鋼で形成された管体 1 全体を冷却したとき ( L , = L 0 ) 上記式 ( 1 ) よ り、 その応力を求める式は、
Figure imgf000009_0001
2 0 °Cの室温に置かれた冷却前の管体 1全体の温度を 2 0 °Cと し、 0 °Cの氷を用いて管体 1全体の温度が 0 °Cまで下げられたときには、 温度変化量は、 2 0 °〇 ( Δ Τ = 2 0 ) となるので、 このとき管体 1 に発生する応力は、 【数 4】 6≤
上記式 ( 1 ) よ り、 温度を下げるほど、 その温度変化量に比例し て管体 1 に発生する応力が大き く な り、 亀裂 5 を顕在化させるこ と ができる。 上記式では、 氷を用いて管体 1 を冷却させていたが、 液 体窒素 8等を管体 1 の内部に流入させた り、 外部から管体 1 に噴き 付けるこ とで管体 1 を冷却させる と、 温度変化量の Δ Τの値を大き く させるこ とができるので、 よ り大きな応力を管体 1 に発生させる こ とができるばか り か、 管体 1 を短時間で極めて低い温度に冷却さ せるこ とができる。 ただし、 この実施例の場合は、 管体 1 の外部か ら管体 1 を冷却させている。
また、 液体窒素 8等を用いて管体 1 を冷却させる場合には、 上述 したよう に、 管体 1全体を冷却 ( L ! = L 0 ) させな く てもよ く、 管 体 1 を部分的に冷却 ( L < L。) させるだけでも、 亀裂 5 を顕在化 させるのに十分な応力を発生させるこ とができる。
更に、 管体 1 を部分的に冷却 ( L ! < L 0 ) させる場合、 その冷却 領域の位置は、 図 2 に示す、 管体 1 の長手方向の左側や右側や亀裂 5の存在する部位のどこでも同じ効果を得る こ とが可能であ り、 実 際に機械や構造物の配管等を冷却する際には、 都合の良い位置を冷 却すればよいので検査のための冷却作業が容易になっている。
図 2では、 両端が固定されている管体 1 について説明したが、 実 際に機械や構造物の一部と して用いられている管体 1 は、 必ずしも 両端が固定された状態である とは限らない。 しかし、 本発明の場合 は、 熱変化という瞬間的に極めて自然に復元する処理を用い、 短時 間に検査作業を行えるこ とになる。 また最小限の装置で済むため、 現場における機器の組付、 組立、 除去等の作業が不要となる。
次に、 第 2実施形態に係る亀裂の定量的非破壊評価方法につき、 図 3 を参照して説明する。 上記第 1実施形態では、 管体 1 の断面全 域を冷却していたが、 これに限らず、 管体 9 の断面の部分的な冷却 処理によっても、 亀裂 1 0 を顕在化させるために十分な応力を発生 させるこ とができる。
先ず、 管体 9 の検査対象となる部位に液体窒素 1 1 を噴き付け、 検査対象となる部位を冷却処理させる。 このとき冷却された部位は 収縮し、 内部には引張応力が生じるよう にな り、 検査対象となる部 位から管体 9 の中心軸を挟んで対向している部位には、 圧縮応力が 生じるこ とになる。
この応力によって、 検査対象となる部位に存在する亀裂 1 0 を顕 在化させるこ とができ、検査装置 1 2、 1 3 による亀裂 1 0の検出、 及び亀裂 1 0 の大きさの評価の精度を向上させる こ とができる。 こ の冷却処理の場合には、 冷却処理させる管体 9 の領域は、 検査対象 となる部位から周方向に角度 9 0 ° 程度以下の角度範囲、 図 3 に示 す管体 9 の下半分が有効である。
次に、 第 3実施形態に係る亀裂の定量的非破壊評価方法につき、 図 4 を参照して説明する。 上記第 2実施形態では、 管体 9 の検査対 象となる部位を冷却処理させて応力を発生させていたが、 これに限 らず、 管体 1 4 を加熱処理させるこ とによつても、 亀裂 1 5 を顕在 化させるために十分な応力を発生させる こ とができる。
先ず、 上記第 2実施形態とは逆に、 管体 1 4の検査対象となる部 位から管体 1 4の中心軸を挟んで対向している部位にスチーム 1 6 を噴き付けるこ とで加熱処理させる と、 加熱された部位は膨張し、 内部には圧縮応力が生じるよう にな り、 逆に検査対象となる部位に は、 引張応力が生じるこ とになる。
