WO2004079053A1 - Process for producing electrolytic copper foil - Google Patents

Process for producing electrolytic copper foil Download PDF

Info

Publication number
WO2004079053A1
WO2004079053A1 PCT/JP2004/002869 JP2004002869W WO2004079053A1 WO 2004079053 A1 WO2004079053 A1 WO 2004079053A1 JP 2004002869 W JP2004002869 W JP 2004002869W WO 2004079053 A1 WO2004079053 A1 WO 2004079053A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
copper foil
sulfate solution
electrolytic
electrolytic copper
Prior art date
Application number
PCT/JP2004/002869
Other languages
French (fr)
Japanese (ja)
Inventor
Hisao Sakai
Shinichi Obata
Makoto Dobashi
Original Assignee
Mitsui Mining & Smelting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co., Ltd. filed Critical Mitsui Mining & Smelting Co., Ltd.
Publication of WO2004079053A1 publication Critical patent/WO2004079053A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/16Regeneration of process solutions
    • C25D21/18Regeneration of process solutions of electrolytes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern

Definitions

  • the present invention relates to a method for producing an electrolytic copper foil.
  • electrolytic copper foil was started in the early 1930s by Anaconda (USA), the world's largest copper producer at the time.
  • the origin of the production of this electrolytic copper foil is as follows.In copper refining electrolysis, copper components eluted into sulfuric acid from blister copper are deposited on the seed copper of the cathode by using blister copper containing impurities in the anode and seed copper in the cathode to form copper electrolytic copper. It is collected as. At this time, the amount of copper eluted from the blister copper is greater than the amount of copper precipitated as electrolytic copper, so the copper concentration in the electrolyte gradually increases.
  • the extracted electrolyte The solution is referred to as “sampled copper sulfate solution”.
  • This extracted copper sulfate solution is a so-called copper sulfate solution, and production of electrolytic copper foil was attempted in order to effectively use the copper sulfate solution.
  • the equipment for producing electrolytic copper foil already had a drawn copper sulfate solution, which is a copper sulfate solution, flowing between a rotating cathode in the form of a drum and a lead-based anode placed opposite to the rotating cathode.
  • copper was deposited on the drum surface of the rotating cathode using an electrolytic reaction, and the deposited copper became a foil state, which was continuously peeled off from the rotating cathode and wound up.
  • the electrodeposited copper foil obtained in this way was referred to as an electoru-kappa sheet at that time, and was mainly used for building materials and decorative purposes.
  • the electrolytic copper foil at that time was cheaper in production cost than the rolled copper foil and could be provided at a lower price, but the extracted copper sulfate solution contained many impurities such as zinc, calcium, nickel, and arsenic.
  • the electrical resistance increased compared to copper foil, and the electrical resistance specifications required for electoronics products could not be satisfied.
  • Circuit Oil In order to produce high-purity electrolytic copper foil that can be used in the electronics field, Circuit Oil has given up using conventional copper sulfate solution instead of dissolving copper wire with sulfuric acid and adding copper sulfate solution with less impurities. It was decided to use. This concept is based on the idea that Clevit (later Gould), a manufacturer of electrolytic copper foils for electronics that was established to date, is now an electrolytic copper foil manufacturer in Japan, including the Company, and other Taiwanese companies. It is used by all electrolytic copper foil manufacturers in Korea, China and other countries. The contents related to the technical background described above and the production of conventional copper foil for printed wiring boards are disclosed in various patent documents and technical documents shown below. For example, U.S. Pat. No.
  • Figure 1 shows a comparison of the metal component content in the liquid before and after activated carbon filtration.
  • FIG. 2 shows a comparison of the content of the impurity metal component in the electrolytic copper foil produced using each copper sulfate solution before and after the activated carbon filtration.
  • Fig. 3 shows the roughened surface shape of the electrolytic copper foil produced using each copper sulfate solution before and after activated carbon filtration.
  • the inventors of the present invention as a result of diligent research, returned to the origin of electrolytic copper foil production and found that even with the above-mentioned extracted copper sulfate solution, the same electronics as high-purity electrolytic copper foil supplied to the conventional market were used. They have come up with a method that can produce electrolytic copper foil with a purity that can be used in applications. The idea of producing electrolytic copper foil with a purity that can be used for electronics using the extracted copper sulfate solution has been neglected by those skilled in the art for more than 50 years.
  • the basic technical idea of the present invention is as described in the claim: ⁇
  • the copper sulfate solution is withdrawn from a refining electrolytic cell for obtaining electrolytic copper.
  • the extracted copper sulfate solution is treated with activated carbon.
  • a method for producing an electrolytic copper foil comprising: It is to adopt.
  • the extracted copper sulfate solution extracted from the refining electrolytic cell for obtaining the electrolytic copper contains various impurities in the extracted copper sulfate solution.
  • the most common impurities are nickel, arsenic, iron, calcium, aluminum, zinc, magnesium and the like, and also include glue and thiourea which are intentionally added.
  • the greatest feature of the present invention lies in that this solution is treated with activated carbon.
  • activated carbon treatment of a plating solution or the like is generally used for cleaning a solution, and it is apparent that the same cleaning effect can be obtained by filtering the extracted copper sulfate solution with activated carbon.
  • the cleaning effect referred to here is to remove so-called organic substances such as glue in a solution and decomposition residues of the organic substances, and to adsorb and remove a part of metal components that are ionized. It has been considered promising.
  • Figure 1 shows the results.
  • the content of each metal component in the liquid hardly changed before and after activated carbon filtration.
  • a titanium plate was placed on the cathode and an insoluble DSE electrode was placed on the anode so that the distance between the electrodes was 10 mm, and the solution temperature was 48 ° C and the current density was An electrolytic copper foil of 35 m was produced at 35 AZ dm 2 .
  • the rough surface of the copper foil produced using the extracted copper sulfate solution treated with activated carbon (Fig. 3 (A)) and the extracted copper sulfate solution not treated with activated carbon were used. Comparing with the rough surface of copper foil manufactured using the liquid (Fig. 3 (B)), the latter rough surface of the copper foil has many abnormal deposition spots and is not uniform. Therefore, by using the extracted copper sulfate solution that has been treated with activated carbon, the stability of copper precipitation can be maintained.
  • the activated carbon treatment used in the present invention removes only organic additives such as glue and thiourea in the solution, and does not remove contained metal ions.
  • organic additives such as glue and thiourea in the solution
  • metal ions I think that when the organic additive is removed from the sampled copper sulfate solution, copper electrolysis using the solution suppresses the precipitation of impurity metal components other than copper, and satisfies the copper purity required for electrolytic copper foil for printed wiring boards. It is thought that the product which was obtained is obtained.
  • the electrolytic copper foil may be produced by adding an additive such as glue to a copper sulfate solution for controlling physical properties. Therefore, the inventors of the present invention have filtered the extracted copper sulfate solution extracted from the refining electrolytic cell for obtaining the electrolytic copper with activated carbon, and then added an additive for improving the physical properties of the copper foil. As described above, they have found that it is possible to produce an electrolytic copper foil without containing the impurity component contained in the extracted copper sulfate solution.
  • the additives mentioned here mainly refer to organic additives such as glue, gelatin, and surfactants.
  • organic additives such as glue, gelatin, and surfactants.
  • electrolytic copper foil the purity of its components is a problem, and it is hardly conceivable to use metal additives except when trying to produce copper alloy foil.
  • the current density used during electrolysis will be described.
  • a copper component is deposited on the surface of the cathode in a manner to make it smooth, and this is stripped off. Therefore, it is clear that the current density must be within the range that allows smooth copper plating. That is, the relationship between the copper concentration and the current density largely determines the condition of copper smoothness. If the copper concentration is low, the current density will normally be low unless the current density is set low.
  • the copper concentration in the copper sulfate solution used for the production of copper foil for printed wiring boards has been increased to 80 g Z1 as a solution with a high copper concentration and high current density electrolysis to improve production efficiency. Have been.
  • the copper concentration of the extracted copper sulfate solution extracted from the electrolytic cell for obtaining electrolytic copper The density is usually 55 g / 1 or less, and it is not possible to perform electrolysis at a high current density exceeding 5 OAZdm 2 used in the production of the current copper foil for printed wiring boards. Therefore, by setting the current density lower, it is possible to produce electrolytic copper foil that satisfies the purity of copper foil for printed wiring boards.
  • the low current density since there is no particular problem regarding the low current density, it is not necessary to particularly consider the lower limit of the current density.
  • considering the industrial base it is advantageous to secure high productivity at the highest possible current density, and operating conditions near the upper limit current density will be determined.
  • Electrical resistance shows the physical properties of HTE class 0. 160 ⁇ - g / m 2 or more of the properties I PC standard, ordinary Japanese Patent wire ratio Comparative Examples 1 described below was obtained by dissolving in sulfuric acid There is no difference between the physical properties of the electrolytic copper foil (HTE) obtained using the copper sulfate solution. Therefore, it is clear that the properties as an electrolytic copper foil for a printed wiring board can be sufficiently satisfied.
  • each of the above physical properties indicates the physical properties of the HTE foil of the IPC standard obtained by the usual method for producing an electrolytic copper foil. These are to be compared with the first embodiment described above. As can be seen from this, the physical properties of the electrolytic copper foil obtained in the first example are not inferior to those of the copper foil of the first comparative example.
  • the technique that a person skilled in the art has given up for many years is improved from a new point of view, so that it can be said that the origin of the copper foil is ⁇ extracted from the electrolytic cell for obtaining electrolytic copper ''
  • the origin of the copper foil is ⁇ extracted from the electrolytic cell for obtaining electrolytic copper ''
  • the process of dissolving the conductive wire with sulfuric acid is not required, and the production line can be significantly shortened.
  • the extracted copper sulfate solution generated from the electrolytic refining of copper untitled use of resources can be suppressed, and extremely inexpensive copper foil can be supplied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

A process for producing an electrolytic copper foil using sampled copper sulfate solution being discharged from a copper refining process in order to supply a low-cost electrolytic copper foil for printed wiring board to the market. The process for producing an electrolytic copper foil by electrolyzing copper sulfate solution is characterized in that copper sulfate solution sampled from a refining electrolytic cell for obtaining electric copper is employed after being subjected to activated carbon treatment. The process for producing an electrolytic copper foil by electrolyzing copper sulfate solution is characterized in that copper sulfate solution is sampled from a refining electrolytic cell for obtaining electric copper and subjected to activated carbon treatment and then added with an additive for improving the physical properties of the copper foil.

Description

明 細 書 発明の名称  Description Name of Invention
電解銅箔の製造方法 技 術 分 野  Manufacturing method of electrolytic copper foil
本発明は、 電解銅箔の製造方法に関する。  The present invention relates to a method for producing an electrolytic copper foil.
背 景 技 術 Background technology
最初に、 電解銅箔の製造方法の開発の歴史に関して説明する。 電解銅箔の製造 は、 当時の世界最大の産銅会社であるアナコンダ社 (米国) によって 1 9 3 0年 代の前半に開始されたものである。 この電解銅箔の製造の発端は、 銅の精製電解 では、 陽極に不純物を含有した粗銅、 陰極に種銅を用いて、 粗銅から硫酸に溶出 した銅成分を陰極の種銅に析出させ電気銅として採取するものである。このとき、 粗銅から溶出する銅の方が、 電気銅として析出する銅よりも多いため、 電解液中 の銅濃度が次第に上昇していくのである。 そこで、 電解液中の銅濃度を一定の範 囲内に維持し、 工業製品として安定した品質の電気銅を採取するため、 電解液を 定常的に抜き取る必要があるのである (以下、 この抜き取った電解液を 「抜取硫 酸銅溶液」 と称する。)。  First, the history of the development of a method for producing an electrolytic copper foil is described. The production of electrolytic copper foil was started in the early 1930s by Anaconda (USA), the world's largest copper producer at the time. The origin of the production of this electrolytic copper foil is as follows.In copper refining electrolysis, copper components eluted into sulfuric acid from blister copper are deposited on the seed copper of the cathode by using blister copper containing impurities in the anode and seed copper in the cathode to form copper electrolytic copper. It is collected as. At this time, the amount of copper eluted from the blister copper is greater than the amount of copper precipitated as electrolytic copper, so the copper concentration in the electrolyte gradually increases. Therefore, in order to maintain the copper concentration in the electrolyte within a certain range, and to extract copper of stable quality as an industrial product, it is necessary to constantly withdraw the electrolyte (hereinafter referred to as the extracted electrolyte). The solution is referred to as “sampled copper sulfate solution”.)
この抜取硫酸銅溶液は、 いわゆる硫酸銅溶液であり、 この硫酸銅溶液の有効利 用を図るために、 電解銅箔製造が試みられたのである。 その当時既に電解銅箔の 製造装置は、 ドラム形状をした回転陰極と、 その回転陰極の形状に沿って対向配 置する鉛系陽極との間に、 硫酸銅溶液である抜取硫酸銅溶液を流し、 電解反応を 利用して銅を回転陰極のドラム表面に析出させ、この析出した銅が箔状態となり、 回転陰極から連続して引き剥がして巻き取るものとなっていた。 このようにして 得られる電解銅箔は、 当時エレクト口カッパ一シートと称して、 主に建材、 装飾 用途に供されていた。  This extracted copper sulfate solution is a so-called copper sulfate solution, and production of electrolytic copper foil was attempted in order to effectively use the copper sulfate solution. At that time, the equipment for producing electrolytic copper foil already had a drawn copper sulfate solution, which is a copper sulfate solution, flowing between a rotating cathode in the form of a drum and a lead-based anode placed opposite to the rotating cathode. However, copper was deposited on the drum surface of the rotating cathode using an electrolytic reaction, and the deposited copper became a foil state, which was continuously peeled off from the rotating cathode and wound up. The electrodeposited copper foil obtained in this way was referred to as an electoru-kappa sheet at that time, and was mainly used for building materials and decorative purposes.
そして、 1 9 5 0年代にはいると、 トランジスタが実用化され、 エレクトロニ クス製品の配線にプリント配線板が用いられるようになつた。 このプリン卜配線 板の回路形成にエツチング法が採用されるに到り、 一般銅線と同様に銅で構成さ れ、 同様の回路抵抗の設計が可能な銅箔を用いることが生産効率の観点から非常 に有利であることが判明してきた。 このとき銅箔には、 圧延銅箔と電解銅箔とが. 存在していた。 圧延銅箔は、 その製法ゆえに製造コストが高いが、 銅純度の調整 が可能でエレクトロニクス製品に求められる電気抵抗スペックを満足できるもの であった。 これに対し、 当時の電解銅箔は、 圧延銅箔に比べ製造コストは安く安 価に提供できるものの、 抜取硫酸銅溶液には亜鉛、 カルシウム、 ニッケル、 砒素 等の不純物が多く含まれるため、 圧延銅箔に比べ電気抵抗が上昇し、 エレクト口 ニクス製品に求められる電気抵抗スペックを満足できるものではなかった。 Then, in the 1950's, transistors became practical and electronic Printed wiring boards have come to be used for wiring products. When the etching method is used to form the circuit of the printed wiring board, it is necessary to use a copper foil which is made of copper in the same manner as general copper wire and which can be designed with the same circuit resistance. Has proven to be very advantageous. At this time, the rolled copper foil and the electrolytic copper foil were present in the copper foil. Rolled copper foil has a high manufacturing cost due to its manufacturing method, but its copper purity can be adjusted and it satisfies the electrical resistance specifications required for electronic products. On the other hand, the electrolytic copper foil at that time was cheaper in production cost than the rolled copper foil and could be provided at a lower price, but the extracted copper sulfate solution contained many impurities such as zinc, calcium, nickel, and arsenic. The electrical resistance increased compared to copper foil, and the electrical resistance specifications required for electoronics products could not be satisfied.
従って、 高純度の電解銅箔を製造することが出来れば、 圧延銅箔は問題ではな く、電解銅箔のエレクトロニクス分野での使用が急拡大することは明らかである。 このような背景の下に、 プリン卜配線板専門の電解銅箔の供給を目的に、 サーキ ットフオイル社 (米国) が設立された。  Therefore, if high-purity electrolytic copper foil can be produced, rolled copper foil is not a problem, and it is clear that the use of electrolytic copper foil in the electronics field will rapidly expand. Against this background, Circuit Oil Company (USA) was established to supply electrolytic copper foil for printed wiring boards.
そして、 サーキットフオイル社は、 エレクトロニクス分野で使用可能な高純度 の電解銅箔を製造するため、 従来の抜取硫酸銅溶液を用いることを諦め、 銅線を 硫酸で溶解させ不純物の少ない硫酸銅溶液を用いることとしたのである。 この考 え方は、 その後設立された現在に至るまでのエレクトロ二クス用電解銅箔の製造 会社である、 クレバイト社 (後のグールド社)、 当社を含む我国の電解銅箔メー カー、 その他台湾、 韓国、 中国等の電解銅箔メーカーの全てで採用されている。 以上に述べてきた技術背景に関する内容及び従来のプリント配線板用銅箔の製 造に関しては、 以下に示す種々の特許文献及び技術文献に開示されている。 例え ば、 米国特許第 1 , 9 5 2 , 7 6 2号、 米国特許第 1, 9 7 8 , 0 3 7号、 米国 特許第 2 , 0 3 5, 5 1 7号、 米国特許第 2 , 0 4 4 , 4 1 5号、 米国特許第 2, 0 5 1 , 9 2 3号、 B O U N D A R Y 「プリント回路と出会った電解銅箔は幸運 だった (間瀬一夫 著)」 (1 9 8 8年 5月号) 等である。 しかしながら、 近年のエレクトロニクス分野においては、 世界的な価格競争が 熾烈を極めるようになり、 新興工業国における電解銅箔製造も活発化してきてい るため、 急激に低価格化が進行し、 国内電解銅箔メーカーの経営を圧迫する状態 が形成されている。 In order to produce high-purity electrolytic copper foil that can be used in the electronics field, Circuit Oil has given up using conventional copper sulfate solution instead of dissolving copper wire with sulfuric acid and adding copper sulfate solution with less impurities. It was decided to use. This concept is based on the idea that Clevit (later Gould), a manufacturer of electrolytic copper foils for electronics that was established to date, is now an electrolytic copper foil manufacturer in Japan, including the Company, and other Taiwanese companies. It is used by all electrolytic copper foil manufacturers in Korea, China and other countries. The contents related to the technical background described above and the production of conventional copper foil for printed wiring boards are disclosed in various patent documents and technical documents shown below. For example, U.S. Pat. No. 1,952,762, U.S. Pat. No. 1,978,037, U.S. Pat. No. 2,035,517, U.S. Pat. 044, 415, U.S. Patent No. 2,051,923, BOUNDARY "Electrodeposited copper foil encountered a printed circuit was fortunate (by Kazuo Mase)" Month issue). However, in the field of electronics in recent years, global price competition has become intense, and the production of electrolytic copper foil in emerging industrial countries has become active. As a result, price reductions have progressed sharply, creating a situation that has put pressure on the management of domestic electrolytic copper foil manufacturers.
一方で、電子、電気機器のダウンサイジングの要求はとどまるところを知らず、 その基本部品であるプリント配線板の多層化、 その回路の高密度化、 実装部品の 高密度実装化が、 より強く求められるようになつており、 電解銅箔の品質向上に もより一層の要求が行われている。  On the other hand, the demand for downsizing of electronic and electrical equipment is boundless, and there is a strong need for multi-layer printed wiring boards that are the basic components, higher density of circuits, and higher density of mounted components. As a result, there is a growing demand for improving the quality of electrolytic copper foil.
これらのことを背景に、 我国の銅箔製造メーカーは、 より一層低コストで、 従 来の電解銅箔と同等の製品を市場に供給し、 海外諸国の製品に対抗しうるまでに 国際競争力を高める必要が生じてきた。  Against this background, copper foil manufacturers in Japan have been able to supply products equivalent to those of conventional electrolytic copper foil to the market at even lower cost, and have an international competitiveness to compete with products from overseas countries. Need to be raised.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1には、 活性炭濾過の前後における液中の金属成分含有量の比較を示してい る。 図 2には、 活性炭濾過の前後における各々の硫酸銅溶液を用いて製造した電 解銅箔中の不純物金属成分含有量の比較を示している。 図 3には、 活性炭濾過の 前後における各々の硫酸銅溶液を用いて製造した電解銅箔の粗化面形状を示して いる。  Figure 1 shows a comparison of the metal component content in the liquid before and after activated carbon filtration. FIG. 2 shows a comparison of the content of the impurity metal component in the electrolytic copper foil produced using each copper sulfate solution before and after the activated carbon filtration. Fig. 3 shows the roughened surface shape of the electrolytic copper foil produced using each copper sulfate solution before and after activated carbon filtration.
発 明 の 概 要 Overview of the invention
そこで、 本件発明者等は、 鋭意研究の結果、 電解銅箔製造の原点に立ち返り、 上記抜取硫酸銅溶液を用いても、 従来の市場に供給していた高純度の電解銅箔と 同等のエレクトロニクス用途で使用可能な純度の電解銅箔の製造可能な方法に想 到するに到ったのである。 当該抜取硫酸銅溶液を用いて、 エレクトロニクス用途 で使用可能な純度の電解銅箔を製造するという考え方は、 5 0年以上の長きに渡 り、 当業者間で放置されていたものである。  The inventors of the present invention, as a result of diligent research, returned to the origin of electrolytic copper foil production and found that even with the above-mentioned extracted copper sulfate solution, the same electronics as high-purity electrolytic copper foil supplied to the conventional market were used. They have come up with a method that can produce electrolytic copper foil with a purity that can be used in applications. The idea of producing electrolytic copper foil with a purity that can be used for electronics using the extracted copper sulfate solution has been neglected by those skilled in the art for more than 50 years.
本件発明における基本的技術思想は、 請求項に記載したように 「硫酸銅溶液を 電解することにより電解銅箔を製造する方法において、 硫酸銅溶液は、 電気銅を 得るための精製電解槽から抜き取る抜取硫酸銅溶液を、 活性炭処理したものであ ることを特徴とする電解銅箔の製造方法。」 を採用することにある。 ここで 「電 気銅を得るための精製電解槽から抜き取る抜取硫酸銅溶液」 とあるが、 この抜取 硫酸銅溶液には種々の不純物が含まれている。 一般的に不純物として、 最も一般 的なのがニッケル、 砒素、 鉄、 カルシウム、 アルミニウム、 亜鉛、 マグネシウム 等であり、 意図的に添加する膠、 チォ尿素等も含まれているものである。 The basic technical idea of the present invention is as described in the claim: `` In a method for producing an electrolytic copper foil by electrolyzing a copper sulfate solution, the copper sulfate solution is withdrawn from a refining electrolytic cell for obtaining electrolytic copper. The extracted copper sulfate solution is treated with activated carbon. A method for producing an electrolytic copper foil, comprising: It is to adopt. Here, "the extracted copper sulfate solution extracted from the refining electrolytic cell for obtaining the electrolytic copper" contains various impurities in the extracted copper sulfate solution. Generally, the most common impurities are nickel, arsenic, iron, calcium, aluminum, zinc, magnesium and the like, and also include glue and thiourea which are intentionally added.
この溶液を活性炭処理する点に本件発明の最も大きな特徴がある。 確かにメッ キ液等の活性炭処理は一般的に溶液の清浄化に使用されており、 前記抜取硫酸銅 溶液を活性炭濾過すれば同様の清浄化効果が得られることは明らかである。 とこ ろが、 ここで言う清浄化効果とは、 いわゆる溶液中の膠等の有機物、 その有機物 の分解残渣等を除去することであり、 イオン化して存在する一部の金属成分を吸 着除去する所まで期待できるものと考えられてきた。 そして、 本件発明で言う活 性炭処理は、 活性炭と抜取硫酸銅溶液とが 5時間以上接触することのできるよう な処理条件を採用することが望ましい。 例えば、 「抜取硫酸銅溶液中に活性炭を 添加して 5時間以上攪拌して接触させる」、 「限外濾過機のリーフに装着するプ レコートに活性炭を分散させ極めてゆつくりと活性炭と抜取硫酸銅溶液とを接触 させる」 等である。  The greatest feature of the present invention lies in that this solution is treated with activated carbon. Certainly, activated carbon treatment of a plating solution or the like is generally used for cleaning a solution, and it is apparent that the same cleaning effect can be obtained by filtering the extracted copper sulfate solution with activated carbon. However, the cleaning effect referred to here is to remove so-called organic substances such as glue in a solution and decomposition residues of the organic substances, and to adsorb and remove a part of metal components that are ionized. It has been considered promising. In the activated carbon treatment according to the present invention, it is desirable to employ treatment conditions that enable the activated carbon to come into contact with the extracted copper sulfate solution for 5 hours or more. For example, `` Add activated carbon to the extracted copper sulfate solution and stir it for at least 5 hours to make contact '', `` Disperse the activated carbon in the precoat attached to the leaf of the ultrafiltration machine and make it very loose and the activated carbon and extracted copper sulfate Contact with a solution. "
このことを確認するため、 本件発明者等は、 抜取硫酸銅溶液 (日比共同製鍊株 式会社品)の活性炭濾過の前後における、液中の金属成分含有量を比較してみた。 その結果を示したのが図 1である。 この図 1から分かるように、 活性炭濾過の前 後において、 液中の各金属成分の含有量は、 殆ど変化していないのである。 ところが、 上述した活性炭濾過前後の抜取硫酸銅溶液を用いて、 陰極にチタン 板、 陽極に不溶性の D S E電極を極間距離 1 0 mmとなるよう配して、 溶液温度 4 8 °C、 電流密度 3 5 AZ d m2で、 3 5 mの電解銅箔製造を行った。 そして、 ここで得られた 2つの電解銅箔の不純物量の分析を行い、 その結果を図 2に示し た。 この図 2から分かるように、 液中の各金属成分の含有量が変わらないにもか かわらず、 活性炭濾過した抜取硫酸銅溶液を用いて製造した銅箔は、 そこに含有 する不純物元素量が極端に少なくなるのである。 To confirm this, the present inventors compared the metal component content of the extracted copper sulfate solution (manufactured by Hibi Kyodo Co., Ltd.) before and after activated carbon filtration. Figure 1 shows the results. As can be seen from FIG. 1, the content of each metal component in the liquid hardly changed before and after activated carbon filtration. However, using the extracted copper sulfate solution before and after the activated carbon filtration described above, a titanium plate was placed on the cathode and an insoluble DSE electrode was placed on the anode so that the distance between the electrodes was 10 mm, and the solution temperature was 48 ° C and the current density was An electrolytic copper foil of 35 m was produced at 35 AZ dm 2 . Then, the amounts of impurities in the two electrolytic copper foils obtained here were analyzed, and the results are shown in FIG. As can be seen from Fig. 2, despite the fact that the content of each metal component in the solution does not change, the amount of impurity elements contained in the copper foil manufactured using the extracted copper sulfate solution filtered with activated carbon was low. It is extremely low.
しかも、 図 3から明らかなように、 活性炭処理を行った抜取硫酸銅溶液を用い て製造した銅箔の粗面 (図 3 (A) ) と、 活性炭処理を行ってない抜取硫酸銅溶 液を用いて製造した銅箔の粗面 (図 3 ( B ) ) とを比較すると、 後者の銅箔の粗 面には異常析出箇所が多く認められ、 不均一となるのである。 従って、 活性炭処 理を行った抜取硫酸銅溶液を用いることで銅の析出安定性も保てることになるの である。 Moreover, as is clear from Fig. 3, the rough surface of the copper foil produced using the extracted copper sulfate solution treated with activated carbon (Fig. 3 (A)) and the extracted copper sulfate solution not treated with activated carbon were used. Comparing with the rough surface of copper foil manufactured using the liquid (Fig. 3 (B)), the latter rough surface of the copper foil has many abnormal deposition spots and is not uniform. Therefore, by using the extracted copper sulfate solution that has been treated with activated carbon, the stability of copper precipitation can be maintained.
これらのことから次のことが分かる。 本件発明で用いる活性炭処理は、 溶液中 の膠、 チォ尿素等の有機添加剤のみを除去して、 含有金属イオンの除去は行って いないことになつている。思うに、抜取硫酸銅溶液から有機添加剤を除去すると、 その液を用いて銅電解すると銅以外の不純物金属成分の析出を抑制し、 プリント 配線板用電解銅箔に要求される銅純度を満たした製品が得られると考えられるの である。  The following can be understood from these facts. The activated carbon treatment used in the present invention removes only organic additives such as glue and thiourea in the solution, and does not remove contained metal ions. I think that when the organic additive is removed from the sampled copper sulfate solution, copper electrolysis using the solution suppresses the precipitation of impurity metal components other than copper, and satisfies the copper purity required for electrolytic copper foil for printed wiring boards. It is thought that the product which was obtained is obtained.
更に、 電解銅箔は、 物性コントロールのために、 硫酸銅溶液中に膠を初めとす る添加剤を加えて製造されることもある。 そこで、 本件発明者等は、 当該電気銅 を得るための精製電解槽から抜き取る抜取硫酸銅溶液を活性炭で濾過処理し、 そ の後、 銅箔物性を改善するための添加剤を加えることで、 上述したように抜取硫 酸銅溶液中に含まれる不純物成分を含有することなく電解銅箔の製造が可能であ ることを見いだしたのである。  Further, the electrolytic copper foil may be produced by adding an additive such as glue to a copper sulfate solution for controlling physical properties. Therefore, the inventors of the present invention have filtered the extracted copper sulfate solution extracted from the refining electrolytic cell for obtaining the electrolytic copper with activated carbon, and then added an additive for improving the physical properties of the copper foil. As described above, they have found that it is possible to produce an electrolytic copper foil without containing the impurity component contained in the extracted copper sulfate solution.
ここで言う添加剤とは、 膠、 ゼラチン、 界面活性剤と称される如き有機添加剤 を主に指すものである。 電解銅箔の場合には、 その成分純度が問題になるため、 銅合金箔を製造しょうとする場合を除いて、 金属類の添加剤を使用する場合は、 殆ど考えられないからである。  The additives mentioned here mainly refer to organic additives such as glue, gelatin, and surfactants. In the case of electrolytic copper foil, the purity of its components is a problem, and it is hardly conceivable to use metal additives except when trying to produce copper alloy foil.
次に、 電解時の使用電流密度に関して説明する。 電解銅箔の製造は、 陰極表面 に銅成分を平滑メツキする要領で析出させて、これを剥ぎ取るのである。従って、 銅の平滑メツキが出来る条件内の電流密度を採用しなければならないのは明らか である。 即ち、 銅の平滑メツキ条件を左右するのは、 大きく見て銅濃度と電流密 度との関係がある。 銅濃度が低い場合には、 通常、 電流密度は低く設定しなけれ ばャケメツキ条件となってしまう。 従来、 プリント配線板用銅箔の製造に用いら れる硫酸銅溶液中の銅濃度は、 8 0 g Z 1の高銅濃度の溶液として、 高電流密度 電解を行うことで生産効率の向上を図ってきた。  Next, the current density used during electrolysis will be described. In the production of electrolytic copper foil, a copper component is deposited on the surface of the cathode in a manner to make it smooth, and this is stripped off. Therefore, it is clear that the current density must be within the range that allows smooth copper plating. That is, the relationship between the copper concentration and the current density largely determines the condition of copper smoothness. If the copper concentration is low, the current density will normally be low unless the current density is set low. Conventionally, the copper concentration in the copper sulfate solution used for the production of copper foil for printed wiring boards has been increased to 80 g Z1 as a solution with a high copper concentration and high current density electrolysis to improve production efficiency. Have been.
ところが、 電気銅を得るための精製電解槽から抜き取る抜取硫酸銅溶液の銅濃 度は、 55 g/ 1以下であるのが通常であり、 現在のプリント配線板用銅箔の製 造に用いている 5 OAZdm2を超える高電流密度での電解は不可能である。 そ こで、 電流密度を低めに設定することで、 プリント配線板用銅箔としての純度を 満足する電解銅箔の製造が可能となるのである。 ここで、 電流密度が低いことに 関しては特に問題はないため、 特に電流密度の下限を考慮する必要はない。 しか し、 工業ベースで考えれば可能な限り高い電流密度で高い生産性を確保すること が有利であり、 上限の限界電流密度に近いところでの操業条件が定められること になると考えられる。 However, the copper concentration of the extracted copper sulfate solution extracted from the electrolytic cell for obtaining electrolytic copper The density is usually 55 g / 1 or less, and it is not possible to perform electrolysis at a high current density exceeding 5 OAZdm 2 used in the production of the current copper foil for printed wiring boards. Therefore, by setting the current density lower, it is possible to produce electrolytic copper foil that satisfies the purity of copper foil for printed wiring boards. Here, since there is no particular problem regarding the low current density, it is not necessary to particularly consider the lower limit of the current density. However, considering the industrial base, it is advantageous to secure high productivity at the highest possible current density, and operating conditions near the upper limit current density will be determined.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明に係る電解銅箔の製造方法を用いて電解銅箔を製造した実施例に 関して説明する。  Hereinafter, an example in which an electrolytic copper foil is manufactured using the method for manufacturing an electrolytic copper foil according to the present invention will be described.
(第 1実施例) (First embodiment)
本実施例においては、 上記図 1の活性炭処理有りの抜取硫酸銅溶液を用いて、 陰極にチタン製の電解ドラム、 陽極に不溶性の DS E電極を用い、 極間距離 10 mmとなるよう配して、 溶液温度 52°C 電流密度 3 7. 5AZdm2で、 3 5 mの電解銅箔製造を行った。この結果得られた電解銅箔の諸特性を以下に示す。 なお、 このときの活性炭濾過処理は、 抜取硫酸銅溶液に活性炭が 5 g/ 1となる ように加え、 1 2時間の攪拌を行い、 濾過することにより行った。 なお、 以下に 示す銅箔物性は、基本的に I PC-TM- 6 50に準拠して測定したものである。 但し、 粗度に関しては、 J I S B 060 1に言う 「中心線平均粗さ (Ra)」 及び 「1 0点平均粗さ (Rz)」 を用いている。 単位重量 : 279 g/m2 In this example, using the extracted copper sulfate solution with activated carbon treatment shown in Fig. 1 above, a titanium electrolytic drum for the cathode, an insoluble DSE electrode for the anode, and an interelectrode distance of 10 mm were arranged. Then, an electrolytic copper foil of 35 m was manufactured at a solution temperature of 52 ° C. and a current density of 37.5 AZdm 2 . The properties of the resulting electrolytic copper foil are shown below. The activated carbon filtration treatment at this time was performed by adding activated carbon to the extracted copper sulfate solution at a concentration of 5 g / 1, stirring for 12 hours, and filtering. The physical properties of the copper foil shown below are basically measured according to IPC-TM-650. However, as for the roughness, "center line average roughness (Ra)" and "10 point average roughness (Rz)" described in JISB0601 are used. Unit weight: 279 g / m 2
表面粗さ :光沢面 R a = 0. 25 m, R z = 1. 8 2 im  Surface roughness: glossy surface R a = 0.25 m, R z = 1.82 im
粗 面 Ra = 0. 95 urn, R z = 6. 1 0 ^m  Rough surface Ra = 0.95 urn, R z = 6.10 0 ^ m
引張り強さ:常 態 41. 6 kg f /mm2 熱 後 24. 7 kg f /mm2 Tensile strength: Normal 41.6 kg f / mm 2 After heat 24.7 kg f / mm 2
伸び率 :常 態 1 7. 9 %  Elongation: Normal 1 7.9%
熱 後 22. 8%  After heat 22.8%
銅純度 : 99. 99 %以上  Copper purity: 99. 99% or more
電気抵抗 : 0. 160 Ω- g/m2 以上の各物性 I PC規格の HTEクラスの物性を示しており、 以下に述べる比 較例 1の通常の特号電線を硫酸で溶解させて得た硫酸銅溶液を用いて得られた電 解銅箔 (HTE) の物性と何ら変わるところはない。 従って、 プリント配線板用 の電解銅箔としての物性を十分に満足しうるものであることが明らかである。 Electrical resistance: shows the physical properties of HTE class 0. 160 Ω- g / m 2 or more of the properties I PC standard, ordinary Japanese Patent wire ratio Comparative Examples 1 described below was obtained by dissolving in sulfuric acid There is no difference between the physical properties of the electrolytic copper foil (HTE) obtained using the copper sulfate solution. Therefore, it is clear that the properties as an electrolytic copper foil for a printed wiring board can be sufficiently satisfied.
(第 2実施例) (Second embodiment)
本実施例においては、 第 1実施例で用いた活性炭処理有りの抜取硫酸銅溶液を 用いて、 この活性炭処理後の抜取硫酸銅溶液に 3 p pm濃度となるように膠を添 加し、第 1実施例に記載したと同様の方法で、 35 xmの電解銅箔製造を行った。 この結果得られた電解銅箔の諸特性を以下に示す。 単位重量 : 275 gXm2 In this example, using the extracted copper sulfate solution with activated carbon treatment used in the first example, glue was added to the extracted copper sulfate solution after the activated carbon treatment so as to have a concentration of 3 ppm. In the same manner as described in Example 1, a 35 xm electrolytic copper foil was produced. The properties of the resulting electrolytic copper foil are shown below. Unit weight: 275 gXm 2
表面粗さ :光沢面 R a = 0. 25 urn, R z = 1. 47 /2 m  Surface roughness: glossy surface R a = 0.25 urn, R z = 1.47 / 2 m
粗 面 R a = = 0. 86 urn, R z  Rough surface R a = = 0.86 urn, R z
引張り強さ :常 台 39. 5 k g f / mm2 Tensile strength: Stand 39.5 kgf / mm 2
熱 後 38. 2 k g f Z mm2 After heat 38.2 kgf Z mm 2
伸び率 :常 1 3. 0 %  Elongation rate: always 13.0%
埶 後 1 5. 5 %  After 15.5%
銅純度 : 99 99 %以上  Copper purity: 99 99% or more
電気抵 : 0. 1 61 Ω- - g/m2 以上の各物性は、 以下に述べる比較例 2の通常の特号電線を硫酸で溶解させ'、 膠を添加して得た硫酸銅溶液を用いて得られた電解銅箔の物性と何ら変わるとこ ろはない。 従って、 プリント配線板用の電解銅箔としての物性を十分に満足しう るものであることが明らかである。 Electrical resistance: 0. 1 61 Ω- - g / m 2 or more of the properties can be prepared by dissolving the conventional Japanese Patent wire of Comparative Example 2 described below with sulfuric acid ', a copper sulfate solution obtained by adding glue What is the difference between the physical properties of the electrolytic copper foil obtained by using It is not. Therefore, it is clear that the properties as an electrolytic copper foil for a printed wiring board are sufficiently satisfied.
(第 1比較例) (First comparative example)
本比較例においては、従来のプリント配線板用の電解銅箔の製造方法どうりに、 特号銅線を硫酸で溶解して、 銅濃度が 80 g/ 硫酸濃度が 150 gZ 1の硫 酸銅溶液を用いて、 第 1実施例で用いたと同様の電解条件で、 35 imの電解銅 箔製造を行った。 この結果得られた電解銅箔の諸特性を以下に示す。 単位重量 : 284 g/m2 In this comparative example, a special copper wire was dissolved with sulfuric acid to produce a copper sulfate with a copper concentration of 80 g / sulfuric acid concentration of 150 gZ1 as in the conventional method of manufacturing electrolytic copper foil for printed wiring boards. Using the solution, an electrolytic copper foil of 35 im was produced under the same electrolysis conditions as those used in the first example. The properties of the resulting electrolytic copper foil are shown below. Unit weight: 284 g / m 2
表面粗さ :光沢面 Ra = 0. 26 nm, R z = 1. 83 urn  Surface roughness: Glossy surface Ra = 0.26 nm, Rz = 1.83 urn
粗 面 R a = 1. 18 urn, R z = 7. 18  Rough surface R a = 1.18 urn, R z = 7.18
引張り強さ :常 態 38. 8 k f /mm2 Tensile strength: Normal 38.8 kf / mm 2
熱 後 29. 5 kg f /mm2 After heat 29.5 kg f / mm 2
伸び率 :常 態 19. 7%  Growth rate: Normal 19.7%
熱 後 21. 3%  After heat 21.3%
銅純度 : 99. 99 %以上  Copper purity: 99. 99% or more
: 0. 160 Ω— g ,/m - 以上の各物性は 、 通常の電解銅箔の製造方法で得られる I PC規格の HTE箔 の物性を示している。 これらは、 上述の第 1実施例と比較すべきものである。 こ のことから分かるように、 第 1実施例で得られた電解銅箔の物性は、 この第 1比 較例の銅箔物性と何ら遜色のないことが分かるのである。  : 0.160 Ω-g, / m-Each of the above physical properties indicates the physical properties of the HTE foil of the IPC standard obtained by the usual method for producing an electrolytic copper foil. These are to be compared with the first embodiment described above. As can be seen from this, the physical properties of the electrolytic copper foil obtained in the first example are not inferior to those of the copper foil of the first comparative example.
(第 2比較例) (Second comparative example)
本比較例においては、従来のプリント配線板用の電解銅箔の製造方法どうりに、 特号銅線を硫酸で溶解して、 銅濃度が 80 g/ 硫酸濃度が 150 g/ 1の硫 酸銅溶液とし、 ここに 3 p pm濃度となるように膠を添加して、 この溶液を用い て、第 1実施例で用いたと同様の電解条件で、 35 mの電解銅箔製造を行った。 この結果得られた電解銅箔の諸特性を以下に示す。 In this comparative example, a special copper wire was dissolved with sulfuric acid, and the copper concentration was 80 g / the sulfuric acid concentration was 150 g / 1, as in the conventional method of manufacturing electrolytic copper foil for printed wiring boards. A copper solution was added, glue was added thereto to a concentration of 3 ppm, and a 35 m electrolytic copper foil was manufactured using this solution under the same electrolytic conditions as those used in the first example. The properties of the resulting electrolytic copper foil are shown below.
282 g/m2 282 g / m 2
表面粗さ 光沢面 Ra = 0. 26 /im, R z 72 m  Surface roughness Glossy surface Ra = 0.26 / im, R z 72 m
粗 面 Ra = 0. 88 urn, R z 37 u  Rough surface Ra = 0.888 urn, R z 37 u
引張り強さ 常 態 32. 9 kg f /mm2 Tensile strength Normal 32.9 kg f / mm 2
熱 後 33. 8 kg f /mm2 After heat 33.8 kg f / mm 2
伸び率 常 態 6. 0%  Growth rate Normal 6.0%
熱 後 1 5. 2%  After heat 15.2%
銅純度 99. 99 %以上  Copper purity 99. 99% or more
0. 1 62 Ω - g/m2 以上の各物性は、 通常の電解銅箔の製造方法で得られる I PC規格のクラス 3 箔の物性を示している。 これらは、 上述の第 2実施例と比蛟すべきものである。 このことから分かるように、 第 2実施例で得られた電解銅箔の物性は、 この第 2 比較例の銅箔物性と何ら遜色のないことが分かるのである。 0. 1 62 Ω - g / m 2 or more of the properties shows I PC standard Class 3 foil properties of obtained by the process of the conventional electrolytic copper foil. These are comparable to the second embodiment described above. As can be seen from the above, the physical properties of the electrolytic copper foil obtained in the second example are not inferior to those of the copper foil of the second comparative example.
(第 3比較例) 本実施例においては、 上記図 1の活性炭処理無しの抜取硫酸銅 溶液を用いて、 第 1実施例と同様の電解条件で、 35 mの電解銅箔製造を行つ た。 この結果得られた電解銅箔の諸特性を以下に示す。 なお、 このときには活性 炭濾過処理は、 一切行っていないことを明確にする。 単位重量 : 279 g/m2 (Third Comparative Example) In this example, an electrolytic copper foil of 35 m was manufactured under the same electrolytic conditions as in the first example using the extracted copper sulfate solution without the activated carbon treatment shown in FIG. . The properties of the resulting electrolytic copper foil are shown below. At this time, it is clarified that no activated carbon filtration was performed. Unit weight: 279 g / m 2
表面粗さ :光沢面 R a = ■■ 0. 25 um, R z = = 1. 82 zm  Surface roughness: glossy surface R a = ■■ 0.25 um, R z = = 1.82 zm
粗 面 R a = : 0. 98 Aim, R z = = 6. 88 ίΐνα 引張り強さ :常 態 42. 3 k g f /mm2 Rough surface R a =: 0.98 Aim, R z = = 6.88 ίΐνα Tensile strength: normal 42.3 kgf / mm 2
熱 後 23. 1 k g f / mm2 After heat 23.1 kgf / mm 2
伸び率 :常 態 1 7. 9 %  Elongation: Normal 1 7.9%
熱 後 22. 8 % 銅純度 : 9 9 . 9 5 % After heat 22.8% Copper purity: 99.9%
電気抵抗 : 0 . 1 6 5 Ω - g /m2 以上の各物性を上記実施例の物性と比較すると、 銅純度が悪くなつており、 結 果として、 電気抵抗がプリント配線板用銅箔に求められるレベルには到達してい ないのである。 従って、 装飾用としての使用は可能でも、 プリン卜配線板用の電 解銅箔としての物性は満足しないことが分かるのである。 Electrical resistance: Comparing each physical property of 0.165 Ω-g / m 2 or more with the physical properties of the above embodiment, the copper purity is poor, and as a result, the electrical resistance is lower than that of the copper foil for printed wiring boards. The required level has not been reached. Therefore, although it can be used for decoration, the physical properties as electrolytic copper foil for printed wiring boards are not satisfied.
産業上の利用可能性 Industrial applicability
本件発明に係る電解銅箔の製造方法によれば、 当業者が長年諦めた技術に新た な視点から改良を加えることにより、 銅箔の起源とも言える 「電気銅を得るため の精製電解槽から抜き取る抜取硫酸銅溶液」 を原料としてプリン卜配線板用の高 品質を備える電解銅箔を製造することが可能となるのである。 このような、 製造 方法が確立できれば、導線を硫酸でわざわざ溶解させるという工程が不要となり、 生産ラインの大幅な短縮が可能となる。 また、 銅の電解精製から生じる抜取硫酸 銅溶液を用いることで資源の無題使いを抑制し、 極めて安価な銅箔の供給を可能 とするのである。  According to the method for producing an electrolytic copper foil according to the present invention, the technique that a person skilled in the art has given up for many years is improved from a new point of view, so that it can be said that the origin of the copper foil is `` extracted from the electrolytic cell for obtaining electrolytic copper '' It is possible to manufacture high-quality electrolytic copper foil for printed wiring boards using the “sampled copper sulfate solution” as a raw material. If such a manufacturing method can be established, the process of dissolving the conductive wire with sulfuric acid is not required, and the production line can be significantly shortened. In addition, by using the extracted copper sulfate solution generated from the electrolytic refining of copper, untitled use of resources can be suppressed, and extremely inexpensive copper foil can be supplied.

Claims

請求の範囲 The scope of the claims
1 . 硫酸銅溶液を電解することにより電解銅箔を製造する方法において、 硫酸銅溶液は、電気銅を得るための精製電解槽から抜き取る抜取硫酸銅溶液を、 活性炭処理したものを用いることを特徴とする電解銅箔の製造方法。 1. A method for producing an electrolytic copper foil by electrolyzing a copper sulfate solution, wherein the copper sulfate solution is obtained by treating an extracted copper sulfate solution withdrawn from a refining electrolytic cell for obtaining electrolytic copper with an activated carbon treatment. Method for producing an electrolytic copper foil.
2 . 硫酸銅溶液を電解することにより電解銅箔を製造する方法において、 硫酸銅溶液は、 電気銅を得るための精製電解槽から抜き取る抜取硫酸銅溶液を 活性炭処理し、 その後銅箔物性を改善するための添加剤を加えたものであること を特徴とする電解銅箔の製造方法。 2. In the method of producing an electrolytic copper foil by electrolyzing a copper sulfate solution, the copper sulfate solution is subjected to activated carbon treatment of a copper sulfate solution extracted from a refining electrolytic cell for obtaining electrolytic copper, and thereafter the physical properties of the copper foil are improved. A method for producing an electrolytic copper foil, characterized by adding an additive for performing the method.
PCT/JP2004/002869 2003-03-07 2004-03-05 Process for producing electrolytic copper foil WO2004079053A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003061174A JP2004269950A (en) 2003-03-07 2003-03-07 Method of producing electrolytic copper foil
JP2003-061174 2003-03-07

Publications (1)

Publication Number Publication Date
WO2004079053A1 true WO2004079053A1 (en) 2004-09-16

Family

ID=32958954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002869 WO2004079053A1 (en) 2003-03-07 2004-03-05 Process for producing electrolytic copper foil

Country Status (2)

Country Link
JP (1) JP2004269950A (en)
WO (1) WO2004079053A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115094486A (en) * 2022-05-26 2022-09-23 刘润华 Electrolytic copper foil generation system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3742144B2 (en) * 1996-05-08 2006-02-01 ソニー株式会社 Nonaqueous electrolyte secondary battery and planar current collector for nonaqueous electrolyte secondary battery
JP6860339B2 (en) 2016-12-16 2021-04-14 株式会社Uacj Electrolytic aluminum foil manufacturing method and manufacturing equipment
KR102395519B1 (en) * 2021-12-13 2022-05-09 주식회사 남동금속 Plating method of metal surface

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0207244A2 (en) * 1985-07-05 1987-01-07 Mitsui Mining & Smelting Co., Ltd. Electrodeposited copper foil
JPH0488185A (en) * 1990-07-30 1992-03-23 Nippon Denkai Kk Production of coppering bath and electrolytic copper foil using same
WO1994024338A1 (en) * 1993-04-19 1994-10-27 Magma Copper Company Process for making copper foil
EP1059367A2 (en) * 1999-06-08 2000-12-13 Mitsui Mining & Smelting Co., Ltd. Manufacturing method of electrodeposited copper foil, electrodeposited copper foil, copper-clad laminate and printed wiring board
US20010042686A1 (en) * 2000-05-18 2001-11-22 Mitsui Mining & Smelting Co., Ltd. Electrodeposition apparatus for producing electrodeposited copper foil and electrodeposited copper foil produced by use of the apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0207244A2 (en) * 1985-07-05 1987-01-07 Mitsui Mining & Smelting Co., Ltd. Electrodeposited copper foil
JPH0488185A (en) * 1990-07-30 1992-03-23 Nippon Denkai Kk Production of coppering bath and electrolytic copper foil using same
WO1994024338A1 (en) * 1993-04-19 1994-10-27 Magma Copper Company Process for making copper foil
EP1059367A2 (en) * 1999-06-08 2000-12-13 Mitsui Mining & Smelting Co., Ltd. Manufacturing method of electrodeposited copper foil, electrodeposited copper foil, copper-clad laminate and printed wiring board
US20010042686A1 (en) * 2000-05-18 2001-11-22 Mitsui Mining & Smelting Co., Ltd. Electrodeposition apparatus for producing electrodeposited copper foil and electrodeposited copper foil produced by use of the apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115094486A (en) * 2022-05-26 2022-09-23 刘润华 Electrolytic copper foil generation system

Also Published As

Publication number Publication date
JP2004269950A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP4518262B2 (en) High purity electrolytic copper and its manufacturing method
TW379260B (en) Method of surface-roughening treatment of copper foil
JP3058445B2 (en) Characterized electrodeposited foils for printed circuit boards and methods for producing the same and electrolytic cell solutions
JP4344714B2 (en) Low-roughness copper foil having high strength and method for producing the same
JP5323677B2 (en) Method and apparatus for producing surface roughened copper plate, and surface roughened copper plate
TW573078B (en) Composite copper foil and manufacturing method thereof
JP4551994B2 (en) Method for recovering tin, tin alloy or lead alloy from printed circuit board
WO2005073434A1 (en) Ultrahigh-purity copper and process for producing the same
JP3739929B2 (en) Copper foil for printed wiring board and method for producing the same
KR20170061717A (en) High strength, high heat-resistance electrolytic copper foil, and manufacturing method for same
JP2754157B2 (en) Manufacturing method of electrolytic copper foil for printed wiring board
US11193214B2 (en) Method and apparatus for recovery of noble metals, including recovery of noble metals from plated and/or filled scrap
WO2003035943A1 (en) Electrolytic copper plating method, electrolytic copper plating-use phosphorus-containing copper anode and semiconductor wafer with little particles deposition plated by using them
EP1059367B1 (en) Manufacturing method of electrodeposited copper foil, electrodeposited copper foil, copper-clad laminate and printed wiring board
WO2004079053A1 (en) Process for producing electrolytic copper foil
JP2003268595A (en) Copper electroplating method, phosphorus-containing copper anode for copper electroplating, and semiconductor wafer with minimal particle adhesion plated by using them
JPH0610181A (en) Electrolytic copper foil
JP6127938B2 (en) Removal of tellurium from sulfuric acid leachate of copper electrolytic slime
JP2008095203A (en) Electrolytic copper plating method
JP2570076B2 (en) Manufacturing method of high purity nickel
KR101931520B1 (en) Concentrating method of precious metal by adjusting the composition of an collecting alloy
JP7180039B1 (en) Method for separating tin and nickel from mixtures containing tin and nickel
WO2020050418A1 (en) Method for producing electrolytic copper
JP3916134B2 (en) Anode for electrolytic copper plating, method for producing the anode, and electrolytic copper plating method using the anode
JPH10110298A (en) Purifying method of electrolyte

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase