WO2004069568A1 - Systeme pour maintenir la stabilite de marche d'un chariot de manutention - Google Patents

Systeme pour maintenir la stabilite de marche d'un chariot de manutention Download PDF

Info

Publication number
WO2004069568A1
WO2004069568A1 PCT/DE2003/003689 DE0303689W WO2004069568A1 WO 2004069568 A1 WO2004069568 A1 WO 2004069568A1 DE 0303689 W DE0303689 W DE 0303689W WO 2004069568 A1 WO2004069568 A1 WO 2004069568A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
mast
gravity
inclination
load
Prior art date
Application number
PCT/DE2003/003689
Other languages
German (de)
English (en)
Inventor
Gerold Müller
Original Assignee
Bosch Rexroth Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Rexroth Ag filed Critical Bosch Rexroth Ag
Publication of WO2004069568A1 publication Critical patent/WO2004069568A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F17/00Safety devices, e.g. for limiting or indicating lifting force
    • B66F17/003Safety devices, e.g. for limiting or indicating lifting force for fork-lift trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/02Trucks; Load vehicles
    • B60G2300/022Fork lift trucks, Clark

Definitions

  • the invention relates to a device for ensuring the driving stability of an industrial truck and a method for controlling an industrial vehicle.
  • EP 916 527 A2 discloses an active system for tipping stabilization of industrial trucks. According to the known solution, these are designed with a rear steerable pendulum axle, which lock in critical driving conditions by means of a hydraulic locking device and thus practically to a rigid axle can be made. In the known solution, this hydraulic locking device is controlled as a function of the transported load, the signals from a speed sensor and a sensor for detecting the yaw angle and as a function of the approximate height position of the load.
  • a disadvantage of this solution is that the system can only be used on industrial trucks with four wheels. Furthermore, a considerable outlay in terms of device technology is required in order to integrate the hydraulic locking device for the pendulum axis. It is also considered a disadvantage that this known system intervenes very early and, in certain driving conditions, already blocks the pendulum axis or sends signals to the driver if sufficient stability is actually still present, so that the efficiency of the vehicle is reduced.
  • the invention has for its object to provide a device for controlling the driving stability of an industrial truck and a method for controlling an industrial truck, in which the tipping safety can be improved with minimal device engineering effort.
  • Numerous sensors such as an angle sensor for detecting the mast inclination, a lifting height sensor for exact detection of a fork position, and a force sensor designed to detect tipping forces acting on a mast, a load sensor to record the load of the industrial truck and acceleration sensors to record the vehicle accelerations in the longitudinal and transverse directions.
  • the actual vehicle condition is then recorded (center of gravity, accelerations) and compared with limit values specified by the control system and by the vehicle control system intervened in such a way that these limit values cannot be exceeded arbitrarily, ie by control commands from the driver.
  • the driving according to the invention therefore presupposes that the center of gravity of the vehicle and the load height and also their state change speeds are recorded so precisely that parameters of the vehicle are limited via the vehicle control so that the latter does not get into a critical state (tipping) ,
  • limit values for the lifting height, the vehicle speed, the maximum acceleration, the maximum steering angle and the maximum inclination can be specified.
  • the control device intervenes directly in the vehicle control and countermeasures are initiated to prevent tipping.
  • this direct intervention only takes place in the critical case, usually the driving state is kept in the stable range above the limit values described above.
  • the driving safety of the industrial truck can be further improved if the center of gravity in the transverse direction is recorded as precisely as possible.
  • a force sensor is assigned to each of these tilting cylinders, so that eccentric loads are recorded and are accordingly incorporated into the control.
  • the respective force sensor does not have to sit directly on the inclination cylinder. It can also be located on the swivel joint between the mast and the chassis or on the mast suspension on the chassis.
  • the current maximum acceleration when driving straight ahead (braking, accelerating) or when cornering (acceleration in the longitudinal direction and in the transverse direction) can be specified, for example, with the formulas specified in claim 6 and measured with the accelerators. be compared.
  • Fig. 1 is a schematic representation of a counterbalance truck with shown sizes for calculating the center of gravity
  • Figure 2 is a schematic diagram to explain the tilt stability in the longitudinal and transverse directions.
  • FIG. 3 shows a schematic representation of the counterbalance truck with large ones for calculating the accelerations in the longitudinal and transverse directions
  • Fig. 4 shows a stability triangle to explain the tilt stability.
  • a mast 10 with a mast 14 that can be tilted about an inclination axis 12 is mounted on the front of the truck.
  • the setting of the angle of inclination ⁇ of the mast 14 takes place via an inclination device with, for example, two inclination cylinders 16 which are articulated to the vehicle frame and to the mast 14.
  • a fork 17 is displaceably guided on the frame-shaped mast, the lifting height hg being adjustable by means of a schematically indicated lifting cylinder 18.
  • the stacker is equipped with a lifting height sensor for detecting the lifting height hg, an angle sensor for detecting the mast inclination ⁇ ,
  • Force sensors for detecting the tilt cylinder 16 supporting forces acting on the mast 14 acceleration sensors for detecting the vehicle acceleration in the longitudinal and transverse axes, and a pressure sensor for detecting the force applied by the lifting cylinder 18, which is equivalent to the load FL acting on the fork 17.