この応力によって、 検査対象に存在する亀裂 1 5 を顕在化させる こ とができ、 検査装置 1 7、 1 8 による亀裂 1 5 の検出、 及び亀裂 1 5 の大きさの評価の精度を向上させるこ とができる。 この加熱処 理の場合には、 加熱処理させる管体 1 4の領域は、 検査対象となる 部位から周方向に角度 9 0 ° 程度以上の角度範囲、 図 4 に示す管体 1 4の上半分が有効である。 次に、 第 4実施形態に係る亀裂の定量的非破壊評価方法につき、 図 5 を参照して説明する。 上述した冷却処理と加熱処理は同時に行 う こ とも可能である。
先ず、 管体 1 9 の検査対象となる部位に液体窒素 2 0 を噴き付け る と同時に、 管体 1 9 の検査対象となる部位から管体 1 9 の中心軸 を挟んで対向している部位にスチーム 2 1 を噴き付ける。 冷却され た部位は収縮し、 内部には引張応力が生じるよう にな り、 加熱され た部位は膨張し、 内部には圧縮応力が生じるよう になる。
管体 1 9の中心軸を挟んで対向している部位同士が、 冷却処理及 び加熱処理されるこ とで、 よ り大きな応力を検査対象となる部位に 与えるこ とができ、 検査対象となる部位に存在する亀裂 2 2がよ り 顕在化されるこ とになる。 そのため検査装置 2 3、 2 4による亀裂 2 2 の検出、 及び亀裂 2 2 の大きさの評価の精度をよ り 向上させる こ とができる。
冷却と加熱を同時に行う こ とで、 冷却処理された検査対象となる 部位を、 検査後にすく'に加熱処理させるこ とができるので、 冷却さ れた部位の温度が、 自然にも との温度に戻るのを待つこ とな く、 即 座に検査対象となる部位を変えるこ とができるよう になるので、 検 査時間を短縮できるよう になる。
そのため、 管体 1 9 の溶接部 2 5 などを検査する ときには、 液体 窒素 2 0 とスチーム 2 1 を噴き付ける部位を溶接部 2 5の外周に沿 つて、 回転させながら移動させるこ とで、 冷却 · 加熱処理を繰り返 しながら検査対象の部位を順次変えるこ とができ、 管体 1 9 の溶接 部 2 5 を連続的に検査するこ とができるよう になる。
よ り詳しく冷却 · 加熱処理された管体 1 9 について、 図 5 を参照 して説明する と、 冷却 · 加熱処理を実施された管体 1 9 の加熱され た部位は膨張し、 冷却された部位は収縮し、 応力バラ ンスによって 冷却処理された部分の亀裂 2 2 がよ り顕在化する。
このよう に管体 1 9 は、 冷却された部位に存在する亀裂 2 2 は開 口するこ とにな り、 検査装置 2 3、 2 4 によって亀裂 2 2 を発見し やすく なるばか り か、 亀裂 2 2 の実際の大きさの測定ができるよう になる。
応力を管体に与える方法は種々考えられるが、 本発明の亀裂の定 量的非破壊評価方法では、 管体を冷却処理、 加熱処理、 または冷却 · 加熱処理の組合せを実施するこ とで、 管体に歪みを発生させている ので、 何の治具等を使わずに管体に応力を与えるこ とができるばか りか、 検査後に熱処理を止めるこ とで、 管体の温度は自然にも とに 戻るので、 検査作業が容易に行えるよう になつている。
以上、 本発明の実施例を図面によ り説明してきたが、 具体的な構 成はこれら実施例に限られるものではな く、 本発明の要旨を逸脱し ない範囲における変更や追加があっても本発明に含まれる。
例えば、 上記実施例では、 管体を冷却させる際に液体窒素を使用 したが、 これに限られるものではな く、 液体ヘリ ウム、 液体酸素、 液体空気等を用いるこ とでも同様な効果を期待できる。
また、 管体を加熱させる際に、 スチームを使用 したが、 これに限 られるものではな く、 電気抵抗の発熱を利用 した発熱体やレーザー やガスバーナ一等を用いて管体を加熱させる こ ともできる。
上記実施例で用いられている超音波検査装置は、 送信機と受信機 の 2台を用いて検査を行つているが、 これに限らず、 1台または 3 台以上で送信も受信も行える超音波検査装置を用いるこ とも可能で あ り、 さ らにいろいろな角度で超音波を入射可能である。 このよう に上記実施例に限定されるものではな く、 種々の検査装置がこの発 明に適用できるこ とは自明である。
更に、 上記実施例では、 超音波を用いた検査装置を使用して検査 を行っているが、 本発明の亀裂の検査方法は、 これに限らず、 X線 探傷技術、 漏洩磁束探傷技術、 過電流探傷技術、 及びその他の探傷 技術などにも使用するこ とができる。

Claims

請求の範囲
1 . 金属製の管体の亀裂を所定の検査装置によって検出する非破壊 評価方法であって、 前記管体の所定位置に、 冷却処理、 加熱処理、 または冷却 · 加熱処理を実施するこ とによ り歪みを発生させ、 前記 管体に存在する亀裂を開口させて顕在化させた状態で、 前記検査装 置を用いて前記管体を検査するこ とを特徴とする亀裂の定量的非破 壊評価方法。
2 . 前記管体の少なく とも一部の断面全域を冷却するこ とによって 歪みを前記管体に与えて、 亀裂を顕在化させて前記検査装置を用い て前記管体を検査する よう にした請求項 1 に記載の亀裂の定量的非 破壊評価方法。
3 . 前記管体の検査対象となる部位を冷却し、 前記検査装置を用い て前記管体の検査対象となる部位を検査するよう に した請求項 1 に 記載の亀裂の定量的非破壊評価方法。
4 . 少な く とも前記管体の検査対象となる部位を除く、 前記管体の 部位を加熱し、 前記検査装置を用いて前記管体の検査対象となる部 位を検査するよう に した請求項 1 に記載の亀裂の定量的非破壊評価 方法。
5 . 前記管体の検査対象となる部位を冷却し、 前記管体の検査対象 となる部位以外の部位を加熱し、 前記検査装置を用いて前記管体の 検査対象となる部位を検査するよう に した請求項 1 に記載の亀裂の 定量的非破壊評価方法。
6 . 前記管体の加熱される部位が、 前記管体の検査対象となる冷却 される部位と、 前記管体の中心軸を挟んで対向している部位である 請求項 5 に記載の亀裂の定量的非破壊評価方法。
7 . 前記管体が液体窒素によって冷却処理された状態で、 前記検査 装置を用いて前記管体を検査するよう にした請求項 1、 2、 3、 5 または 6の何れかに記載の亀裂の定量的非破壊評価方法。
PCT/JP2004/002582 2003-03-06 2004-03-02 亀裂の定量的非破壊評価方法 WO2004079361A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002517786A CA2517786A1 (en) 2003-03-06 2004-03-02 Quantitative nondestructive evaluation method for cracking
EP04716368A EP1600770A1 (en) 2003-03-06 2004-03-02 Quantitative nondestructive evaluation method for cracking
US10/544,974 US20060146907A1 (en) 2003-03-06 2004-03-02 Quantitative nondestructive evaluation method for cracking

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003060279A JP3639958B2 (ja) 2003-03-06 2003-03-06 亀裂の定量的非破壊評価方法
JP2003-60279 2003-03-06

Publications (1)

Publication Number Publication Date
WO2004079361A1 true WO2004079361A1 (ja) 2004-09-16

Family

ID=32958875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002582 WO2004079361A1 (ja) 2003-03-06 2004-03-02 亀裂の定量的非破壊評価方法

Country Status (7)

Country Link
US (1) US20060146907A1 (ja)
EP (1) EP1600770A1 (ja)
JP (1) JP3639958B2 (ja)
KR (1) KR20050105244A (ja)
CN (1) CN100405057C (ja)
CA (1) CA2517786A1 (ja)
WO (1) WO2004079361A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639328B2 (ja) * 2004-11-26 2011-02-23 国立大学法人東北大学 亀裂の非破壊評価方法
JP4981433B2 (ja) * 2006-12-18 2012-07-18 三菱重工業株式会社 検査装置、検査方法、検査プログラムおよび検査システム
JP2008215936A (ja) * 2007-03-01 2008-09-18 Tokyo Electric Power Co Inc:The ガスタービンの翼の超音波探傷方法
JP2009002713A (ja) * 2007-06-20 2009-01-08 Tohoku Univ 局部冷却装置および局部冷却方法
US8186875B2 (en) * 2008-09-14 2012-05-29 Nuovo Pignone S.P.A. Method for determining reheat cracking susceptibility
JP5210285B2 (ja) * 2009-10-29 2013-06-12 株式会社神戸製鋼所 局部冷却方法
JP2014085161A (ja) * 2012-10-19 2014-05-12 Tohoku Univ 構造物欠陥の非破壊検査方法および構造物欠陥の非破壊検査装置
CN103323523A (zh) * 2013-05-27 2013-09-25 云南电力试验研究院(集团)有限公司电力研究院 一种支柱绝缘子振动声学检测试块的制作方法
CN103323311B (zh) * 2013-06-28 2015-04-15 云南电力试验研究院(集团)有限公司电力研究院 一种瓷支柱绝缘子人工裂纹缺陷制造方法
CN106018114A (zh) * 2016-08-11 2016-10-12 南通永大管业股份有限公司 钢管的耐高压破坏测试装置
JP7056403B2 (ja) * 2018-06-20 2022-04-19 横河電機株式会社 バルブ診断装置、バルブ装置、及びバルブ診断方法
CN115683905B (zh) * 2022-12-09 2023-04-21 广东大鹏液化天然气有限公司 一种长输气管道划伤本体所致裂纹的检测修复方法和系统
CN117664730B (zh) * 2023-12-12 2024-05-17 青岛中科鲁控燃机控制系统工程有限公司 一种基于分散控制系统的测试装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296264A (ja) * 1985-06-25 1986-12-27 Mitsubishi Heavy Ind Ltd 超音波探傷法
JPH07218411A (ja) * 1994-01-27 1995-08-18 Ono Sokki Co Ltd 試験装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4232554A (en) * 1978-11-30 1980-11-11 Grumman Aerospace Corporation Thermal emission flaw detection method
US4522064A (en) * 1983-12-12 1985-06-11 Sigma Research Inc. Ultrasonic method and apparatus for determining the depth of a crack in a solid material
US4854724A (en) * 1984-07-09 1989-08-08 Lockheed Corporation Method of and apparatus for thermographic evaluation of spot welds
US4658649A (en) * 1985-06-06 1987-04-21 Combustion Engineering, Inc. Ultrasonic method and device for detecting and measuring defects in metal media
US4983836A (en) * 1988-06-30 1991-01-08 Nkk Corporation Method for detecting thinned out portion on inner surface or outer surface of pipe
US5222999A (en) * 1989-07-14 1993-06-29 Brymill Corporation Liquified nitrogen thermal checking of electronic circuitry
US5031456A (en) * 1989-08-04 1991-07-16 H.A.F.A. International, Inc. Method for the detection of voids and corrosion damage by thermal treatment
US5549003A (en) * 1992-10-21 1996-08-27 The United States Of America As Represented By The Secretary Of Commerce Method and apparatus for visualization of internal stresses in solid non-transparent materials by ultrasonic techniques and ultrasonic computer tomography of stress
US7083327B1 (en) * 1999-04-06 2006-08-01 Thermal Wave Imaging, Inc. Method and apparatus for detecting kissing unbond defects
US6593574B2 (en) * 1999-09-16 2003-07-15 Wayne State University Hand-held sound source gun for infrared imaging of sub-surface defects in materials
US7559251B2 (en) * 2006-06-26 2009-07-14 Bo-Young Lee Apparatus for forming thermal fatigue cracks

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296264A (ja) * 1985-06-25 1986-12-27 Mitsubishi Heavy Ind Ltd 超音波探傷法
JPH07218411A (ja) * 1994-01-27 1995-08-18 Ono Sokki Co Ltd 試験装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAKA M.: "Kiretsu no Teiryoteki Hihakai Hyoka-Tojita Kiretsu ni Chumoku shite-", HIHAKAI KENSA, vol. 52, no. 11, 1 November 2003 (2003-11-01), pages 596 - 599, XP002981526 *

Also Published As

Publication number Publication date
CN1754098A (zh) 2006-03-29
KR20050105244A (ko) 2005-11-03
JP3639958B2 (ja) 2005-04-20
JP2004271281A (ja) 2004-09-30
CA2517786A1 (en) 2004-09-16
EP1600770A1 (en) 2005-11-30
CN100405057C (zh) 2008-07-23
US20060146907A1 (en) 2006-07-06

Similar Documents

Publication Publication Date Title
Vithanage et al. A phased array ultrasound roller probe for automated in-process/interpass inspection of multipass welds
JP3639958B2 (ja) 亀裂の定量的非破壊評価方法
US20100131210A1 (en) Method and system for non-destructive inspection of a colony of stress corrosion cracks
JP5276497B2 (ja) 配管溶接部の寿命評価方法
TWI692640B (zh) 廠房的檢查方法
Chen et al. Wall thickness measurement and defect detection in ductile iron pipe structures using laser ultrasonic and improved variational mode decomposition
Trimm An overview of nondestructive evaluation methods
Mouritz Non-destructive evaluation of damage accumulation AP Mouritz, RMIT University, Australia
KR100648341B1 (ko) 결함 및 인장 잔류 응력 생성 방법
Hwang et al. Reliability verification of stress data from extracted specimens using LCR wave stress data from full-section rail specimens
Javadi et al. Using ultrasonic and finite element for residual stress evaluation of a gas transmission pipeline
Rao et al. NDE Methods for Monitoring Corrosion and Corrosion‐assisted Cracking: Case Studies II
JP2000214143A (ja) 非破壊検査用模擬試験体の製造方法及び非破壊検査方法
Berndt NON-DESTRUCTIVE TESTING METHODS FOR GEOTHERMAL PIPING.
Kania et al. Investigation and Assessment of Low-Frequency ERW Seam Imperfections by EMAT and CMFL ILI
Jung et al. Inspection of Welding Discontinuities in Tubular-Type Transmission Towers Using Metal Magnetic Memory
Si et al. CIVA Simulation and Experiment Verification for Thin-Walled Small-Diameter Pipes by Using Phased Array Ultrasonic Testing
JP3152955B2 (ja) ダイバータ板の非破壊検査方法
Alavijeh et al. Application of a chord transducer for ultrasonic detection and characterisation of defects in MDPE butt fusion joints
Bujuru NONDESTRUCTIVE INSPECTION TECHNIQUES FOR ROCKET MOTOR CASINGS
Peng et al. 3. Ultrasonic and acoustic techniques
Choi et al. Nondestructive evaluation of welding residual stress in power plant facilities using instrumented indentation technique
JPS59145959A (ja) 管溶接部の欠陥検出方法
Camerini et al. Evaluation of fatigue cracks in welded parts of clad pipelines by means of eddy current testing
H Ahmed et al. An Innovative vibration sensor for flow accelerated corrosion measurement

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006146907

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10544974

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 901/MUMNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2004716368

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057015749

Country of ref document: KR

Ref document number: 20048051559

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2517786

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 1020057015749

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004716368

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10544974

Country of ref document: US