WO2004066337A1 - アルカリ金属発生剤、アルカリ金属発生器、光電面、二次電子放出面、電子管、光電面の製造方法、二次電子放出面の製造方法及び電子管の製造方法 - Google Patents

アルカリ金属発生剤、アルカリ金属発生器、光電面、二次電子放出面、電子管、光電面の製造方法、二次電子放出面の製造方法及び電子管の製造方法 Download PDF

Info

Publication number
WO2004066337A1
WO2004066337A1 PCT/JP2004/000294 JP2004000294W WO2004066337A1 WO 2004066337 A1 WO2004066337 A1 WO 2004066337A1 JP 2004000294 W JP2004000294 W JP 2004000294W WO 2004066337 A1 WO2004066337 A1 WO 2004066337A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkali metal
photocathode
generator
emission surface
tube
Prior art date
Application number
PCT/JP2004/000294
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Sugiyama
Yoshiro Akai
Shirou Sakai
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to JP2005508048A priority Critical patent/JPWO2004066337A1/ja
Priority to US10/538,642 priority patent/US7474051B2/en
Priority to EP04702788A priority patent/EP1521286A4/en
Publication of WO2004066337A1 publication Critical patent/WO2004066337A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/35Electrodes exhibiting both secondary emission and photo-emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/12Manufacture of electrodes or electrode systems of photo-emissive cathodes; of secondary-emission electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/32Secondary emission electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/34Photoemissive electrodes
    • H01J2201/342Cathodes
    • H01J2201/3421Composition of the emitting surface
    • H01J2201/3426Alkaline metal compounds, e.g. Na-K-Sb

Definitions

  • Alkali metal generator Alkali metal generator, alkali metal generator, photoelectric surface, secondary electron emission surface, electron tube, method for manufacturing photoelectric surface, method for manufacturing secondary electron emission surface, and method for manufacturing electron tube
  • the present invention relates to an alkali metal generator, an alkali metal generator, a photoelectric surface, a secondary electron emission surface, an electron tube, a method for manufacturing the photoelectric surface, and a method for manufacturing the secondary electron emission surface. And a method for manufacturing the electron tube.
  • the photoelectric surface that emits electrons (photoelectrons and primary electrons) in response to incident light includes a so-called transmission type photoelectric surface formed on a transparent substrate, and a metal substrate such as Ni.
  • a so-called reflective photocathode formed on the top is known, and such a photocathode is used as an important component of an electron tube such as a photomultiplier tube, a phototube, an image intensifier, and a streak tube. Have been.
  • photoelectron emitting materials mainly intermetallic compounds and compound semiconductors
  • an alkali metal formed on a substrate for example, S b and C s
  • an intermetallic compound consisting of
  • the photoelectron emitting material containing as an element the alkali metal when expressed at a partial pressure of a predetermined degree of vacuum (residual gas, preferably, 1 0- 7 ⁇ : L 0 _ 2 P It is formed by generating alkali metal vapor in an atmosphere maintained at a) and temperature and reacting it with the constituent materials of the photoelectron emitting material that reacts with the alkali metal.
  • a predetermined degree of vacuum residual gas, preferably, 1 0- 7 ⁇ : L 0 _ 2 P
  • a photoelectron emission material of an intermetallic compound consisting of Sb and Cs for example, a vapor deposition film made of Sb, which is a constituent material of a photoelectron emission material that reacts with metal, is first formed on a substrate. Then, Cs vapor is generated, Cs reacts with the deposited film of Sb, and a layer of an intermetallic compound is formed.
  • the alkali metal since the alkali metal is very unstable in the air and cannot be used as a source of the vapor of the alkali metal itself, it is oxidized at a predetermined temperature.
  • a source (a so-called alkali source or alkali metal source) containing, as a constituent, a combination of an oxidizing agent and a reducing agent capable of generating an alkali metal by a primary reaction is used.
  • the supply source for example, a powdery alkali metal source or a pelletized alkali metal source has been conventionally used.
  • the alkali metal source (supply source) of the alkali metal vapor containing the acid reagent and the reducing agent is referred to as an alkali metal generator.
  • these powdery alkali metal generating agents or alkali metal generating agents formed into pellets by pressing are made of metal having an opening capable of discharging the alkali metal vapor to the outside. It is used while housed in the case. In some cases, the metal case is used in a state where the case is enclosed in a glass ampule. When forming the photocathode, the metal case is heated to generate alkali metal vapor.
  • the above-mentioned metal-metal generating agent is also used, for example, for forming a secondary electron emission surface of a dynode in a photomultiplier tube.
  • an alkali metal generator a chromate (for example, C s) containing three or one or more as a reducing agent and having an alkali metal ion as a counter-thione is used.
  • C r 0 the alkali metal generating agent which is pressed into powder form or Perez preparative form containing 4, etc.
  • the alkali metal generating agent containing the oxidizing agent for example, Japanese Unexamined Patent Publication No. Sho 55-748438, Japanese Unexamined Patent Publication No. Sho 53-124, Japanese Patent Publication No. Sho 45-7566, Japanese Utility Model Publication No. Sho 47-3522 No. 1 discloses this.
  • the alkali metal generator itself or the alkali metal generator is contained.
  • Metal cases or glass ampules could rupture. If such a situation occurs when manufacturing a photocathode in an electron tube, it becomes difficult to control the amount of metal and the desired performance cannot be obtained. Also, in this case, the used metal case remains in the case of the electron tube such as a glass container due to restrictions on manufacturing efficiency, but if the metal case is ruptured at this time, It may be a defective product in appearance.
  • the rapid progress of the oxidation-reduction reaction causes large fluctuations in the generation rate and yield of metal alloys, so that the area where the photocathode is to be formed and the secondary electron emission surface of the dynode
  • the deposition state of the alkali metal in the region where the metal is to be formed becomes uneven.
  • the oxidation-reduction reaction proceeds rapidly when a conventional chromate is used, so that the timing at which heating is stopped cannot always be constant.
  • the spectral sensitivity characteristics vary among multiple photocathodes manufactured under the same conditions, and the multiplication efficiency also varies among multiple dynodes manufactured under similar conditions. This may result in defective products, which lowers production efficiency.
  • the present invention has been made to solve the above-described problems, and is intended for forming a photoelectric surface or a secondary electron emission surface capable of stably generating Al metal.
  • Alkali metal generator Alkali metal generator containing the alkali metal generator, capable of easily controlling the generation rate of Al metal, a photocathode with sufficient spectral sensitivity characteristics, sufficient increase
  • the present invention provides It is an object of the present invention to provide a method for manufacturing a photocathode, a method for manufacturing a secondary electron emission surface, and a method for manufacturing an electron tube, which are easy and have excellent performance reproducibility.
  • the inventors studied an oxidizing agent having a lower oxidizing power than the above-mentioned chromate, and when a tungstate was used as such an oxidizing agent, the tungstate was manufactured using the conventional chromate. It has been found that a photocathode and a secondary electron emission surface having performances comparable to those of the photocathode and the secondary electron emission surface can be manufactured easily and with good reproducibility.
  • Related technologies include WOO 2/093664, JP-B-48-20944, JP-B-47-21951, JP-B-47-25541, and JP-B-47-15976. .
  • the present invention relates to a method for forming a photocathode that emits photoelectrons in response to incident light or a secondary electron emission surface that emits secondary electrons in response to incident electrons.
  • It is an alkali metal generator as a source of metal and contains at least an oxidizing agent and a reducing agent.
  • the oxidizing agent comprises at least one type of tungstate having an alkali metal ion as counter-thione.
  • the reducing agent initiates an oxidation-reduction reaction with the oxidizing agent at a predetermined temperature to reduce alkali metal ions.
  • Tungstate which uses alkali metal ions as counter-force thiones, has a weaker oxidizing power than the above-mentioned chromate, so that the redox reaction with the reducing agent is slower than in the case of chromate. proceed. Therefore, once the reaction starts to proceed, it is easy to control the reaction rate by adjusting the reaction temperature. In other words, the alkali metal generator according to the present invention itself or the case containing the same may be ruptured. It is possible to stably generate an alkali metal (alkali metal vapor).
  • the alkali metal generator containing a tungstate a photocathode having sufficient spectral sensitivity characteristics and a secondary electron emission surface having sufficient multiplication efficiency can be easily and easily provided. It can be manufactured with good reproducibility.
  • the present inventors have proposed a method for producing a photoelectric surface having sufficient spectral characteristics and a secondary electron emitting surface having sufficient multiplication efficiency by using a material amount ratio of a reducing agent to a tungstate. Is important. Therefore, the inventors manufactured a plurality of samples (photomultiplier tubes) for the substance ratio of the reducing agent to the tungstate, and obtained a photocathode and an anode having sufficient sensitivity and stability for practical use. Was discussed. As a result, the lower limit of the ratio of the reducing agent to the tungstate is 1.
  • the upper limit of the ratio of the amount of the reducing agent to the tungstate is preferably 50.1 or less.
  • the alkali metal generator according to the present invention has a photoelectric surface that emits photoelectrons in response to incident light, or a secondary electron emission surface that emits secondary electrons in response to incident electrons. Generates the alkali metal used for The alkali metal generator has a case, a supply source, and a discharge port.
  • the case is preferably a metal case for housing a supply source.
  • the supply source is an alkali metal generator having the above-mentioned structure (alkali metal generator according to the present invention), including a raw material that generates an alkali metal.
  • the discharge port is provided in the case, and discharges alkali metal vapor generated in the supply source from the internal space of the case in which the supply source is stored to the outside of the case.
  • the alkali metal generator according to the present invention in which the alkali metal generator having the above-described structure is housed, the oxidation of the oxidizer and the reducing agent in the alkali metal generator is performed. Alkali metal (alkaline metal vapor) generated by the reduction reaction can be stably discharged to the outside from the outlet of the case. Therefore, by using the alkali metal generator according to the present invention, a photocathode having sufficient spectral sensitivity characteristics and a secondary electron emission surface having sufficient multiplication efficiency can be easily and reproducibly formed. Can be manufactured well.
  • the photoelectric surface according to the present invention includes an alkali metal that emits photoelectrons in response to incident light.
  • This alkali metal is an alkali metal generated from the alkali metal generator according to the present invention.
  • the alkali metal may be an alkali metal generated from the alkali metal generator according to the present invention. In either case, a photocathode having sufficient spectral sensitivity characteristics can be obtained by using the metal alloy or the metal generator.
  • the secondary electron emission surface according to the present invention includes an alkali metal that emits secondary electrons in response to incident electrons.
  • the alkali metal may be an alkali metal generated from the alkali metal generator according to the present invention, or may be an alkali metal generated from the alkali metal generator according to the present invention.
  • the secondary electron emission surface having a sufficient multiplication efficiency can be formed by using the metal alloy or the metal generator.
  • the electrons incident on the secondary electron emission surface include photoelectrons emitted from the photoelectric surface.
  • the electron tube according to the present invention is an electron tube having a photoelectric surface that emits photoelectrons in response to incident light, and the photoelectric surface according to the present invention can be applied to this photoelectric surface. is there.
  • an electron tube having sufficient photoelectric conversion characteristics can be obtained.
  • the electron tube is provided with one or more secondary electron emission surfaces (for example, a secondary electron emission surface such as a dynode), the above secondary electron emission surface is also included in the present invention from the above viewpoint. It is preferable to manufacture using such an alkali metal generator or an alkali metal generator.
  • the electron tube according to the present invention is characterized in that each of the electron tubes has a secondary At least an electron multiplier including one or more dynodes having a secondary electron emission surface for emitting electrons is provided. Also in this case, the secondary electron emission surface according to the present invention can be applied as the secondary electron emission surface in each dynode. .
  • the secondary electron emission surface manufactured using the alkali metal generator or the alkali metal generator according to the present invention an electron tube having sufficient photoelectric conversion characteristics can be obtained. can get.
  • the photocathode provided on the above-mentioned electron tube is also manufactured using the alkali metal generator or the alkali metal generator according to the present invention.
  • the alkali metal generator or the alkali metal generator according to the present invention is prepared as a source of the alkali metal, and the alkali metal generator (alkali) is used.
  • the alkali metal generator (alkali) stored in the case is heated, and the alkali metal generated by heating the alkali metal generating agent is guided to the region where the photocathode is formed.
  • the method for manufacturing a secondary electron emission surface according to the present invention includes the steps of: preparing an alkali metal generator or an alkali metal generator according to the present invention as a source of alkali metal;
  • the heating agent in the case of an alkali metal generator, an alkali metal generating agent housed in a case
  • the heating agent is heated, and the alkali metal generated by the heating of the alkali metal generating agent is guided to the region where the secondary electron emission surface is formed.
  • a secondary electron emission surface that emits secondary electrons in response to incident electrons is obtained.
  • the method for manufacturing an electron tube according to the present invention is characterized in that It is possible to manufacture an electron tube having at least a photocathode containing an alkali metal that emits photoelectrons. That is, in the method for manufacturing the electron tube, an alkali generator or an alkali metal generator according to the present invention is prepared, and the alkali metal generator (in the case of an alkali metal generator, an alkali metal generator stored in a case) is used. A step of heating and guiding an alkali metal generated by heating the alkali metal generating agent to a region where a photocathode is formed.
  • an electron tube having excellent performance reproducibility can be obtained.
  • an electron tube provided with at least one secondary electron emission surface for example, a secondary electron emission surface such as a dynode
  • the secondary electron emission surface is considered from the viewpoint described above.
  • the surface is also preferably manufactured using the alkali metal generator or alkali metal generator according to the present invention.
  • each of the plurality of dynodes has one or more dynodes having a secondary electron emission surface that emits secondary electrons in response to incident electrons. It is possible to manufacture an electron tube having a doubled portion.
  • the secondary electron emission surface of each dynode is prepared by preparing the alkali metal generator or the alkali metal generator according to the present invention, and storing the alkali metal generator (in the case of the alkali metal generator, in the case). The alkali metal generating agent) is heated, and the alkali metal generated by heating the alkali metal generating agent is guided to the formation region of the secondary electron emission surface.
  • the secondary electron emission surface of the dynode using the alkali metal generator or the alkali metal generator according to the present invention, excellent reproducibility of performance can be obtained.
  • An electron tube is obtained.
  • the photoelectric surface of the electron tube is also preferably manufactured using the alkali metal generator or the alkali metal generator according to the present invention.
  • FIG. 1 is a perspective view showing the configuration of an embodiment of the alkali metal generating agent according to the present invention.
  • FIG. 2 is a perspective view showing the configuration of the first embodiment of the alkali metal generator according to the present invention.
  • FIG. 3 is a cross-sectional view of the alkali metal generator (FIG. 2) according to the first embodiment, taken along line II.
  • FIG. 4 is a cross-sectional view showing the configuration of the second embodiment of the alkali metal generator according to the present invention.
  • FIG. 5 is a cross-sectional view showing a configuration of a third embodiment of an aluminum metal generator according to the present invention.
  • FIG. 6 is a sectional view showing the configuration of the fourth embodiment of the alkali metal generator according to the present invention.
  • FIG. 7 is a cross-sectional view showing the configuration of a fifth embodiment of the metal-metal generator according to the present invention.
  • FIG. 8 is a diagram showing a configuration of a photomultiplier tube as a first embodiment of the electron tube according to the second invention.
  • FIG. 9 is a diagram for explaining a manufacturing process of a photocathode of a photomultiplier tube and a dynode using the alkali metal generator shown in FIG.
  • FIG. 10 is a diagram showing a configuration of a photomultiplier tube as a second embodiment of the electron tube according to the present invention.
  • FIG. 11 is a diagram showing a configuration of a phototube as a third embodiment of the electron tube according to the present invention.
  • FIG. 12 is a diagram showing a configuration of an image tube (image intensifier) as a fourth embodiment of the electron tube according to the present invention.
  • FIG. 13 is a diagram showing a configuration of a streak tube as a fifth embodiment of the electron tube according to the present invention.
  • FIG. 14 shows a photomultiplier tube manufactured using the alkali metal generating agent according to the present invention and a photomultiplier manufactured using the conventional alkali metal generating agent. It is a table
  • FIG. 15 shows a sample of a photomultiplier tube manufactured by using the alkali metal generating agent according to the present invention, and a sample manufactured by using a conventional Al-Li metal generating agent.
  • 6 is a table showing life characteristics (%) in a comparative example of a photomultiplier tube.
  • FIG. 16 shows a sample of a photomultiplier tube manufactured using the alkali metal generating agent according to the present invention and a photoelectron tube manufactured using the conventional alkali metal generating agent. It is a graph which shows the radiation sensitivity characteristic in the comparative example of a multiplier.
  • Fig. 17 shows the results of using a conventional alkali metal generator based on the life characteristics of a sample of a photomultiplier tube manufactured using the alkali metal generator according to the present invention.
  • 7 is a graph showing the relative output of the life characteristics of a comparative example of the photomultiplier manufactured as follows.
  • Fig. 18 is a graph showing the relative sensitivity of the photocathode in a sample of a photomultiplier tube manufactured using the alkali metal generating agent according to the present invention.
  • FIG. 19 is a graph showing the relative sensitivity of the anode in a sample of a photomultiplier manufactured using the alkali metal generating agent according to the present invention.
  • Fig. 1 is a perspective view showing a configuration of a preferred embodiment of the alkali metal generating agent according to the present invention.
  • the alkali metal generating agent 1 shown in FIG. 1 is a source of an alkali metal used for forming a photocathode or a secondary electron emission surface.
  • all the components of the metal generator 1 of FIG. 1 are formed into a cylindrical pellet by compression molding. By making the pellets in this manner, the handleability of the alkali metal generator 1 is improved, and the pellets can be mounted on an alkali metal generator, which will be described later, or when a photoelectric surface, a secondary electron emission surface, or an electron tube is manufactured. Work becomes easier.
  • the oxidizing agent contained in the alkali metal generator 1 is at least one type of tungstate having an alkali metal ion as a counter force thione ( as such a tungstate).
  • R represents at least one metal element selected from the group consisting of Na, K, Rb, and Cs .
  • tungstate having a cation of an alkali metal element represented by R in the above chemical formula as a force cation
  • the alkali metal used for the material of the photocathode used can be generated more stably.
  • the type and content of the oxidizing agent comprising tungstate are appropriately selected according to the component composition of the photoelectric surface to be manufactured or the secondary electron emission surface to be manufactured. For example, different types of materials may be combined and contained at a predetermined ratio, or only a single type may be contained.
  • the reducing agent contained in the above-mentioned metal-metal generating agent 1 is heated to a predetermined temperature.
  • the redox reaction with the above-mentioned oxidizing agent is started to reduce the metal ion.
  • a reducing agent is not particularly limited as long as it can generate an alkali metal stably, but is at least one selected from the group consisting of Si, Zr, Ti and A1. Is preferred.
  • these Si, Zr, Ti and A1 may be used alone or in any combination as a reducing agent (for example, Si and Ti).
  • a reducing agent for example, Si and Ti
  • the reducing agent composed of Si has a characteristic that the generation amount of alkali metal is saturated at about 900 ° C or more. Therefore, it is easier to control the amount of alkali metal generated with respect to the heating temperature than other reducing agents. Therefore, it is suitable for mass production because the reaction in a short time is easy.
  • Si when Si is used as a reducing agent, it is possible to use a high-frequency heating reaction system in which fine temperature control is difficult.
  • a method of initiating the oxidation-reduction reaction between the reducing agent and the oxidizing agent a method in which the alkali-metal generating agent starts to proceed in an atmosphere adjusted to a predetermined vacuum degree
  • the method of heating to the temperature of above is, 1 0 6 ⁇ Iota if expressed at a partial pressure of residual gas in the atmosphere 0 - ip a, preferably 1 0 6-1 0 — Means an atmosphere that is 3 Pa.
  • Li metal generating agent 1 for example, W, A 1 2 0 3 or the like may be contained.
  • the above-mentioned alkali metal generator 1 can be produced by the same technique as that of a conventional alkaline metal generator using chromate as an oxidizing agent, except that the above-mentioned tungstate is used as an oxidizing agent.
  • the secondary surface of the manufactured photocathode or dynode A tungstate serving as an oxidizing agent is selected according to the component composition of the electron emission surface.
  • a measuring step, a pulverizing / mixing step, and a forming step are sequentially performed.
  • an appropriate amount of an oxidizing agent and a reducing agent eg, Si, Zr, A1, etc.
  • these are put into a crusher (eg, an agate bowl or a ball mill), and crushing and mixing are performed simultaneously.
  • a component other than the oxidizing agent and the reducing agent is contained, in the pulverizing / mixing step, the component is put into a pulverizer together with the oxidizing agent and the reducing agent and mixed and pulverized.
  • a powder of a metal regenerator is obtained.
  • the obtained alkali metal generating agent powder is pressed by a powder press to obtain the alkali metal generating agent 1 as a pellet formed into a cylindrical shape.
  • the metallic force generator 1 is formed into cylindrical pellets by compression molding.
  • the shape is not particularly limited.
  • the alkali metal generator according to the present invention may be compression-molded as in the above-described embodiment. All components may be in powder form.
  • the powder before molding as described above may be used as it is, or may be once formed into a pellet and then ground to be used as powder.
  • FIG. 2 is a perspective view showing the configuration of the first embodiment of the alkali metal generator according to the present invention.
  • FIG. 3 is a cross-sectional view of the alkali metal generator shown in FIG. 2 taken along the line I-I, and also shows a heating device.
  • the alkali metal generator 2 shown in FIGS. 2 and 3 generates an alkali metal used for forming a photoelectric surface or a secondary electron emission surface.
  • the alkali metal generator 2 includes the alkali metal generator 1 shown in FIG. 1 and a metal case 20 containing the alkali metal generator 1.
  • the case 20 includes a metal-made bottomed container 22 provided with a recess for accommodating the pellet made of the alkali metal generating agent 1, and a whole recessed portion of the bottomed container 22. And a metal lid member 24 welded to the bottomed container 22 in a state of covering the container.
  • the concave portion of the bottomed container 22 has a larger volume than the pellet made of the alkali metal generating agent 1, and is preferably formed in a shape similar to the pellet. Further, an annular flange is provided so as to surround the concave portion of the bottomed container 22, and this flange is welded to the edge of the lid member 24.
  • the concave portion of the bottomed container 22 (storage space for the alkali metal generating agent 1) and the bottomed container 2
  • An unwelded portion is provided to communicate with the outside of the device, and this unwelded portion allows the vapor of the alkali metal generated from the alkali metal generator 1 to form the photocathode forming area or the secondary of the dynode. It becomes an emission port 23 for emitting toward the site where the electron emission surface is formed.
  • the alkali metal In a controlled atmosphere, a method of heating to a predetermined temperature at which the oxidation-reduction reaction starts to progress is exemplified.
  • a heating device for generating a vapor of the alkali metal is not particularly limited as long as it has a configuration capable of heating the alkali metal generating agent 1 in the above atmosphere.
  • a heating device may have the structure based on a high frequency heating system or a resistance heating system. From the viewpoint of easily and uniformly heating the alkali metal generator 1 while heating, it is preferable that the heating device has a configuration in which the alkali metal generator 1 is heated by high-frequency heating.
  • the high-frequency heating type heating device includes a high-frequency coil 25 wound around a case 20 containing an aluminum metal generator 1, A high frequency power supply for supplying a high frequency current to the coil 25 is provided.
  • the structure may be the same as the case where an alkali metal generator containing the above-mentioned chromate as an oxidizing agent is heated by a high-frequency heating method.
  • an alkali metal generator 1 is mounted in advance in an electron tube where a photoelectric surface and / or a secondary electron emission surface of a dynode is to be formed, and heated by high frequency heating to generate alkali metal vapor in the electron tube. This may be caused to react with a predetermined portion where a photoelectric surface and a secondary or dynode secondary electron emission surface are to be formed.
  • the alkali metal generator 1 is manufactured as described above. Subsequently, a bottomed container 22 and a lid member 24 are produced according to the shape and volume of the alkali metal generating agent 1. The bottomed container 22 is welded to the lid member 24 in a state in which the metal force generating agent 1 is stored in the recess.
  • the method for producing the bottomed container 22 and the lid member 24 and the method for welding the bottomed container 22 and the lid member 24 are not particularly limited, and can be performed by, for example, a known technique.
  • FIG. 4 is a cross-sectional view showing the configuration of a second embodiment of the alkali metal generator according to the present invention.
  • FIG. 4 also shows a heating device.
  • the alkali metal generator 3 shown in FIG. 4 has a main body 2A having the same configuration as the alkali metal generator 2 shown in FIGS. 2 and 3, and a glass ampoule enclosing the main body 2A. 3 and a rod-shaped support member 34 connected to a case 20 (having a discharge port 23) of the main body 2A.
  • the glass ampule 32 has a cylindrical shape, and the inner diameter of an upper surface portion (hereinafter, referred to as a tip portion) facing the stem bottom surface through which the support member 34 has penetrated is another portion. Has become smaller than.
  • the alkali metal generator 3 forms a photoelectric surface and / or a secondary electron emission surface of a diode
  • the alkali metal generator 3 is used for forming an electron tube on which a photoelectric surface and a secondary or electron diode emission surface are to be formed. Connected. At this time, the space in the electron tube and the space in the portion where the secondary electron emission surface of the Z or dynode is to be formed is connected to the space in the glass ampule 32. That is, the glass ampule 32 is opened when the photoelectric surface and the Z or secondary electron emission surface are formed.
  • One end of the support member 34 located in the glass ampoule 32 is connected to the outer surface of the lid member 24 of the case 20.
  • the other end of the support member 34 is It protrudes outside the ampoule via a through hole h32 provided in the glass ampoule 32.
  • the support member 34 is in close contact with the inner surface of the through hole h32 such that the inside of the amplifier 32 is airtight.
  • a high-frequency heating device of high-frequency heating type includes a high-frequency electrode 126 capable of generating a high-frequency current and a coil 25 (induction furnace) connected to the high-frequency electrode 126 capable of passing the high-frequency current. Is configured.
  • the coil 25 is arranged so as to surround the main body 2A from the outside of the glass ampoule 32, and by heating, the alkali metal generator 3 can start generating steam of the alkali metal.
  • the Al metal alloy generator 1 is manufactured as described above, and the main body is manufactured in the same manner as the Al metal alloy generator 2. 2 A is manufactured. Subsequently, after the supporting member 34 is welded to the main body 2A, the main body 2A integrated with the supporting member 34 is sealed in the glass ampule 32.
  • the method of welding the main body 2A and the support member 34 and the method of sealing them in the glass ampule 32 are not particularly limited, and can be performed by, for example, a known technique.
  • FIG. 5 is a cross-sectional view showing the configuration of the third embodiment of the alkali metal generator according to the present invention. This figure also shows a heating device.
  • the alkali metal generator 4 shown in FIG. 5 is a powdery or pelletized alkali metal generator. It consists of a crude agent 1 A and a metal (for example, Ni) case 2 OA that contains the metallizing agent 1 A.
  • This alkali metal generator 1A has the same composition as the alkali metal generator 1 shown in FIG.
  • the case 2OA is formed of a metal pipe provided with an internal space for accommodating the alkali metal generating agent 1.
  • the edges of both ends of the case 2OA are caulked by, for example, knocking with a chisel to prevent the alkali metal generator 1A from leaking from the internal space.
  • the crimped edge of Case 2 OA has a non-contact portion that connects the internal space and the outside of Case 2 OA, and this non-contact portion is generated from the alkali metal generator 1 A.
  • the discharge port 23 serves as a discharge port 23 for discharging the vapor of the alkali metal to the formation site of the photoelectric surface or the secondary electron emission surface. The size of the outlet 23 is adjusted so that the alkali metal generator 1A does not leak from the internal space.
  • the alkali metal vapor can be generated by heating in the same manner as in the alkali metal generators 2 and 3 described above.
  • the heating device for heating the alkali metal generator 4 includes, as shown in FIG. 5, a high-frequency coil 25 wound around the case 20 and a high-frequency current supplied to the coil 25. And a high-frequency power supply 26.
  • an alkali metal generator 1A is first manufactured as described above, and this is filled in a metal case (metal pipe) 2OA. . Subsequently, the openings at both ends of the metal case 2OA are caulked, whereby the alkali metal generator 4 is obtained.
  • the method of caulking the openings at both ends of the metal case 2OA is not particularly limited, and for example, can be performed by a known technique.
  • FIG. 6 is a cross-sectional view showing the configuration of the fourth embodiment of the alkali metal generator according to the present invention. This figure also shows a heating device.
  • the alkali metal generator 5 shown in FIG. 6 has the same configuration as the alkali metal generator 4 shown in FIG.
  • a glass amp 52 enclosing the main body 4A.
  • the glass ampule 52 has the same shape as the glass ampule 32 shown in FIG. Further, the inner diameter of the tip portion facing the bottom surface of the glass ampule 52 is adjusted to a size that allows the main body 4A to be confined inside.
  • the alkali metal generator 5 When forming the photoelectric surface and / or the secondary electron emission surface of the dynode, the alkali metal generator 5 is also used in the same manner as the alkali metal generator 3 shown in FIG. Connected to the electron tube on which the secondary electron emission surface of Z or dynode is to be formed. At this time, the space in the electron tube where the photoelectric surface and the secondary electron emission surface of the nose or dynode are to be formed is connected to the space in the glass ampoule 52 so as to communicate with each other. [0909] Also in the case of the alkali metal generator 5, by heating in the same manner as in the above-described alkali metal generators 2 to 4, alkali metal vapor can be generated. As shown in FIG. 6, a heating device for heating the alkali metal generator 4 includes a high-frequency coil 25 wound around the case 20 and a high-frequency current flowing through the coil 25. And a high frequency power supply 26 for supplying the power.
  • the Al metal alloy generator 1A is manufactured as described above, and the main body is manufactured in the same manner as the Al metal alloy generator 4. 4 A is manufactured. Subsequently, the main body 4 A is sealed in a glass ampoule 52.
  • the method of enclosing the main body 4A in the glass ampoule 52 is not particularly limited, and can be performed by, for example, a known technique.
  • FIG. 7 is a cross-sectional view (including a heating device) showing a configuration of a fifth embodiment of the alkali metal generator according to the present invention.
  • the alkali metal generator 6 shown in FIG. 7 is mainly composed of a metal case 2 containing an alkali metal generator 1 B formed into powder or pellets and an alkali metal generator 1 A. 0 B, two electrodes 64 arranged at predetermined positions of the metal case 20 B, and two electrodes 64 electrically connected to the two electrodes 64, respectively. 4 to allow current to flow And an energizing device 68 having a source.
  • the alkaline metal generator 1B has the same composition as the alkaline metal generator 1 shown in FIG.
  • the case 20 B includes a metal pipe 62 provided with an internal space for accommodating the alkali metal generating agent 1, and two metal lid members 63 closing both ends of the metal pipe 62.
  • the two electrodes 64 are connected to the two metal lid members 63 one by one.
  • the current supply device 68 is electrically connected to each of the two electrodes 64 via a conducting wire 66.
  • a discharge port 23 for communicating the internal space with the outside of the case 20B.
  • the vapor of the metallic alkali generated from the metallic alkali generator 1A can be emitted toward the formation site of the photoelectric surface or the secondary electron emission surface.
  • the size of the outlet 23 is adjusted so that the alkali metal generating agent 1B does not leak from the internal space.
  • the shape of the discharge port 23 is not particularly limited as long as it has the above-described size, and may be, for example, a slit.
  • the energizing device 68 can heat the metal regenerator 1B based on the resistance heating method. For example, when several amperes of current are passed through the metal case 20B, the alkali metal generator 1B is heated by the Joule heat generated in the metal case 20B, generating alkali metal vapor. Can be done.
  • an alkali metal generator 1B is manufactured by the same method as the above-mentioned alkali metal generator 1, and the alkali metal generator 1 B is filled in the metal pipe 62. Subsequently, both ends of the metal pipe 62 are closed by welding the lid members 63 so as to cover the entire opening. Further, the electrodes 64 are connected to the two lid members 63, respectively, and the electrodes 64 are connected to the current conducting device 68, thereby obtaining the metal-metal generator 6. (Photoelectric surface, secondary electron emission surface, and electron tube)
  • FIG. 8 is a diagram showing a configuration of a photomultiplier tube as a first embodiment of the electron tube according to the present invention.
  • the photomultiplier tube 7 shown in FIG. 8 is a head-on type photomultiplier tube having a transmission type photocathode (more specifically, in the case of the photomultiplier tube 7 shown in FIG. 8, the electron multiplier is a line Focus type).
  • the photomultiplier tube 7 mainly receives the photoelectric surface C7 and the photoelectrons e1 emitted from the photoelectric surface C7, and generates the secondary electrons e2 by using the collision of the photoelectrons e1.
  • Anode A 7 and a cylindrical (for example, cylindrical) glass side tube 72 (for example, Kovar glass, UV glass, etc.) for accommodating each of these electrodes are made of a metal material such as Kovar metal, stainless steel, or the like.
  • a voltage application unit (bleeder circuit) for adjusting potential is connected to each electrode. There Ru.
  • the photoelectric surface C7 is mainly formed adjacent to the substrate C71 (face plate) and on the substrate C71, and emits photoelectrons e1 corresponding to the incident light L1.
  • C 72 (hereinafter, referred to as a photo emission material layer C 72) made of a film-like photoelectron emission material (for example, an intermetallic compound or a compound semiconductor).
  • the photoelectric surface C7 is fixed to one opening 72a of the side tube 72. That is, a substrate C71 (for example, a glass substrate) that can transmit light to be used for one of the openings 72a of the side tube 72 is fused with its light receiving surface FC71 facing outward. It is fixed. Also, the inner surface on the opposite side of the light receiving surface FC 71 of this substrate C 71 On the (back surface), a photoelectron emitting material layer C72 is formed.
  • a substrate C71 for example, a glass substrate
  • the photoelectron emitting material layer C72 contains an alkali metal generated from any of the above-described alkali metal generator and an alkali metal generator equipped with the same.
  • the photoelectron emitting material layer C72 there is an intermetallic compound (compound semiconductor) containing an alkali metal as a constituent material, or a compound semiconductor activated with an alkali metal.
  • (C s) in G aAs (C s) means that G a As was obtained by performing an activation treatment with C s.
  • (Cs) in InPZInGaAsP (Cs) and InPZInGaAs (Cs) are also synonymous.
  • a photoelectron emitting material such as Cs—Te or Ag— ⁇ Cs may be used.
  • the photoelectron emitting material layer C72 is formed on the back surface of the substrate C71 with a constituent material of a photoelectron emitting material that reacts with an alkali metal such as an antimony compound semiconductor, and then reacts with the vapor of the alkali metal. Can be obtained.
  • an alkali metal such as an antimony compound semiconductor
  • the other opening 72b of the side tube 72 is provided with a stem plate made of glass (for example, Kovar glass or UV glass, or a metal material such as Kovar metal or stainless steel). 78 are welded and fixed. Thus, a sealed container is constituted by the side tube 72, the photocathode C7, and the stem plate 78.
  • a stem plate made of glass (for example, Kovar glass or UV glass, or a metal material such as Kovar metal or stainless steel).
  • an exhaust pipe 73 is fixed at the center of the stem plate 4. This exhaust pipe 73 is used to evacuate the inside of the sealed container with a vacuum pump to make a vacuum state after the completion of the assembling work of the photomultiplier tube 7, and to form the photoelectron emitting material layer C72. It is also used as an inlet tube for introducing alkali metal vapor into the sealed container during formation.
  • the electron multiplier D7 has a plurality of plate-shaped dynodes.
  • the first dynode D71 to the ninth dynode D79 are provided.
  • Each of the first dynode D71 to the ninth dynode D.79 includes a substrate and a secondary dynode D.79 which is disposed on the substrate and emits secondary electrons e2 by using incident photoelectrons e1.
  • a layer made of a film-like secondary electron emission material having an electron emission surface FD7 hereinafter, the layer made of the secondary electron emitting material is referred to as a secondary electron emitting material layer.
  • each of the first dynode D71 to the ninth dynode D79 is, for example, a stem pin 75 (for example, made of Kovar metal) provided to penetrate the sealed container.
  • the stem pins 75 are supported in a sealed container, and the tips of the stem pins 75 are electrically connected to the first to ninth dynodes D71 to D79.
  • the hermetic container is provided with a pin hole for allowing each stem pin 75 to pass therethrough.
  • each pin hole is filled with a tablet (for example, made of Kovar glass) used as a hermetic seal.
  • the stem pin 75 is fixed to the sealed container via the tablet.
  • each of the stem pins 75 includes a pin for the first dynode D71 to the ninth dynode D79 and a pin for the anode A7.
  • the secondary electron-emitting material of the secondary electron-emitting material layer of each dynode includes the above-described alkali metal generating agent and an alkali metal generating material having the same. Contains alkali metals from any of the vessels.
  • the secondary electron emitting material in the secondary electron emitting material layer is not particularly limited as long as it is a material containing an alkali metal as a constituent material or a material activated with an alkali metal.
  • an intermetallic compound (compound semiconductor) of Sb with any one of the metal alloys may be used.
  • an anode A7 fixed to a stem pin 75 is disposed between the electron multiplier D7 and the stem plate 78.
  • a focusing electrode E7 is arranged between the electron multiplier D7 and the photocathode C7.
  • the focusing electrode E7 has an opening for discharging the focused stream of photoelectrons e1 toward the electron multiplier D7.
  • the other ends of the stem pins 75 connected to the first to ninth dynodes D71 to D79 and the anode A7 are electrically connected to the voltage application unit.
  • a predetermined voltage is supplied to the first dynode D71 to the ninth dynode D79 and the anode A7, and the photoelectric surface C7 and the focusing electrode E7 are set to the same potential.
  • the potentials of the first to ninth dynodes D71 to D79 and the anode A7 are set so as to become higher in order from the top.
  • the light L1 incident on the light receiving surface F C71 of the photoelectric surface C7 is converted into photoelectrons el and emitted from the inner surface F C72.
  • the photoelectron el enters the electron multiplier D 7, is multiplied by the first dynode D 71 to the ninth dynode D 79, multiplied by multiple stages, enters the anode A 7, and the current is transmitted from the anode A 7. Will be done.
  • the method of manufacturing the photomultiplier tube 7 is to form the photoelectric surface C7 and the first to ninth dynodes D71 to D79 using the alkali metal generator or the alkali metal generator according to the present invention.
  • Conditions and procedures other than those described above are not particularly limited, and they can be produced by a known technique.
  • the side tube 72 and the substrate C71 are integrated by heating (or a glass bulb in which the side tube and the substrate are integrally formed may be used). Note that, at this stage, the photoelectron emitting material layer C72 on the substrate C71 of the photocathode C7 is in an unformed state (a state in which alkali activation is not performed).
  • FIG. 9 illustrates a manufacturing process of forming the photocathode C 7 and the first to ninth dynodes D 79 to C 79 of the photomultiplier tube 7 using the alkali metal generator 5 shown in FIG. FIG.
  • the detailed internal configuration of the photomultiplier tube 7 is omitted.
  • a layer composed of the constituent material of the photoelectron emitting material layer C 72 reacting with the alkali metal is formed on the substrate C 71 in advance, and the secondary electron emitting layer reacting with the alkali metal is formed.
  • a layer made of the constituent material of the material layer is formed in advance on the substrate of each dynode D7.
  • a deposition source a deposition material composed of a material for the photoelectron emission material layer C72 made of a material other than an alkali metal such as Sb or a secondary electron emission material layer made of a material other than an alkali metal
  • a deposition source a deposition material composed of a material for the photoelectron emission material layer C72 made of a material other than an alkali metal such as Sb or a secondary electron emission material layer made of a material other than an alkali metal
  • the total pressure inside a predetermined vacuum state (dense sealed inside the container the residual gas in the sealed container is, for example, to 1 0- 6 ⁇ l (T 3 P a)
  • the vapor deposition material constituting the vapor deposition source is evaporated by applying a current to the vapor deposition source or performing high-frequency heating.
  • the deposition material is deposited on each of the substrate C 71 and the dynode D 7.
  • the deposition material is previously deposited on each of the substrate C 71 and the dynode D 7 using another deposition apparatus. It may be deposited on a substrate.
  • an opening is formed in the exhaust pipe 73, so that the deposition material inside the exhaust pipe 73 is opened to the outside.
  • a bottomed glass tube 76 in which an alkali metal generator 5 with an open end of an ampoule 52 is arranged near the bottom is prepared.
  • the opening of the exhaust pipe 73 are connected in an airtight state.
  • another opening is provided on the side surface of the glass tube 76, and the glass tube 76 is airtightly connected to the opening of the glass tube 77 connected to the vacuum pump.
  • a vacuum pump a predetermined vacuum state sealed container interior through an exhaust pipe 7 3 (total pressure of the residual gas in the sealed container is, for example, 1 0- 6 ⁇ 1 0_ 3 P a) is held in.
  • the metal-metal generator 5 is heated by the heating device of the above-described high-frequency heating method, and the metal-metal generator 5 in the metal-metal generator 5 is oxidized to 1 A.
  • the oxidation-reduction reaction between (tungstate) and the reducing agent proceeds to generate alkali metal vapor.
  • C s 2 W_ ⁇ 4 is used as the oxidizing agent
  • S i is used as the reducing agent
  • the redox reaction proceeds represented by the following chemical equation, the vapor of C s is generated.
  • the oxidizing agent (tungstate) that makes the alkali metal ion a counter force thione has a lower oxidizing power than the cuprate that makes the alkali metal ion a counter force thione,
  • the redox reaction with the reducing agent proceeds more slowly than in the case of cuprate. Therefore, the alkali metal vapor can be stably generated without bursting the alkali metal generator 1A itself or the case 2OA containing the alkali metal generator 1A.
  • the reaction temperature can be easily adjusted by heating the exhaust pipe 73. .
  • Cs vapor is guided to the tip of the glass ampoule 52, and the Cs vapor or the Cs liquid is collected at the tip.
  • the sealed container portion is placed in an electric furnace, and the inside of the electric furnace is maintained at a predetermined temperature (for example, 200 ° C.).
  • a predetermined temperature for example, 200 ° C.
  • the tip of the amplifier 52 can be maintained at a predetermined temperature in the electric furnace, and the vapor of the alkali metal such as Cs can be stably discharged from the tip. That is, a photocathode and a dyno produced using a conventional chromate
  • the photocathode C7 and the first dynode D71 to ninth dynode D79 having performance comparable to that of the dynode can be easily and reproducibly manufactured.
  • FIG. 10 is a diagram showing a configuration of a photomultiplier tube as a second embodiment of the electron tube according to the present invention.
  • FIG. 10 shows another configuration of the photomultiplier tube 7 shown in FIG. [0127]
  • the photomultiplier tube 7A shown in FIG. 10 mainly includes an electrode portion 71, an alkali metal generator 2 fixed to the electrode portion 71, an electrode portion 71 and an alkali. It comprises a substantially cylindrical glass container for housing the metal generator 2 and stem pins 75 A electrically connected to the respective electrodes of the electrode portion 71.
  • the glass container is made up of a glass side 72 A and a glass stem plate 78 A.
  • the electrode section 71 like the photomultiplier tube 7 in FIG. 8, includes a photocathode, a focusing electrode, an electron multiplier section including a plurality of dynodes, and an anode. Further, each stem pin 75 A is connected to a voltage application unit, similarly to the photomultiplier tube 7 in FIG. [0128]
  • the alkali metal generator 2 has the same configuration as the alkali metal generator shown in Figs. 2 and 3. Further, the alkali metal generator 2 is used for forming a dynode on the photoelectric surface of the electrode part 71 and the electron multiplier part. The alkali metal generator 2 is fixed to the electrode part 71 by a metal wire. Although the number of alkali metal generators 2 in FIG.
  • a plurality of metal force generators 2 having the metal force generator 1 may be fixed to the electrode portion 7 1.
  • the photomultiplier tube 7A is a side-on type photomultiplier tube having a reflective photocathode in which a photocathode is formed on a metal substrate. Therefore, the cylindrical side tube 72 A constituting the glass container has a light transmittance for light to be used, and the substrate of the photocathode disposed in the electrode portion 71 is made of metal such as Ni. It consists of a substrate made of.
  • the configuration of the photomultiplier tube 7A is the same as that of a known side-on type photomultiplier tube except for the electrode portion 71 and the alkali metal generator 2 fixed to the electrode portion 71. It has a configuration of
  • the lead pin 75A and the lead pin 7A are inserted into the opening of the cylindrical glass side tube 72A whose one bottom surface is closed.
  • a glass stem plate 78 A having an electrode portion 71 fixed to 5 A is fixed.
  • the alkali metal generator 2 is also attached to the electrode 71.
  • the exhaust pipe 73A connected to the stem plate 78A is once opened, and the opening is connected to the suction port of the vacuum pump.
  • a layer for example, an antimony layer for forming an intermetallic compound by reacting with the alkali metal is formed in advance on the photoelectric surface forming substrate or the secondary electron emission surface of the dynode.
  • the inside of the glass container is maintained in a predetermined vacuum state by the vacuum pump.
  • the heating device using the high-frequency heating method described above heats the alkali metal generator 2 or the evaporation source from outside the glass container. Thereby, a photoelectron emitting material layer on the photocathode and a secondary electron emitting material layer on the dynode are formed.
  • the glass container is placed in an electric furnace maintained at a predetermined temperature, and the temperature is controlled, whereby the alkali metal is heated. Can be stably reacted with the formation site of the photocathode or the formation site of the secondary electron emission surface.
  • the alkali metal vapor reacts with the alkali metal of the photocathode to form a prototype for forming a photoelectron emitting material layer or a prototype for forming a secondary electron emitting material layer by reacting with a dynode alkali metal. Reacts with the layer to form a photoelectron emitting material or a secondary electron emitting material.
  • a photocathode having sufficient spectral sensitivity characteristics or a secondary surface having sufficient multiplication efficiency An electron emission surface is formed.
  • the vacuum pump is operated while the inside of the photomultiplier tube 7A is maintained at a predetermined temperature, so that the photomultiplier tube 7 is sufficiently provided.
  • the residual gas in A is removed.
  • the gas generated from the alkali metal or other evaporation source physically adsorbed to a portion other than the photoelectron emission material or the secondary electron emission surface of the photomultiplier tube 7 is removed.
  • the opening of the exhaust pipe 73A of the glass container is sealed, so that a photomultiplier 7A having sufficient photoelectric conversion characteristics is obtained.
  • the alkali metal generator 3 shown in FIG. 4 or the alkali metal generator shown in FIG. 5 may be used. Also in this case, the photomultiplier 7A is manufactured by the same procedure as that of the photomultiplier 7 described above.
  • the electron tube according to the present invention has a photomultiplier tube configuration
  • At least one of the photoelectron emitting material layer of the present invention and the secondary electron emitting material layer of the dynode uses the alkali metal generating agent according to the present invention or the alkali metal vapor generated from an Alrimetallic metal generator equipped with the same. What is necessary is just to be formed.
  • the photoelectric surface and the dynode are both formed of the alkali metal generator according to the present invention or the alkali metal generator equipped with the same. It may be formed using generated alkali metal vapor.
  • only one of the photoelectron emitting material layer of the photocathode and the secondary electron emitting material layer of the dynode is an alkali metal generating agent according to the present invention or an alkali metal generated from an alkali metal generator equipped with the same. It may be formed using the vapor of the above. However, the former is preferred from the viewpoint of manufacturing efficiency.
  • the electron tube according to the present invention when the electron tube according to the present embodiment has a configuration including a dynode as in the above-described embodiment (the photomultiplier tube 7 and the photomultiplier tube 7A),
  • the shape of the dynode is not particularly limited.
  • a case where a line-focus type dynode is mounted as the dynode D7 has been described. You may have.
  • FIG. 11 is a view showing a configuration of a photoelectric tube as a third embodiment of the electron tube according to the present invention.
  • the photoelectric tube 8 shown in Fig. 11 is the same as the photomultiplier tube 7 shown in Fig. 8 except that it does not have the focusing electrode E7 and the electron multiplier D7. It has the same configuration as the photomultiplier tube 7.
  • the photocathode C7 of the phototube 8 can be easily manufactured similarly to the photocathode C7 of the photomultiplier tubes 7 and 7A described above. Then, sufficient photoelectric conversion characteristics can be obtained for the obtained photoelectric tube 8.
  • the glass container in the electron tube 8 includes a glass side tube 72, a photocathode C 7, and a glass stem plate 78.
  • FIG. 12 is a diagram showing a configuration of an image tube (image intensifier) as a fourth embodiment of the electron tube according to the present invention.
  • the intensifier 9 shown in FIG. 12 includes a photocathode C 7, a microchannel plate MCP that multiplies the photoelectrons e 1 emitted from the photocathode C 7, and a microchannel plate MCP.
  • the exhaust pipe is provided on the side pipe 72. Note that alkali activation by an alkali metal generator is not performed on MCP. Further, a configuration having no MCP may be employed.
  • the image tube includes an X-ray image tube that converts an X-ray image into a visible image.
  • the photocathode C 7 is a photoelectron emission material layer C 72 (for example, a photocathode having a composition such as GaAs-CsO). surface)
  • incident light L1 including optical two-dimensional information is photoelectrically converted, and photoelectrons e1 corresponding to the incident light L1 are emitted from the inner surface FC72.
  • the microchannel plate MCP is held at a high potential with respect to the photocathode C7 by the voltage applying unit 74.
  • the microelectron plate MCP utilizes the collision of the photoelectron e1. Emit secondary electrons e 2.
  • a voltage of, for example, about 100 V is applied between 1 and the secondary electron emission surface F92 by a predetermined voltage application unit, and an electron doubling rate of thousands to tens of thousands of times is obtained.
  • the phosphor screen 90 includes a transparent substrate 94, a phosphor layer 92 formed on the transparent substrate 94, and an electrode 7 formed on the surface of the phosphor layer 92. And 5.
  • the electrode 75 is an electrode for accelerating the multiplied secondary electrons e2, and is adjusted to a predetermined potential to apply a voltage. That is, the electrode 75 is also maintained at a high potential with respect to the secondary electron emission surface F92 of the microchannel plate MCP with respect to the voltage application section 74.
  • the constituent material of the phosphor layer 92 and the constituent material of the substrate 94 are not particularly limited, and known materials can be used.
  • an optical fiber plate formed by bundling a plurality of optical fibers may be used as the substrate 94, and a metal thin film may be arranged between the optical fiber plate and the phosphor layer.
  • the photocathode C7 of the image intensifier 9 can be easily manufactured similarly to the photocathode C7 of the photomultiplier tubes 7 and 7A described above. Then, sufficient photoelectric conversion characteristics can be obtained for the obtained image intensifier 9.
  • FIG. 13 is a diagram showing a configuration of a streak tube as a fifth embodiment of the electron tube according to the present invention.
  • the streak tube 10 shown in FIG. 13 is similar to the photomultiplier tube 7 shown in FIG. Surface C 7 is located.
  • the light L 1 to be measured incident from outside is applied to the photoelectron emitting material layer of the photocathode C 7. Converted to photoelectrons at C72.
  • a plate-like acceleration electrode 11 for accelerating photoelectrons emitted from the inner surface FC 72 is disposed adjacent to the photoelectric surface C7.
  • the accelerating electrode 11 is arranged such that the normal to the electrode surface and the normal to the inner surface FC 72 are substantially parallel to each other.
  • a focusing electrode 12 is arranged next to the accelerating electrode 11 to focus primary electrons accelerated by the accelerating electrode 11.
  • the focusing electrode 12 is composed of a pair of plate-like electrodes, and the respective electrode surfaces are arranged so as to be parallel to each other and substantially perpendicular to the inner surface FC72.
  • a communication hole H10 through which the primary electrons focused by the focusing electrode 12 can pass is formed next to the focusing electrode 12, and the electrons are electrically attracted to the inside of the communication hole H10.
  • a disk-shaped anode A10 to be passed is disposed.
  • a deflection electrode 14 for sweeping electrons passing through the opening H10 of the anode A10 at high speed is arranged next to the anode A10.
  • the deflecting electrode 14 is composed of a pair of plate-like electrodes arranged to face each other. The normals of the electrode surfaces of the pair of electrodes are parallel to each other, and each normal is perpendicular to the normal of the inner surface FC72.
  • a predetermined deflection voltage is applied between the pair of flat electrodes, so that primary electrons emitted from the anode A 10 through the opening H 10 are swept in a predetermined direction. Is done.
  • a microchannel plate MCP for multiplying the electrons swept by the deflection electrode 14 is arranged next to the deflection electrode 14.
  • the streak tube 10 may be configured not to include the microphone opening channel plate MCP.
  • a fluorescent screen 90 for converting electrons emitted from the microchannel plate MCP into light is arranged next to the microchannel plate MCP.
  • This phosphor screen 90 has the same configuration as the phosphor screen 90 shown in FIG.
  • the face plate C 71, the transparent substrate 94, and the side tube 72 form a sealed container. ing.
  • the light to be measured is converted into an electronic image, and the light is measured by the acceleration electrode 11. While being accelerated, it is drawn to the anode A 10. Then, the electron image passes through the anode A 10 and enters between the two deflection electrodes 14, and is swept at high speed in a direction parallel to the normal direction of the electrode surface of the deflection electrode 14. The electrons are swept at a high speed because the number of electrons passing through the deflecting electrode 14 changes according to the time change of the light intensity of the light to be measured, which changes at a high speed with respect to time.
  • the electrons swept at such a high speed are multiplied by the microchannel plate MCP, and the electrons multiplied by the microchannel plate MCP are converted into an optical image (streak image) by the phosphor screen 90. Is also converted to).
  • a temporal change in the intensity of the measured light is converted into a spatial change in the intensity on the phosphor screen 90.
  • the electrons are swept in synchronization with the passage time, so that the spatial change of the light intensity projected on the phosphor electrode 90, that is, the streak image, is obtained. By doing so, you can know the change over time.
  • the photoelectric surface of the streak tube 10 can be easily manufactured similarly to the photomultiplier tubes 7 and 7A described above. Then, sufficient photoelectric conversion characteristics can be obtained for the obtained streak tube 10.
  • the inventors used a sample as a sample, a photocathode (antimony cesium photocathode: Cs-Sb, substrate material: Ni) using an alkali metal generator shown below. And secondary electrons formed using the alkali metal generator shown below
  • a plurality of photomultiplier tubes having the same configuration as that of Fig. 10) having the same configuration as a commercially available side-on type photomultiplier tube, except that the emission surface (Cs-Sb) was mounted, respectively, were used. Were produced.
  • a vial-type photocathode or a multi-alkali photocathode containing a plurality of types of alkali metal When manufacturing a vial-type photocathode or a multi-alkali photocathode containing a plurality of types of alkali metal, a plurality of types of tandastenates and a reducing agent may be stored in one alkali metal generator. Alternatively, a plurality of alkali metal generators containing one type of tungstate and a reducing agent may be prepared for each type of alkali metal.
  • alkali metal generating agent for formation of the photocathode includes a motor tungsten salt (C s 2 W0 4) as an oxidizing agent, and S i as the reducing agent.
  • an alkali metal generating agent for forming a photocathode also on a secondary electron emission surface is used.
  • the alkali metal generating agent was obtained by sequentially performing the above-described measuring step, pulverizing / mixing step, and forming step on the above-mentioned tungstate mixture.
  • the photocathode and the secondary electron emission surface were manufactured by the same method as the method of manufacturing the photomultiplier tube 7 described with reference to FIG. 9 except that the alkali metal generator was used. A photomultiplier tube was obtained.
  • the present inventors prepared, as a comparative example, a photomultiplier having a configuration similar to that of a commercially available side-on type photomultiplier by a method similar to that of the sample described above. A plurality were produced.
  • the photoelectric surface mounted on the photomultiplier according to the comparative example a chromate as an oxidant (C s 2 C r 0 4 ), a conventional alkali metal generating agent containing a S i as a reducing agent Is a photocathode (antimony cesium photocathode: Cs—Sb).
  • the cathode output (S k: ⁇ A / 1 m), the N anode output (S p: IA / 1 m), and the ⁇ current In addition to the characteristics of (Idb: nA :) and After Pulse (%), the radiation sensitivity (mA / W) and life (%) (time-dependent change of Sp) were measured. 14 to 17 are tables and graphs showing the measurement results. The measurement of the above characteristics is performed by the method described in “Photomultiplier tube-its basics and applications 1” (edited by the editorial committee of Hamamatsu Photonitas Co., Ltd.) (for example, p. Basic characteristics ", p. 60-73:” Characteristics of photomultiplier tubes ").
  • Fig. 14 shows a photomultiplier tube sample manufactured using the Alkali metal generating agent according to the present invention and a photoelectron tube manufactured using the conventional alkali metal generating agent.
  • 4 is a table showing various characteristics (average values) in a comparative example of a multiplier.
  • Fig. 15 shows a comparison between a sample of a photomultiplier manufactured using the Alkali metal generator according to the present invention and a photomultiplier manufactured using a conventional alkali metal generator. It is a table
  • Figure 16 shows a sample of a photomultiplier tube manufactured using the alkali metal generating agent according to the present invention and a comparative example of a photomultiplier tube manufactured using the conventional alkali metal generating agent.
  • 5 is a graph showing the radiation sensitivity characteristics at.
  • a graph G 1610 shows the measurement results of the photomultiplier tube according to the sample
  • a graph G 1620 shows the measurement results of the photomultiplier tube according to the comparative example.
  • FIG. 17 shows a photomultiplier manufactured using a conventional alkali metal generating agent based on the life characteristics of a photomultiplier tube sample manufactured using the alkali metal generating agent according to the present invention.
  • Comparison of pipes 6 is a graph showing relative output of sex. In FIG.
  • graph P1 shows the life characteristics of the photomultiplier tube according to the sample
  • graphs P2 to P4 show the photomultiplier tubes according to the comparative example based on graph P1.
  • the relative output of the Life characteristic of [0166] In particular, the relative outputs P2 to P4 of the life characteristics of the photomultiplier tube (commercially available photomultiplier tube) according to the comparative example shown in FIG. The sump was obtained by measuring the data. That is, the graph P 2 shows the average of all data, the graph P 3 shows the average of all data + ⁇ ( ⁇ is the standard deviation), and the graph ⁇ 4 shows the average of all data _ ⁇ ( ⁇ is the standard deviation).
  • the sample manufactured as the photomultiplier according to the present invention has the same radiation sensitivity as the conventional photomultiplier according to the comparative example. It was confirmed that.
  • the photomultiplier according to the sample has the same life characteristics as the conventional photomultiplier according to the comparative example. It was confirmed that.
  • the Life characteristic evaluation test was performed with the operating current (output current) of each photomultiplier tube set to ⁇ ⁇ ⁇ ⁇ and the applied voltage between the photocathode and the anode set to 1000 V.
  • the L i ⁇ e characteristic (relative output) value in the table shown in Fig. 15 indicates a relative value with the value of the anode output (Sp) after one hour from the start of measurement as 100%.
  • a sample of the photomultiplier tube according to the present invention (the graph P 1 showing the life characteristics of the sample in FIG. (Average value), it was possible to obtain a relative output exhibiting life characteristics substantially equivalent to the photomultiplier tube according to the comparative example, and it was confirmed that the reproducibility of the characteristics was excellent.
  • the photomultiplier according to the sample (the photomultiplier according to the present invention) is different from the conventional photomultiplier according to the comparative example. It was confirmed that they had equivalent cathode output, anode output, dark current and After Pulse characteristics.
  • a pulse signal was output from the photomultiplier tube of each of the sample and the comparative example using an LED (semiconductor laser), and 0.5 to 10 / i sec after the signal was output. Calculated based on After Pulse generated in
  • FIG. 18 is a graph showing the relative sensitivity of the photocathode in the photomultiplier manufactured using the alkali metal generating agent according to the present invention.
  • FIG. 19 is a graph showing the relative sensitivity of the anode in the photomultiplier manufactured using the alkali metal generator according to the present invention.
  • Figures 18 and 19 show the maximum measured value (MAX.), Average measured value (AVE.), And minimum measured value (MIN.) For each substance ratio.
  • the pallet weights of the samples prepared as alkali metal generators were 57 mg for the sample power S with a substance ratio of 1.2, 59 mg for the sample with a substance ratio of 1.6, and 1.9 for the sample with a substance ratio of 1.9. 6 lmg of Sampnore, 7 lmg of substance ratio 4 sample, 8 Omg of the substance ratio 6.1 sample, 109 mg of substance ratio 12.1 sample, and 129 m of 20.2 substance ratio sample g, substance ratio 28.3 sample 148 mg, substance ratio 32.3 sample 205 mg, substance ratio 50.1 sample 290 mg, substance ratio
  • the lower limit of the ratio of the amount of the reducing agent to the amount of the reducing agent is 1.9 or more, preferably 4.0 or more. Theoretically, as can be seen from the above chemical reaction formula, the ratio of the reducing agent to the tungstate is 1.2.
  • the electron emission surface such as the photocathode has advanced manufacturing technology
  • this material ratio is important.
  • the amount of the reducing agent is too large, it is difficult to control the heating time for obtaining an optimum redox reaction (a photomultiplier tube having a photocathode having the desired sensitivity and stability). Manufacturing becomes difficult).
  • the heating method is a high-frequency heating method
  • stable reduction can be realized.
  • the amount of the reducing agent is too large, heating is required several times, making it difficult to establish a manufacturing technique and reducing the stability during mass production.
  • the stability of the photomultiplier may be reduced. Therefore, the upper limit of the ratio of the amount of the reducing agent to tantasteate, which affects the stability, is preferably 50.1 or less.
  • the material ratio (reducing agent ZW salt) must be 1.
  • the upper limit of the ratio of the reducing agent to the tungstate is preferably 50.1 or less for the same reason as in the case of the above-mentioned photoelectric surface.
  • the oxidation-reduction reaction between an oxidizing agent (tungstate) and a reducing agent that turn alkali metal ions into counterforce thione is limited only by the reaction temperature.
  • the reaction speed can be easily controlled by the control. That Therefore, it is possible to provide an alkali metal generator for forming a photocathode or a secondary electron emission surface capable of stably generating metal at a predetermined temperature. Further, by providing this alkali metal generator, it is possible to provide an alkali metal generator capable of easily controlling the generation rate of the alkali metal.
  • the alkali metal generator or the alkali metal generator according to the present invention a method for producing a photoelectric surface which is easy to form and has excellent reproducibility of the obtained performance, It becomes possible to provide a method for manufacturing an electron emission surface and a method for manufacturing an electron tube.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Description

I ^糸田 »
アルカリ金属発生剤、 アルカリ金属発生器、 光電面、 二次電子放出面、 電子管、 光電面の製造方法、 二次電子放出面の製造方法及び電子管の製造方法 技術分野
【0 0 0 1】 この発明は、アル力リ金属発生剤、アル力リ金属発生器、光電面、 二次電子放出面、 電子管、 該光電面の製造方法、 該二次電子放出面の製造方法、 及び該電子管の製造方法に関するものである。
背景技術
【0 0 0 2】 入射光に対応して電子 (光電子、 一次電子) を放出する光電面と しては、 透明基板上に形成される、 いわゆる透過型光電面や、 N i等の金属基板 上に形成される、 いわゆる反射型光電面が知られており、 このような光電面は、 例えば、 光電子増倍管、 光電管、 イメージインテンシファイア及びス トリーク管 等の電子管の重要な部品として採用されている。
【0 0 0 3】 現在実用化されている光電面の多くは、 基板上に形成されたアル カリ金属を含む光電子放出材料(主に金属間化合物、化合物半導体)、 例えば、 S bと C sとからなる金属間化合物からなる。
【0 0 0 4】 従来、上記アルカリ金属を構成元素として含む光電子放出材料は、 所定の真空度 (残留気体の分圧で表現した場合、 好ましくは、 1 0— 7〜: L 0 _ 2 P a ) と温度に保持した雰囲気中で、 アルカリ金属蒸気を発生させ、 アルカリ金 属と反応する光電子放出材料の構成材料に反応させることにより形成されている。 例えば、 S bと C sとからなる金属間化合物の光電子放出材料の形成では、 例え ば、 基板上にアル力リ金属と反応する光電子放出材料の構成材料である S bから なる蒸着膜がまず形成され、 次いで、 C sの蒸気を発生させ、 S bからなる蒸着 膜に C sを反応させ、 そして、 金属間化合物の層が形成される。
【0 0 0 5】 この場合、 アルカリ金属が大気中で非常に不安定でありこれ自体 をアルカリ金属の蒸気の発生源とすることができないため、 所定の温度で酸化還 元反応によりアルカリ金属を生成可能な酸化剤と還元剤との組み合せを構成成分 として含む供給源 (いわゆるアルカリ源あるいはアルカリ金属源) が用いられて いる。 この供給源としては、 例えば粉体状のアルカリ金属源やペレッ ト状に加圧 成形されたアルカリ金属源が従来から使用されている。 なお、 この明細書におい て、上記酸ィヒ剤と還元剤とを含むアルカリ金属の蒸気のアルカリ金属源(供給源) をアルカリ金属発生剤という。
【0 0 0 6】 また、 これら粉体状のアルカリ金属発生剤あるいはペレッ ト状に 加圧成形したアルカリ金属発生剤は、 アルカリ金属の蒸気を外部に放出可能な開 口が設けられた金属製ケース内に収容された状態で使用される。 さらに、 この金 属製ケースをガラス製アンプル内に封入した状態で使用される場合もある。 そし て、 光電面の形成の際、 この金属製ケースを加熱し、 アルカリ金属の蒸気を発生 させている。
【0 0 0 7】 さらに、 上記アル力リ金属発生剤は、 例えば、 光電子増倍管にお けるダイノードの二次電子放出面の形成にも使用されている。
【0 0 0 8】 このようなアルカリ金属発生剤としては、 3 丁 1又は八 1等 を還元剤として含み、 かつ、 アルカリ金属イオンをカウンタ一力チオンとするク ロム酸塩 (例えば、 C s 2 C r 0 4等) を酸化剤として含む粉体状あるいはペレツ ト状に加圧成形されたアルカリ金属発生剤が従来から使用されており、 この酸化 剤を含むアルカリ金属発生剤は、 例えば、 特開昭 5 5— 7 8 4 3 8号公報ゃ特開 昭 5 3— 1 2 4 0 5 9号公報、 特公昭 4 5— 7 5 6 6号公報、 実公昭 4 7— 3 5 2 2 1号公報に開示されている。
発明の開示
【0 0 0 9】 発明者らは、 上述の従来技術について検討した結果、 以下のよう な課題を発見した。 アル力リ金属イオンを力ゥンターカチオンとするク口ム酸塩 を酸化剤として含むアルカリ金属発生剤を用いて上述の電子管に適用される光電 面を製造する場合、 上記クロム酸塩からなる酸化剤と還元剤との酸化還元反応は 反応速度が極めて大きく、 反応場の温度が徐々に上昇し反応の進行が可能な所定 温度に到達すると急激に進行するため、 一旦反応が進行し始めると反応温度の調 節による反応速度の制御が極めて困難となるという製造上の課題があった。
【0 0 1 0】 より具体的には、 酸化還元反応の急激な進行に伴って反応場の温 度が急激に上昇するため、 アル力リ金属発生剤自体若しくはアルカリ金属発生剤 を収容している金属製ケース又はガラス製アンプルが破裂する場合があった。 電 子管内の光電面を製造する際にこのような状況が発生すると、 アル力リ金属量の 制御が困難になり、 所望の性能が得られない。 また、 この場合、 製造効率上の制 約等から使用済みの金属製ケースはガラス製容器等の電子管の筐体内に残された ままとなるが、 このとき金属製ケースが破裂していると、 外観上の不良製品とも なる。
【0 0 1 1】 さらに、 酸化還元反応の急激な進行によりアル力リ金属の発生速 度及び収率に大きな変動があるため、 光電面が形成されるべき領域やダイノード の二次電子放出面が形成されるべき領域におけるアルカリ金属の蒸着状態が不均 一となるという課題があった。 例えば、 高周波加熱方式によりアルカリ金属発生 剤を加熱する場合、 従来のクロム酸塩を使用すると酸化還元反応が急激に進行す るため、 加熱を停止するタイミングを常に一定にすることができず、 同様の条件 で製造された複数の光電面間で分光感度特性 (放射感度及び量子効率) にばらつ きが生じたり、 同様の条件で製造された複数のダイノードについても、 その増倍 効率にばらつきが生じて、 不良品となる場合があり、 生産効率が低下する。
【0 0 1 2】 この発明は、 上述のような課題を解決するためになされたもので あり、 アル力リ金属を安定的に発生させることのできる光電面又は二次電子放出 面形成用のアル力リ金属発生剤、 該ァルカリ金属発生剤を含み、 アル力リ金属の 発生速度を容易にコント口ールできるアル力リ金属発生器、 十分な分光感度特性 を有する光電面、 十分な増倍効率を有する二次電子放出面、 及び十分な光電変換 特性を有する電子管を提供することを目的とする。 また、 この発明は、 形成が容 易でありかつ性能の再現性に優れた光電面の製造方法、 二次電子放出面の製造方 法、 及び電子管の製造方法を提供することを目的としている。
【001 3】 発明者らは、 上述の目的を達成すべく鋭意研究を重ねた結果、 上 記従来の酸化剤と還元剤との酸化還元反応の反応速度が大きいのは、 還元剤より もむしろ酸化剤であるアルカリ金属イオンをカウンタ一力チオンとするクロム酸 塩が非常に強い酸化力を有していることが大きな原因の一つとなっていることを 発見した。
【0014】 そして、 発明者らは、 上記クロム酸塩よりも酸化力の弱い酸化剤 について検討し、 このような酸化剤としてタングステン酸塩を使用すると、 上記 従来のクロム酸塩を用いて製造された光電面及び二次電子放出面に匹敵する性能 を有する光電面及び二次電子放出面を容易にかつ再現性よく製造できることを発 見した。 なお、 関連技術としては、 WOO 2/093664号公報、 特公昭 48 - 20944号公報、 特公昭 47— 21 95 1号公報、 特公昭 47— 25541 号公報、 特公昭 47- 1 5976号公報がある。
【001 5】 すなわち、 この発明は、 入射光に対応して光電子を放出する光電 面、 又は、 入射電子に対応して二次電子を放出する二次電子放出面の形成に使用 されるアル力リ金属の供給源となるアル力リ金属発生剤であり、 酸化剤及び還元 剤を少なくとも含む。 特に、 当該アルカリ金属発生剤において、 上記酸化剤は、 アルカリ金属イオンをカウンタ一力チオンとする少なくとも一種のタングステン 酸塩からなる。 上記還元剤は、 所定温度において酸化剤との酸化還元反応を開始 し、 アルカリ金属イオンを還元する。
[0016] アルカリ金属イオンをカウンタ一力チオンとするタングステン酸 塩は、 上述のクロム酸塩よりも酸化力が弱いので、 還元剤との酸化還元反応がク ロム酸塩の場合に比べて緩やかに進行する。 そのため、 一旦反応が進行し始めて も反応温度の調節による反応速度の制御が容易である。 換言すれば、 この発明に 係るアルカリ金属発生剤自体若しくはこれを収容しているケースを破裂させるこ となくアルカリ金属(アルカリ金属の蒸気)を安定的に発生させることができる。
【0 0 1 7】 したがって、 このタングステン酸塩を含むアルカリ金属発生剤を 用いることにより、 十分な分光感度特性を有する光電面や、 十分な増倍効率を有 する二次電子放出面を容易かつ再現性よく製造することができる。
【0 0 1 8】 なお、 発明者らは、 十分な分光特性を有する光電面や、 十分な増 倍効率を有する二次電子放出面の製造には、 タングステン酸塩に対する還元剤の 物質量比が重要であることを見出した。 そこで、 発明者らは、 タングステン酸塩 に対する還元剤の物質量比について、複数のサンプル(光電子增倍管)を製作し、 実用上十分な感度及び安定性を有する光電面及び陽極が得られる範囲について検 討した。 その結果、 タングステン酸塩に対する還元剤の物質量比の下限は、 1 .
9以上、 より好ましくは 4 . 以上であることが見出された。 一方、 タングステン 酸塩に対する還元剤の物質量比の上限は、 5 0 . 1以下が好ましいことも見出さ れた。
【0 0 1 9】 この発明に係るアルカリ金属発生器は、 入射光に対応して光電子 を放出する光電面、 又は、 入射電子に対応して二次電子を放出する二次電子放出 面の形成に使用されるアルカリ金属を発生させる。 当該アルカリ金属発生器は、 ケース、 供給源、 放出口を備える。 特に、 当該アルカリ金属発生器において、 上 記ケースは供給源を収納する金属製ケースであるのが好ましい。 上記供給源は、 アル力リ金属を発生する原料を含む、上述の構造を有するアルカリ金属発生剤 (こ の発明に係るアルカリ金属発生剤) である。 また、 上記放出口は、 上記ケースに 設けられ、 供給源が収納された該ケースの内部空間から該ケースの外部に向かつ て、 供給源において発生するアルカリ金属の蒸気を放出する。
【0 0 2 0】 上述のような構造を有するアルカリ金属発生剤が内部に収容され た、 この発明に係るアルカリ金属発生器によれば、 アルカリ金属発生剤中の酸化 剤と還元剤との酸化還元反応により発生するアルカリ金属(アルカリ金属の蒸気) をケースの放出口から安定的に外部に放出することができる。 【0 0 2 1】 したがって、 この発明に係るアルカリ金属発生器を用いることに より、 十分な分光感度特性を有する光電面や、 十分な増倍効率を有する二次電子 放出面を容易かつ再現性よく製造することができる。
【0 0 2 2】 この発明に係る光電面は、 入射光に対応して光電子を放出するァ ルカリ金属を含む。 このアルカリ金属は、 この発明に係るアルカリ金属発生剤か ら発生するアルカリ金属である。 また、 このアルカリ金属は、 この発明に係るァ ルカリ金属発生器から発生したアルカリ金属であってもよい。 いずれの場合も、 当該アル力リ金属発生剤又は当該アル力リ金属発生器を用いることにより、 十分 な分光感度特性を有する光電面が得られる。
【0 0 2 3】 この発明に係る二次電子放出面は、 入射電子に対応して二次電子 を放出するアルカリ金属を含む。 このアルカリ金属は、 この発明に係るアルカリ 金属発生剤から発生するアルカリ金属であってもよく、 また、 この発明に係るァ ルカリ金属発生器から発生したアルカリ金属であってもよい。 このように、 当該 アル力リ金属発生剤又はアル力リ金属発生器を用いることにより、 十分な増倍効 率を有する二次電子放出面を構成することができる。 なお、 上記二次電子放出面 に入射する電子には、 光電面から放出される光電子も含まれる。
【0 0 2 4】 さらに、 この発明に係る電子管は、 入射光に対応して光電子を放 出する光電面を有する電子管であり、 この光電面には、 この発明に係る光電面が 適用可能である。
【0 0 2 5】 このように、 この発明に係るアルカリ金属発生剤又はアルカリ金 属発生器を用いて製造された光電面を備えることにより、 十分な光電変換特性を 有する電子管が得られる。 なお、 電子管に 1又はそれ以上の二次電子放出面 (例 えば、 ダイノード等の二次電子放出面) が設けられている場合には、 上述の観点 から上記二次電子放出面もこの発明に係るアルカリ金属発生剤又はアルカリ金属 発生器を用いて製造されるのが好ましい。
【0 0 2 6】 この発明に係る電子管は、'それぞれが、 入射電子に対応して二次 電子を放出する二次電子放出面を有する 1又はそれ以上のダイノードで構成され た電子増倍部を少なくとも備える。 この場合も、 各ダイノードにおける二次電子 放出面としては、 この発明に係る二次電子放出面が適用可能である。 .
【0 0 2 7】 このように、 この発明に係るアルカリ金属発生剤又はアルカリ金 属発生器を用いて製造された二次電子放出面を備えることにより、 十分な光電変 换特性を有する電子管が得られる。 なお、 この場合、 上述の電子管に設けられた 光電面もこの発明に係るアルカリ金属発生剤又はアルカリ金属発生器を用いて製 造されるのが好ましい。
【0 0 2 8】 さらに、 この発明に係る光電面の製造方法は、 アルカリ金属の発 生源として、 この発明に係るアルカリ金属発生剤又はアルカリ金属発生器を用意 し、 該アルカリ金属発生剤 (アルカリ金属発生器の場合、 ケース内に収納された アルカリ金属発生剤) を加熱し、 そして、 該アルカリ金属発生剤の加熱により発 生したアルカリ金属を光電面の形成領域に導く。 以上の工程を経て、 入射光に対 応して光電子を放出するアルカリ金属を含む光電面が得られる。
【0 0 2 9】 このように、 この発明に係るアルカリ金属発生剤を用いることに より、 形成が容易で性能の再現性に優れた光電面が得られる。
【0 0 3 0】 この発明に係る二次電子放出面の製造方法は、 アル力リ金属の発 生源として、 この発明に係るアルカリ金属発生剤又はアルカリ金属発生器を用意 し、 該アルカリ金属発生剤 (アルカリ金属発生器の場合、 ケース内に収納された アルカリ金属発生剤) を加熱し、 該アルカリ金属発生剤の加熱により発生したァ ルカリ金属を二次電子放出面の形成領域に導く。 これにより、 入射電子に対応し て二次電子を放出する二次電子放出面が得られる。
【0 0 3 1】 このように、 この発明に係るアルカリ金属発生剤又はアルカリ金 属発生器を用いることにより、 形成が容易で性能の再現性に優れた二次電子放出 面が得られる。
【0 0 3 2】 さらに、 この発明に係る電子管の製造方法は、 入射光に対応して 光電子を放出するアルカリ金属を含む光電面を少なくとも有する電子管の製造を 可能にする。 すなわち、 当該電子管の製造方法は、 この発明に係るアルカリ発生 剤又はアルカリ金属発生器を用意し、 該アルカリ金属発生剤 (アルカリ金属発生 器の場合、 ケース内に収納されたアルカリ金属発生剤) を加熱し、 該アルカリ金 属発生剤の加熱により発生したアルカリ金属を光電面の形成領域に導く工程を含 む。
【0 0 3 3】 このように、 この発明に係るアルカリ金属発生剤又はアルカリ金 属発生器を用いて光電面を製造することにより、 性能の再現性に優れた電子管が 得られる。 なお、 光電面の他に少なくとも 1つの二次電子放出面 (例えば、 ダイ ノード等の二次電子放出面) が設けられた電子管を製造する場合には、 上述の観 点から該二次電子放出面もこの発明に係るアルカリ金属発生剤又はアルカリ金属 • 発生器を用いて製造するのが好ましい。
【0 0 3 4】 この発明に係る電子管の製造方法は、 それぞれが、 入射電子に対 応して二次電子を放出する二次電子放出面を有する 1又はそれ以上のダイノード で構成された電子增倍部を有する電子管を製造可能である。 この場合も、 各ダイ ノードにおける二次電子放出面は、 この発明に係るアルカリ金属発生剤又はアル カリ金属発生器を用意し、 該アルカリ金属発生剤 (アルカリ金属発生器の場合、 ケース内に収納されたアルカリ金属発生剤) を加熱し、 そして、 該アルカリ金属 発生剤の加熱により発生したアルカリ金属を二次電子放出面の形成領域に導くこ とにより得られる。
【0 0 3 5】 このように、 この発明に係るアルカリ金属発生剤又はアルカリ金 属発生器を用いてダイノ一ドの二次電子放出面を製造することにより、 性能の再 現性に優れた電子管が得られる。 なお、 この場合、 上述の観点から電子管におけ る光電面も、 この発明に係るアルカリ金属発生剤又はアルカリ金属発生器を用い て製造されるのが好ましい。
【0 0 3 6】 なお、 この発明に係る各実施例は、 以下の詳細な説明及び添付図 面によりさらに +分に理解可能となる。 これら実施例は単に例示のために示され るものであって、 この発明を限定するものと考えるべきではない。
【0 0 3 7】 また、 この発明のさらなる応用範囲は、 以下の詳細な説明から明 らかになる。 しかしながら、 詳細な説明及び特定の事例はこの発明の好適な実施 例を示すものではあるが、 例示のためにのみ示されているものであって、 この発 明の思想及び範囲における様々な変形および改良はこの詳細な説明から当業者に は自明であることは明らかである。
図面の簡単な説明
【0 0 3 8】 図 1は、 この発明に係るアルカリ金属発生剤の一実施例の構成を 示す斜視図である。
【0 0 3 9】 図 2は、 この発明に係るアルカリ金属発生器の第 1実施例の構成 を示す斜視図である。
【0 0 4 0】 図 3は、 第 1実施例に係るアルカリ金属発生器 (図 2 ) の I— I 線に沿った断面図である。
【0 0 4 1】 図 4は、 この発明に係るアルカリ金属発生器の第 2実施例の構成 を示す断面図である。
【0 0 4 2】 図 5は、 :の発明に係るアル力リ金属発生器の第 3実施例の構成 を示す断面図である。
【0 0 4 3】 図 6は、 の発明に係るアルカリ金属発生器の第 4実施例の構成 を示す断面図である。
【0 0 4 4】 図 7は、 の発明に係るアル力リ金属発生器の第 5実施例の構成 を示す断面図である。
【0 0 4 5】 図 8は、 二の発明に係る電子管の第 1実施例としての光電子増倍 管の構成を示す図である。
【0 0 4 6】 図 9は、 図 6に示されたアルカリ金属発生器を用いて光電子増倍 管の光電面及びダイノードの製造工程を説明するための図である。 【0 0 4 7】 図 1 0は、 この発明に係る電子管の第 2実施例としての光電子増 倍管の構成を示す図である。
【0 0 4 8】 図 1 1は、 この発明に係る電子管の第 3実施例としての光電管の 構成を示す図である。
【0 0 4 9】 図 1 2は、 この発明に係る電子管の第 4実施例としてのイメージ 管 (イメージインテンシファイア) の構成を示す図である。
【0 0 5 0】 図 1 3は、 この発明に係る電子管の第 5実施例としてのストリー ク管の構成を示す図である。
【0 0 5 1】 図 1 4は、 この発明に係るアルカリ金属発生剤を使用して製造さ れた光電子増倍管のサンプルと、 従来のアルカリ金属発生剤を使用して製造され た光電子増倍管の比較例における諸特性 (平均値) を示す表である。
【0 0 5 2】 図 1 5は、 この発明に係るアルカリ金属発生剤を使用して製造さ れた光電子増倍管のサンプルと、 従来のアル力リ金属発生剤を使用して製造され た光電子増倍管の比較例における L i f e特性 (%) を示す表である。
【0 0 5 3】 図 1 6は、 この発明に係るアルカリ金属発生剤を使用して製造さ れた光電子增倍管のサンプルと、 従来のアルカリ金属発生剤を使用して製造され た光電子增倍管の比較例における放射感度特性を示すグラフである。
【0 0 5 4】 図 1 7は、 この発明に係るアルカリ金属発生剤を使用して製造さ れた光電子増倍管のサンプルの L i f e特性を基準とした、 従来のアルカリ金属 発生剤を使用して製造された光電子増倍管の比較例の L i f e特性の相対出力示 すグラフである。
【0 0 5 5】 図 1 8は、 この発明に係るアルカリ金属発生剤を使用して製造さ れた光電子増倍管のサンプルにおける光電面の相対感度を示すグラフである。
【0 0 5 6】 図 1 9は、 この発明に係るアルカリ金属発生剤を使用して製造さ れた光電子増倍管のサンプルにおける陽極の相対感度を示すグラフである。 発明を実施するための最良の形態 【0 0 5 7】 以下、 この発明に係るアルカリ金属発生剤等の各実施例を、 図 1 〜図 1 9を参照しながら詳細に説明する。 なお、 図面の説明では、 同一または相 当部分には同一符号を付し、 重複する説明は省略する。
(アル力リ金属発生剤)
【0 0 5 8】 図 1は、 この発明に係るアルカリ金属発生剤における好適な一実 施例の構成を示す斜視図である。
【0 0 5 9】 上述のように、 図 1に示されたアル力リ金属発生剤 1は、 光電面 又は二次電子放出面の形成に使用されるアルカリ金属の供給源となる。 そして、 図 1のアル力リ金属発生剤 1は、 全ての構成成分が圧縮成形により円柱状のペレ ットに成形されている。 このようにペレットとすることにより、 アルカリ金属発 生剤 1の取り扱い性が向上し、 後述のアルカリ金属発生器に搭載する場合や、 光 電面、 二次電子放出面、 電子管を製造する際の作業が容易になる。
【0 0 6 0】 上記アル力リ金属発生剤 1に含有される酸化剤は、 アル力リ金属 イオンをカウンタ一力チオンとする少なくとも一種のタングステン酸塩からなる ( このようなタングステン酸塩としては、化学式 R 2W〇4で表現されるものが好ま しい。 なお、 この化学式中の Rは、 N a、 K、 R b及び C sからなる群より選択 された少なくとも一種の金属元素を示す。
【0 0 6 1】 上記化学式中の Rで表されるアルカリ金属元素の陽イオンを力ゥ ンターカチオンとするタングステン酸塩 (以下、 タングステン酸塩という) を酸 化剤として用いることにより、 実用化されている光電面の材料に使用されている アルカリ金属をより安定的に発生させることができる。 また、 タングステン酸塩 からなる酸化剤の種類と各々の含有量は、 製造するべき光電面又は製造するべき 二次電子放出面の成分組成に合わせて適宜選択される。 例えば、 異なる種類の材 料を組み合せ、 それぞれ所定の割合で含有させてもよく、 単一種類のもののみを 含有させていてもよい。
【0 0 6 2】 上記アル力リ金属発生剤 1に含有される還元剤は、 所定温度にお いて上述の酸化剤との酸化還元反応を開始し、 アル力リ金属ィオンを還元するも のである。 このような還元剤としては、 アルカリ金属を安定的に発生させること が可能であれば特に限定されないが、 S i、 Z r、 T i及び A 1からなる群より 選択される少なくとも一種であることが好ましい。 上述のタングステン酸塩から なる酸化剤に対して、 これらの S i、 Z r、 T i及び A 1をそれぞれ単独又は任 意に組み合せて還元剤として使用すること (例えば、 S iと T iとの混合物を還 元剤として使用すること) により、 アルカリ金属をより安定的に発生させること ができる。
【0 0 6 3】 なお、 S iからなる還元剤は、 約 9 0 0 °C以上でアルカリ金属の 発生量が飽和する特性を有する。 そのため、 他の還元剤に比べて加熱温度に対す るアルカリ金属の発生量コントロールが容易である。 したがって、 短時間での反 応が容易なために量産化に適している。 加えて、 S iを還元剤として利用する場 合、 細かな温度コントロールが難しい高周波加熱反応方式を利用することができ る。
【0 0 6 4】 この還元剤と酸化剤との酸化還元反応を開始させる方法としては、 アルカリ金属発生剤を所定の真空度に調節された雰囲気中で、 酸化還元反応が進 行し始める所定の温度にまで加熱する方法が挙げられる。ここで、 「所定の真空度 に調節された雰囲気」 とは、 雰囲気中の残留気体の分圧で表現した場合には 1 0 6〜ι 0 - i p a、 好ましくは 1 0— 6〜1 0— 3 P aである雰囲気を意味する。 【0 0 6 5】 また、 上記アル力リ金属発生剤 1中には上述の酸化剤及び還元剤 の他の成分として、 例えば、 W、 A 1 2 0 3等が含有されていてもよい。
【0 0 6 6】 次に、 上記アル力リ金属発生剤 1の製造方法の一例について説明 する。 上記アルカリ金属発生剤 1は、 酸化剤に上述のタングステン酸塩を使用す ること以外は、 酸化剤としてクロム酸塩を使用した従来のアル力リ金属発生剤と 同様の技術により製造され得る。
【0 0 6 7】 すなわち、 最初に、 製造される光電面あるいはダイノードの二次 電子放出面の成分組成に合わせて酸化剤となるタングステン酸塩が選択される。
【0 0 6 8】 続いて、 計量工程、 粉砕■混合工程、 成形工程を順に行う。 この 計量工程では、 酸化剤と還元剤 (例えば、 S i、 Z r、 A 1等) が適量計量され る。 粉碎 '混合工程では、 これらを粉砕器 (例えば、 めのう鉢やボールミル等) に入れ、 粉碎と混合を同時に行う。 なお、 酸化剤及び還元剤以外の成分を含有さ せる場合には、 この粉砕 '混合工程において、 その成分を酸化剤及び還元剤とと もに粉砕器に入れて混合及び粉砕を行うことでアル力リ金属発生剤の粉末が得ら れる。 成形工程では、 得られたアルカリ金属発生剤の粉末を粉体プレス機にてプ レスすることで、 円柱状に成形されたペレツトとしてアルカリ金属発生剤 1が得 られる。
【0 0 6 9】 なお、 上述の成形工程では、 アル力リ金属発生剤 1が圧縮成形に より円柱状のペレットに成形されている。 しかしながら、 この発明に係るアル力 リ金属発生剤を圧縮成形する場合、 その形状は特に限定されない。 また、 この発 明に係るアルカリ金属発生剤は上述の実施例のように圧縮成形されていてもよい 力 全ての構成成分が粉体状であってもよい。 例えば、 上述のように成形する前 の粉末をそのまま使用してもよく、 一旦ペレツト状に成形してから粉砕し粉末と して使用してもよい。
(アルカリ金属発生器)
【0 0 7 0】 次に、 この発明に係るアルカリ金属発生器の好適な実施例につい て説明する。 図 2は、 この発明に係るアルカリ金属発生器の第 1実施例の構成を 示す斜視図である。 また、 図 3は、 図 2に示されたアルカリ金属発生器の I _ I 線に沿った断面図であり、 この図には加熱装置も合わせて示されている。
【0 0 7 1】 図 2及び図 3に示されたアルカリ金属発生器 2は、 光電面又は二 次電子放出面の形成に使用されるアルカリ金属を発生させる。 そして、 このアル カリ金属発生器 2は、 図 1に示されたアルカリ金属発生剤 1と、 アルカリ金属発 生剤 1を収容する金属製ケース 2 0とを備える。 【0 0 7 2】 上記ケース 2 0は、 上記アルカリ金属発生剤 1からなるペレッ ト を収容する凹部が設けられた金属製の有底容器 2 2と、 該有底容器 2 2の凹部全 体を覆った状態で有底容器 2 2に溶接された金属製の蓋部材 2 4とを備える。 有 底容器 2 2の凹部は、 アルカリ金属発生剤 1からなるペレツ トよりも大きな容積 を有し、好ましくは該ペレツトに対して相似となる形状に形成されている。また、 有底容器 2 2の凹部を取り囲むように環状のフランジが設けられており、 このフ ランジと蓋部材 2 4の縁部とが溶接される。
【0 0 7 3】 ここで、 有底容器 2 2のフランジと蓋部材 2 4の縁部の間には、 有底容器 2 2の凹部 (アルカリ金属発生剤 1の収納スペース) と有底容器 2 2の 外部とを連通させる未溶接部分が設けられており、 この未溶接部分が、 アルカリ 金属発生剤 1から発生するアル力リ金属の蒸気を光電面の形成部位又はダイノ一 ドの二次電子放出面の形成部位に向けて放出するための放出口 2 3となる。
【0 0 7 4】 なお、 このアルカリ金属発生器 2内に収容されたアルカリ金属発 生剤 1の酸化還元反応を開始させる方法としては、 アルカリ金属発生剤 1を先に 述べた所定の真空度に調節された雰囲気中で、 酸化還元反応が進行し始める所定 の温度にまで加熱する方法が挙げられる。
【0 0 7 5】 より具体的には、 アルカリ金属の蒸気を発生させるための加熱装 置をさらに備えることが好ましい。 このような加熱装置としては、 上記雰囲気中 においてアルカリ金属発生剤 1を加熱できる構成を有していれば特に限定されな V、。例えば、高周波加熱方式又は抵抗加熱方式に基づく構成を有していてもよい。 しカゝしながら、 アルカリ金属発生剤 1を容易にかつ均一に加熱する観点から、 加 熱装置は、 高周波加熱によりアルカリ金属発生剤 1を加熱する構成を有している ことが好ましい。
【0 0 7 6】 高周波加熱方式の加熱装置は、 図 3中に示されたように、 アル力 リ金属発生剤 1を収納したケース 2 0を取り囲むように卷かれた高周波コイル 2 5と、 該コイル 2 5に高周波電流を供給する高周波電源を備える。 例えば、 従来 のクロム酸塩を酸化剤として含むアルカリ金属発生剤を高周波加熱方式により加 熱する場合と同様の構成でもよい。 例えば、 アルカリ金属発生剤 1を光電面及び 又はダイノードの二次電子放出面を形成するべき電子管内に予めマウントして おき、 これを高周波加熱により加熱して電子管内にアルカリ金属の蒸気を発生さ せ、 これを光電面及びノ又はダイノードの二次電子放出面を形成するべき所定の 部位に反応させてもよい。
【0 0 7 7】 上記アル力リ金属発生器 2の製造方法では、 まず、 上述のように アルカリ金属発生剤 1が製造される。 続いて、 このアルカリ金属発生剤 1の形状 及び体積に合わせて有底容器 2 2と蓋部材 2 4が作製される。 有底容器 2 2は、 凹部にアル力リ金属発生剤 1を収納した状態で、 蓋部材 2 4と溶接される。 有底 容器 2 2と蓋部材 2 4の作製方法及び有底容器 2 2と蓋部材 2 4の溶接方法は特 に限定されず、 例えば、 公知の技術により行うことができる。
【0 0 7 8】 なお、 このアルカリ金属発生器 2においては、 ペレットに成形し たアル力リ金属発生剤 1を搭載する場合について説明したが、 アル力リ金属発生 器 2と同様のケース 2 0内にアルカリ金属発生剤 1を形成する前の粉体状のアル カリ金属発生剤、 あるいはアルカリ金属発生剤 1を粉砕して得られる粉体状のァ ルカリ金属発生剤が充填されたアルカリ金属発生器であってもよい。
【0 0 7 9】 次に、 この発明に係るアルカリ金属発生器の第 2実施例について 説明する。 図 4は、 この発明に係るアルカリ金属発生器の第 2実施例の構成を示 す断面図であり、 この図には加熱装置も合わせて示されている。 図 4に示された アルカリ金属発生器 3は、 図 2及び図 3に示されたアルカリ金属発生器 2と同様 の構成を有する本体部 2 Aと、 この本体部 2 Aを封入するガラス製アンプル 3 2 と、 本体部 2 Aのケース 2 0 (放出口 2 3を有する) に接続された棒状の支持部 材 3 4とから構成されている。
【0 0 8 0】 ガラス製アンプル 3 2は筒状の形状を有し、 支持部材 3 4が貫通 したステム底面に対向する上面部分 (以下、 先端部分という) の内径が他の部分 よりも小さくなつている。 このアルカリ金属発生器 3は、 光電面及び/又はダイ ノ一ドの二次電子放出面を形成する際に、 光電面及びノ又はダイノ一ドの二次電 子放出面を形成すべき電子管に接続される。 その際、 電子管内の光電面及び Z又 はダイノードの二次電子放出面を形成すべき部位の空間と、 ガラス製アンプル 3 2内の空間が連通するように接続される。 すなわち、 ガラス製アンプル 3 2は光 電面及び Z又は二次電子放出面の形成時に開封される。
【0 0 8 1】 ガラス製アンプル 3 2内に位置する上記支持部材 3 4の一端は、 ケース 2 0の蓋部材 2 4の外面に接続されており、 該支持部材 3 4の他端は、 ガ ラス製アンプル 3 2に設けられた貫通孔 h 3 2を介してアンプル外部に突出して いる。 この支持部材 3 4は、 アンプノレ 3 2内が気密状態となるように貫通孔 h 3 2の内面に密着されている。
【0 0 8 2】 例えば、高周波電流を発生させることが可能な高周波電¾12 6と、 これに接続された高周波電流を通ずることのできるコイル 2 5 (誘導炉) とから 高周波加熱方式の加熱装置が構成される。 該コイル 2 5をガラス製アンプル 3 2 の外部から本体部 2 Aを囲むようにして配置し、 加熱することによりアルカリ金 属発生器 3からアル力リ金属の蒸気を発生させはじめることができる。
【0 0 8 3】 上記アル力リ金属発生器 3の製造方法では、 まず、 上述のように アル力リ金属発生剤 1が製造され、 アル力リ金属発生器 2と同様の方法で本体部 2 Aが製造される。 続いて、 本体部 2 Aに支持部材 3 4が溶接された後、 支持部 材 3 4に一体化させた本体部 2 Aが、 ガラス製アンプル 3 2内に封入される。 本 体部 2 Aと支持部材 3 4の溶接方法及びこれらのガラス製アンプル 3 2内への封 入方法は特に限定されず、 例えば、 公知の技術により行うことができる。
【0 0 8 4】 次に、 この発明に係るアルカリ金属発生器の第 3実施例について 説明する。 図 5は、 この発明に係るアルカリ金属発生器の第 3実施例の構成を示 す断面図であり、 この図にも加熱装置が合わせて示されている。 図 5に示された アルカリ金属発生器 4は、 粉体状あるいはペレツトに成形されたアルカリ金属発 生剤 1 Aと、 アル力リ金属発生剤 1 Aを収容する金属製 (例えば、 N i製) ケー ス 2 O Aとから構成されている。 このアルカリ金属発生剤 1 Aは、 図 1に示され たアルカリ金属発生剤 1と同様の組成を有している。
【0 0 8 5】 また、 このケース 2 O Aは、 アルカリ金属発生剤 1を収容する内 部スペースが設けられた金属製パイプからなる。 そして、 ケース 2 O Aの両端開 口の縁部分は、 内部スペースからアルカリ金属発生剤 1 Aが漏れ出ないように、 例えば、 たがね等によりたたかれる等してかしめられている。 ただし、 ケース 2 O Aのかしめられた縁部分には、 内部スペースとケース 2 O Aの外部とを連通さ せる未接触部分が設けられており、 この未接触部分が、 アルカリ金属発生剤 1 A から発生するアルカリ金属の蒸気を光電面又は二次電子放出面の形成部位に向け て放出するための放出口 2 3となる。 なお、 この放出口 2 3の大きさは、 内部ス ペースからアルカリ金属発生剤 1 Aが漏れでない程度に調節されている。
【0 0 8 6】 このアルカリ金属発生器 4の場合も、 上述のアルカリ金属発生器 2及び 3と同様にして加熱することにより、 アルカリ金属の蒸気を発生させるこ とができる。 なお、 このアルカリ金属発生器 4を加熱する加熱装置は、 図 5中に 示されたように、 ケース 2 0を取り囲むように巻かれた高周波コイル 2 5と、 該 コイル 2 5に高周波電流を供給する高周波電源 2 6とを備える。
【0 0 8 7】 上記アル力リ金属発生器 4の製造方法では、 まず、 上述のように アルカリ金属発生剤 1 Aが製造され、 これが金属製ケース (金属パイプ) 2 O A 内に充填される。 続いて、 金属製ケース 2 O Aの両端の開口部がかしめられるこ とにより当該アルカリ金属発生器 4が得られる。 金属製ケース 2 O Aの両端開口 をかしめる方法は特に限定されず、例えば、公知の技術により行うことができる。
【0 0 8 8】 次に、 この発明も係るアルカリ金属発生器の第 4実施例について 説明する。 図 6は、 この発明に係るアルカリ金属発生器の第 4実施例の構成を示 す断面図であり、 この図にも加熱装置が合わせて示されている。 図 6に示された アルカリ金属発生器 5は、 図 5に示されたアルカリ金属発生器 4と同様の構成を 有する本体部 4 Aと、 この本体部 4 Aを封入するガラス製アンプノレ 5 2とを備え る。 このガラス製アンプル 5 2は、 図 4に示したガラス製アンプル 3 2と同様の 形状を有している。 また、 ガラス製アンプル 5 2の底面に対向する先端部分の内 径は、 本体部 4 Aを内部に閉じ込めることが可能な大きさに調節されている。 【0 0 8 9】 このアルカリ金属発生器 5も、 光電面及び/又はダイノードの二 次電子放出面を形成する際に、 図 4に示されたアルカリ金属発生器 3と同様にし て光電面及び Z又はダイノードの二次電子放出面を形成すべき電子管に接続され る。 その際、 電子管内の光電面及びノ又はダイノードの二次電子放出面を形成す べき部位の空間と、ガラス製アンプル 5 2内の空間が連通するように接続される。 【0 0 9 0】 このアルカリ金属発生器 5の場合も、 上述のアルカリ金属発生器 2 ~ 4と同様にして加熱することにより、 アルカリ金属の蒸気を発生させること ができる。 なお、 このアルカリ金属発生器 4を加熱する加熱装置は、 図 6中に示 されたように、 ケース 2 0を取り囲むように卷かれた高周波コイル 2 5と、 該コ ィル 2 5に高周波電流を供給する高周波電源 2 6とを備える。
【0 0 9 1】 上記アル力リ金属発生器 5の製造方法では、 まず、 上述のように アル力リ金属発生剤 1 Aが製造され、 アル力リ金属発生器 4と同様にして本体部 4 Aが製造される。 続いて、 本体部 4 Aが、 ガラス製アンプル 5 2内に封入され る。 本体部 4 Aのガラス製アンプル 5 2内への封入方法は特に限定されず、 例え ば、 公知の技術により行うことができる。
【0 0 9 2】 次に、 この発明に係るアルカリ金属発生器の第 5実施例について 説明する。 図 7は、 この発明に係るアルカリ金属発生器の第 5実施例の構成を示 す断面図である (加熱装置含む)。 図 7に示されたアルカリ金属発生器 6は、主と して、 粉体状あるいはペレットに成形されたアルカリ金属発生剤 1 Bと、 アル力 リ金属発生剤 1 Aを収容する金属製ケース 2 0 Bと、 この金属製ケース 2 0 Bの 所定の位置に配置された 2つの電極 6 4と、 2つの電極 6 4にそれぞれ電気的に 接続されており一方の電極 6 4から他方の電極 6 4にかけて電流を流すための電 源を有する通電装置 6 8とを備える。
【0 0 9 3】 このアル力リ金属発生剤 1 Bは、 図 1に示されたアル力リ金属発 生剤 1と同様の組成を有している。 また、 このケース 2 0 Bは、 アルカリ金属発 生剤 1を収容する内部スペースが設けられた金属製パイプ 6 2と、 金属製パイプ 6 2の両端開口を塞ぐ 2つの金属製の蓋部材 6 3とを備える。 そして、 2つの電 極 6 4は 2つの金属製の蓋部材 6 3にそれぞれ 1つずつ接続されている。 また、 通電装置 6 8は、 2つの電極 6 4のそれぞれと導線 6 6を介して電気的に接続さ れている。
【0 0 9 4】 さらに、 金属製パイプ 6 2の側面には、 内部スペースとケース 2 0 Bの外部とを連通させる放出口 2 3が設けられている。この放出口 2 3により、 アル力リ金属発生剤 1 Aから発生するアル力リ金属の蒸気を光電面又は二次電子 放出面の形成部位に向けて放出することができる。 なお、 この放出口 2 3の大き さは、 内部スペースからアルカリ金属発生剤 1 Bが漏れでない程度に調節されて いる。 また、 この放出口 2 3は上述された程度の大きさを有していれば形状は特 に限定されず、 例えば、 スリ ッ ト状であってもよい。
【0 0 9 5】 このアル力リ金属発生器 6の場合、 通電装置 6 8により抵抗加熱 方式に基づいてアル力リ金属発生剤 1 Bを加熱することができる。 例えば数ァン ペアの電流を金属製ケース 2 0 Bに流すと、 金属製ケース 2 0 B中に発生するジ ユール熱によりアルカリ金属発生剤 1 Bが加熱されて、 アルカリ金属の蒸気を発 生させることができる。
【0 0 9 6】 上記アル力リ金属発生器 6の製造方法では、 まず、 上述のアル力 リ金属発生剤 1と同様の方法でアルカリ金属発生剤 1 Bが製造され、 アルカリ金 属発生剤 1 Bが金属製パイプ 6 2内に充填される。 続いて、 金属製パイプ 6 2の 両端は、 開口全体を覆うように蓋部材 6 3が溶接されることによりそれぞれ塞が れる。 さらに、 2つの蓋部材 6 3に電極 6 4をそれぞれ接続し、 各電極 6 4を通 電装置 6 8に接続し、 アル力リ金属発生器 6を得る。 (光電面、 二次電子放出面、 及び電子管)
【0 0 9 7】 次に、 この発明に係る光電面、 二次電子放出面及び電子管の好適 な実施例について説明する。
【0 0 9 8】 まず、 この発明に係る電子管の第 1実施例について説明する。 図 8は、 この発明に係る電子管の第 1実施例としての光電子増倍管の構成を示す図 である。 図 8に示された光電子増倍管 7は、 透過型光電面を有するヘッドオン型 光電子増倍管 (より詳しくは図 8に示された光電子増倍管 7の場合、 電子増倍部 はラインフォーカス型) の構成を有する。 この光電子増倍管 7は、 主として、 光 電面 C 7と、 この光電面 C 7から放出される光電子 e 1を入射させるとともに、 該光電子 e 1の衝突を利用して二次電子 e 2を放出する二次電子放出面 F D 7を 有するダイノード D 7 1〜D 7 9を有する電子増倍部 D 7と、 光電面 C 7と電子 増倍部 D 7 2との間に配置されており光電面 C 7から放出される光電子 e 1を集 束して電子增倍部 D 7に導くための集束電極 E 7と、 増倍された二次電子 e 2を 収集し外部に電流として取り出すための陽極 A 7と、 これらの各電極を収容する ための筒状 (例えば、 円筒状) のガラス側管 7 2 (例えば、 コバールガラス、 U Vガラスなど、 また、 コバール金属、ステンレス等の金属製材料を用いても良い) とを備え、 各電極には電位調節用の電圧印加部 (ブリーダ回路) が接続されてい る。
【0 0 9 9】 光電面 C 7は、 主として、 基板 C 7 1 (面板) と、 基板 C 7 1上 に隣接して形成されており、 入射光 L 1に対応して光電子 e 1を放出する膜状の 光電子放出材料(例えば金属間化合物、化合物半導体)からなる層 C 7 2 (以下、 光電子放出材料層 C 7 2という) とから構成されている。
【0 1 0 0】 この光電面 C 7は、 側管 7 2の一方の開口部 7 2 aに固定されて いる。 すなわち、 側管 7 2の一方の開口部 7 2 aに利用すべき光を透過すること のできる基板 C 7 1 (例えば、 ガラス製基板) がその受光面 F C 7 1を外側に向 けて融着固定される。 また、 この基板 C 7 1の受光面 F C 7 1と反対側の内表面 (裏面) には、 光電子放出材料層 C 72が形成されている。
【0101】 そして、 光電子放出材料層 C 72には、 上述のアル力リ金属発生 剤及びこれを搭載したアルカリ金属発生器のうちのいずれかから発生するアル力 リ金属が含まれている。 ここで、 光電子放出材料層 C 72としてはアルカリ金属 を構成材料とする金属間化合物(化合物半導体)、 あるいは、アルカリ金属で活性 化処理された化合物半導体がある。 例えば、 S b_C s、 S b— Rb— C s、 S b— K一 C s、 S b— Na _K、 S b— Na— K— C s、 G a A s (C s)、 I n G a A s (C s)、 I n P/ I n G a A s P (C s)、 I n P/ I n G a A s (C s ) 等が挙げられる。 なお、 上記例示において、 例えば、 G aAs (C s) 中に おける (C s) とは、 G a A sを C sにより活性化処理することにより得られた ことを意味する。 以下、 I n PZl nGaA s P (C s) 及び I n PZ I n G a A s (C s) 中の (C s) も同義である。 また、 C s— T eや Ag—〇一 C sの ような光電子放出材料でもよい。
【0102】 この光電子放出材料層 C 72は、 ァンチモンゃ化合物半導体など のアルカリ金属と反応する光電子放出材料の構成材料を基板 C 71の裏面上に形 成され、 続いて、 アルカリ金属の蒸気を反応させることで得られる。
【0103】 また、 側管 72の他方の開口部 72 bには、 ガラス製 (例えばコ バールガラスや UVガラスなど、 また、 コバール金属、 ステンレス等の金属製材 料を用いてもよい) のステム板 78が溶接固定されている。 このように、 側管 7 2と光電面 C 7とステム板 78とによって密封容器が構成される。
【0104】 さらに、 ステム板 4の中央には排気管 73が固定されている。 こ の排気管 73は、 光電子増倍管 7の組立て作業終了後、 密封容器の内部を真空ポ ンプによつて排気して真空状態にするのに利用されるとともに、 光電子放出材料 層 C 72の形成時にアルカリ金属の蒸気を密封容器内に導入させるための導入管 としても利用される。
【0105】 電子増倍部 D 7は、 それぞれ複数の板状のダイノ一ドを有する第 1ダイノード D 7 1〜第 9ダイノード D 7 9を備える。 第 1ダイノード D 7 1〜 第 9ダイノード D .7 9のそれぞれは、 基板と、 該基板上に配置されており入射さ れた光電子 e 1を利用して二次電子 e 2を放出する二次電子放出面 F D 7を有す る膜状の二次電子放出材料からなる層とから構成されている。 なお、 以下、 二次 電子放出材料からなる層を二次電子放出材料層という。
【0 1 0 6】 そして、 第 1ダイノード D 7 1〜第 9ダイノード D 7 9のそれぞ れは、 例えば、 密封容器を貫通するように設けられたステムピン 7 5 (例えば、 コバール金属製) によって密封容器内で支持され、 各ステムピン 7 5の先端は第 1ダイノード D 7 1〜第 9ダイノード D 7 9と電気的に接続されている。 また、 密封容器には、各ステムピン 7 5を貫通させるためのピン孔が設けられ、例えば、 各ピン孔には、 ハーメチックシールとして利用されるタブレット (例えば、 コバ 一ルガラス製) が充填され、 各ステムピン 7 5は、 タブレットを介して密封容器 に固定される。 さらに、 なお、 各ステムピン 7 5には、 第 1ダイノード D 7 1〜 第 9ダイノード D 7 9用のピンとアノード A 7用のピンとがある。
【0 1 0 7】 この電子増倍部 D 7において、 各ダイノ一ドの二次電子放出材料 層の二次電子放出材料には、 上述のアルカリ金属発生剤及びこれを搭載したアル カリ金属発生器のうちのいずれかから発生するアルカリ金属が含まれている。 こ こで、 二次電子放出材料層中の二次電子放出材料はアルカリ金属を構成材料とす る材料、 あるいは、 アルカリ金属で活性化処理された材料であれば特に限定され ない。例えば、 アル力リ金属のいずれかと S bとの金属間化合物(化合物半導体) 等が挙げられる。
【0 1 0 8】 さらに、 電子増倍部 D 7とステム板 7 8との間には、 ステムピン 7 5に固定された陽極 A 7が配置されている。 また、 電子增倍部 D 7と光電面 C 7との間には集束電極 E 7が配置されている。 この集束電極 E 7には、 集束され た光電子 e 1流を電子増倍部 D 7に向けて放出するための開口部が形成されてい る。 【0 1 0 9】 そして、 第 1ダイノード D 7 1〜第 9ダイノード D 7 9と陽極 A 7にそれぞれ接続されている各ステムピン 7 5の他端は電圧印加部と電気的に接 続されており、 これにより、 第 1ダイノード D 7 1〜第 9ダイノード D 7 9及ぴ 陽極 A 7には所定の電圧が供給され、 光電面 C 7と集束電極 E 7とは同じ電位に 設定され、 第 1ダイノード D 7 1〜第 9ダイノード D 7 9と陽極 A 7は、 上段か ら順に高電位となるように電位設定がなされている。
【0 1 1 0】 したがって、 光電面 C 7の受光面 F C 7 1に入射した光 L 1は、 光電子 e lに変換され、 内面 F C 7 2から放出される。 そして、 光電子 e lは電 子増倍部 D 7に入射し、 第 1ダイノード D 7 1〜第 9ダイノード D 7 9で多段増 倍されて、 陽極 A 7に入射し、 陽極 A 7から電流が送出されることになる。
【0 1 1 1】 次に、 光電子増倍管 7の製造方法 (この発明に係る光電面の製造 方法、 この発明に係る二次電子放出面の製造方法、 及びこの発明に係る電子管の 製造方法の好適な一実施例) について説明する。 光電子増倍管 7を製造する方法 は、 この発明に係るアルカリ金属発生剤あるいはアルカリ金属発生器を用いて光 電面 C 7及び第 1ダイノード D 7 1〜第 9ダイノード D 7 9を形成すること以外 の条件及び手順は特に限定されるものではなく 公知の技術により製造すること ができる。
【0 1 1 2】 すなわち、 まず、 加熱により、 側管 7 2と基板 C 7 1とを一体化 させる(もしくは、側管と基板が一体に形成されたガラスバルブを用いてもよい)。 なお、 この段階では、 光電面 C 7の基板 C 7 1上には光電子放出材料層 C 7 2は 未形成のままの状態 (アルカリ活性化が行われていない状態) となっている。
【0 1 1 3】 続いて、 ステム板 7 8を貫通するリードピン 7 5上に陽極 A 7、 集束電極 E 7及び電子増倍部 D 7を組み付け、 側管 7 2の開口部 Ί 2 b側から揷 入する。 なお、 この段階では、 電子増倍部 D 7內のダイノードとなる基板上には 二次電子面は未形成のままの状態 (アルカリ活性化が行われていない状態) とな つている。 その後、 基板 C 7 1と同様にしてステム板 7 8と側管 7 2とを一体化 することで、 密封容器が得られる。
【0 1 1 4】 次に、 図 6に示されたアルカリ金属発生器 5を用いて光電子増倍 管 7の光電面 C 7及び第 1ダイノード D 7 1〜第 9ダイノード D 7 9を形成する 場合の一例について説明する。 図 9は、 図 6に示されたアルカリ金属発生器 5を 用いて光電子増倍管 7の光電面 C 7及び第 1ダイノード D 7 1〜第 9ダイノード D 7 9を形成する製造工程を説明するための図である。 なお、 図 9において、 光 電子増倍管 7の詳細な内部構成は省略されている。
【0 1 1 5】 まず、 アルカリ金属と反応する光電子放出材料層 C 7 2の構成材 料からなる層が基板 C 7 1上に予め形成されるとともに、 アルカリ金属と反応す る二次電子放出材料層の構成材料からなる層がダイノード D 7それぞれの基板上 に予め形成される。 例えば、 蒸着源 (S b等のアルカリ金属以外からなる光電子 放出材料層 C 7 2の構成材料、 あるいは、 アルカリ金属以外の二次電子放出材料 層の構成材料からなる蒸着源) が予め密封容器内に搭載される。
【0 1 1 6】 続いて、真空ポンプにより、密封容器の内部が所定の真空状態(密 封容器内部の残留ガスの全圧が、 例えば、 1 0—6〜l (T3 P a ) に保持される。 こ のような真空状態において、 蒸着源に通電するか又は高周波加熱を行うことで蒸 着源を構成する蒸着物質を蒸発させる。 その後、 密封容器を電気炉等に入れて所 定の温度に保持し、 蒸着物質を基板 C 7 1又はダイノード D 7それぞれの基板上 に蒸着させる。 なお、 予め別の蒸着装置を用いて、 蒸着物質を基板 C 7 1又はダ ィノード D 7それぞれの基板上に蒸着させておいてもよい。
【0 1 1 7】 蒸着後は、 排気管 7 3に開口部が形成されることで、 該排気管 7 3内部の蒸着物質が外部に開放される。 次に、 図 9に示されたように、 底部付近 にアンプル 5 2の先端を開放した状態のアルカリ金属発生器 5が配置された有底 のガラス管 7 6が準備され、 該ガラス管 7 6の開口部と、 排気管 7 3の開口部と が気密状態で接続される。 なお、 ガラス管 7 6の側面には別の開口部が設けられ ており、 該ガラス管 7 6は真空ポンプに接続されたガラス管 7 7の開口部と気密 に接続される。 その後、 真空ポンプにより、 排気管 7 3を介して密封容器内部を 所定の真空状態 (密封容器の残留ガスの全圧が、 例えば、 1 0— 6〜1 0_3 P a ) に保持される。
【0 1 1 8】 そして、 上述の高周波加熱方式の加熱装置によりアル力リ金属発 生器 5を加熱してアル力リ金属発生器 5内のアル力リ金属発生剤 1 Aの酸化剤
(タングステン酸塩) と還元剤との酸化還元反応を進行させ、 アルカリ金属の蒸 気を発生させる。 例えば、 酸化剤として C s 2W〇4が用いられ、 還元剤として S iが用いられた場合、 以下の化学反応式で表される酸化還元反応が進行し、 C s の蒸気が発生する。
【0 1 1 9】 4 C s 2W04+ 5 S i → 5 S i 02+ 8 C s + 2W203
[ 0 1 2 0 ] このとき、 アルカリ金属イオンをカウンタ一力チオンとする酸化 剤 (タングステン酸塩) は、 アルカリ金属イオンをカウンタ一力チオンとするク 口ム酸塩よりも酸化力が弱く、 還元剤との酸化還元反応がク口ム酸塩の場合に比 ベて緩やかに進行する。 そのため、 アルカリ金属発生剤 1 A自体若しくはこれを 収容しているケース 2 O Aを破裂させることなくアルカリ金属の蒸気を安定的に 発生させることができる。
【0 1 2 1】 換言すれば、 高周波加熱方式の加熱装置により酸化反応の進行を 一度開始させた後は、 排気管 7 3を加熱することにより反応温度の調節を行うこ とが容易にできる。 そして、 ガラス製アンプル 5 2の先端部分に C s蒸気を誘導 され、 該先端部分に C sの蒸気あるいは C sの液体が集められる。 そして、 密封 容器の部分が電気炉内に入れられ、 該電気炉内は所定の温度 (例えば 2 0 0°C) に保たれる。 その際、 アルカリ金属発生器 5を密封容器の側に移動させ、 アル力 リ金属発生器 5のアンプル 5 2の先端部分を密封容器内に揷入する。
【0 1 2 2】 これにより、 アンプノレ 5 2の先端部分を電気炉内で所定の温度に 保持させ、 該先端部分から C s等のアルカリ金属の蒸気を安定的に放出させるこ とができる。 すなわち、 従来のクロム酸塩を用いて製造した光電面及びダイノー ドに匹敵する性能を有する光電面 C 7及び第 1ダイノード D 7 1〜第 9ダイノー ド D 7 9を容易にかつ再現性よく製造できる。
【0 1 2 3】 このようにしてガラス製アンプル 5 2の先端部分から密封容器内 に安定的に放出された C s等のアルカリ金属の蒸気は、 光電面 C 7のアルカリ金 属と反応して光電子放出材料層 C 7 2を形成するための原型となる層あるいは第 1ダイノード D 7 1〜第 9ダイノード D 7 9のアルカリ金属と反応して二次電子 放出材料層を形成するための原型となる層と反応し、 光電子放出材料或いは二次 電子放出材料が生成される。 そして、 十分な分光感度特性を有する光電子放出材 料層 C 7 2あるいは十分な増倍効率を有する二次電子放出面 F D 7が形成される。 【0 1 2 4】 次に、 アルカリ金属発生器 5の先端が密封容器から取り出され、 ガラス管 7 6の底部の側に移された後、 ガラス管 7 6が排気管 7 3から切り離さ れる。
【0 1 2 5】 以上の作業が使用するアルカリ金属発生剤ごとに繰り返されるこ とにより、 基板 C 7 1上に所定の化学組成を有する光電子放出材料層 C 7 2が形 成され、 ダイノ一ドの基板上に所定の化学組成を有する二次電子放出材料層が形 成される。 最後のアルカリ金属発生器 5を使用した後には、 光電子增倍管 7内を 所定の温度に保持した状態で真空ポンプを作動させることにより、 光電子増倍管 7内の残留ガスが十分に除去されることにより、 光電子増倍管 7内の光電子放出 材料又は二次電子放出材料以外の部位に物理吸着した、 アルカリ金属あるいはそ の他の蒸着源から発生したガスが除去される。 その後、 密封容器における排気管 7 3の開口部が封止されることにより、 -卜分な光電変換特性を有する光電子増倍 管 7が得られる。
【0 1 2 6】 次に、 この発明に係る電子管の第 2実施例について説明する。 図 1 0は、 この発明に係る電子管の第 2実施例としての光電子増倍管の構成を示す 図である。 なお、 この図 1 0には、 図 8に示された光電子増倍管 7の別の構成が 示されている。 【0 1 2 7】 図 1 0に示された光電子増倍管 7 Aは、主として、電極部 7 1と、 電極部 7 1に固定されたアルカリ金属発生器 2と、 電極部 7 1とアルカリ金属発 生器 2を収容する外形が略円柱状のガラス製容器と、 電極部 7 1の各電極にそれ ぞれ電気的に接続されたステムピン 7 5 Aとを備える。 なお、 ガラス製容器は、 ガラス製側間 7 2 Aとガラス製ステム板 7 8 Aから構成されている。 上記電極部 7 1は、 図 8の光電子増倍管 7と同様に、 光電面、 集束電極、 複数のダイノード から構成された電子増倍部、 及び陽極からなる構成されている。 また、 各ステム ピン 7 5 Aは、 図 8の光電子増倍管 7と同様に、 電圧印加部に接続されている。 【0 1 2 8】 アルカリ金属発生器 2は、 図 2及び図 3に示されたアルカリ金属 発生器と同様の構成を有する。 また、 アルカリ金属発生器 2は、 電極部 7 1の光 電面及び電子增倍部におけるダイノードの形成に使用される。 このアルカリ金属 発生器 2は、 金属製ワイヤにより電極部 7 1に固定されている。 なお、 図 1 0中 のアルカリ金属発生器 2は 1つであるが、 形成すべき光電面の化学組成、 あるい は、 ダイノードの二次電子放出面の化学組成に応じて、 異なる化学組成を有する アル力リ金属発生剤 1が搭載された複数個のアル力リ金属発生器 2が電極部 7 1 に固定されてもよい。
【0 1 2 9】 この光電子增倍管 7 Aは、 光電面が金属製基板上に形成された反 射型光電面を有するサイドオン型の光電子増倍管である。 そのため、 ガラス容器 を構成する円柱状の側管 7 2 Aが利用すべき光に対する光透過性を有しており、 電極部 7 1内に配置された光電面の基板は例えば N iなどの金属製の基板からな る。 そして、 この光電子増倍管 7 Aは上記電極部 7 1及び該電極部 7 1に固定さ れたアルカリ金属発生器 2以外の構成は、 例えば、 公知のサイドオン型の光電子 増倍管と同様の構成を有する。
【0 1 3 0】 上記光電子增倍管 7 Aの製造方法では、 まず、 一方の底面が塞が つた筒状のガラス製側管 7 2 Aの開口部に、 リードピン 7 5 Aと当該リードピン 7 5 Aに固定された電極部 7 1を有するガラス製ステム板 7 8 Aが固定される。 その際、 アルカリ金属発生器 2も電極部 7 1に取り付けられる。 また、 ステム板 7 8 Aに接続された排気管 7 3 Aが一旦開放され、 その開口部が真空ポンプの吸 入口に接続される。
【0 1 3 1】 このとき、 光電面形成基板やダイノードの二次電子放出面にアル カリ金属と反応して金属間化合物を形成するための層 (例えば、 アンチモン層) が予め形成されている。
【0 1 3 2】 そして、 上記いずれの場合においても、 真空ポンプにより、 ガラ ス容器内が所定の真空状態に保持される。 この真空状態で、 ガラス容器の外部か ら上述の高周波加熱方式による加熱装置がアルカリ金属発生器 2あるいは蒸着源 を加熱する。 これにより、 光電面の光電子放出材料層及びダイノードの二次電子 放出材料層が形成される。
【0 1 3 3】 この光電子増倍管 7 A場合も、 高周波加熱方式の加熱装置により アルカリ金属発生器 2を加熱しても、 アルカリ金属イオンをカウンタ一力チオン とする酸化剤 (タングステン酸塩) は、 還元剤との酸化還元反応がクロム酸塩の 場合に比べて緩やかに進行する。 そのため、 アルカリ金属発生剤 1自体若しくは これを収容しているケース 2 0を破裂させることなくアルカリ金属の蒸気を安定 的に発生させることができる。 また、 ケース 2 0をガラス容器内に残しても美観 が損なわれない。
【0 1 3 4】 高周波加熱方式の加熱装置により酸化反応の進行を一度開始させ た後、 ガラス容器は所定の温度に保った電気炉内に入れられ、 温度管理されるこ とにより、 アルカリ金属の蒸気を安定的に光電面の形成部位あるいは二次電子放 出面の形成部位に反応させることができる。 アルカリ金属の蒸気は、 光電面のァ ルカリ金属と反応して光電子放出材料層を形成するための原型となる層あるいは ダイノードのアルカリ金属と反応して二次電子放出材料層を形成するための原型 となる層と反応し、 光電子放出材料あるいは二次電子放出材料が生成される。 そ して、 十分な分光感度特性を有する光電面あるいは十分な增倍効率を有する二次 電子放出面が形成される。
【0 1 3 5】 光電面あるいは二次電子放出面の形成後には、 光電子增倍管 7 A 内を所定の温度に保持した状態で真空ポンプが作動することで、 十分に光電子増 倍管 7 A内の残留ガスが除去される。 これにより、 光電子増倍管 7內の光電子放 出材料又は二次電子放出面以外の部位に物理吸着した、 アルカリ金属あるいはそ の他の蒸着源から発生したガスが除去される。 その後、 ガラス容器の排気管 7 3 Aの開口部が封止されることにより、 十分な光電変換特性を有する光電子增倍管 7 Aが得られる。
【0 1 3 6】 この光電子増倍管 7 Aを形成する際に、 アルカリ金属発生器 2の かわりに図 4に示されたアルカリ金属発生器 3や図 6に示されたアルカリ金属発 生器 5が使用されてもよい。 この場合も、 上述の光電子增倍管 7と同様の手順に より当該光電子増倍管 7 Aが製造される。
【0 1 3 7】 以上、 この発明に係る電子管として、 光電子増倍管を有する種々 の電子管について説明したが、 この発明係る電芋管は、 光電子増倍管の構成を有 する場合、 光電面の光電子放出材料層及びダイノ一ドの二次電子放出材料層の少 なくとも一方にこの発明に係るアルカリ金属発生剤又はこれを搭載したアル力リ 金属発生器から発生するアルカリ金属の蒸気を用いて形成されていればよい。 例 えば、 上記実施例 (光電子増倍管 7及び光電子増倍管 7 A) のように、 光電面及 びダイノードがともにこの発明に係るアルカリ金属発生剤又はこれを搭載したァ ルカリ金属発生器から発生するアルカリ金属の蒸気を用いて形成されていてもよ い。 また、 光電面の光電子放出材料層及びダイノ一ドの二次電子放出材料層のう ちのいずれか一方のみがこの発明に係るアルカリ金属発生剤又はこれを搭載した アルカリ金属発生器から発生するアルカリ金属の蒸気を用いて形成されていても よい。 ただし、 製造効率の観点からは前者の方が好ましい。
【0 1 3 8】 また、 この発明に係る電子管において、 上記実施例 (光電子増倍 管 7及び光電子增倍管 7 A) のように、 ダイノードを備える構成を有する場合、 そのダイノードの形状は特に限定されるものではない。 例えば、 上述の実施例で は、 ダイノード D 7としてラインフォーカス型ダイノードが搭載された場合につ いて説明されているが、 ボックス型、 ベネシアンブラインド型、 メッシュ型、 メ タルチャンネルダイノード型等のダイノードを備えていてもよい。
【0 1 3 9】 次に、 この発明に係る電子管の第 3実施例について説明する。 図 1 1は、 この発明に係る電子管の第 3実施例としての光電管の構成を示す図であ る。
【0 1 4 0】 図 1 1に示された光電管 8は、 図 8に示された光電子増倍管 7を 構成する集束電極 E 7、 電子增倍部 D 7を有していない点以外は、 該光電子増倍 管 7と同様の構成を有する。 この光電管 8の光電面 C 7も、 上述の光電子増倍管 7及び 7 Aの光電面 C 7と同様に、 容易に製造することができる。 そして、 得ら れた光電管 8に関して十分な光電変換特性が得られる。 なお、 この電子管 8にお けるガラス容器は、 ガラス製側管 7 2、 光電面 C 7、 及びガラス製ステム板 7 8 により構成されている。
【0 1 4 1】 次に、 この発明に係る電子管の第 4実施例について説明する。 図 1 2は、 この発明に係る電子管の第 4実施例としてのイメージ管 (イメージイン テンシファイア) の構成を示す図である。
【0 1 4 2】 図 1 2に示されたインテンシファイア 9は、 光電面 C 7と、 この 光電面 C 7から放出される光電子 e 1を增倍するマイクロチャンネルプレート M C P、 マイクロチャンネルプレート M C Pから放出される電子 e 2を光に変換す る蛍光面 9 0を備える。 また、 排気管は側管 7 2に設けられている。 なお、 M C Pに対しては、 アルカリ金属発生剤によるアルカリ活性は行われない。 また、 M C Pを有しない構成であってもよい。 また、 上記イメージ管は、 X線像を可視像 に変換する X線ィメ一ジ管を含む。
【0 1 4 3】 図 1 2に示されたインテンシファイア 9の場合、 光電面 C 7は、 光電子放出材料層 C 7 2 (例えば、 G a A s— C s O等の組成を有する光電面) において光学的な二次元情報を含む入射光 L 1が光電変換され、 該入射光 L 1に 対応する光電子 e 1が内面 F C 7 2から放出される。 そして、 マイクロチャンネ ルプレート M C Pは、 電圧印加部 7 4により光電面 C 7に対して高電位に保持さ れており、 光電子 e 1が入射されると、 該光電子 e 1の衝突を利用して二次電子 e 2を放出する。 マイクロチャンネルプレート M C Pの光電子 e 1の入射面 F 9
1と二次電子出射面 F 9 2との間には、 所定の電圧印加部により例えば約 1 0 0 0 Vの電圧がかかっており、 数千〜数万倍の電子倍増率が得られる。
【0 1 4 4】 蛍光面 9 0は、 透明基板 9 4と、 該透明基板 9 4上に形成された 蛍光体層 9 2と、 該蛍光体層 9 2の表面上に形成された電極 7 5とから構成され ている。この電極 7 5は、増倍された二次電子 e 2を加速するための電極であり、 電圧を印加するために所定の電位に調節されている。 すなわち、 この電極 7 5も マイクロチャンネルプレート M C Pの二次電子出射面 F 9 2電圧印加部 7 4に対 して高電位に保持されている。
【0 1 4 5】 さらに、 蛍光体層 9 2を構成する構成材料及び基板 9 4を構成す る構成材料は特に限定されず、 公知の材料が使用可能である。 例えば、 基板 9 4 として複数の光ファイバを束ねて形成された光ファイバプレートを使用し、 光フ アイパプレートと蛍光体層との間に金属薄膜を配置した構成であってもよい。
【0 1 4 6】 このイメージインテンシファイア 9の光電面 C 7も、 上述の光電 子増倍管 7及び 7 Aの光電面 C 7と同様に、 容易に製造可能である。 そして、 得 られたイメージインテンシファイア 9に関して十分な光電変換特性が得られる。
【0 1 4 7】 次に、 この発明に係る電子管の第 5実施例について説明する。 図 1 3は、 この発明に係る電子管の第 5実施例としてのストリーク管の構成を示す 図である。
【0 1 4 8】 図 1 3に示されたストリーク管 1 0は、 図 8に示された光電子増 倍管 7と同様に、 側管 7 2の一方の開口部 7 2 aの側に光電面 C 7が配置されて いる。 外部から入射される被測定光 L 1は、 この光電面 C 7の光電子放出材料層 C 72において光電子に変換される。
【0149】 また、 側管 72内において光電面 C 7の隣には、 内面 FC 72か ら放出される光電子を加速させる平板状の加速電極 1 1が配置されている。 この 加速電極 1 1は、 その電極面の法線と内面 F C 72の法線とが互いに略平行とな るように配置されている。 加速電極 1 1の隣には、 加速電極 1 1により加速され た一次電子を集束するため集束電極 1 2が配置されている。 集束電極 1 2は、 一 対の平板状の電極から構成され、 それぞれの電極面は互いに平行でありかつ内面 FC 72対して略垂直となるように配置されている。 また、 集束電極 1 2の隣に は、 集束電極 1 2により集束された一次電子が通過可能な連通孔 H 1 0が形成さ れており、 電子を電気的に引き寄せて連通孔 H 10内を通過させる円板状の陽極 A 10が配置されている。
【0 1 50】 さらに、 陽極 A 10の隣には、 陽極 A 10の開口 H 10を通過す る電子を高速で掃引するための偏向電極 14が配置されている。 この偏向電極 1 4は、 互いに対向配置された 1対の平板状の電極から構成されている。 この 1対 の電極における電極面の各法線は互いに平行であり、 かつ、 各法線は内面 FC 7 2の法線に対して垂直である。 そして、 1対の平板状の電極間には所定の偏向電 圧が印加されており、 これにより、 開口 H 10内を通過して陽極 A 10から放出 される一次電子は、 所定の方向に掃引される。
【0 1 5 1】 また、 偏向電極 14の隣には、 偏向電極 14により掃引された電 子を増倍するマイクロチャンネルプレート MC Pが配置されている。 なお、 当該 ストリーク管 10は、 このマイク口チャンネルプレート MCPを備えていない構 成であってよい。
[0 1 52] マイクロチャンネルプレート MC Pの隣には、 マイクロチャンネ ルプレート MCPから放出される電子を光に変換する蛍光面 90が配置されてい る。 この蛍光面 90は、 図 1 2示された蛍光面 90と同様の構成を有している。 そして、 面板 C 71と、 透明基板 94と、 側管 72とにより密封容器が構成され ている。
【0 1 5 3】 上述のストリーク管 1 0において、 被測定光 L 1をスリツト板を 介して光電面 C 7に入射させると、 この被測定光は電子像に変換され、 加速電極 1 1で加速されるとともに、 陽極 A 1 0に引き寄せられる。 そして、 この電子像 は、 陽極 A 1 0を通過して 2枚の偏向電極 1 4の間に入り込み、 この偏向電極 1 4の電極面の法線方向に平行な方向に高速で掃引される。 電子を高速で掃引する のは、 偏向電極 1 4を通過する電子の数が、 時間に対して高速で変化する被測定 光の光強度の時間変化に対応して変化するからである。
【0 1 5 4】 このように高速で掃引された電子は、 マイクロチャンネルプレー ト M C Pで増倍され、 該マイクロチャンネルプレート M C Pで増倍された電子は 蛍光面 9 0で光学像 (ス トリーク像とも呼ばれている) に変換される。 このよう にして、 被測定光の強度の時間的変化が蛍光面 9 0において強度の空間的変化に 変換される。 ストリーク管の動作時において、 電子はその通過時刻と同期して掃 引されているため、 蛍光体電極 9 0上に投影された光強度の空間的変化、 すなわ ちス トリーク像を角科斤することにより、 その時間的変化を知ることができる。
【0 1 5 5】 このス トリーク管 1 0の光電面も、 上述の光電子増倍管 7及び 7 Aと同様に容易に製造され得る。 そして、 得られたス トリーク管 1 0に関して十 分な光電変換特性が得られる。
(実験)
【0 1 5 6】 以下、 この発明に係るアルカリ金属発生剤のサンプル及びその比 較例を挙げて本発明のについてさらに詳しく説明する。 なお、 この発明は、 これ らの実施例サンプルに何ら限定されるものではない。
(サンプル)
【0 1 5 7】 発明者らは、 サンプルとして、 以下に示されたアルカリ金属発生 剤を用いて形成された光電面 (アンチモンセシウム光電面: C s— S b、 基板材 料は N i ) と、 以下に示されたアルカリ金属発生剤を用いて形成された二次電子 放出面 (C s— S b ) をそれぞれ搭載した以外は、 市販のサイドオン型の光電子 増倍管と同様の構成を有する光電子增倍管 (図 1 0と同様の構成を有する) を、 複数個作製した。 なお、 複数種類のアル力リ金属を含むバイアル力リ光電面やマ ルチアルカリ光電面を製造する場合、 複数種類のタンダステン酸塩と還元剤とを 1つのアルカリ金属発生器に収納してもよい。 また、 一種類のタングステン酸塩 と還元剤を収納したアルカリ金属発生器をアルカリ金属の種類ごとに複数個用意 してもよい。
【0 1 5 8】 光電面を形成するためのアルカリ金属発生剤は、 酸化剤としてタ ングステン酸塩 ( C s 2W04) と、 還元剤として S iとを含む。 また、 当該アル 力リ金属発生剤の形状は、 図 1と同様にべレッ ト状であり、 酸化剤と還元剤との 質量比は、 1 : 2 (==酸化剤:還元剤) である。
【0 1 5 9】 また、 このサンプルは、 二次電子放出面も光電面を形成するため のアルカリ金属発生剤が利用されている。
【0 1 6 0】 アル力リ金属発生剤は、上記のタングステン酸塩の混合物に対し、 上述の計量工程、 粉砕■混合工程、 及び、 成形工程を順次行うことにより得られ た。
【0 1 6 1】 そして、 これらアルカリ金属発生剤のサンプルは、 それぞれ図 2 及び図 3に示された金属製ケース 2 0に収容され、 さらに、 この金属製ケース 2 0が、 図 4に示されたようにガラス製アンプル 3 2内に収容されることで、 アル カリ金属発生器 3と同様の構成を有するアルカリ金属発生器が作製される。
【0 1 6 2】 アルカリ金属発生器を用いた以外は、 図 9を用いて説明された光 電子增倍管 7の製造方法と同様の方法により、 光電面及び二次電子放出面が作製 され、 光電子増倍管が得られた。
(比較例)
【0 1 6 3】 一方、 発明者らは、 比較例として、 市販のサイドオン型の光電子 増倍管と同様の構成を有する光電子增倍管を、上記サンプルと同様の方法により、 複数個作製した。 なお、 この比較例に係る光電子増倍管に搭載された光電面は、 酸化剤としてクロム酸塩 (C s 2C r 04) と、 還元剤として S iとを含む従来の アルカリ金属発生剤を用いて形成された光電面 (アンチモンセシウム光電面: C s— S b ) である。
(特性評価試験)
【0164】 上述のように製造されたサンプル及び比較例に係る光電子増倍管 について、 陰極出力 (S k : μ A/1 m)N 陽極出力 (S p : I A/ 1 m), 喑電 流( I d b: n A:)、及び After Pulse (%)の諸特性の他、放射感度(mA/W)、 L i f e (%) (S pの経時変化) についても測定した。 図 14〜図 1 7は、 その 測定結果を示す表及びグラフである。 なお、上記の諸特性の測定は、 "光電子増倍 管一その基礎と応用一", (浜松ホトニタス株式会社 編集委員会 著) に記載の 方法 (例えば、 p. 34〜39 : "光電面の基本特性"、 p. 60〜73 : "光電子増 倍管の諸特性" 等) に基づき行われた。
'【0165】 なお、 図 14は、 この発明に係るアル力リ金属発生剤を使用して 製造された光電子増倍管のサンプルと、 従来のアルカリ金属発生剤を使用して製 造された光電子増倍管の比較例における諸特性 (平均値) を示す表である。 図 1 5は、 この発明に係るアル力リ金属発生剤を使用して製造された光電子增倍管の サンプルと、 従来のアルカリ金属発生剤を使用して製造された光電子増倍管の比 較例における L i f e特性 (%) を示す表である。 図 1 6は、 この発明に係るァ ルカリ金属発生剤を使用して製造された光電子増倍管のサンプルと、 従来のアル カリ金属発生剤を使用して製造された光電子増倍管の比較例における放射感度特 性を示すグラフである。 この図 1 6において、 グラフ G 16 10は、 当該サンプ ルに係る光電子増倍管の測定結果を示し、 グラフ G 1620は、 比較例に係る光 電子増倍管の測定結果を示す。 図 17は、 この発明に係るアルカリ金属発生剤を 使用して製造された光電子増倍管のサンプルの L i f e特性を基準とした、 従来 のアルカリ金属発生剤を使用して製造された光電子増倍管の比較例の L i f e特 性の相対出力示すグラフである。 この図 1 7において、 グラフ P 1は、 当該サン プルに係る光電子増倍管の L i f e特性を示し、 グラフ P 2〜P4は、 グラフ P 1を基準とした、 比較例に係る光電子増倍管の L i f e特性の相対出力を示す。 【0166】 特に、 図 1 7に示された比較例に係る光電子増倍管 (市販の光電 子増倍管) の L i f e特性の相対出力 P 2〜P 4については、 複数 (35個) の サンプ こついてデータを測定することにより得られた。 すなわち、 グラフ P 2 は、 全データの平均値を示し、 グラフ P 3は、 全データの平均値 +σ (σ は標準 偏差) を示し、 そして、 グラフ Ρ 4は、 全データの平均値 _σ (σ は標準偏差) を示す。
【0167】 図 16に示された測定結果から明らかなように、 この発明に係る 光電子増倍管として製造されたサンプルは、 比較例に係る従来の光電子増倍管と 同等の放射感度を有していることが確認された。
【0168】 また、 図 1 5に示された表からも分かるように、 当該サンプルに 係る光電子增倍管は、 比較例に係る従来の光電子增倍管と同等の L i f e特性を 有していることが確認された。 なお、 この L i f e特性評価試験は、 各光電子増 倍管の動作電流 (出力電流) を Ι Ο Ο μΑとし、 光電面と陽極との間の印加電圧 を 1000 Vとして行われた。 また、 図 1 5に示された表の L i ί e特性 (相対 出力) 値は、 測定開始から 1時間経過後の陽極出力 (S p) の値を 100%とし た相対値を示す。
【016 9】 さらに、 図 1 7に示されたように、 この発明に係る光電子増倍管 のサンプル (図 1 7中の当該サンプルの L i f e特性を示すグラフ P 1は、 5個 のサンプルの平均値) は、 比較例に係る光電子増倍管と略同等の L i f e特性を 示す相対出力を得ることができ、 優れた特性の再現性を有していることが確認さ れた。
【01 70】 また、 図 14の表に示されたように、 当該サンプノレに係る光電子 增倍管 (この発明に係る光電子増倍管) は、 比較例に係る従来の光電子増倍管と 同等の陰極出力、 陽極出力、 暗電流及び After Pulse特性を有していることが確 認された。 なお、 After Pulse特性の測定は、 LED (半導体レーザ) を使用し て当該サンプル及び比較例それぞれの光電子増倍管からパルス信号を出力させ、 信号の出力後 0. 5〜10 /i secの間に発生する After Pulseに基づき算出され る。
【0171】 次に、 発明者らは、 この発明に係るアルカリ金属発生剤を使用し て製造された光電子増倍管について、 タングステン酸塩に対する還元剤 (S i ) の物質量比 (=還元剤/ W酸塩) の異なる複数サンプルを用意し、 物質量比ごと の光電面及び陽極それぞれの相対感度を測定した。 図 1 8は、 この発明に係るァ ルカリ金属発生剤を使用して製造された光電子増倍管における光電面の相対感度 を示すグラフである。 図 1 9は、 この発明に係るアルカリ金属発生剤を使用して 製造された光電子增倍管における陽極の相対感度を示すグラフである。 なお、 図 18及び図 1 9には、 物質量比ごとに測定最大値 (MAX.)、 測定平均値 (AV E.)、 及び測定最小値 (MI N.) が示されている。 また、 アルカリ金属発生剤と して用意されたサンプルのパレット重量は、 それぞれ物質量比 1. 2のサンプル 力 S 57mg、 物質量比 1. 6のサンプルが 59 m g、 物質量比 1. 9のサンプノレ が 6 lmg、 物質量比 4のサンプルが 7 lmg、 物質量比 6. 1のサンプルが 8 Omg、 物質量比 1 2. 1のサンプルが 109mg、 物質量比 20. 2のサンプ ルが 129m g、 物質量比 28. 3のサンプルが 148 m g、 物質量比 32. 3 のサンプルが 205mg、 物質量比 50. 1のサンプルが 290 m g、 物質量比
69. 5のサンプルが 382m gである。
【0172】 図 18から分かるように、 光電子増倍管の陰極 (光電面) につい て十分な相対感度(S k) を得るためには、物質量比(=還元剤 ZW酸塩) は 1. 9以上であるのが好ましい。 さらに、 光電子増倍管のより高い安定性を確保する ためには(製造される光電子増倍管間における感度バラツキを小さくする)、該物 質量比は 4. 0以上であるのがより好ましい。 したがって、 タングステン酸塩に 対する還元剤の物質量比の下限は、 1 . 9以上、 好ましくは 4 . 0以上である。 なお、 理論的には上記化学反応式から分かるように、 タングステン酸塩に対する 還元剤の物質量比は 1 . 2である。 以上のように、 光電面のような電子放出面は 高度な製造技術を有するので、 この物質量比が重要である。 一方、 この物質量比 が 5 0 . 1の場合と 6 9 . 5の場合では、 得られる光電子増倍管の感度及び安定 性に有意な差は認められない。 しかしながら、 還元剤が多くなりすぎると、 最適 な酸化還元反応を得るための加熱時間をコント口ールすることが難しくなる (所 望の感度及び安定性を有する光電面を備えた光電子増倍管の製造が難しくなる)。 特に、 加熱方法が高周波加熱方法の場合、 安定した還元が実現され得る。 還元剤 が多くなり過ぎると、 複数回の加熱が必要になり、 製造技術の確立が難しく、 か つ量産時の安定性が低下してしまう。 また、 光電子増倍管の量産時には該光電子 增倍管の安定性が低下する可能性もある。 そこで、 安定性に影響を与えるタンダ ステン酸塩に対する還元剤の物質量比の上限は、 5 0 . 1以下であるのが好まし レ、。
【0 1 7 3】 なお、 図 1 9から分かるように、 光電子增倍管の陽極についても 十分な相対感度 (S p ) を得るためには、 物質量比 還元剤 ZW酸塩) は 1 .
9以上であるのが好ましい。 タングステン酸塩に対する還元剤の物質量比の上限 は、 上述の光電面の場合と同様の理由から、 5 0 . 1以下であるのが好ましい。 【0 1 7 4】 以上の本発明の説明から、 本発明を様々に変形しうることは明ら かである。 そのような変形は、 本発明の思想および範囲から逸脱するものとは認 めることはできず、 すべての当業者にとって自明である改良は、 以下の請求の範 囲に含まれるものである。
産業上の利用可能性
【0 1 7 5】 以上説明したように、 この発明によれば、 アルカリ金属イオンを カウンタ一力チオンとする酸化剤 (タングステン酸塩) と還元剤との酸化還元反 応は、 反応温度のみのコントロールにより容易に反応速度を制御できる。 そのた め、 所定の温度においてアル力リ金属を安定的に発生させることのできる光電面 又は二次電子放出面形成用のアルカリ金属発生剤が提供可能になる。 また、 この アルカリ金属発生剤を備えることによりアルカリ金属の発生速度を容易にコント ロールできるアルカリ金属発生器も提供可能になる。
【0 1 7 6】 また、 この究明に係るアルカリ金属発生剤又はアルカリ金属発生 器を用いることにより、 十分な分光感度特性を有する光電面、 十分な増倍効率を 有する二次電子放出面、 及び、 十分な光学的特性と電気的特性とを併有する電子 管が得られる。
【0 1 7 7】 さらに、 この発明に係るアルカリ金属発生剤又はアルカリ金属発 生器を用いることにより、 形成が容易でありかつ得られる性能の再現性に優れた 光電面の製造方法、 二次電子放出面の製造方法、 及び、 電子管の製造方法が提供 可能になる。

Claims

言青求の範囲
1 . 入射光に対応して光電子を放出する光電面、 又は、 入射電子に対応して 二次電子を放出する二次電子放出面の形成に使用されるアルカリ金属の供給源と なるアルカリ金属発生剤であって、
アルカリ金属イオンをカウンタ一力チオンとする少なくとも一種のタンダステ ン酸塩からなる酸化 と、
所定温度において前記酸化剤との酸化還元反応を開始し、 前記アルカリ金属ィ オンを還元する還元剤とを少なくとも含み、
前記タングステン酸塩に対する前記還元剤の物質量比は、 1 . 9以上かつ 5 0 . 1以下であるアルカリ金属発生剤。
2 . 入射光に対応して光電子を放出する光電面、 又は、 入射電子に対応して 二次電子を放出する二次電子放出面の形成に使用されるアルカリ金属の供給源と なるアルカリ金属発生剤であって、
アルカリ金属イオンをカウンタ一力チオンとする少なくとも一種のタンダステ ン酸塩からなる酸化剤と、
所定温度において前記酸化剤との酸化還元反応を開始し、 前記アル力リ金属ィ オンを還元する還元剤とを少なくとも含み、
前記タングステン酸塩に対する前記還元剤の物質量比は、 4 . 0以上かつ 5 0 . 1以下であるアルカリ金属発生剤。
3 . 入射光に対応して光電子を放出する光電面、 又は、 入射電子に対応して 二次電子を放出する二次電子放出面の形成に使用されるアル力リ金属の供給源と なるアルカリ金属発生剤であって、
アルカリ金属イオンをカウンタ一力チオンとする少なくとも一種のタンダステ ン酸塩からなる酸化剤と、
所定温度において前記酸化剤との酸化還元反応を開始し、 前記アル力リ金属ィ オンを還元する S iからなる還元剤とを少なくとも含むアルカリ金属発生剤。
4 . 入射光に対応して光電子を放出する光電面、 又は、 入射電子に対応して 二次電子を放出する二次電子放出面の形成に使用される、 少なくとも C sを含む アル力リ金属の供給源となるアル力リ金属発生剤であつて、
アルカリ金属イオンをカウンタ一力チオンとする少なくとも一種のタンダステ ン酸塩からなる酸化剤と、
所定温度において前記酸化剤との酸化還元反応を開始し、 前記アルカリ金属ィ オンを還元する還元剤とを少なくとも含むアル力リ金属発生剤。
5 . 請求項 4記載のアルカリ金属発生剤において、
前記タングステン酸塩は、 C sのみを Rとする力 \ あるいは、 N a、 K及び R bからなる群より選択された少なくとも一種とともに該 C sを含む金属元素を R とするとき、 化学式 R 2W04で表現される。
6 . 請求項 1、 2、 4又は 5記載のアルカリ金属発生剤において、 前記還元剤は、 S i、 Z r、 T i及び A 1からなる群より選択される少なくと も一種である。
7 . 請求項 1〜 3及び 6のいずれか一項記載のアルカリ金属発生剤において、 前記タングステン酸塩は、 N a、 K、 R b及び C sからなる群より選択された 少なくとも一種の金属元素を Rとするとき、 化学式 R 2WO 4で表現される。
8 . 請求項 1〜 7のいずれか一項記載のアル力リ金属発生剤において、 当該アルカリ金属発生剤は、 粉体状である。
9 . 請求項 1〜 7のいずれか一項記載のアルカリ金属発生剤において、 当該アルカリ金属発生剤は、 圧縮成形により所定の形状を有するペレツトに成 形されている。
1 0 . 入射光に対応して光電子を放出する光電面、 又は、 入射電子に対応し て二次電子を放出する二次電子放出面の形成に使用されるアルカリ金属を発生さ せるアルカリ金属発生器であって、
ケースと、 前記ケース内に収納され、 請求項 1〜 9のいずれか一項記載のアル力リ金属発 生剤を含む供給源と、 そして、
前記ケースに設けられ、 前記供給源が収納された前記ケースの内部空間から該 ケースの外部に向かって、 該供給源において発生する前記アルカリ金属の蒸気を 放出するための放出口を備えたアルカリ金属発生器。
1 1 . 請求項 1 0記載のアルカリ金属発生器において、
前記ケースは、 金属製である。
1 2 . 請求項 1 0又は 1 1記載のアル力リ金属発生器において、
前記ケースは、 両端に開口部を有するとともにその側面に前記放出口が設けら れた金属製の中空容器と、
前記中空容器の両端開口をそれぞれ覆う金属製の蓋部材とを備える。
1 3 . 請求項 1 0又は 1 1記載のアルカリ金属発生器において、
前記ケースは、 両端に開口部を有する金属製の中空容器であり、
前記中空容器は、 前記アルカリ金属発生剤を収容するための内部空間を確保し た状態で、 その両端開口部が密閉されており、 そして、
密閉された前記中空容器の両端の少なくとも一方に、 前記放出口が設けられて レヽる。
1 4 . 請求項 1 0又は 1 1記載のアルカリ金属発生器において、
前記アルカリ金属発生剤は、 所定の形状を有するペレツトに成形されており、 前記ケースは、 前記アルカリ金属発生剤を収納するための凹部を有する金属製 の有底容器と、 該凹部の開口を覆った状態で該有底容器に溶接された金属製の蓋 部材とにより構成され、 そして、
前記ケースの前記放出口は、 前記有底容器と前記蓋部材との間の未溶接部分に 形成されている。
1 5 . 請求項 1 0〜 1 4のいずれか一項記載のアル力リ金属発生器は、 さら 前記ケース全体を収納するガラス製アンプルを備える。
1 6 . 請求項 1 0〜 1 5のいずれか一項記載のアル力リ金属発生器は、 さら 前記アル力リ金属発生剤の酸化還元反応を開始させ、 前記アル力リ金属の蒸気 を発生させるための加熱装置を備える。
1 7 . 請求項 1 6記載のアルカリ金属発生器において、
前記加熱装置は、 高周波加熱により前記アルカリ金属発生剤を加熱するための 高周波電源を含む。
1 8 . 入射光に対応して光電子を放出する光電面であって、 請求項 1〜9の いずれか一項記載のアルカリ金属発生剤から発生したアルカリ金属を含む光電面。
1 9 . 入射光に対応して光電子を放出する光電面であって、 請求項 1 0〜1 7のいずれか一項記載のアルカリ金属発生器から発生したアルカリ金属を含む光 電面。
2 0 . 入射電子に対応して二次電子を放出する二次電子放出面であって、 請 求項 1〜 9のいずれか一項記載のアル力リ金属発生剤から発生したアル力リ金属 を含む二次電子放出面。
2 1 . 入射電子に対応して二次電子を放出する二次電子放出面であって、 請 求項 1 0〜1 7のいずれか一項記載のアルカリ金属発生器から発生したアルカリ 金属を含む二次電子放出面。
2 2 . 請求項 1 8又は 1 9に記載の光電面を備えた電子管。
2 3 . 請求項 2 2記載の電子管は、 さらに、
それぞれが、 前記光電面から放出された光電子の入射に応じて二次電子を放出 する二次電子放出面を有する 1又はそれ以上のダイノ一ドで構成された電子増倍 部と、 そして、
前記電子増倍部から出力された前記二次電子を収集し、 該収集された二次電子 を外部に電流として取り出すための陽極を備える。
2 4 . 請求項 2 2記載の電子管は、 さらに、
前記光電面から放出された前記光電子を収集し、 該収集された光電子を外部に 電流として取り出すための陽極を備える。
2 5 . 請求項 2 2記載の電子管において、
当該電子管は、 前記光電面から放出された光電子を光に変換する蛍光面を少な くとも備えたィメ一ジ管を含む。
2 6 . 請求項 2 2記載の電子管は、 さらに、
前記光電面から放出された光電子を加速させる加速電極と、
前記加速電極により加速された前記光電子を集束するため集束電極と、 前記集束電極により集束された前記光電子が通過可能な開口を有する陽極と、 互いに対向配置された 1対の電極板を有し、 前記陽極に設けられた開口を通過 した前記光電子を前記 1対の電極板の間に印加される所定の偏向電圧により所定 の方向に掃引可能な偏向電極と、 そして、
前記偏向電極において偏向された前記光電子を光に変換する蛍光面とを備えた ストリ一ク管を含む。
2 7 . それぞれが、 請求項 2 0又は 2 1記載の二次電子放出面を有する 1又 はそれ以上のダイノードで構成された電子增倍部を備えた電子管。
2 8 . 請求項 2 7記載の電子管は、 さらに、
入射光に対応して光電子を前記電子増倍部に向かって放出する光電面と、 そし て、
前記電子増倍部から放出された二次電子を収集し、 該収集された二次電子を外 部に電流として取り出すための陽極を備える。
2 9 . 入射光に対応して光電子を放出するアル力リ金属を含む光電面の製造 方法であって、
前記アル力リ金属の発生源として、 請求項 1〜 9のいずれか一項記載のアル力 リ金属発生剤を用意し、 前記アル力リ金属発生剤を加熱し、 そして、
前記アルカリ金属発生剤の加熱により発生したアルカリ金属を前記光電面の形 成領域に導く光電面の製造方法。
3 0 . 入射光に対応して光電子を放出するアルカリ金属を含む光電面の製造 方法であって、
前記アル力リ金属の発生源として、 請求項 1 0〜 1 7のいずれか一項記載のァ ルカリ金属発生器を用意し、
前記アルカリ金属発生器のケース内に収納されたアルカリ金属発生剤を加熱し、 そして、
前記アルカリ金属発生剤の加熱により発生したアルカリ金属を前記光電面の形 成領域に導く光電面の製造方法。
3 1 . 入射電子に対応して二次電子を放出する二次電子放出面の製造方法で あって、
前記アル力リ金属の発生源として、 請求項 1〜 9のいずれか一項記載のアル力 リ金属発生剤を用意し、
前記アル力リ金属発生剤を加熱し、 そして、
前記アルカリ金属発生剤の加熱により発生したアルカリ金属を前記二次電子放 出面の形成領域に導く二次電子放出面の製造方法。
3 2 . 入射電子に対応して二次電子を放出する二次電子放出面の製造方法で あって、
前記アル力リ金属の発生源として、 請求項 1 0〜 1 7のいずれか一項記載のァ ルカリ金属発生器を用意し、
前記アルカリ金属発生器のケース内に収納されたアルカリ金属発生剤を加熱し、 そして、
前記アルカリ金属発生剤の加熱により発生したアルカリ金属を前記二次電子放 出面の形成領域に導く二次電子放出面の製造方法。
3 3 . 入射光に対応して光電子を放出するアルカリ金属を含む光電面を少な くとも備えた電子管の製造方法であって、
前記アル力リ金属の発生源として、 請求項 1〜 9のいずれか一項記載のアル力 リ金属発生剤を用意し、
前記アルカリ金属発生剤を加熱し、 そして、
前記アルカリ金属発生剤の加熱により発生したアルカリ金属を前記光電面の形 成領域に導く工程を含む電子管の製造方法。
3 4 . 入射光に対応して光電子を放出するアルカリ金属を含む光電面を少な くとも備えた電子管の製造方法であって、
前記アル力リ金属の発生源として、 請求項 1 0〜 1 7のいずれか一項記載のァ ルカリ金属発生器を用意し、
前記アルカリ金属発生器のケース内に収納されたアルカリ金属発生剤を加熱し、 そして、
前記アルカリ金属発生剤の加熱により発生したアルカリ金属を前記光電面の形 成領域に導く工程を含む電子管の製造方法。
3 5 . 請求項 3 3又は 3 4記載の電子管の製造方法において、
前記電子管は、 光電子増倍管、 光電管、 イメージ管及びス トリーク管のいずれ かを含む。
3 6 . それぞれが、 入射電子に対応して二次電子を放出する二次電子放出面 を有する 1又はそれ以上のダイノードで構成された電子増倍部を備えた電子管の 製造方法であって、
前記アル力リ金属の発生源として、 請求項 1〜 9のいずれか一項記載のアル力 リ金属発生剤を用意し、
前記アルカリ金属発生剤を加熱し、 そして、
前記アルカリ金属発生剤の加熱により発生したアルカリ金属を前記二次電子放 出面の形成領域に導く工程を含む電子管の製造方法。
3 7 . それぞれが、 入射電子に対応して二次電子を放出する二次電子放出面 を有する 1又はそれ以上のダイノードで構成された電子増倍部を備えた電子管の 製造方法であって、
前記アル力リ金属の発生源として、 請求項 1 0〜 1 7のいずれか一項記載のァ ルカリ金属発生器を用意し、
前記アル力リ金属発生器のケース内に収納されたアル力リ金属発生剤を加熱し、 そして、
前記アルカリ金属発生剤の加熱により発生したアルカリ金属を前記二次電子放 出面の形成領域に導く工程を含む電子管の製造方法。
3 8 . 請求項 3 6又は 3 7記載の電子管の製造方法において、
当該電子管は、 光電子増倍管、 イメージ管、 及びス トリーク管のうちいずれか を含む。
PCT/JP2004/000294 2003-01-17 2004-01-16 アルカリ金属発生剤、アルカリ金属発生器、光電面、二次電子放出面、電子管、光電面の製造方法、二次電子放出面の製造方法及び電子管の製造方法 WO2004066337A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005508048A JPWO2004066337A1 (ja) 2003-01-17 2004-01-16 アルカリ金属発生剤、アルカリ金属発生器、光電面、二次電子放出面、電子管、光電面の製造方法、二次電子放出面の製造方法及び電子管の製造方法
US10/538,642 US7474051B2 (en) 2003-01-17 2004-01-16 Alkali metal generating agent, alkali metal generator, photoelectric surface, secondary electron emission surface, electron tube, method for manufacturing photoelectric surface, method for manufacturing secondary electron emission surface, and method for manufacturing electron tube
EP04702788A EP1521286A4 (en) 2003-01-17 2004-01-16 ALKALI METAL GENERATING AGENT, ALKALI METAL GENERATOR, PHOTOELECTRIC SURFACE, SECONDARY ELECTRON EMITTING SURFACE, ELECTRONIC TUBE, PHOTOELECTRIC SURFACE MANUFACTURING METHOD, SECONDARY ELECTRON EMISSION SURFACE MANUFACTURING METHOD, AND METHOD OF MANUFACTURING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-010012 2003-01-17
JP2003010012 2003-01-17

Publications (1)

Publication Number Publication Date
WO2004066337A1 true WO2004066337A1 (ja) 2004-08-05

Family

ID=32767235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000294 WO2004066337A1 (ja) 2003-01-17 2004-01-16 アルカリ金属発生剤、アルカリ金属発生器、光電面、二次電子放出面、電子管、光電面の製造方法、二次電子放出面の製造方法及び電子管の製造方法

Country Status (5)

Country Link
US (1) US7474051B2 (ja)
EP (1) EP1521286A4 (ja)
JP (1) JPWO2004066337A1 (ja)
CN (1) CN1739182A (ja)
WO (1) WO2004066337A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008512570A (ja) * 2004-09-10 2008-04-24 サエス ゲッタース ソチエタ ペル アツィオニ リチウムの蒸発及びリチウム・ディスペンサのための混合物

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT501721B1 (de) * 2005-03-11 2006-11-15 Konstantin Technologies Ges M Verdampferquelle zum verdampfen von alkali/erdalkalimetallen
JP5342769B2 (ja) * 2006-12-28 2013-11-13 浜松ホトニクス株式会社 光電陰極、電子管及び光電子増倍管
CN101924007B (zh) * 2009-06-10 2012-06-27 中国科学院高能物理研究所 一种光电倍增管
JP5824328B2 (ja) * 2011-10-31 2015-11-25 浜松ホトニクス株式会社 ストリーク管及びそれを含むストリーク装置
US10186406B2 (en) * 2016-03-29 2019-01-22 KLA—Tencor Corporation Multi-channel photomultiplier tube assembly
KR20220027944A (ko) 2019-06-07 2022-03-08 아답타스 솔루션즈 피티와이 엘티디 전파 2차 전자 방출 수단을 포함하는 검출기

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS442428Y1 (ja) * 1965-09-25 1969-01-29
JPS4820944B1 (ja) * 1969-06-25 1973-06-25
JPS5578438A (en) * 1978-12-06 1980-06-13 Hamamatsu Tv Kk Manufacturing method of photoelectron booster tube
JPH02106846A (ja) * 1988-09-02 1990-04-18 Philips Gloeilampenfab:Nv アルカリ金属の金属蒸気放出装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE883936C (de) 1950-12-20 1953-07-23 Egyesuelt Izzolampa Kathode fuer Entladungsroehren und Verfahren zu deren Herstellung
US3658713A (en) 1968-11-12 1972-04-25 Tokyo Shibaura Electric Co Alkali metal generating agents
JPS4721951U (ja) 1971-03-16 1972-11-11
JPS4715976U (ja) 1971-03-24 1972-10-24
JPS4725541U (ja) 1971-04-15 1972-11-22
JPS518581Y2 (ja) 1971-05-11 1976-03-08
JPS53124059A (en) 1977-04-06 1978-10-30 Hamamatsu Tv Co Ltd Method of producing multiialkali photoelectric plane
JPH1040864A (ja) 1996-07-19 1998-02-13 Matsushita Electric Works Ltd 高圧ナトリウムランプ
ITMI20010995A1 (it) 2001-05-15 2002-11-15 Getters Spa Dispensatori di cesio e processo per il loro uso

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS442428Y1 (ja) * 1965-09-25 1969-01-29
JPS4820944B1 (ja) * 1969-06-25 1973-06-25
JPS5578438A (en) * 1978-12-06 1980-06-13 Hamamatsu Tv Kk Manufacturing method of photoelectron booster tube
JPH02106846A (ja) * 1988-09-02 1990-04-18 Philips Gloeilampenfab:Nv アルカリ金属の金属蒸気放出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1521286A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008512570A (ja) * 2004-09-10 2008-04-24 サエス ゲッタース ソチエタ ペル アツィオニ リチウムの蒸発及びリチウム・ディスペンサのための混合物
US7625505B2 (en) 2004-09-10 2009-12-01 Saes Getters S.P.A. Mixtures for evaporation of lithium and lithium dispensers
US7794630B2 (en) 2004-09-10 2010-09-14 Saes Getters S.P.A. Lithium dispenser for lithium evaporation
JP4804469B2 (ja) * 2004-09-10 2011-11-02 サエス ゲッターズ ソチエタ ペル アツィオニ リチウムの蒸発及びリチウム・ディスペンサのための混合物

Also Published As

Publication number Publication date
JPWO2004066337A1 (ja) 2006-05-18
CN1739182A (zh) 2006-02-22
EP1521286A1 (en) 2005-04-06
US20060055322A1 (en) 2006-03-16
EP1521286A4 (en) 2006-12-13
US7474051B2 (en) 2009-01-06

Similar Documents

Publication Publication Date Title
US7526068B2 (en) X-ray source for materials analysis systems
WO2004066337A1 (ja) アルカリ金属発生剤、アルカリ金属発生器、光電面、二次電子放出面、電子管、光電面の製造方法、二次電子放出面の製造方法及び電子管の製造方法
US5243638A (en) Apparatus and method for generating a plasma x-ray source
Succi et al. Atomic absorption evaporation flow rate measurements of alkali metal dispensers
WO2004066338A1 (ja) アルカリ金属発生剤、アルカリ金属発生器、光電面、二次電子放出面、電子管、光電面の製造方法、二次電子放出面の製造方法及び電子管の製造方法
WO2007102471A1 (ja) 光電面、それを備える電子管及び光電面の製造方法
JP4440887B2 (ja) アルカリ金属発生剤、アルカリ金属発生器、光電面の製造方法、二次電子放出面の製造方法及び電子管の製造方法
CN111276378B (zh) 高灵敏度K-Na-Cs-Sb反射式多碱光电阴极及其制备方法、系统
JPS5841622B2 (ja) 電子放電管
JP2001233694A (ja) 多結晶ダイヤモンド薄膜、それを用いた光電陰極及び電子管
US4306171A (en) Focusing structure for photomultiplier tubes
JP2719297B2 (ja) 透過型光電面および光電管と透過型光電面の製造方法
JPH09298032A (ja) 電子ビーム発生装置
JPS61294732A (ja) 電子放出装置
JPH0883561A (ja) 二次電子増倍電極および光電子増倍管
US4383169A (en) Luminescent screen devices
CN218867037U (zh) 一种微波元素灯及其应用装置
US3468807A (en) Alkali metal generator
CN218769397U (zh) 一种冷阴极x射线发生管
EP4002418A1 (en) Metasurface element, electron tube, and method for producing electron tube
US2779888A (en) Photosensitive electrode and method for producing same
Koller The Voltage Drop Through Phosphor Screens and Its Bearing on Performance of Cathodoluminescent Lamps
WO2002021570A1 (fr) Lampe a cathode creuse, analyseur a absorption atomique et analyseur a fluorescence atomique
JPH10172503A (ja) 光電子増倍管
CN115985756A (zh) 一种微波元素灯及其应用装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004702788

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005600112

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004702788

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006055322

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10538642

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048022984

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 10538642

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2004702788

Country of ref document: EP