  • the forklift 1 also has a control unit 20 which can be integrated in the vehicle control or can be designed as an external module.
  • the signals emitted by the aforementioned sensors are processed in the control unit and compared with limit values stored in the memory of the control unit 20 and, depending on the result of this comparison, control signals are emitted to the hydraulic circuit of the truck or to the engine management.
  • the center of gravity rgp and the weight Gp z of the empty truck 1 without mast 14 and fork 17 are assumed to be known. These sizes are calculated from:
  • r SF ( ⁇ SF 'YSF' Z SF) with xgp, ygp, zgp center of gravity coordinates.
  • the center of gravity and the weight of the load plus the mast 14 and fork 17 must be determined based on the variable load and is calculated according to:
  • ⁇ IL mass of the load + mass (fork + mast)
  • r SL ( ⁇ SL ⁇ YSL Z SL ) with
  • the total mass of the system and the overall center of gravity are then calculated according to:
  • r s 1 / m * (m FZ + r SF + m L * r SL ).
  • the center of gravity of the load is the common center of gravity of the load ⁇ IL, the fork 17 and the mast 14.
  • the torque equilibrium then applies according to FIG. 1:
  • X AC horizontal distance between the inclination axis 12 and vehicle joint
  • lpN Distance between the inclination axis 12 and the mast-side joint of the inclination cylinder 16 (see FIG. 1).
  • z ⁇ Height of the inclination axis 12 (point A) above the ground (Fig. 1).
  • zg hg (see Fig. 1) * cos ⁇ - tan ⁇ * (XL - hg + sin ⁇ ) and hg, hgg p. Fig. 1.
  • z ⁇ is known as a vehicle parameter.
  • Tilt angle a of the mast 14 is detected via the angle sensor, the lifting height hg can be detected with the lifting height sensor.
  • the size hgg (see FIG. 1) can be determined by knowing the otherwise tangible values for two different mast inclinations.
  • the fork height hg can be retained, but the calculation also works with different fork heights hg.
  • the two fork positions should be marked with indices 1 and 2. Accordingly, the size hgg is calculated according to:
  • h-sc? ( ⁇ ⁇ ,? ⁇ hffg * sin ⁇ ? ) / cos ⁇ ? - (x T ⁇ 1 - h ⁇ 1 * sin ⁇ ) / cos ⁇ tan ⁇ .2 - tan ⁇ ⁇
  • the x, y and z coordinates of the overall center of gravity can be determined from the signals from the lift height sensor, the angle sensor and the force sensors of the tilting cylinder 16 and the previously known, unchangeable vehicle parameters with high accuracy and with minimal Determine effort.
  • the truck 1 is shown schematically, with its front axle 4 and the steerable rear swing axle 6. In the event that the truck 1 transports a load, this weight of the load GL is in front of the front axle 4 in the direction of travel.
  • the rear axle 6 is with the counterweight not shown.
  • the forklift 1 with a pendulum axle 6 is in a stable state as long as the center of gravity is statically and dynamically within the dashed triangle of stability, which is characterized by the center distance of the front wheels VL, VR and the pivot point of the rear axle H.
  • the risk of tipping is also largely determined by the dynamic forces. For example, braking when driving forwards and, conversely, accelerating when driving in reverse reduce the tipping stability.
  • the component of the centrifugal force acting in the longitudinal direction of the vehicle acts backwards in the direction of the rear axle and thus counteracts tipping over the front axle.
  • the effective loads for predetermined driving conditions can then be Calculate longitudinal and transverse accelerations and use them to determine limit values.
  • the torque equation for the front axle 4 can be derived from the illustration according to FIG. 3. The following applies:
  • F R y and F R JJ For braking, acceleration, forces transmitted to the front axle 4 and the rear axle 6 r: Distance of the inclination axis 16 from the ground X SB ' Z SB see FIG. 3 m: Total mass of the vehicle a x : Acceleration in longitudinal direction.
  • a permissible maximum acceleration in the longitudinal direction can then be defined, which essentially depends on the previously calculated center of gravity.
  • a possible vehicle inclination can be determined with those acceleration sensors with which a x is measured.
  • the stacker 1 is then controlled in such a way that the actually measured acceleration a x is smaller or at most as large as the maximum value calculated using the above equation.
  • the parameters of the stability triangle of the truck 1, the wheelbase 1, the track width b, the angle ⁇ between the leg HV r (or H-Vj_) and the longitudinal axis x of the vehicle and the Position of the center of gravity S Accordingly, the distance d of the center of gravity S from the respectively effective tilt axis - ie when driving to the left from the axis HV r - is decisive for calculating the tilting moment in the transverse direction. This distance d is dependent on the center of gravity S and the mentioned parameters 1 and b.
  • the distance d is calculated according to:
  • Fg total weight of the vehicle including load
  • the specification of the limit values for the center of gravity and for the accelerations will generally keep the truck 1 in a driving state in which the risk of tipping is minimal.
  • the sensor system described above enables these actual values to be recorded very quickly and precisely, so that continuous monitoring of the driving state is made possible.
  • the speed of change in the driving state is so great that it is no longer possible to intervene in time with the strategy described above in order to keep the driving state within the predetermined limit values. In these cases, the vehicle's driving condition must be actively intervened.
  • These limit values which depend on the driving state, cannot be exceeded by the driver at will, so that the tipping stability of the vehicle generally remains in a stable range regardless of the driving state (cornering, driving straight ahead, downhill ).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

L'invention concerne un dispositif pour moduler la stabilité de marche d'un chariot de manutention (1) et un procédé pour diriger un chariot de manutention (1). Selon ce procédé, des capteurs saisissent et comparent à des valeurs limites prédéfinies la charge, l'inclinaison du mât (14) et d'un cadre de levage (10), la hauteur de levage de la charge, les forces de basculement agissant sur le mât (14) et les accélérations dans les sens longitudinal et transversal agissant sur le véhicule. Les valeurs limites, qui dépendent de l'état de marche du véhicule, ne peuvent pas être arbitrairement dépassées par le cariste, de sorte que la stabilité du véhicule au basculement est maintenue en règle générale indépendamment de l'état de marche (virage, ligne droite, descente, ...).
PCT/DE2003/003689 2003-02-05 2003-11-07 Systeme pour maintenir la stabilite de marche d'un chariot de manutention WO2004069568A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10304658.5 2003-02-05
DE2003104658 DE10304658A1 (de) 2003-02-05 2003-02-05 Flurförderfahrzeug

Publications (1)

Publication Number Publication Date
WO2004069568A1 true WO2004069568A1 (fr) 2004-08-19

Family

ID=32730773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/003689 WO2004069568A1 (fr) 2003-02-05 2003-11-07 Systeme pour maintenir la stabilite de marche d'un chariot de manutention

Country Status (2)

Country Link
DE (1) DE10304658A1 (fr)
WO (1) WO2004069568A1 (fr)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2413547A (en) * 2004-04-07 2005-11-02 Linde Ag Industrial truck having a static and dynamic tipping stability control device
AU2006225159B2 (en) * 2005-09-30 2008-10-16 Kabushiki Kaisha Toyota Jidoshokki Drive control apparatus for forklift
DE102008000120A1 (de) * 2008-01-22 2009-07-23 Zf Friedrichshafen Ag Verfahren zur Messung der Nutzlast bei einem Telehandler
WO2011032744A1 (fr) * 2009-09-15 2011-03-24 Robert Bosch Gmbh Véhicule de manutention à dispositif de levage réglable en hauteur
EP2218832A3 (fr) * 2009-02-12 2014-05-28 CNH Industrial Italia S.p.A. Contrôle d'accélération pour véhicules dotés d'un bras de chargement
EP3034456A1 (fr) * 2014-12-16 2016-06-22 STILL GmbH Procede de determination d'application des charges pour un chariot de manutention
EP3034454A1 (fr) * 2014-12-16 2016-06-22 STILL GmbH Procede destine a la mesure de la charge dans un chariot de manutention
EP3050840A1 (fr) * 2015-01-30 2016-08-03 Jungheinrich Aktiengesellschaft Determination de la grandeur de reference pour chariots de manutention
ITUB20152573A1 (it) * 2015-07-28 2017-01-28 Cvs Ferrari S P A Apparecchiatura per il sollevamento ed il trasporto di carichi, in particolare di corrispondenti containers
CN106926778A (zh) * 2017-02-21 2017-07-07 梁晓娟 一种货车侧翻预警装置及方法
CN106965804A (zh) * 2017-02-21 2017-07-21 梁晓娟 一种货车侧翻风险预估的方法
US9932213B2 (en) 2014-09-15 2018-04-03 Crown Equipment Corporation Lift truck with optical load sensing structure
CN110872088A (zh) * 2018-08-31 2020-03-10 海斯特-耶鲁集团有限公司 用于升降装卸车的动态稳定性确定系统
CN111807266A (zh) * 2020-07-07 2020-10-23 诺力智能装备股份有限公司 一种适用于载货式agv的安全高度限制系统及其操作方法
US11142442B2 (en) 2017-02-10 2021-10-12 Arrow Acquisition, Llc System and method for dynamically controlling the stability of an industrial vehicle
US11518368B2 (en) 2020-08-04 2022-12-06 International Business Machines Corporation Dynamic center of gravity monitoring and tilt prevention

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004046890A1 (de) * 2004-09-28 2006-03-30 Jungheinrich Ag Verfahren zur Kippvermeidung von hinterradgelenkten Fahrzeugen, insbesondere Flurförderzeugen
US10013815B2 (en) 2006-12-13 2018-07-03 Crown Equipment Corporation Information system for industrial vehicles
US11225404B2 (en) 2006-12-13 2022-01-18 Crown Equipment Corporation Information system for industrial vehicles
EP3723053B1 (fr) 2006-12-13 2023-07-05 Crown Equipment Corporation Système de gestion de flotte
US10600256B2 (en) * 2006-12-13 2020-03-24 Crown Equipment Corporation Impact sensing usable with fleet management system
DE102008019069B4 (de) 2007-12-21 2022-11-24 Still Gesellschaft Mit Beschränkter Haftung Verfahren zur Ansteuerung von Komfort- und Sicherheitsfunktionen bei Flurförderzeugen
DE102009018072A1 (de) 2009-04-20 2010-10-21 Robert Bosch Gmbh Mobile Arbeitsmaschine mit Beschleunigungssensor
DE102010023069A1 (de) 2010-06-08 2011-12-08 Robert Bosch Gmbh Verfahren zum Bestimmen einer Kippwahrscheinlichkeit bei einem Flurförderzeug
DE102010045602A1 (de) 2010-09-16 2012-03-22 Jungheinrich Aktiengesellschaft Vorrichtung zur Messung der Radaufstandskraft am gelenkten Hinterrad eines Flurförderzeugs, insbesondere eines Gegengewichtsstaplers
DE102010050683A1 (de) * 2010-11-06 2012-05-10 Jungheinrich Aktiengesellschaft Flurförderzeug mit Verformungssensor im Neigezylinder
DE102011108874A1 (de) 2011-07-28 2013-01-31 Hydac System Gmbh Steuervorrichtung
DE102011056752A1 (de) 2011-12-21 2013-06-27 Still Gmbh Verfahren zur Bestimmung des Kippmoments in Längsrichtung für Flurförderzeuge
ES2738108T3 (es) 2013-03-04 2020-01-20 Wacker Neuson Linz Gmbh Máquina automóvil con instalación de carga
DE102015118472A1 (de) * 2015-10-29 2017-05-04 Jungheinrich Aktiengesellschaft Flurförderzeug mit einem Lastteil und einem Antriebsteil
DE102016118457A1 (de) 2016-09-29 2018-03-29 Jungheinrich Aktiengesellschaft Verfahren zur Bedienung eines Flurförderzeugs mit einem Bedienelement sowie ein Flurförderzeug
DE102016118458A1 (de) 2016-09-29 2018-03-29 Jungheinrich Aktiengesellschaft Verfahren zur Bedienung eines Flurförderzeugs mit einem Bedienelement
JP7070041B2 (ja) * 2018-04-26 2022-05-18 中西金属工業株式会社 フォークリフト、及びフォークリフトのフォークに積載した荷の重心高測定方法
EP3849932A1 (fr) 2018-09-13 2021-07-21 Crown Equipment Corporation Système et procédé de commande d'une vitesse de véhicule maximale pour un véhicule industriel sur la base d'une charge calculée
DE102019116086A1 (de) * 2019-06-13 2020-12-17 WABCO Global GmbH Einrichtung und Verfahren zur Abbremsung eines Fahrzeugs mit einer Frontlastaufnahmevorrichtung
DE102019121497A1 (de) * 2019-08-09 2021-02-11 Jungheinrich Aktiengesellschaft Flurförderzeug und Verfahren zur Überwachung eines Flurförderzeugs
DE102020206552A1 (de) 2020-05-26 2021-12-02 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Bestimmen eines Lastschwerpunkts eines homogenen Objekts
DE102020206530A1 (de) 2020-05-26 2021-12-02 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Bestimmen eines Lastschwerpunkts eines Objekts
DE102020213674A1 (de) 2020-10-30 2022-05-05 Zf Friedrichshafen Ag Verfahren und Steuereinrichtung zum Betreiben einer selbstfahrenden Arbeitsmaschine
DE102020130064A1 (de) 2020-11-13 2022-05-19 Jungheinrich Aktiengesellschaft Flurförderzeug mit einem Kraftsensor im Neigezylinder
CN112373461B (zh) * 2020-11-24 2022-04-01 合肥工业大学 一种平衡式重式叉车的防侧翻控制方法及控制系统
DE102021121163A1 (de) 2021-08-13 2023-02-16 Danfoss Power Solutions Gmbh & Co. Ohg Verbesserter Teleskoplader

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0343839A2 (fr) * 1988-05-26 1989-11-29 The Raymond Corporation Système de commande pour chariot élévateur
US4957408A (en) * 1988-04-06 1990-09-18 Toyota Jidosha Kabushiki Kaisha Device for controlling a fork of a forklift
GB2290149A (en) * 1994-06-10 1995-12-13 Colin Stanley Smith System for ensuring the stability and safe operation of lift trucks
EP0921021A2 (fr) * 1997-12-02 1999-06-09 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Procédé et dispositif de réglage pour essieu oscillant de véhicules utilitaires
EP0924160A2 (fr) * 1997-12-15 1999-06-23 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Commande du mécanisme de levage et méthode de commande pour véhicules industriels
JP2001031391A (ja) * 1999-07-27 2001-02-06 Toyota Autom Loom Works Ltd フォークリフトの最高車速制御装置及びフォークリフト
US6385518B1 (en) * 1999-04-29 2002-05-07 Jungheinrich Aktiengesellschaft Industrial truck with a tilt prevention mechanism

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4511974A (en) * 1981-02-04 1985-04-16 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Load condition indicating method and apparatus for forklift truck
DE4021984A1 (de) * 1990-07-11 1992-01-16 Steinbock Boss Gmbh Lastaufnahmefahrzeug mit kippsicherung
JPH115419A (ja) * 1997-06-18 1999-01-12 Toyota Autom Loom Works Ltd 産業車両の車体揺動制御装置
JP3159147B2 (ja) * 1997-11-13 2001-04-23 株式会社豊田自動織機製作所 産業車両の車体揺動制御装置及び産業車両
JP2001261297A (ja) * 2000-03-22 2001-09-26 Toyota Autom Loom Works Ltd 産業車両の前後方向の荷重モーメント測定装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4957408A (en) * 1988-04-06 1990-09-18 Toyota Jidosha Kabushiki Kaisha Device for controlling a fork of a forklift
EP0343839A2 (fr) * 1988-05-26 1989-11-29 The Raymond Corporation Système de commande pour chariot élévateur
GB2290149A (en) * 1994-06-10 1995-12-13 Colin Stanley Smith System for ensuring the stability and safe operation of lift trucks
EP0921021A2 (fr) * 1997-12-02 1999-06-09 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Procédé et dispositif de réglage pour essieu oscillant de véhicules utilitaires
EP0924160A2 (fr) * 1997-12-15 1999-06-23 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Commande du mécanisme de levage et méthode de commande pour véhicules industriels
US6385518B1 (en) * 1999-04-29 2002-05-07 Jungheinrich Aktiengesellschaft Industrial truck with a tilt prevention mechanism
JP2001031391A (ja) * 1999-07-27 2001-02-06 Toyota Autom Loom Works Ltd フォークリフトの最高車速制御装置及びフォークリフト

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 19 5 June 2001 (2001-06-05) *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2413547A (en) * 2004-04-07 2005-11-02 Linde Ag Industrial truck having a static and dynamic tipping stability control device
US7165643B2 (en) 2004-04-07 2007-01-23 Linde Aktiengesellchaft Industrial truck having increased static/quasi-static and dynamic tipping stability
GB2413547B (en) * 2004-04-07 2007-06-06 Linde Ag Industrial truck having increased static/quasi-static and dynamic tipping stability
AU2006225159B2 (en) * 2005-09-30 2008-10-16 Kabushiki Kaisha Toyota Jidoshokki Drive control apparatus for forklift
US8019516B2 (en) 2008-01-22 2011-09-13 Zf Friedrichshafen Ag Method for measuring the useful load of a telehandler
DE102008000120A1 (de) * 2008-01-22 2009-07-23 Zf Friedrichshafen Ag Verfahren zur Messung der Nutzlast bei einem Telehandler
EP2218832A3 (fr) * 2009-02-12 2014-05-28 CNH Industrial Italia S.p.A. Contrôle d'accélération pour véhicules dotés d'un bras de chargement
WO2011032744A1 (fr) * 2009-09-15 2011-03-24 Robert Bosch Gmbh Véhicule de manutention à dispositif de levage réglable en hauteur
CN102482066A (zh) * 2009-09-15 2012-05-30 罗伯特·博世有限公司 具有高度可调节的升降装置的载货汽车
CN102482066B (zh) * 2009-09-15 2014-11-26 罗伯特·博世有限公司 具有高度可调节的升降装置的载货汽车
US9932213B2 (en) 2014-09-15 2018-04-03 Crown Equipment Corporation Lift truck with optical load sensing structure
EP3034456A1 (fr) * 2014-12-16 2016-06-22 STILL GmbH Procede de determination d'application des charges pour un chariot de manutention
EP3034454A1 (fr) * 2014-12-16 2016-06-22 STILL GmbH Procede destine a la mesure de la charge dans un chariot de manutention
EP3050840A1 (fr) * 2015-01-30 2016-08-03 Jungheinrich Aktiengesellschaft Determination de la grandeur de reference pour chariots de manutention
US10981761B2 (en) 2015-07-28 2021-04-20 Cvs Ferrari S.P.A. Apparatus for lifting and transporting loads, in particular containers
ITUB20152573A1 (it) * 2015-07-28 2017-01-28 Cvs Ferrari S P A Apparecchiatura per il sollevamento ed il trasporto di carichi, in particolare di corrispondenti containers
WO2017017620A1 (fr) * 2015-07-28 2017-02-02 Bp S.R.L. Appareil pour lever et transporter des charges, en particulier des conteneurs
US11142442B2 (en) 2017-02-10 2021-10-12 Arrow Acquisition, Llc System and method for dynamically controlling the stability of an industrial vehicle
CN106926778A (zh) * 2017-02-21 2017-07-07 梁晓娟 一种货车侧翻预警装置及方法
CN106965804A (zh) * 2017-02-21 2017-07-21 梁晓娟 一种货车侧翻风险预估的方法
CN110872088A (zh) * 2018-08-31 2020-03-10 海斯特-耶鲁集团有限公司 用于升降装卸车的动态稳定性确定系统
CN110872088B (zh) * 2018-08-31 2023-08-29 海斯特-耶鲁集团有限公司 用于升降装卸车的动态稳定性确定系统
US11760615B2 (en) 2018-08-31 2023-09-19 Hyster-Yale Group, Inc. Dynamic stability determination system for lift trucks
US11807508B2 (en) 2018-08-31 2023-11-07 Hyster-Yale Group, Inc. Dynamic stability determination system for lift trucks
CN111807266A (zh) * 2020-07-07 2020-10-23 诺力智能装备股份有限公司 一种适用于载货式agv的安全高度限制系统及其操作方法
CN111807266B (zh) * 2020-07-07 2021-12-31 诺力智能装备股份有限公司 一种适用于载货式agv的安全高度限制系统及其操作方法
US11518368B2 (en) 2020-08-04 2022-12-06 International Business Machines Corporation Dynamic center of gravity monitoring and tilt prevention

Also Published As

Publication number Publication date
DE10304658A1 (de) 2004-08-19

Similar Documents

Publication Publication Date Title
WO2004069568A1 (fr) Systeme pour maintenir la stabilite de marche d'un chariot de manutention
DE102005012004B4 (de) Flurförderzeug mit erhöhter statischer/quasistatischer und dynamischer Kippstabilität
EP2580152B1 (fr) Procédé pour déterminer une probabilité de basculement d'un chariot de manutention
EP2829438B1 (fr) Véhicule à benne basculante
EP0483493B1 (fr) Chariot élévateur avec dispositif de surveillance de l'état de charge
EP1640311B1 (fr) Méthode pour prévenir le renversement de véhicules dirigés par la roue arrière, en particulier de véhicules industriels
DE102005021819A1 (de) Steuersystem und Verfahren zum Steuern eines Sicherheitssystems für Fahrzeuge
EP1466763B1 (fr) Procédé de fonctionnement d'un dispositif de réglage du niveau d'un véhicule automobile
EP3750763B1 (fr) Dispositif et procédé de freinage d'un véhicule doté d'un dispositif récepteur de charge avant
DE102005056329A1 (de) Verfahren zum Steuern eines Kraftfahrzeugsystems
DE102008028266B3 (de) Vorrichtung zur Ansteuerung wenigstens eines Führerhausstellglieds, eines Sitzstellglieds und eines Lenksäulenstellglieds eines Nutzfahrzeugs
DE19919655A1 (de) Flurförderzeug mit Kippsicherung
DE10010011A1 (de) Flurförderzeug mit einer Stabilisierungseinrichtung zur Erhöhung der Standsicherheit
DE102005011998B4 (de) Flurförderzeug mit erhöhter statischer bzw. quasistatischer Kippstabilität
DE102016106459A1 (de) Arbeitsfahrzeug mit Knick-Gelenk-Lenkung und lastabhängiger Lenkwinkelbegrenzung
EP2733036B1 (fr) Machine mobile comprenant une installation de chargement
EP2607295B1 (fr) Procédé de détermination du moment de bascule dans la direction longitudinale pour des chariots de manutention
EP3647085B1 (fr) Véhicule automobile et procédé d'ajustement de la hauteur d'un véhicule automobile réglable en hauteur
DE10226599A1 (de) Verfahren zum Steuern mindestens einer Bewegung eines Flurförderzeugs
DE102005004449B4 (de) Kraftfahrzeug
DE102018222206A1 (de) Steuerverfahren für ein Fahrzeug oder ein Fahrzeuggespann mit einer Stabilisierungsvorrichtung, Stabilisierungsvorrichtung, Fahrzeug oder Fahrzeuggespann mit einer Stabilisierungsvorrichtung
AT17335U1 (de) Dumper
EP2774889B1 (fr) Machine mobile comprenant une installation de chargement
EP2409887A2 (fr) Procédé et système de régulation de la tenue de route d'un véhicule utilitaire
DE102020206550A1 (de) Verfahren zum Betreiben einer mobilen Arbeitsmaschine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP