WO2004073072A1 - Mis semiconductor device and method for manufacturing mis semiconductor device - Google Patents

Mis semiconductor device and method for manufacturing mis semiconductor device Download PDF

Info

Publication number
WO2004073072A1
WO2004073072A1 PCT/JP2004/001408 JP2004001408W WO2004073072A1 WO 2004073072 A1 WO2004073072 A1 WO 2004073072A1 JP 2004001408 W JP2004001408 W JP 2004001408W WO 2004073072 A1 WO2004073072 A1 WO 2004073072A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric constant
film
high dielectric
semiconductor device
gate electrode
Prior art date
Application number
PCT/JP2004/001408
Other languages
French (fr)
Japanese (ja)
Inventor
Noriyuki Miyata
Manisha Kundu
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to JP2005504970A priority Critical patent/JPWO2004073072A1/en
Publication of WO2004073072A1 publication Critical patent/WO2004073072A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28176Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane

Definitions

  • the present invention relates to a MIS type semiconductor device and a method of manufacturing the MIS type semiconductor device.
  • the present invention relates to a MIS type semiconductor device and a method of manufacturing the MIS type semiconductor device, and more particularly to an electrode Z used for a miniaturized MIS type semiconductor device. And technology for forming the Background art
  • MI S Metal Insulator Semiconductor
  • gate insulating film insulating film
  • Hf 0 2 relative permittivity £ ⁇ : 25
  • r Z r 02 £ r: 25
  • L n 2 0 3 £ r: 8 ⁇ 30
  • L n: the run evening Neu de Ta 2 0 3 (£ r: 26)
  • T i 0 2 £ r: 80
  • FIG. 7A to 7D are cross-sectional views in the order of steps showing a conventional method for manufacturing a MIS transistor having a high dielectric constant gate insulating film.
  • Consisting of S I_ ⁇ 2 very thin on the silicon substrate 1 to form a low dielectric constant interlayer 2 made of Hf 0 2 thereon high dielectric constant film 3 Sno Uz evening, vapor deposition, CVD (Chemical Vapor It is formed by using a deposition on factory method, ALD (atomic layer deposition) method (FIG. 7A).
  • ALD atomic layer deposition
  • ion implantation is performed using the gate portion as a mask, and heat treatment for activating the implanted impurities is performed to form an impurity diffusion layer 9 serving as a source / drain region on both sides of the gate portion [7th D Figure].
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2000-2202
  • Patent Document 2 Japanese Patent Application Laid-Open Publication No. 2000-334430
  • the oxidizing species 5 such as O 2 and H 20 remaining in the processing atmosphere are high.
  • the low dielectric constant intermediate layer 2 is grown by diffusing in the dielectric constant film 3 as indicated by the arrow and reaching the interface between the high dielectric constant film and the silicon substrate. The growth of this low-k layer hinders low EOT.
  • concentration of oxidizing species remaining in the atmosphere of the heat treatment differs every time the heat treatment is performed, the dispersion of the formed low dielectric constant layer becomes large, and the dispersion of the characteristics among the wafers becomes large.
  • the oxidized species remaining in the heat treatment atmosphere enter from the side wall of the gate portion, as shown in FIG.
  • the thick low dielectric constant intermediate layer 2 is formed on the side wall side.
  • the low dielectric constant intermediate layer formed on the side wall side is further grown by a subsequent heat treatment for activating the ion implantation.
  • An object of the present invention is to solve the above-mentioned problems of the prior art.
  • diffusion barrier layers formed on high-k films To prevent EOT from becoming thicker.
  • an MIS type semiconductor device in which a gate electrode is formed on a high dielectric constant gate insulating film.
  • An MIS type semiconductor device wherein a reaction layer which is a conductor layer formed by a reaction between an insulating film and a gate electrode is interposed between the gate electrode and the gate electrode. Is done.
  • a method for manufacturing a MIS type semiconductor device comprising:
  • a method for manufacturing a MIS type semiconductor device comprising:
  • a method for manufacturing a MIS type semiconductor device comprising:
  • the treatment may be performed by a heat treatment performed thereafter.
  • the heat treatment for improving the film quality of the high dielectric constant film is performed after the lower diffusion barrier layer is formed on the high dielectric constant film.
  • the low dielectric constant film grows undesirably because the electric conductivity film does not diffuse to reach the surface Will not be done.
  • the lower diffusion barrier layer is made conductive by reacting with the gate electrode material, it is possible to suppress an increase in E ⁇ T due to the formation of the diffusion noria layer.
  • the present invention also provides a heat treatment for repairing damage introduced into the high-dielectric-constant film by processing the gate portion in a state where at least the gate portion is covered with the upper diffusion barrier layer after processing the gate portion. Since the heat treatment is performed, the side surface of the low dielectric constant intermediate layer does not increase by this heat treatment.
  • FIG. 1A to 1F are cross-sectional views in the order of steps for explaining a first embodiment of the present invention.
  • 2A to 2C are cross-sectional views in the order of steps for explaining a second embodiment of the present invention.
  • FIG. 3 is an observation value of the interface S i 0 2 by XPS for explaining the effect of the present invention.
  • FIG. 4 is a graph showing the relationship between the heat treatment time and the thickness of the interface SiO 2 layer for explaining the effect of the present invention.
  • Figure 5 is a graph showing the relationship between the heat treatment time and the 0 2 pressure and incubation time.
  • FIG. 6 is a schematic diagram of a heat treatment apparatus according to an embodiment of the present invention.
  • 7A to 7D are cross-sectional views in the order of steps showing a conventional method for manufacturing a MIS semiconductor device.
  • FIG. 8 is a cross-sectional view for explaining one problem of a conventional manufacturing method.
  • FIG. 9 is a cross-sectional view for explaining another problem of the conventional manufacturing method. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIGS. 1A to 1F are sectional views showing a first embodiment of the present invention in the order of steps.
  • a silicon substrate 1 having a suitable specific resistance after partitioning an active region to form a dielectric isolation region by etc. STI (shallow trench isolation) method, by performing hand thermal oxidation vacuum 0 2 on the substrate surface forming a low dielectric intermediate layer 2 of S i 0 2 very thin (less than 2 atomic layers).
  • This low dielectric constant intermediate layer 2 is not formed aggressively. It may be a natural oxide film that is inevitably formed when the dielectric film 3 is formed.
  • the high dielectric constant film 3 is deposited one or more of the three.
  • the high-dielectric-constant metal oxide may be formed by oxidizing a metal in an oxidizing atmosphere while depositing a metal by a snow-burning method, a laser ablation method, an evaporation method, or the like. Good.
  • a diffusion barrier layer 4 (FIG. 1A).
  • the thickness of the diffusion barrier layer 4 is preferably at least 0.4 nm, more preferably at least 0.6 nm (or at least two atomic layers). If the film thickness is less than this, the function of suppressing oxygen permeation is reduced.
  • the relative dielectric constant of the material forming the diffusion barrier layer 4 is not high, so it is desirable to keep it below 1.5 nm (or below 5 atomic layers) to keep EOT low.
  • heat treatment is performed for the purpose of densifying the high dielectric constant film 3 and removing defects.
  • oxidizing species such as O 2 and H 20 may remain in the atmosphere, but oxidizing species 5 may enter the high dielectric constant film 3 due to the diffusion noria layer 4.
  • Desirable heat treatment temperature is 650-850 ° C.
  • the heat treatment can be performed using a resistance heating furnace or a lamp arrayer, but may be performed continuously in a film forming chamber where the diffusion barrier layer 4 is formed.
  • a gate electrode material film 6a is formed by depositing polysilicon, polycide, refractory metal silicide, refractory metal, and the like by a sputtering method, a CVD method, a vapor deposition method, etc. (FIG. 1C).
  • the gate electrode material film 6a, the diffusion barrier layer 4, the high dielectric constant film 3, and the low dielectric constant intermediate layer 2 other than the gate portion are etched and removed by applying photolithography and RIE.
  • a gate portion having a gate electrode 6 is formed on the gate insulating film 7 (FIG. 1D). In this etching step, the side surfaces of the high dielectric constant film 3 are exposed to plasma, so that charges are injected and damaged.
  • a heat treatment is performed by covering the entire surface including the gate portion with the diffusion nori layer 8.
  • the material, film forming method, film thickness, and the like of the diffusion barrier layer 8 are the same as those of the diffusion barrier layer 4. However, if the barrier layer is removed after heat treatment, It may be a conductive material.
  • the heat treatment conditions are the same as those shown in FIG. 1B. Since the gate portion is covered with the diffusion barrier layer 8, the thickness of the side surface of the low dielectric constant intermediate layer does not increase even after the heat treatment is completed (FIG. 1E).
  • an impurity diffusion layer 9 which is a source / drain region [FIG. 1F] c
  • a metal wiring connected to the source / drain region is formed.
  • the heat treatment in the state shown in FIG. 1E may be omitted, and the heat treatment for activating the implanted impurities may also serve as the heat treatment for damage repair of the high dielectric constant film 3. Further, the diffusion barrier layer 8 may be removed before ion implantation for forming the source and drain regions.
  • FIG. 2A to FIG. 2C are cross-sectional views in the order of steps showing a second embodiment of the present invention.
  • a low dielectric constant intermediate layer 2 and a high dielectric constant film 3 are formed on a silicon substrate 1 by a method similar to that of the first embodiment shown in FIG.
  • the diffusion barrier layer 4 is formed using a material which is low and which becomes a conductive material by reacting with the gate electrode forming material. Then, heat treatment is performed to improve the film quality of the high dielectric constant film (FIG. 2A).
  • a gate electrode material film 6a is formed on the diffusion barrier layer (FIG. 2B), and heat treatment is performed to cause the diffusion barrier layer 4 to react with the gate electrode material film 6a to form a conductive reaction layer 10. [Fig. 2C]. Thereafter, as in the first embodiment, the gate portion is processed to form a source / drain region, and a series of manufacturing steps is completed.
  • Examples of the combination of the diffusion barrier layer 4 and the gate electrode material film 6a include nitride or silicide and a high melting point metal such as aluminum nitride and titanium, silicon nitride and titanium, and silicon carbide and titanium.
  • nitride or silicide and a high melting point metal such as aluminum nitride and titanium, silicon nitride and titanium, and silicon carbide and titanium.
  • O 2 2 xl 0- 6 T orr the (2 6 6 x 1 0- 4 P a.) Atmosphere, by thermal oxidation of 650 C, 10 min, the 0. 3 nm thick S i 0 2 to form a low dielectric constant intermediate layer 2 on the silicon substrate 1, on which, a high dielectric constant film 3 the hf 0 2 film 2. thereby forming the 6 nm thick.
  • HF0 2 film, and the H f in vacuo 0 2 atmosphere deposited by causing electron beams one beam evaporation.
  • FIG. 3 shows the Si 2 p photoelectron spectrum of these examples and comparative examples by XPS (X-ray excitation photoelectron spectroscopy).
  • Figure 4 is 0 2 atmosphere pressure 1 X 10- 5 T orr (1. 33x10 "3 Pa), shows the change in time and the interface S i 0 2 having a thickness of performing heat treatment at 800 ° C are. If there is no a 1 2 0 3 barriers layer interface S i 0 2 layers heating initial stage is growing. On the other hand, if there is burr ⁇ layer up to about 5 minutes increases the interfacial layer (This time is referred to as incubation in the present specification), after which slow growth and growth begin, which is determined by the diffusion of the oxidizing species in the barrier layer, It is thought to depend on the partial pressure of the species.
  • FIG. 5 is a graph showing changes in Inkyube one Chillon against 0 2 pressure and heat treatment temperature. This result, 0 2 pressure does not exceed a fin-incubated over Chillon Knowing Netsusho physical condition, that is, to determine the optimum heat treatment time for the heat treatment temperature.
  • FIG. 6 is a schematic diagram of a heat treatment apparatus configured to perform heat treatment for a desired time at a desired heat treatment temperature.
  • an infrared lamp 13 for irradiating the wafer 11 with infrared rays is arranged.
  • New 2 of which inert gas is supplied, indoor gas is exhausted by the exhaust pump 17.
  • the partial pressure of the oxidizing species in the room is measured by a differential exhaust type mass spectrometer 14 which receives the room gas through the orifice 20 and, based on the measured value, the controller 19 determines the desired heating temperature.
  • a differential exhaust type mass spectrometer 14 which receives the room gas through the orifice 20 and, based on the measured value, the controller 19 determines the desired heating temperature.
  • 15 is a valve and 16 is an exhaust bonnet.
  • the present invention is not limited to these, and can be appropriately changed without departing from the gist of the present invention.
  • the heat treatment for improving the film quality of the high-dielectric-constant film does not necessarily have to be performed alone, but may be performed by a heat treatment performed thereafter.

Abstract

For preventing growth of a low dielectric constant film (a silicon oxide film) arranged between a substrate (1) and a high dielectric constant film (3) in a MOSFET wherein the high dielectric constant film is used as a gate insulating film, a heat treatment for modifying film properties of the high dielectric constant film (3) is conducted after forming the high dielectric constant film (3) and a diffusion barrier layer (4) on the substrate (1). A gate electrode material film is then deposited and a gate electrode (6) is formed by patterning this gate electrode material film. During this etching step, the lateral faces of the high dielectric constant film (3) are exposed to plasma and thus suffers injection of charges and other damages. For discharging the charges and restoring the damages, a heat treatment is conducted while covering the entire surface including the gate portion with a diffusion barrier layer (8). An impurity diffusion layer to be a source/drain region is then formed.

Description

^ 明細書  ^ Statement
M I S型半導体装置および M I S型半導体装置の製造方法 技術分野 TECHNICAL FIELD The present invention relates to a MIS type semiconductor device and a method of manufacturing the MIS type semiconductor device.
本発明は、 MI S型半導体装置および MI S型半導体装置の製造方法に関し、 特 に微細化された M I S型半導体装置に用いられている電極 Z高誘電率膜 Z基板の積 層構造およびこの構造を形成する技術に関するものである。 背景技術  The present invention relates to a MIS type semiconductor device and a method of manufacturing the MIS type semiconductor device, and more particularly to an electrode Z used for a miniaturized MIS type semiconductor device. And technology for forming the Background art
MI S (Metal Insulator Semiconductor)型半導体装置の絶縁膜 (ゲート絶縁膜) 材料として S i02が広く用いられてきた。 しかし、 半導体装置が微細化 ·高密度 化され、 スケーリング則に則つてゲート絶縁膜が 3 n m以下に薄膜化されると、 ゲS i0 2 has been widely used as MI S (Metal Insulator Semiconductor) type semiconductor device of the insulating film (gate insulating film) material. However, as semiconductor devices become finer and denser and the gate insulating film becomes thinner to 3 nm or less in accordance with the scaling law,
―ト電極一シリコン基板間に直接トンネリングが起こるようになり、 消費電力を増 加させ、 かつ素子の信頼性を低下させる。 そこで、 比誘電率が 3. 9の S i 02よ り比誘電率の大きい金属酸化物を用いて高誘電率ゲート絶縁膜を形成することによ り、 酸化膜換算膜厚 EOT (equivalent oxide thickness)を厚くすることなく、 物 理膜厚を厚くする手法が検討されている。 高誘電率絶縁膜の材料として採用されて いる材料ないし採用が検討されている材料としては、 Hf 02 (比誘電率 £ Γ : 2 5 )ヽ Z r 02 ( £ r: 25 ), L n 203 ( £ r: 8〜 30 ) ( L n:ラン夕ノイ ド)、 Ta203 (£ r : 26)、 T i 02 (£ r : 80) 等が挙げられる (例えば、 特許文 献 1、 2参照)。 -Tunneling occurs directly between the gate electrode and the silicon substrate, increasing power consumption and reducing device reliability. Therefore, Ri by that the dielectric constant to form a high dielectric constant gate insulating film with a large metal oxide S i 0 2 yo Ri dielectric constant of 3.9, the equivalent oxide thickness EOT (equivalent Oxide A method of increasing the physical film thickness without increasing the thickness) is being studied. Materials that have been or are being considered for use as the material of the high dielectric constant insulating film include Hf 0 2 (relative permittivity £ Γ: 25) r Z r 02 (£ r: 25), L n 2 0 3 (£ r: 8~ 30) (L n: the run evening Neu de), Ta 2 0 3 (£ r: 26), T i 0 2 (£ r: 80) , and the like (e.g., patent See references 1 and 2).
第 7 A図〜第 7 D図は、 高誘電率ゲート絶縁膜を有する MI S型トランジスタの 従来の製造方法を示す工程順の断面図である。 シリコン基板 1上に極薄の S i〇2 からなる低誘電率中間層 2を形成しその上に Hf 02などからなる高誘電率膜 3を スノ ヅ夕法、 蒸着法、 CVD (chemical vapor depositi on厂法、 A L D ^ atomic layer deposition)法などを用いて形成する 〔第 7 A図〕。 次に、 高誘電率膜 3中の欠陥低 減などの膜質改善を目的として、 不活性雰囲気中において熱処理を行う。 そして、 高誘電率膜 3上にポリシリコンなどを堆積してゲ一ト電極材料膜 6 aを形成する 〔第 7B図〕。次に、 フォトリソグラフィ法および R I E (リアクティブイオンェヅ チング) 法などを適用して、 ゲート電極材料膜 6 a、 高誘電率膜 3および低誘電率 中間層 2をパ夕一ニングしてゲ一ト絶縁膜 7上にゲ一ト電極 6を有するゲ一ト部を 加工する〔第 7 C図〕。 このとき、 高誘電率膜 3は、 側面がプラズマに曝されること により高誘電率膜中には欠陥が導入されたり電荷が蓄積されたりする。 これらの欠 陥や蓄積電荷はトランジスタのしきい値を変動させることになるので、 ゲート部カロ ェ後に欠陥を修復し蓄積電荷を逃がすための熱処理を行う。 次いで、 ゲート部をマ スクとしてイオン注入を行い、 注入不純物の活性化のための熱処理を行って、 ゲー ト部の両サイドにソース · ドレイン領域となる不純物拡散層 9を形成する 〔第 7 D 図〕。 7A to 7D are cross-sectional views in the order of steps showing a conventional method for manufacturing a MIS transistor having a high dielectric constant gate insulating film. Consisting of S I_〇 2 very thin on the silicon substrate 1 to form a low dielectric constant interlayer 2 made of Hf 0 2 thereon high dielectric constant film 3 Sno Uz evening, vapor deposition, CVD (Chemical Vapor It is formed by using a deposition on factory method, ALD (atomic layer deposition) method (FIG. 7A). Next, heat treatment is performed in an inert atmosphere for the purpose of improving film quality such as reduction of defects in the high dielectric constant film 3. Then, polysilicon or the like is deposited on the high dielectric constant film 3 to form a gate electrode material film 6a (FIG. 7B). Next, by applying photolithography and RIE (reactive ion etching), the gate electrode material film 6a, the high dielectric constant film 3, and the low dielectric constant The intermediate layer 2 is patterned to form a gate portion having a gate electrode 6 on the gate insulating film 7 (FIG. 7C). At this time, when the side surface of the high dielectric constant film 3 is exposed to the plasma, defects are introduced or electric charges are accumulated in the high dielectric constant film. Since these defects and accumulated charges change the threshold voltage of the transistor, heat treatment is performed after the gate section to repair defects and release accumulated charges. Next, ion implantation is performed using the gate portion as a mask, and heat treatment for activating the implanted impurities is performed to form an impurity diffusion layer 9 serving as a source / drain region on both sides of the gate portion [7th D Figure].
【特許文献 1】 特開 2 0 0 0 - 2 2 1 4 5号公報  [Patent Document 1] Japanese Unexamined Patent Application Publication No. 2000-2202
【特許文献 2】 特開 2 0 0 2— 3 4 3 7 9 0号公報 発明の開示  [Patent Document 2] Japanese Patent Application Laid-Open Publication No. 2000-334430
上述した製造工程中の高誘電率膜 3の成膜後の熱処理においては、 第 8図に示さ れるように、処理雰囲気中に残存している 02、 H 20等の酸化種 5が高誘電率膜 3 中を矢印のように拡散して高誘電体膜とシリコン基板の界面に到達して低誘電率中 間層 2を成長させる。 この低誘電率層の成長は、 低 E O Tを実現する妨げとなる。 また、 熱処理の雰囲気中に残存する酸化種の濃度は熱処理の都度異なるため、 形成 される低誘電率層のばらつきが大きくなりこれがウェハ間での特性のばらつきを大 きくする。 In the heat treatment after the formation of the high dielectric constant film 3 during the above-described manufacturing process, as shown in FIG. 8, the oxidizing species 5 such as O 2 and H 20 remaining in the processing atmosphere are high. The low dielectric constant intermediate layer 2 is grown by diffusing in the dielectric constant film 3 as indicated by the arrow and reaching the interface between the high dielectric constant film and the silicon substrate. The growth of this low-k layer hinders low EOT. In addition, since the concentration of oxidizing species remaining in the atmosphere of the heat treatment differs every time the heat treatment is performed, the dispersion of the formed low dielectric constant layer becomes large, and the dispersion of the characteristics among the wafers becomes large.
さらに、 ゲート部加工後にプラズマダメージや蓄積電荷を除去する目的で行われ る熱処理では、 熱処理雰囲気中に残存する酸化種がゲ一ト部側壁側から進入するこ とにより、第 9図に示されるように、側壁側に厚い低誘電率中間層 2が形成される。 この側壁側に形成される低誘電率中間層は、 続いて行われる注入ィオン活性化のた めの熱処理によってさらに成長する。  Further, in the heat treatment performed for the purpose of removing plasma damage and accumulated charge after processing the gate portion, the oxidized species remaining in the heat treatment atmosphere enter from the side wall of the gate portion, as shown in FIG. Thus, the thick low dielectric constant intermediate layer 2 is formed on the side wall side. The low dielectric constant intermediate layer formed on the side wall side is further grown by a subsequent heat treatment for activating the ion implantation.
本願発明の課題は、 上述した従来技術の問題点を解決することであって、 その目 的は、 第 1に、 高誘電率膜の膜質改善やプラズマダメージの回復の目的で行われる 熱処理において、 低誘電率膜が成長することのないようにして、 特性にばらつきが なく高品質の製品を提供できるようにすることであり、 第 2に、 高誘電率膜上に形 成された拡散バリア層によって E O Tが厚くなることのないようにすることである。 上記の目的を達成するため、 本発明によれば、 高誘電率ゲート絶縁膜上にゲート 電極が形成されている M I S型半導体装置において、 前記高誘電率ゲート絶縁膜と 前記ゲ一ト電極との間には、 絶縁膜とゲート電極とが反応することによって形成さ れた導電体層である反応層が介在していることを特徴とする M I S型半導体装置、 が提供される。 An object of the present invention is to solve the above-mentioned problems of the prior art. First, in heat treatment performed for the purpose of improving the quality of a high dielectric constant film and recovering plasma damage, The goal is to provide high-quality products with uniform characteristics without preventing the growth of low-k films.Secondly, diffusion barrier layers formed on high-k films To prevent EOT from becoming thicker. In order to achieve the above object, according to the present invention, there is provided an MIS type semiconductor device in which a gate electrode is formed on a high dielectric constant gate insulating film. An MIS type semiconductor device, wherein a reaction layer which is a conductor layer formed by a reaction between an insulating film and a gate electrode is interposed between the gate electrode and the gate electrode. Is done.
また、 上記の目的を達成するため、 本発明によれば、  In addition, according to the present invention, in order to achieve the above object,
(a)半導体基板上に高誘電率膜を形成する工程と、  (a) forming a high dielectric constant film on a semiconductor substrate,
(b)前記高誘電率膜上に該高誘電率膜への酸化種 (02、 H20) の混入を抑制 する下層拡散バリァ層を堆積する工程と、 (b) depositing a lower diffusion Baria layer to suppress the contamination of the high dielectric constant film on the oxide species into the high dielectric constant film (0 2, H 2 0) ,
(c)熱処理を行う工程と、  (c) performing a heat treatment;
を有することを特徴とする MI S型半導体装置の製造方法、 が提供される。 A method for manufacturing a MIS type semiconductor device, comprising:
また、 上記の目的を達成するため、 本発明によれば、  In addition, according to the present invention, in order to achieve the above object,
(a)半導体基板上に高誘電率膜を形成する工程と、  (a) forming a high dielectric constant film on a semiconductor substrate,
(b)前記高誘電率膜上に該高誘電率膜への酸化種 (02、 H20) の混入を抑制 する下層拡散ノ ^リァ層を堆積する工程と、 (b) depositing a lower diffusion Roh ^ Ria layer to suppress the contamination of the high dielectric constant oxide species into the high dielectric constant film on a film (0 2, H 2 0) ,
( c)前記下層拡散バリァ層上にゲ一ト電極形成材料膜を形成する工程と、 (d)熱処理を行って前記下層 ¾散バリア層と前記ゲート電極形成材料膜とを反 応させて導電性反応層を形成する工程と、  (c) forming a gate electrode forming material film on the lower diffusion barrier layer; and (d) conducting heat treatment to react the lower diffusion barrier layer with the gate electrode forming material film to conduct. Forming a reactive layer,
を有することを特徴とする MI S型半導体装置の製造方法、 が提供される。 A method for manufacturing a MIS type semiconductor device, comprising:
また、 上記の目的を達成するため、 本発明によれば、  In addition, according to the present invention, in order to achieve the above object,
(a)半導体基板上に高誘電率膜を形成する工程と、  (a) forming a high dielectric constant film on a semiconductor substrate,
(b)前記高誘電率膜上にゲート電極形成材料膜を形成する工程と、  (b) forming a gate electrode forming material film on the high dielectric constant film;
(c)前記ゲ一ト電極形成材料膜と前記高誘電率膜とをゲ一ト電極形状にパ夕一 ニングしてゲ一ト部を形成する工程と、  (c) forming a gate portion by patterning the gate electrode forming material film and the high dielectric constant film into a gate electrode shape;
(d)少なくとも前記ゲート部上およびその側面に酸化種 (02ヽ H20)の侵入 を抑制する上層拡散バリァ層を堆積する工程と、 and (d) depositing at least suppressing upper diffusion Baria layer penetration of the gate portion and on oxidizing species on its side surface (0 2ヽH 2 0),
(e)熱処理を行う工程と、  (e) performing a heat treatment;
を有することを特徴とする MI S型半導体装置の製造方法、 が提供される。 A method for manufacturing a MIS type semiconductor device, comprising:
単独に行う必要はなく、 その後に行われる熱処理によって兼ねさせるようにするこ ともできる。 It is not necessary to perform the treatment alone, and the treatment may be performed by a heat treatment performed thereafter.
上記のように、 本発明は、 高誘電率膜上に下層拡散バリア層を形成した後に高誘 電率膜の膜質改善のための熱処理を行うものであるので、 熱処理中に酸化種が高誘 電率膜を拡散して掛反表面に到達することがなくなり、 低誘電率膜が不所望に成長 することがなくなる。 また、 下層拡散バリア層をゲート電極材料と反応させて導電 化する実施例によれば、 拡散ノ リア層を形成したことによる E〇 Tの増加を抑制す ることができる。 また、 本発明は、 ゲート部を加工した後少なくともゲート部を上 層拡散バリァ層で被覆した状態でゲ一ト部加工により高誘電率膜に導入されたダメ —ジを修復するための熱処理を行うものであるので、 この熱処理によって低誘電体 率中間層の側面が増大することがなくなる。 図面の簡単な説明 As described above, according to the present invention, the heat treatment for improving the film quality of the high dielectric constant film is performed after the lower diffusion barrier layer is formed on the high dielectric constant film. The low dielectric constant film grows undesirably because the electric conductivity film does not diffuse to reach the surface Will not be done. Further, according to the embodiment in which the lower diffusion barrier layer is made conductive by reacting with the gate electrode material, it is possible to suppress an increase in E〇T due to the formation of the diffusion noria layer. The present invention also provides a heat treatment for repairing damage introduced into the high-dielectric-constant film by processing the gate portion in a state where at least the gate portion is covered with the upper diffusion barrier layer after processing the gate portion. Since the heat treatment is performed, the side surface of the low dielectric constant intermediate layer does not increase by this heat treatment. BRIEF DESCRIPTION OF THE FIGURES
第 1 A〜第 1 F図は、 本発明の第 1の実施の形態を説明するための工程順の断面 図である。  1A to 1F are cross-sectional views in the order of steps for explaining a first embodiment of the present invention.
第 2 A〜第 2 C図は、 本発明の第 2の実施の形態を説明するための工程順の断面 図である。  2A to 2C are cross-sectional views in the order of steps for explaining a second embodiment of the present invention.
第 3図は、 本発明の効果を説明するための、 X P Sによる界面 S i 0 2の観測値 である。 FIG. 3 is an observation value of the interface S i 0 2 by XPS for explaining the effect of the present invention.
第 4図は、 本発明の効果を説明するための、 熱処理時間と界面 S i 0 2層厚との 関係を示すグラフである。 FIG. 4 is a graph showing the relationship between the heat treatment time and the thickness of the interface SiO 2 layer for explaining the effect of the present invention.
第 5図は、 熱処理時間と 0 2圧力とインキュベーション時間との関係を示すグラ フである。 Figure 5 is a graph showing the relationship between the heat treatment time and the 0 2 pressure and incubation time.
第 6図は、 本発明の実施例の行われる熱処理装置の概略図である。  FIG. 6 is a schematic diagram of a heat treatment apparatus according to an embodiment of the present invention.
第 7 A〜第 7 D図は、 M I S型半導体装置の従来の製造方法を示す工程順の断面 図である。  7A to 7D are cross-sectional views in the order of steps showing a conventional method for manufacturing a MIS semiconductor device.
第 8図は、 従来の製造方法の一問題点を説明するための断面図である。  FIG. 8 is a cross-sectional view for explaining one problem of a conventional manufacturing method.
第 9図は、 従来の製造方法の他の問題点を説明するための断面図である。 発明を実施するための最良の形態  FIG. 9 is a cross-sectional view for explaining another problem of the conventional manufacturing method. BEST MODE FOR CARRYING OUT THE INVENTION
次に、 本発明の実施の形態について図面を参照して詳細にする。  Next, embodiments of the present invention will be described in detail with reference to the drawings.
第 1 A図〜第 1 F図は、本発明の第 1の実施の形態を示す工程順の断面図である。 適切な比抵抗を有するシリコン基板 1に、 S T I (shallow trench isolation)法な どにより絶縁分離領域を形成して活性領域を区画した後、 基板表面に減圧 0 2中に て熱酸化を行うことにより極薄 (2原子層以下) の S i 0 2からなる低誘電率中間 層 2を形成する。 この低誘電率中間層 2は、 積極的に形成するのではなく、 次の高 誘電率膜 3の形成時に不可避的に形成される自然酸化膜であってもよい。 低誘電率 中間層 2上に、 ALD法、 CVD法、 スパヅ夕法、 レーザアブレ一シヨン法、 蒸着 法などを用いて Hf 〇2、 Z r02、 Ln03 (Ln : La、 Ce、 Nd、 Gd、 D Y Ho)、 Ta23、 T i02、 S rT i03、 B ax S r i 03の中の 1種 または複数種を堆積して高誘電率膜 3を形成する。 あるいは、 酸ィ匕性雰囲気中、 ス ノ ヅ夕法、 レーザアブレーシヨン法、 蒸着法などにより金属を堆積させつつ酸化さ せることにより上記の高誘電率金属酸化物を形成するようにしてもよい。 1A to 1F are sectional views showing a first embodiment of the present invention in the order of steps. A silicon substrate 1 having a suitable specific resistance, after partitioning an active region to form a dielectric isolation region by etc. STI (shallow trench isolation) method, by performing hand thermal oxidation vacuum 0 2 on the substrate surface forming a low dielectric intermediate layer 2 of S i 0 2 very thin (less than 2 atomic layers). This low dielectric constant intermediate layer 2 is not formed aggressively. It may be a natural oxide film that is inevitably formed when the dielectric film 3 is formed. On the low dielectric constant interlayer 2, ALD method, CVD method, Supadzu evening method, Rezaabure one Chillon method, Hf 〇 2 by using a vapor deposition method, Z r0 2, Ln0 3 ( Ln: La, Ce, Nd, Gd , DY Ho), to form a Ta 2 3, T i0 2, S rT i0 3, B a x S ri 0 the high dielectric constant film 3 is deposited one or more of the three. Alternatively, the high-dielectric-constant metal oxide may be formed by oxidizing a metal in an oxidizing atmosphere while depositing a metal by a snow-burning method, a laser ablation method, an evaporation method, or the like. Good.
高誘電率膜 3上に、 高誘電率膜 3を形成する方法と同様の方法を用いて、 02、 H02の透過に対して耐性の高い Al 23、 A1N、 A1N0、 S i02、 S i 3N 4、 S iNO、 S i Cなどの中のいずれかを堆積して拡散バリア層 4を形成する〔第 1 A図〕。拡散バリア層 4の膜厚は 0. 4 nm以上が好ましくより好ましくは 0. 6 nm以上(または 2原子層以上)である。 これ以下の膜厚では酸素透過を抑制する機 能が低下するからである。 但し、 拡散バリア層 4を形成する材料の比誘電率は高く ' はないので、 EOTを低く抑えるために 1. 5 nm以下 (または 5原子層以下) に 抑えることが望ましい。 次に、 高誘電率膜 3の緻密化、 欠陥除去を目的として熱処 理を行う。 このとき、 雰囲気中には 02、 H 20などの酸化種が残存している可能性 があるが、 酸化種 5は拡散ノ リア層 4のために高誘電率膜 3に侵入することができ ず、 そのため低誘電率中間層 2の成長は抑制される〔第 1B図〕。望ましい熱処理温 度は 650〜850°Cである。 抵抗加熱炉ないしランプア二一ラにより熱処理を行 うことができるが、 拡散バリア層 4を成膜した成膜室内において引き続いて行って もよい。 On the high dielectric constant film 3, using a method similar to the method for forming a high dielectric constant film 3, 0 2, H0 2 of high resistance to permeation Al 23, A1N, A1N0, S i0 2 , Si 3 N 4 , Si NO, S i C, etc., to form a diffusion barrier layer 4 (FIG. 1A). The thickness of the diffusion barrier layer 4 is preferably at least 0.4 nm, more preferably at least 0.6 nm (or at least two atomic layers). If the film thickness is less than this, the function of suppressing oxygen permeation is reduced. However, the relative dielectric constant of the material forming the diffusion barrier layer 4 is not high, so it is desirable to keep it below 1.5 nm (or below 5 atomic layers) to keep EOT low. Next, heat treatment is performed for the purpose of densifying the high dielectric constant film 3 and removing defects. At this time, oxidizing species such as O 2 and H 20 may remain in the atmosphere, but oxidizing species 5 may enter the high dielectric constant film 3 due to the diffusion noria layer 4. As a result, the growth of the low dielectric constant intermediate layer 2 is suppressed (FIG. 1B). Desirable heat treatment temperature is 650-850 ° C. The heat treatment can be performed using a resistance heating furnace or a lamp arrayer, but may be performed continuously in a film forming chamber where the diffusion barrier layer 4 is formed.
次に、 スパッ夕法、 CVD法、 蒸着法などにより、 ポリシリコン、 ポリサイド、 高融点金属シリサイド、 高融点金属などを堆積してゲート電極材料膜 6 aを形成す る〔第 1 C図〕。続いて、 フォトリソグラフィ法および R I E法などを適用して、 ゲ ート部以外のゲート電極材料膜 6 a、 拡散バリア層 4、 高誘電率膜 3、 低誘電率中 間層 2をエツチング除去して、 ゲート絶縁膜 7上にゲ一ト電極 6を有するゲ一ト部 を形成する〔第 1D図〕。 このエッチング工程において、高誘電率膜 3はその側面が プラズマに曝されることにより、 電荷が注入されまたダメージを受ける。 この電荷 を逃がしダメ一ジを修復するために、 拡散ノ リァ層 8でゲート部を含む全面を被覆 して熱処理を行う。 この拡散バリア層 8の材料、 成膜法、 膜厚などは拡散バリア層 4と同様である。 但し、 熱処理後にバリア層を除去する場合には高融点金属などの 導電性材料であってもよい。また、熱処理条件も第 1 B図に示す場合と同様である。 ゲ一ト部が拡散バリア層 8により覆われていることにより熱処理終了後においても 低誘電率中間層の側面部の膜厚が厚くなることはない 〔第 1 E図〕。 Next, a gate electrode material film 6a is formed by depositing polysilicon, polycide, refractory metal silicide, refractory metal, and the like by a sputtering method, a CVD method, a vapor deposition method, etc. (FIG. 1C). Next, the gate electrode material film 6a, the diffusion barrier layer 4, the high dielectric constant film 3, and the low dielectric constant intermediate layer 2 other than the gate portion are etched and removed by applying photolithography and RIE. Then, a gate portion having a gate electrode 6 is formed on the gate insulating film 7 (FIG. 1D). In this etching step, the side surfaces of the high dielectric constant film 3 are exposed to plasma, so that charges are injected and damaged. In order to release the charges and repair the damage, a heat treatment is performed by covering the entire surface including the gate portion with the diffusion nori layer 8. The material, film forming method, film thickness, and the like of the diffusion barrier layer 8 are the same as those of the diffusion barrier layer 4. However, if the barrier layer is removed after heat treatment, It may be a conductive material. The heat treatment conditions are the same as those shown in FIG. 1B. Since the gate portion is covered with the diffusion barrier layer 8, the thickness of the side surface of the low dielectric constant intermediate layer does not increase even after the heat treatment is completed (FIG. 1E).
次に、 ゲート部をマスクとしてイオン注入を行い、 注入不純物の活' I"生化のための 熱処理を行って、ソース'ドレイン領域である不純物拡散層 9を形成する〔第 1 F図〕 c その後、 必要に応じて拡散バリア層 8を除去し、 層間絶縁膜を堆積しコンタクトホ —ルを開孔した後、 ソース ·ドレイン領域に接続される金属配線を形成する。  Next, ion implantation is performed using the gate portion as a mask, and a heat treatment is performed for generating active “I” of the implanted impurity to form an impurity diffusion layer 9 which is a source / drain region [FIG. 1F] c After removing the diffusion barrier layer 8 if necessary, depositing an interlayer insulating film and opening a contact hole, a metal wiring connected to the source / drain region is formed.
第 1 E図に示す状態での熱処理を省略して注入不純物の活性化のための熱処理に よつて高誘電率膜 3のダメ―ジ修復のための熱処理を兼ねるようにしてもよい。 ま た、ソース'ドレイン領域を形成するためのイオン注入の前に拡散バリァ層 8を除去 するようにしてもよい。  The heat treatment in the state shown in FIG. 1E may be omitted, and the heat treatment for activating the implanted impurities may also serve as the heat treatment for damage repair of the high dielectric constant film 3. Further, the diffusion barrier layer 8 may be removed before ion implantation for forming the source and drain regions.
第 1の実施の形態では、 高誘電率膜 3上に形成された拡散バリア層 4は除去され ることなくそのまま残されていた。 拡散バリァ層 4の誘電率は、 S i 0 2より高い とはいえ一般的には高誘電率膜のそれより低いため、 この絶縁膜を設けることは E 0 Tの増加に繋がる。 第 2の実施の形態では、 拡散バリァ層 4を導電体化すること により E O Tの増加を防止する。 第 2 A図〜第 2 C図は、 本発明の第 2の実施の形 態を示す工程順の断面図である。 第 1図に示した第 1の実施の形態と同様の方法に より、 シリコン基板 1上に低誘電率中間層 2、 高誘電率膜 3を形成し、 その上に、 酸化種の透過性が低く、 かつ、 ゲート電極形成材料と反応して導電性材料となる材 料を用いて拡散バリア層 4を形成する。 そして、 高誘電率膜の膜質を改善するため の熱処理を行う 〔第 2 A図〕。 In the first embodiment, the diffusion barrier layer 4 formed on the high dielectric constant film 3 is left without being removed. The dielectric constant of the diffusion Baria layer 4, since in general although higher than S i 0 2 lower than that of the high dielectric constant film, providing the insulating film leads to an increase in E 0 T. In the second embodiment, an increase in EOT is prevented by making the diffusion barrier layer 4 a conductor. FIG. 2A to FIG. 2C are cross-sectional views in the order of steps showing a second embodiment of the present invention. A low dielectric constant intermediate layer 2 and a high dielectric constant film 3 are formed on a silicon substrate 1 by a method similar to that of the first embodiment shown in FIG. The diffusion barrier layer 4 is formed using a material which is low and which becomes a conductive material by reacting with the gate electrode forming material. Then, heat treatment is performed to improve the film quality of the high dielectric constant film (FIG. 2A).
次いで、拡散バリァ層 上にゲート電極材料膜 6 aを形成し〔第 2 B図〕、熱処理 を行って拡散バリア層 4をゲート電極材料膜 6 aと反応させ導電性反応層 1 0を形 成する 〔第 2 C図〕。 その後は、 第 1の実施の形態と同様に、 ゲート部を加工し、 ソ ース · ドレイン領域を形成して一連の製造工程を完了する。  Next, a gate electrode material film 6a is formed on the diffusion barrier layer (FIG. 2B), and heat treatment is performed to cause the diffusion barrier layer 4 to react with the gate electrode material film 6a to form a conductive reaction layer 10. [Fig. 2C]. Thereafter, as in the first embodiment, the gate portion is processed to form a source / drain region, and a series of manufacturing steps is completed.
拡散バリア層 4をゲート電極材料膜 6 aの組み合わせとしては、 窒化物または珪 化物と高融点金属、 例えば窒化アルミニウムとチタン、 窒ィ匕シリコンとチタン、 炭 化シリコンとチタンなどが挙げられる。 実施例 1  Examples of the combination of the diffusion barrier layer 4 and the gate electrode material film 6a include nitride or silicide and a high melting point metal such as aluminum nitride and titanium, silicon nitride and titanium, and silicon carbide and titanium. Example 1
第 1 A図に示すように、 O 2 : 2 x l 0— 6 T o r r ( 2 . 6 6 x 1 0— 4 P a ) の 雰囲気中、 650 C、 10分間の熱酸化により、 シリコン基板 1上に低誘電率中間 層 2として 0. 3 nm厚の S i 02を形成し、 その上に、 高誘電率膜 3となる Hf 02膜を 2. 6 nm厚に形成した。 Hf02膜は、減圧 02雰囲気中で H fを電子ビ一 ム蒸発させることで堆積した。 その上に加熱蒸発法で金属 A 1を堆積し、 減圧〇2 雰囲気中で熱酸化することにより拡散バリア層 4となる 1. 2nm厚の A 1203層 を形成した。 As shown in 1 A diagram, O 2: 2 xl 0- 6 T orr the (2 6 6 x 1 0- 4 P a.) Atmosphere, by thermal oxidation of 650 C, 10 min, the 0. 3 nm thick S i 0 2 to form a low dielectric constant intermediate layer 2 on the silicon substrate 1, on which, a high dielectric constant film 3 the hf 0 2 film 2. thereby forming the 6 nm thick. HF0 2 film, and the H f in vacuo 0 2 atmosphere deposited by causing electron beams one beam evaporation. Depositing a metal A 1 in heating evaporation method thereon, to form A 1 2 0 3 layer 1. 2 nm thick as a diffusion barrier layer 4 by thermal oxidation in a vacuum 〇 2 atmosphere.
次に、 02圧が lx 10-5To r r (1. 33x10— 3 Pa) の雰囲気中で、 8 00°C、 3分間の加熱処理を行った。このときの S i 02層の成長程度を確認するた めに、 A 1203バリア層を有しない比較例試料も作成し同様の熱処理を行った。 こ れらの実施例および比較例試料の XPS ( X線励起光電子分光) での S i 2 p光電 子スぺクトルを第 3図に示す。 A 1203バリア層がない場合は界面 S i 02層が成長 しているが、 A 1203バリア層を形成した場合は界面層が非常に薄く、 加熱前とほ とんど変わりがない。 この結果より A 123バリァ層が低誘電率中間層の成長を抑 制していることが分かる。 Next, 0 2 pressure in an atmosphere of lx 10 -5 To rr (1. 33x10- 3 Pa), heat treatment was performed in 8 00 ° C, 3 min. In order to confirm the degree growth S i 0 2 layer at this time, also creates comparative sample having no A 1 2 0 3 barrier layer was subjected to the same heat treatment. FIG. 3 shows the Si 2 p photoelectron spectrum of these examples and comparative examples by XPS (X-ray excitation photoelectron spectroscopy). Although A 1 2 0 3 surface S i 0 if there is no barrier layer 2 layer is grown, A 1 2 0 3 is the case of forming a barrier layer very interfacial layer thin, and before heating ho Tondo There is no change. It can be seen that A 1 23 Baria layer is won suppress the growth of the low dielectric constant interlayer from this result.
第 4図は、 02圧が 1 X 10- 5T o r r ( 1. 33x10"3Pa) の雰囲気中、 800°Cで熱処理を行う時間と界面 S i 02の膜厚の変化を示している。 A 1203バ リア層がない場合は、加熱初期段階から界面 S i 02層が成長している。一方、 バリ ァ層がある場合は 5分程度までは界面層の増加がなく 〔本願明細書ではこの時間を インキュぺ一シヨン(incubation)と称する〕、その後ゆつくりと成長が始まる。ィン キュベーシヨンはバリア層内の酸ィ匕種の拡散によって決まっており、 温度および酸 化種の分圧に依存すると考えられる。 Figure 4 is 0 2 atmosphere pressure 1 X 10- 5 T orr (1. 33x10 "3 Pa), shows the change in time and the interface S i 0 2 having a thickness of performing heat treatment at 800 ° C are. If there is no a 1 2 0 3 barriers layer interface S i 0 2 layers heating initial stage is growing. On the other hand, if there is burr § layer up to about 5 minutes increases the interfacial layer (This time is referred to as incubation in the present specification), after which slow growth and growth begin, which is determined by the diffusion of the oxidizing species in the barrier layer, It is thought to depend on the partial pressure of the species.
第 5図は、 02圧力および熱処理温度に対するィンキュベ一シヨンの変化を示すグ ラフである。この結果から、 02圧力が分かればィンキュベーシヨンを越えない熱処 理条件、 すなわち熱処理温度に対する最適の熱処理時間を決定することができる。 第 6図は、 所望の熱処理温度に対して最適な時間熱処理できるように構成された 熱処理装置の概略図である。 熱処理室 12内には、 ウェハ 11に赤外線を照射する 赤外線ランプ 13が配置される。 熱処理室 12内にはタンク 18より Ar、 Ν2な どの不活性ガスが供給され、 室内のガスは排気ポンプ 17により排気される。 そし て、 室内の酸化種の分圧は室内ガスをオリフィス 20を介して受ける差動排気型の 質量分析器 14により計測され、 その計測値に基づいてコント口一ラ 19は、 所望 の加熱温度に対する最適の熱処理時間を決定し、 赤外線ランプ 13への通電極時間 をリアルタイムでコントロールする。 なお、 図中、 15はバルブ、 16は排気ボン ノ'。 Cあ ό o 実施例 2 Figure 5 is a graph showing changes in Inkyube one Chillon against 0 2 pressure and heat treatment temperature. This result, 0 2 pressure does not exceed a fin-incubated over Chillon Knowing Netsusho physical condition, that is, to determine the optimum heat treatment time for the heat treatment temperature. FIG. 6 is a schematic diagram of a heat treatment apparatus configured to perform heat treatment for a desired time at a desired heat treatment temperature. In the heat treatment chamber 12, an infrared lamp 13 for irradiating the wafer 11 with infrared rays is arranged. Ar from the tank 18 into the heat treatment chamber 12, New 2 of which inert gas is supplied, indoor gas is exhausted by the exhaust pump 17. Then, the partial pressure of the oxidizing species in the room is measured by a differential exhaust type mass spectrometer 14 which receives the room gas through the orifice 20 and, based on the measured value, the controller 19 determines the desired heating temperature. To determine the optimal heat treatment time for Control in real time. In the figure, 15 is a valve and 16 is an exhaust bonnet. C a ό o Example 2
第 2図に示すように、 シリコン基板 1上に、 実施例 1と同様の方法により、 0. 3 nm厚の低誘電率中間層 2、 2. 6 nm厚の H f 02からなる高誘電率膜 3を形 成した。 その上に加熱蒸着法でシリコンを堆積し、 アンモニア雰囲気中で熱処理す ることにより、 ノ リア層 4となる 1. 2 nm厚の S i N層を形成した後、 高誘電率 膜 3の膜質改善のために、 770°C、 3分間の熱処理を行った。 次に、 電子ビーム 蒸発法により、 ゲート電極材料膜 6 aとして、 丁1を 10011111厚に堆積した。 そ して、 600°C 1分の加熱を行って、 導電性反応層 10を形成した。 As shown in FIG. 2, on a silicon substrate 1, in the same manner as in Example 1, 0. 3 nm low dielectric intermediate layer 2 having a thickness, 2. high dielectric consisting of 6 nm thickness H f 0 2 The rate film 3 was formed. Silicon is deposited thereon by a heat evaporation method and heat-treated in an ammonia atmosphere to form a 1.2 nm thick SiN layer to become a non-aluminum layer 4. For improvement, heat treatment was performed at 770 ° C for 3 minutes. Next, the gate electrode material film 6a was deposited to a thickness of 10011111 by an electron beam evaporation method. Then, heating was performed at 600 ° C. for 1 minute to form a conductive reaction layer 10.
CV (capacitance-voltage)法を用いて、 導電性反応層 10を形成するための熱 処理前後の EOTを測定したところ、 EOTは当初の 1. 4nmから 1. 1 nmへ と減少していた。 このことから、 T iと S i Nが反応して T i N + T i S iが形成 され、 ゲート電極が H f 02へ直接接合したことが分かつた。 When the EOT before and after the heat treatment for forming the conductive reaction layer 10 was measured using the CV (capacitance-voltage) method, the EOT was reduced from the initial 1.4 nm to 1.1 nm. Therefore, T i and S i N reacts T i N + T i S i is formed, the gate electrode is divide that was directly bonded to H f 0 2.
以上、 好ましい実施の形態、 実施例について説明したが、 本発明はこれらに限定 されるものではなく、 本発明の要旨を逸脱しない範囲内において適宜の変更が可能 なものである。 例えば、 高誘電率膜の膜質改善のための熱処理は、 必ずしも 単独に行う必要はなく、 その後に行われる熱処理によって兼ねさせるようにするこ ともできる。  The preferred embodiments and examples have been described above. However, the present invention is not limited to these, and can be appropriately changed without departing from the gist of the present invention. For example, the heat treatment for improving the film quality of the high-dielectric-constant film does not necessarily have to be performed alone, but may be performed by a heat treatment performed thereafter.

Claims

請 求 の 範 囲 The scope of the claims
1.高誘電率ゲ一ト絶縁膜上にゲート電極が形成されている MI S型半導体装置に おいて、 前記高誘電率ゲート絶縁膜と前記ゲート電極との間には、 絶縁膜とゲート 電極とが反応することによって形成された導電体層である反応層が介在しているこ とを特徴とする MI S型半導体装置。 1. In a MIS type semiconductor device having a gate electrode formed on a high dielectric constant gate insulating film, an insulating film and a gate electrode are provided between the high dielectric constant gate insulating film and the gate electrode. A MIS type semiconductor device characterized in that a reaction layer, which is a conductor layer formed by reacting with a semiconductor, is interposed.
2.請求の範囲第 1項に記載の MI S型半導体装置において、 前記反応層が金属窒 化物または金属珪化物を含んでいることを特徴とする MI S型半導体装置。  2. The MIS type semiconductor device according to claim 1, wherein the reaction layer contains a metal nitride or a metal silicide.
3.請求の範囲第 1項に記載の MI S型半導体装置において、 前記ゲート電極が T iヽ Wまたは T aにより形成されていることを特徴とする MI S型半導体装置。 3. The MIS type semiconductor device according to claim 1, wherein the gate electrode is formed by Ti ヽ W or Ta.
4. (a) 半導体基板上に高誘電率膜を形成する工程と、 4. (a) forming a high dielectric constant film on the semiconductor substrate;
(b)前記高誘電率膜上に該高誘電率膜への酸化種 (02、 H20) の混入を抑制す る下層拡散ノ リァ層を堆積する工程と、 (b) depositing the high dielectric constant oxide species into the high dielectric constant film on a film (0 2, H 2 0) lower diffusion Bruno Ria layer you suppress contamination,
(c)熱処理を行う工程と、  (c) performing a heat treatment;
を有することを特徴とする MI S型半導体装置の製造方法。 A method for manufacturing a MIS type semiconductor device, comprising:
5.請求の範囲第 4項に記載の MI S型半導体装置の製造方法において、 熱処理を 行う時間が、 その雰囲気中の酸ィ匕種の濃度と熱処理温度とに基づいて設定されるこ とを特徴とする MI S型半導体装置の製造方法。  5. The method for manufacturing a MIS semiconductor device according to claim 4, wherein the time for performing the heat treatment is set based on the concentration of the oxidizing species in the atmosphere and the heat treatment temperature. A method for manufacturing a MIS type semiconductor device.
6.請求の範囲第 4項に記載の MI S型半導体装置の製造方法において、 熱処理を 行う時間が、 酸化種が前記高誘電率膜を通過して前記半導体基板の表面に到達する 時間以内に設定されていることを特徴とする MI S型半導体装置の製造方法。  6. The method for manufacturing a MIS type semiconductor device according to claim 4, wherein the time for performing the heat treatment is within a time for the oxidized species to pass through the high dielectric constant film and reach the surface of the semiconductor substrate. A method of manufacturing a MIS semiconductor device, wherein the method is set.
7. (a) 半導体基板上に高誘電率膜を形成する工程と、  7. (a) forming a high dielectric constant film on the semiconductor substrate;
(b)前記高誘電率膜上に該高誘電率膜への酸化種 (02、 H20) の混入を抑制す る下層拡散バリァ層を堆積する工程と、 (b) depositing the high dielectric constant film on the oxide species into the high dielectric constant film (0 2, H 2 0) lower diffusion Baria layer you suppress contamination,
( c )前記下層拡散バリァ層上にゲ一ト電極形成材料膜を形成する工程と、  (c) forming a gate electrode forming material film on the lower diffusion barrier layer;
(d)熱処理を行って前記下層拡散バリァ層と前記ゲ一ト電極形成材料膜とを反応 させて導電性反応層を形成する工程と、  (d) performing a heat treatment to react the lower diffusion barrier layer with the gate electrode forming material film to form a conductive reaction layer;
を有することを特徴とする MI S型半導体装置の製造方法。 A method for manufacturing a MIS type semiconductor device, comprising:
8. (a) 半導体基板上に高誘電率膜を形成する工程と、  8. (a) forming a high dielectric constant film on the semiconductor substrate;
(b)前記高誘電率膜上に該高誘電率膜への酸化種 (02、 H20) の混入を抑制す る下層拡散ノ ^リァ層を堆積する工程と、 (c)熱処理を行って前記高誘電率膜の膜質を改善する工程と、 (b) depositing the high dielectric constant film on the oxide species into the high dielectric constant film (0 2, H 2 0) lower diffusion Bruno ^ Ria layer you suppress contamination, (c) performing a heat treatment to improve the film quality of the high dielectric constant film,
(d)前記下層拡散バリァ層上にゲート電極形成材料膜を形成する工程と、 (d) forming a gate electrode forming material film on the lower diffusion barrier layer;
(e)熱処理を行って前記下層拡散バリア層と前記ゲ一ト電極形成材料膜とを反応 させて導電性反応層を形成する工程と、 (e) performing a heat treatment to react the lower diffusion barrier layer and the gate electrode forming material film to form a conductive reaction layer;
を有することを特徴とする MI S型半導体装置の製遣方法。 A method for manufacturing a MIS type semiconductor device, comprising:
9. 請求の範囲第 7項または第 8項に記載の MI S型半導体装置の製造方法におい て、 前記下層拡散バリア層の材料と前記ゲート電極形成材料との組み合わせが、 窒 化物または珪化物と高融点金属であることを特徴とする MIS型半導体装置の製造 方法。  9. In the method for manufacturing a MIS type semiconductor device according to claim 7 or 8, wherein a combination of the material of the lower diffusion barrier layer and the material for forming the gate electrode includes a nitride or a silicide. A method for manufacturing an MIS type semiconductor device, wherein the method is a refractory metal.
10.請求の範囲第 7項または第 8項に記載の MI S型半導体装置の製造方法にお いて、 前記下層拡散バリァ層の材料と前記ゲート電極形成材料との組み合わせが、 窒化アルミニウムとチタン、 窒ィ匕シリコンとチタンまたは炭ィ匕シリコンとチタンで あることを特徴とする MI S型半導体装置の製造方法。  10. The method for manufacturing a MIS type semiconductor device according to claim 7 or 8, wherein a combination of the material for the lower diffusion barrier layer and the material for forming the gate electrode includes aluminum nitride and titanium, A method for producing a MIS type semiconductor device, comprising silicon nitride and titanium or titanium nitride and titanium.
11. (a)半導体基板上に高誘電率膜を形成する工程と、  11. (a) forming a high dielectric constant film on the semiconductor substrate;
(b)前記高誘電率膜上にゲ一ト電極形成材料膜を形成する工程と、  (b) forming a gate electrode forming material film on the high dielectric constant film;
( c) 前記ゲ一ト電極形成材料膜と前記高誘電率膜とをゲ一ト電極形状にパ夕一二 ングしてゲート部を形成する工程と、  (c) forming a gate portion by patterning the gate electrode forming material film and the high dielectric constant film into a gate electrode shape;
(d)少なくとも前記ゲート部上およびその側面に酸化種 (02、 H20) の侵入を 抑制する上層拡散バリァ層を堆積する工程と、 (d) depositing an upper diffusion barrier layer that suppresses intrusion of oxidizing species (0 2 , H 20 ) at least on the gate portion and on side surfaces thereof;
(e)後期熱処理を行う工程と、  (e) performing a late heat treatment;
を有することを特徴とする MI S型半導体装置の製造方法。 A method for manufacturing a MIS type semiconductor device, comprising:
12. (a)半導体基板上に高誘電率膜を形成する工程と、  12. (a) forming a high dielectric constant film on the semiconductor substrate;
(b)前記高誘電率膜への酸化種 (02、 H20) の混入を抑制する下層拡散バリア 層を堆積する工程と、 (b) depositing the high dielectric constant oxide species into the film (0 2, H 2 0) to suppress the lower diffusion barrier layer contamination,
(c)前記拡散バリア層上にゲート電極形成材料膜を形成する工程と、  (c) forming a gate electrode forming material film on the diffusion barrier layer;
(d)前記ゲート電極形成材料膜、 前記拡散バリア層および前記高誘電率膜をゲ一 ト電極形状にパターニングしてゲート部を形成する工程と、  (d) forming a gate portion by patterning the gate electrode forming material film, the diffusion barrier layer and the high dielectric constant film into a gate electrode shape,
( Θ)少なくとも前記ゲート部上およびその側面に酸化種 (02、 Η20) の侵入を 抑制する上層拡散ノ ^リァ層を堆積する工程と、 (Theta) depositing at least the gate portion and on oxidizing species on its side surface (0 2, Η 2 0) suppressing layer diffusion Roh ^ Ria layer intrusion of
(f )後期熱処理を行う工程と、  (f) performing a late heat treatment;
を有することを特徴とする MI S型半導体装置の製造方法。 A method for manufacturing a MIS type semiconductor device, comprising:
13. (a)半導体基板上に高誘電率膜を形成する工程と、 13. (a) forming a high dielectric constant film on the semiconductor substrate;
(b)前記高誘電率膜への酸化種 (02、 H20) の混入を抑制する下層拡散バリア 層を堆積する工程と、 (b) depositing the high dielectric constant oxide species into the film (0 2, H 2 0) to suppress the lower diffusion barrier layer contamination,
(c)前期熱処理を行う工程と、  (c) performing a heat treatment in the previous period;
(d)前記下層拡散バリア層上にゲート電極形成材料膜を形成する工程と、 (d) forming a gate electrode forming material film on the lower diffusion barrier layer;
(e)前記ゲート電極形成材料膜、 前記下層拡散バリア層および前記高誘電率膜を ゲ一ト電極形状にパターニングしてゲ一ト部を形成する工程と、 (e) patterning the gate electrode forming material film, the lower diffusion barrier layer and the high dielectric constant film into a gate electrode shape to form a gate portion,
(f )少なくとも前記ゲート部上およびその側面に酸ィ匕種 (02、 H20) の侵入を 抑制する上層拡散バリァ層を堆積する工程と、 (f) depositing an upper diffusion barrier layer for suppressing intrusion of the oxidizing species (0 2 , H 20 ) at least on the gate portion and on the side surface thereof;
(g)後期熱処理を行う工程と、  (g) performing a late heat treatment;
を有することを特徴とする MI S型半導体装置の製造方法。 A method for manufacturing a MIS type semiconductor device, comprising:
14. 請求の範囲第 11項、 第 12項または第 13項に記載の MI S型半導体装置 の製造方法において、 前記ゲート部を形成する工程の後、 または、 前記上層拡散バ リァ層を堆積する工程の後に、 前記ゲート部の両サイドの半導体基板内に不純物ィ オンを注入する工程が付加され、 前記後期熱処理が注入された不純物の活性化処理 である熱処理を兼ねていることを特徴とする MI S型半導体装置の製造方法。 14. In the method for manufacturing a MIS semiconductor device according to claim 11, 12, or 13, after the step of forming the gate portion, or depositing the upper diffusion barrier layer After the step, a step of implanting impurity ions into the semiconductor substrate on both sides of the gate portion is added, and the latter heat treatment also serves as a heat treatment for activating the implanted impurities. Manufacturing method of MIS type semiconductor device.
15. 請求の範囲第 4項、 第 7項、 第 8項、 第 11項、 第 12項または第 13項に 記載の MI S型半導体装置の製造方法において、 前記下層拡散バリア層または前記 上層拡散バリア層が 2原子層または 0. 6nm厚以上、 5原子層または 1. 5 nm 厚以下の膜厚の酸化アルミニウム、 窒化アルミニウム、 酸窒化アルミニウム、 酸化 シリコン、 窒化シリコン、 酸窒化シリコン、 炭化シリコンのいずれかであることを 特徴とする MI S型半導体装置の製造方法。 15. The method for manufacturing a MIS type semiconductor device according to claim 4, 7, 8, 11, 12, or 13, wherein the lower diffusion barrier layer or the upper diffusion Aluminum oxide, aluminum nitride, aluminum oxynitride, silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, with a barrier layer with a thickness of 2 atomic layers or more than 0.6 nm thick, 5 atomic layers or less than 1.5 nm thick A method for manufacturing a MIS type semiconductor device, which is any one of the above.
PCT/JP2004/001408 2003-02-17 2004-02-10 Mis semiconductor device and method for manufacturing mis semiconductor device WO2004073072A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005504970A JPWO2004073072A1 (en) 2003-02-17 2004-02-10 MIS type semiconductor device and method for manufacturing MIS type semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003038061 2003-02-17
JP2003-038061 2003-02-17

Publications (1)

Publication Number Publication Date
WO2004073072A1 true WO2004073072A1 (en) 2004-08-26

Family

ID=32866381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001408 WO2004073072A1 (en) 2003-02-17 2004-02-10 Mis semiconductor device and method for manufacturing mis semiconductor device

Country Status (2)

Country Link
JP (1) JPWO2004073072A1 (en)
WO (1) WO2004073072A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005210060A (en) * 2003-12-26 2005-08-04 Fujitsu Ltd Semiconductor device and manufacturing method therefor
JP2008514019A (en) * 2004-09-21 2008-05-01 フリースケール セミコンダクター インコーポレイテッド Semiconductor device and method of forming the same
JP2008521215A (en) * 2004-11-15 2008-06-19 インターナショナル・ビジネス・マシーンズ・コーポレーション Semiconductor structure and method for forming it (nitrogen-containing field effect transistor gate stack including threshold voltage control layer formed through metal oxide deposition)
US7892913B2 (en) 2008-04-25 2011-02-22 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device and semiconductor device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225870A (en) * 1985-03-29 1986-10-07 Fujitsu Ltd Manufacture of mis transistor
JPH04134866A (en) * 1990-09-27 1992-05-08 Toshiba Corp Field effect transistor device and its manufacture
JPH05183155A (en) * 1992-01-06 1993-07-23 Fujitsu Ltd Semiconductor device and fabrication thereof
JPH11345967A (en) * 1998-06-02 1999-12-14 Nec Corp Mos transistor, its manufacture, and integrated circuit containing the same
EP1035564A2 (en) * 1999-01-13 2000-09-13 Lucent Technologies Inc. Diffusion barrier for high dielectric constant materials
US6326670B1 (en) * 1999-03-11 2001-12-04 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
JP2002184773A (en) * 2000-12-19 2002-06-28 Nec Corp Method of forming thin film having high permittivity and method of manufacturing semiconductor device using the thin film having high permittivity
JP2003008005A (en) * 2001-06-21 2003-01-10 Matsushita Electric Ind Co Ltd Semiconductor device equipped with insulating film having high dielectric constant

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225870A (en) * 1985-03-29 1986-10-07 Fujitsu Ltd Manufacture of mis transistor
JPH04134866A (en) * 1990-09-27 1992-05-08 Toshiba Corp Field effect transistor device and its manufacture
JPH05183155A (en) * 1992-01-06 1993-07-23 Fujitsu Ltd Semiconductor device and fabrication thereof
JPH11345967A (en) * 1998-06-02 1999-12-14 Nec Corp Mos transistor, its manufacture, and integrated circuit containing the same
EP1035564A2 (en) * 1999-01-13 2000-09-13 Lucent Technologies Inc. Diffusion barrier for high dielectric constant materials
US6326670B1 (en) * 1999-03-11 2001-12-04 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
JP2002184773A (en) * 2000-12-19 2002-06-28 Nec Corp Method of forming thin film having high permittivity and method of manufacturing semiconductor device using the thin film having high permittivity
JP2003008005A (en) * 2001-06-21 2003-01-10 Matsushita Electric Ind Co Ltd Semiconductor device equipped with insulating film having high dielectric constant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005210060A (en) * 2003-12-26 2005-08-04 Fujitsu Ltd Semiconductor device and manufacturing method therefor
JP2008514019A (en) * 2004-09-21 2008-05-01 フリースケール セミコンダクター インコーポレイテッド Semiconductor device and method of forming the same
JP2008521215A (en) * 2004-11-15 2008-06-19 インターナショナル・ビジネス・マシーンズ・コーポレーション Semiconductor structure and method for forming it (nitrogen-containing field effect transistor gate stack including threshold voltage control layer formed through metal oxide deposition)
US7892913B2 (en) 2008-04-25 2011-02-22 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device and semiconductor device
US7952148B2 (en) 2008-04-25 2011-05-31 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device and semiconductor device

Also Published As

Publication number Publication date
JPWO2004073072A1 (en) 2006-06-01

Similar Documents

Publication Publication Date Title
JP4047075B2 (en) Semiconductor device
US7135361B2 (en) Method for fabricating transistor gate structures and gate dielectrics thereof
US6727148B1 (en) ULSI MOS with high dielectric constant gate insulator
US6955973B2 (en) Method for forming a semiconductor device
US7737511B2 (en) Semiconductor device and method of manufacturing the same
US7115533B2 (en) Semiconductor device manufacturing method
US8785272B2 (en) Process to make high-K transistor dielectrics
US20010006843A1 (en) Method for forming a gate insulating film for semiconductor devices
JPH11135774A (en) High-dielectric constant silicate gate dielectric
US20040126944A1 (en) Methods for forming interfacial layer for deposition of high-k dielectrics
JP3746478B2 (en) Manufacturing method of semiconductor device
WO2003088357A1 (en) Semiconductor device and its manufacturing method
JP4489368B2 (en) Semiconductor device and manufacturing method thereof
US6440868B1 (en) Metal gate with CVD amorphous silicon layer and silicide for CMOS devices and method of making with a replacement gate process
JP2002299607A (en) Misfet and method of manufacturing the same
US6436840B1 (en) Metal gate with CVD amorphous silicon layer and a barrier layer for CMOS devices and method of making with a replacement gate process
US9786762B2 (en) Gate electrode of a semiconductor device, and method for producing same
JP4742867B2 (en) Semiconductor device provided with MIS field effect transistor
US7371670B2 (en) Method for forming a (TaO)1-x(TiO)xN dielectric layer in a semiconductor device
US6528362B1 (en) Metal gate with CVD amorphous silicon layer for CMOS devices and method of making with a replacement gate process
JP2000049349A (en) Manufacture for field-effect device in integrated circuit
JP2001085427A (en) Oxynitride film and forming method therefor
WO2004073072A1 (en) Mis semiconductor device and method for manufacturing mis semiconductor device
US6893980B1 (en) Semiconductor device and manufacturing method therefor
JP2005079563A (en) Manufacturing method for electronic device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005504970

Country of ref document: JP

122 Ep: pct application non-entry in european phase