WO2004066022A1 - Liquid display device with thin film transistors and method of manufacturing same - Google Patents

Liquid display device with thin film transistors and method of manufacturing same Download PDF

Info

Publication number
WO2004066022A1
WO2004066022A1 PCT/CN2003/000067 CN0300067W WO2004066022A1 WO 2004066022 A1 WO2004066022 A1 WO 2004066022A1 CN 0300067 W CN0300067 W CN 0300067W WO 2004066022 A1 WO2004066022 A1 WO 2004066022A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal layer
insulating layer
transparent substrate
thin film
Prior art date
Application number
PCT/CN2003/000067
Other languages
French (fr)
Chinese (zh)
Inventor
Maw Song Chen
Original Assignee
Quanta Display Inc.
Quanta Display Japan Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quanta Display Inc., Quanta Display Japan Inc. filed Critical Quanta Display Inc.
Priority to AU2003207225A priority Critical patent/AU2003207225A1/en
Priority to PCT/CN2003/000067 priority patent/WO2004066022A1/en
Publication of WO2004066022A1 publication Critical patent/WO2004066022A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer

Definitions

  • the present invention relates to a thin film transistor liquid crystal display and a manufacturing method thereof, and particularly to a manufacturing method capable of reducing the number of array photomask layers of a thin film transistor liquid crystal display. Background technique
  • LCD Liquid crystal display
  • the display principle of the liquid crystal display is to use the dielectric anisotropy and conductive anisotropy of the liquid crystal molecules.
  • TFT Thin film transistor
  • the display principle of the liquid crystal display is to use the dielectric anisotropy and conductive anisotropy of the liquid crystal molecules.
  • the arrangement state of the liquid crystal molecules is switched, which causes various photoelectric effects of the liquid crystal film.
  • Thin film transistor (hereinafter referred to as TFT) -LCD uses TFT as the active element, which has the advantages of low power consumption, low voltage driving, thinness and lightness.
  • FIGS. 1A to 1E are cross-sectional views showing a manufacturing process of a conventional thin film transistor liquid crystal display.
  • a metal layer such as molybdenum / aluminum-neodymium alloy
  • a photo-etching process is used to define the metal layer to form a gate electrode. (Gate electrode) 22.
  • a gate insulating layer 23 is formed on the surface of the gate electrode 22.
  • an insulating layer 24, a first semiconductor layer 25, such as an amorphous silicon (hereinafter referred to as a-Si) layer, and a second semiconductor layer 26 are sequentially deposited on the transparent substrate 21.
  • a first semiconductor layer 25 such as an amorphous silicon (hereinafter referred to as a-Si) layer
  • a second semiconductor layer 26 are sequentially deposited on the transparent substrate 21.
  • an aluminum alloy layer is deposited on the transparent substrate 21, such as pure aluminum metal, aluminum-niobium alloy, aluminum-neodymium alloy, aluminum-titanium alloy, or aluminum-silicon-copper alloy.
  • a photo-etching process is used to define the metal layer to form a signal line 27 and a source / drain metal layer.
  • the source / drain metal layer includes a source electrode 31 and a drain electrode 32 spaced a channel 28. And expose the first semiconductor layer 25 in the channel 28.
  • a protective layer 34 is deposited on the transparent substrate 21 to completely cover the entire TFT element, but the contact window 30 is exposed to protect the element from external interference.
  • the protective layer 34 is, for example, a silicon nitride layer.
  • ITO indium tin oxide
  • FIG. 2 is a cross-sectional view showing another conventional thin film transistor liquid crystal display.
  • the cross-sectional view mainly shows a capacitor storage portion of the thin film transistor liquid crystal display.
  • the manufacturing process of such a conventional thin film transistor liquid crystal display requires six photo-etching processes. First, a first metal layer is deposited on a transparent substrate 50, and then the first photo-etching process is used to define the first metal layer to form a gate. Electrode 52. After that, a gate insulating layer 54 is formed on the surface of the gate electrode 52, and the second insulating layer is used to define the gate insulating layer 54. A semiconductor layer (not shown) is formed on the gate insulating layer 54, and the semiconductor layer is defined by a third photo-etching process.
  • a second metal layer is deposited on the transparent substrate 50, and then a fourth photo-etching process is used to define the second metal layer to form a source / drain metal layer 56.
  • a protective layer 58 and a flat layer 60 are sequentially deposited on the transparent substrate 50 to completely cover the entire TFT element to protect the element from external interference.
  • a fifth photo-etching process is performed to define The flat layer 60 and the protective layer 58 form a contact window.
  • an indium tin oxide layer 64 is deposited on the transparent substrate 50 and a sixth photo-etching process is performed to define the indium tin oxide layer 64 as A signal line area and a pixel area.
  • a process of forming a color filter 70, forming a spacer, and a liquid crystal 72 is further included.
  • the present invention proposes a thin film transistor liquid crystal display and a manufacturing method thereof.
  • the manufacturing method can reduce the number of photomasks made by an array, which includes the following steps: depositing a first metal layer on a transparent substrate, and defining Forming a first metal layer to form at least two adjacent gate electrodes; forming a gate insulating layer on the surface of the gate electrode; forming a semiconductor layer on the gate insulating layer, and defining the semiconductor layer to form a predetermined shape; Depositing a second metal layer on the transparent substrate, and defining the second metal layer to form a source / drain metal layer; depositing an insulating layer on the transparent substrate; defining the insulating layer, the source / drain metal Layer and a gate insulating layer to form a contact window; depositing a transparent conductive layer on the transparent substrate, and defining a pixel region and a signal line region; and forming a black matrix region on the corresponding region above the contact window.
  • the thin film transistor liquid crystal display includes: a transparent substrate on which at least two adjacent gate electrodes are formed; a gate insulating layer formed on the surface of the gate electrode; a semiconductor defined in a predetermined shape A layer formed on the gate insulating layer; a source / drain metal layer formed on a predetermined region on the transparent base plate; an insulating layer formed on the source / drain metal layer; a contact window, It passes through the insulating layer, the source / drain metal layer and the gate insulating layer and exposes the surface of the transparent substrate between the adjacent gate electrodes; a transparent conductive layer is formed on the transparent substrate; and a black The matrix area is formed in a corresponding area above the contact window.
  • the method of the present invention can reduce the number of mask formations of the photo-etching process, and therefore can reduce manufacturing time and equipment required for the manufacturing process, increase production and reduce costs; Assist the design of the gate structure. Forming the gate on both sides of the contact window can prevent the contact window from being over-etched and causing a short circuit with the gate. In addition, the black matrix area is formed correspondingly above the contact window to avoid the periphery of the contact window. Light leakage occurs in the area.
  • FIG. 1A to 1E are cross-sectional views showing a manufacturing process of a conventional thin film transistor liquid crystal display.
  • FIG. 2 is a sectional view showing the structure of a capacitor portion of another conventional thin film transistor liquid crystal display.
  • FIG 3 is a top view of a pixel layout showing a manufacturing process of a thin film transistor liquid crystal display according to an embodiment of the present invention.
  • 4A to 4E are cross-sectional views showing a manufacturing process according to the AA ′ section of FIG. 3. detailed description
  • the thin film transistor liquid crystal display structure includes a transparent substrate 100; a gate region 310; a doped silicon layer 320; a source / drain region 330; a contact region 340; an indium tin oxide layer 350; a black matrix on a color filter Region 360; capacitor line 370 and gate line 380.
  • FIG. 4A to 4E show cross-sectional views of the manufacturing process according to the kk! Section of FIG. 3, and these process cross-sections mainly show the capacitor portion of the thin film transistor liquid crystal display.
  • a first metal layer such as a molybdenum-aluminum-neodymium alloy layer, is deposited on a transparent substrate 100, and then the first metal layer is defined by a first photo-etching process to form a gate. ⁇ electrode (gate electrode) 102.
  • gate electrode gate electrode
  • a gate insulating layer 104 is formed on the surface of the gate electrode 102.
  • a chemical vapor deposition process is used to deposit an oxide layer.
  • a semiconductor layer (not shown), such as an n + doped amorphous silicon layer, is formed on the gate insulating layer 104.
  • the second photo-etching process is used to define the semiconductor layer.
  • a second metal layer is deposited on the transparent substrate 100, such as pure aluminum metal, aluminum-niobium alloy, aluminum-neodymium alloy, aluminum-titanium alloy, or aluminum-silicon-copper alloy.
  • a third photo-etching process is used to define the second metal layer to form a source / drain metal layer 106.
  • an insulating layer is sequentially deposited on the transparent substrate 100, such as a protective layer 108 having a protective function and a flat layer 110 for planarization, so as to completely cover the entire TFT element, so that Protects components from external aggressions.
  • the protective layer 108 is, for example, an oxide layer or a nitride layer formed by a chemical vapor deposition method
  • the flat layer 110 is, for example, an oxide layer formed by a chemical vapor deposition method.
  • a fourth photo-etching process is performed to define the flat layer 110, the protective layer 108, the source / drain metal layer 106, and the gate insulating layer 104 to form a contact window 112, and the contact window 112 is located on the gate Between the electrodes 102, and the gate electrode 102 and the contact window 112 are not connected.
  • a transparent conductive layer such as an indium tin oxide layer 114, is deposited on the transparent substrate 100, and a fifth photo-etching process is performed to define the indium tin oxide layer 114 as a signal line area and a pixel. (Pixel) area.
  • an embodiment of the present invention further includes forming a color filter 120 at a specific distance from the transparent substrate 100. Thereafter, a black matrix region 122 is formed on a corresponding region of the color filter 120 corresponding to the contact window 112. The purpose of forming the black matrix region 122 is to shield the edge domain from light leakage. Then, a spacer and a liquid crystal 124 are formed between the transparent substrate 100 and the color filter 120.
  • the thin film transistor liquid crystal display of the embodiment of the present invention includes a transparent substrate 100, on which at least two adjacent gate electrodes 102 are formed; a gate insulating layer 104 is formed on the surface of the gate electrode 102; a semiconductor layer (not shown) defined in a predetermined shape is formed on the gate insulating layer 104 A source / drain metal layer 106 is formed on a predetermined area on the transparent substrate 100; a protective layer 108 and a flat layer 110 are formed on the source / drain metal layer 106; a contact window 112 passes through the protective layer 108; , A flat layer 110, a source / drain metal layer 106 and a gate insulating layer 104 and expose the surface of the transparent substrate 100; an indium tin oxide layer 114 is formed on the transparent substrate 100; and a black matrix region 122 is formed on the contact window The corresponding area above 112.
  • the present invention continues to etch the contact window to the source / drain metal layer and the gate electrode, so that the photo-etching process / process defining the gate insulating layer can be omitted .
  • the gate is also dug out to avoid a short circuit between the source / drain metal layer and the indium tin oxide layer.
  • the method of the present invention reduces the number of masks in the photo-etching process, so it can reduce manufacturing time and equipment required in the manufacturing process, increase yield and reduce costs; and meanwhile, the gate is formed on the gate structure through the design of the gate structure.
  • the contact window can be prevented from being over-etched and short-circuited with the gate; in addition, because a black matrix region is correspondingly formed above the contact window, light leakage can be avoided in the peripheral region of the contact window.

Abstract

The present invention relates to a liquid display device with thin film transistors and a method of manufacturing such device, whereby the number of the masks for array fabrication can be decreased. The method comprises the following steps: depositing a first metal layer on a transparent substrate, and defining the first metal layer to form at least two gate electrodes adjacent to each other; forming a gate electrode insulating layer on the surface of the said gate electrodes.; forming a semi-conduct layer on the insulating layer, and defining the same to form a prescribed pattern; depositing a second metal layer on the said transparent substrate, and defining the second metal layer to form a source/drain electrode metal layer; depositing a insulating layer on the said transparent substrate; defining the insulating layer, the source/drain electrode metal layer and the gate electrode insulating layer to form a contact window, and the contact window is located between the two gate electrodes; depositing a transparent conduct layer on the said transparent substrate; and forming a black matrix which covers the corresponding region above the contact window.

Description

薄膜晶体管液晶显示器及其制造方法 技术领域  Thin film transistor liquid crystal display and manufacturing method thereof
本发明涉及一种薄膜晶体管液晶显示器及其制造方法, 特别是涉及一 种可减少薄膜晶体管液晶显示器的阵列光罩层数的制造方法。 背景技术  The present invention relates to a thin film transistor liquid crystal display and a manufacturing method thereof, and particularly to a manufacturing method capable of reducing the number of array photomask layers of a thin film transistor liquid crystal display. Background technique
液晶显示器 (liquid crystal display, 以下简称 LCD) 是目前被最广泛 使用的一种平面显示器, 其具有低消耗电功率、 薄型轻量以及低电压驱 动等特征, 可以应用在个人电脑、 文书处理器、 导航系统、 游乐器、 投 影机、 取景器 (view finder) 以及生活中的手提式机器, 例如: 手表、 电 子计算机、 电视机等的显示方面。  Liquid crystal display (hereinafter referred to as LCD) is one of the most widely used flat-panel displays at present. It has the characteristics of low power consumption, thin and light weight, and low-voltage driving. It can be applied to personal computers, word processors, and navigation. Display systems for systems, recreational instruments, projectors, view finder, and portable devices in daily life, such as watches, computers, televisions, etc.
液晶显示器的显示原理是利用液晶分子所具有的介电异方性及导电异 方性, 于外加电场时会使液晶分子的排列状态转换, 造成液晶薄膜产生 各种光电效应。而薄膜晶体管(thin film transistor, 以下简称 TFT)—LCD 即是利用 TFT作为主动元件, 使其具有低消耗电功率、 低电压驱动、 薄、 轻等优点。  The display principle of the liquid crystal display is to use the dielectric anisotropy and conductive anisotropy of the liquid crystal molecules. When an electric field is applied, the arrangement state of the liquid crystal molecules is switched, which causes various photoelectric effects of the liquid crystal film. Thin film transistor (hereinafter referred to as TFT) -LCD uses TFT as the active element, which has the advantages of low power consumption, low voltage driving, thinness and lightness.
请参考图 1A至图 1E, 图 1A至图 1E是显示传统薄膜晶体管液晶显 示器制作流程的剖面图。 首先, 如图 1A所示将一金属层, 如钼 /铝一钕 合金, 沉积于一透明基板 21上, 再利用一道光蚀刻工艺 (微影蚀刻工艺) 将该金属层定义形成一栅极电极 (gate electrode) 22。 接着, 再在栅极电 极 22表面上形成一栅极绝缘层 23。  Please refer to FIGS. 1A to 1E. FIGS. 1A to 1E are cross-sectional views showing a manufacturing process of a conventional thin film transistor liquid crystal display. First, as shown in FIG. 1A, a metal layer, such as molybdenum / aluminum-neodymium alloy, is deposited on a transparent substrate 21, and then a photo-etching process (lithographic etching process) is used to define the metal layer to form a gate electrode. (Gate electrode) 22. Next, a gate insulating layer 23 is formed on the surface of the gate electrode 22.
然后, 如图 1B所示, 依序在透明基板 21上沉积一绝缘层 24、 一第 一半导体层 25, 如非晶硅 (amorphous silicon, 以下简称 a— Si) 层以及 一第二半导体层 26, 如惨杂硅层 (n+doped amorphous silicon)。 之后, 定义绝缘层 24、 第一半导体层 25 以及第二半导体层 26, 以形成如图所 示的岛状结构。 Then, as shown in FIG. 1B, an insulating layer 24, a first semiconductor layer 25, such as an amorphous silicon (hereinafter referred to as a-Si) layer, and a second semiconductor layer 26 are sequentially deposited on the transparent substrate 21. , Such as a miscellaneous silicon layer (n + doped amorphous silicon). After that, the insulating layer 24, the first semiconductor layer 25, and the second semiconductor layer 26 are defined to form a layer as shown in the figure. Shown island structure.
接着, 如图 1C所示, 在透明基板 21 上沉积一铝合金层, 例如是纯 铝金属、 铝一铌合金、 铝一钕合金、 铝一钛合金或铝一硅一铜合金。 之 后, 利用一道光蚀刻工艺, 将金属层定义形成一信号线 27及一源极 /漏极 金属层, 其中, 源极 /漏极金属层包括源极电极 31与漏极电极 32间隔一 通道 28, 并使通道 28中的第一半导体层 25暴露出来。  Next, as shown in FIG. 1C, an aluminum alloy layer is deposited on the transparent substrate 21, such as pure aluminum metal, aluminum-niobium alloy, aluminum-neodymium alloy, aluminum-titanium alloy, or aluminum-silicon-copper alloy. Then, a photo-etching process is used to define the metal layer to form a signal line 27 and a source / drain metal layer. The source / drain metal layer includes a source electrode 31 and a drain electrode 32 spaced a channel 28. And expose the first semiconductor layer 25 in the channel 28.
然后,如图 1D所示,在透明基板 21上沉积一保护层 34,将整个 TFT 元件完全包覆盖住, 但露出接触窗 30, 以保护元件免受外界的侵蚀干扰。 保护层 34例如是氮化硅层。  Then, as shown in FIG. 1D, a protective layer 34 is deposited on the transparent substrate 21 to completely cover the entire TFT element, but the contact window 30 is exposed to protect the element from external interference. The protective layer 34 is, for example, a silicon nitride layer.
最后, 在透明基板 21上沉积一铟锡氧化物 (indium tin oxide, ITO) 层, 并进行光蚀刻工艺, 将铟锡氧化物层定义成一信号线区 36 以及一像 素 (pixel) 区 38, 如图 1E所示。  Finally, an indium tin oxide (ITO) layer is deposited on the transparent substrate 21 and a photo-etching process is performed to define the indium tin oxide layer as a signal line region 36 and a pixel region 38, such as Figure 1E.
图 2是显示另一种传统薄膜晶体管液晶显示器的剖面图, 该剖面图主 要显示薄膜晶体管液晶显示器的电容器 (capacitor storage) 部分。 这种传 统薄膜晶体管液晶显示器的制作流程需要六道光蚀刻工艺, 首先, 在一 透明基板 50上沉积一第一金属层, 再利用第一道光蚀刻工艺将该第一金 属层定义形成一栅极电极 52。 之后, 在栅极电极 52表面上形成一栅极绝 缘层 54, 并利用第二道光蚀刻工艺定义栅极绝缘层 54。 在栅极绝缘层 54 上形成一半导体层 (未显示), 并利用第三道光蚀刻工艺定义该半导体层。 接着, 在透明基板 50上沉积一第二金属层, 再利用第四道光蚀刻工艺, 将第二金属层定义形成一源极 /漏极金属层 56。 其次, 在透明基板 50上 依序沉积一保护层 58及一平坦层 60, 将整个 TFT元件完全包覆盖住, 以保护元件免受外界的侵蚀干扰, 之后, 进行第五道光蚀刻工艺, 定义 平坦层 60、 保护层 58以形成一接触窗。 最后, 在透明基板 50上沉积一 铟锡氧化物层 64, 并进行第六道光蚀刻工艺, 将铟锡氧化物层 64定义成 一信号线区以及一像素 (pixel) 区。 FIG. 2 is a cross-sectional view showing another conventional thin film transistor liquid crystal display. The cross-sectional view mainly shows a capacitor storage portion of the thin film transistor liquid crystal display. The manufacturing process of such a conventional thin film transistor liquid crystal display requires six photo-etching processes. First, a first metal layer is deposited on a transparent substrate 50, and then the first photo-etching process is used to define the first metal layer to form a gate. Electrode 52. After that, a gate insulating layer 54 is formed on the surface of the gate electrode 52, and the second insulating layer is used to define the gate insulating layer 54. A semiconductor layer (not shown) is formed on the gate insulating layer 54, and the semiconductor layer is defined by a third photo-etching process. Next, a second metal layer is deposited on the transparent substrate 50, and then a fourth photo-etching process is used to define the second metal layer to form a source / drain metal layer 56. Second, a protective layer 58 and a flat layer 60 are sequentially deposited on the transparent substrate 50 to completely cover the entire TFT element to protect the element from external interference. Then, a fifth photo-etching process is performed to define The flat layer 60 and the protective layer 58 form a contact window. Finally, an indium tin oxide layer 64 is deposited on the transparent substrate 50 and a sixth photo-etching process is performed to define the indium tin oxide layer 64 as A signal line area and a pixel area.
在上述过程后, 还包括再进行形成彩色滤光片 (color filter) 70及形 成间隔物 (spacer) 及液晶 (liquid crystal) 72的过程。  After the above process, a process of forming a color filter 70, forming a spacer, and a liquid crystal 72 is further included.
而由于传统 TFT需两道接触窗制作过程, 使得现有的 TFT制造过程 需要多达六道掩膜 (mask) 并进行多次光蚀刻工艺 (photolithography process), 因此会产生低产量、 高成本等问题。 发明内容  Because the traditional TFT requires two contact window manufacturing processes, the existing TFT manufacturing process requires as many as six masks and multiple photolithography processes, which will cause problems such as low yield and high cost. . Summary of the Invention
有鉴于此, 本发明提出一种薄膜晶体管液晶显示器及其制造方法, 利 用该制造方法可以减少阵列制作的光罩数, 其包括下列步骤: 沉积一第 一金属层于一透明基板上, 并定义第一金属层以形成至少二相邻栅极电 极; 在上述栅极电极表面上形成一栅极绝缘层; 在栅极绝缘层上形成一 半导体层, 并定义半导体层以形成预定的形状; 在上述透明基板上沉积 一第二金属层, 并定义第二金属层以形成一源极 /漏极金属层; 沉积一绝 缘层于上述透明基板上; 定义该绝缘层、 该源极 /漏极金属层及栅极绝缘 层以形成一接触窗; 沉积一透明导电层于上述透明基板上, 并定义一像 素区及一信号线区; 以及形成一黑矩阵区于该接触窗的上方对应区域。  In view of this, the present invention proposes a thin film transistor liquid crystal display and a manufacturing method thereof. The manufacturing method can reduce the number of photomasks made by an array, which includes the following steps: depositing a first metal layer on a transparent substrate, and defining Forming a first metal layer to form at least two adjacent gate electrodes; forming a gate insulating layer on the surface of the gate electrode; forming a semiconductor layer on the gate insulating layer, and defining the semiconductor layer to form a predetermined shape; Depositing a second metal layer on the transparent substrate, and defining the second metal layer to form a source / drain metal layer; depositing an insulating layer on the transparent substrate; defining the insulating layer, the source / drain metal Layer and a gate insulating layer to form a contact window; depositing a transparent conductive layer on the transparent substrate, and defining a pixel region and a signal line region; and forming a black matrix region on the corresponding region above the contact window.
本发明所提出的薄膜晶体管液晶显示器, 包括: 一透明基板, 其上形 成有至少二相邻栅极电极; 一栅极绝缘层, 形成于上述栅极电极表面上; 一定义成预定形状的半导体层, 形成于栅极绝缘层上; 一源极 /漏极金属 层, 形成于该透明基扳上的预定区域; 一绝缘层, 形成于该源极 /漏极金 属层上; 一接触窗, 其穿过该绝缘层、 该源极 /漏极金属层及该栅极绝缘 层并露出这些相邻栅极电极之间的透明基板表面; 一透明导电层, 形成 于透明基板上; 以及一黑矩阵区, 形成于接触窗的上方对应区域。  The thin film transistor liquid crystal display provided by the present invention includes: a transparent substrate on which at least two adjacent gate electrodes are formed; a gate insulating layer formed on the surface of the gate electrode; a semiconductor defined in a predetermined shape A layer formed on the gate insulating layer; a source / drain metal layer formed on a predetermined region on the transparent base plate; an insulating layer formed on the source / drain metal layer; a contact window, It passes through the insulating layer, the source / drain metal layer and the gate insulating layer and exposes the surface of the transparent substrate between the adjacent gate electrodes; a transparent conductive layer is formed on the transparent substrate; and a black The matrix area is formed in a corresponding area above the contact window.
本发明的方法可减少光蚀刻工艺的掩膜 (mask) 形成次数, 因此可 减少制造时间和制造过程所需的设备, 增加产量及降低成本; 且同时借 助栅极结构的设计, 将栅极形成于接触窗两侧, 可避免接触窗过度蚀刻 而与栅极产生短路; 另外, 由于在接触窗上方位置对应形成有黑矩阵区, 可避免接触窗周边区域产生漏光。 The method of the present invention can reduce the number of mask formations of the photo-etching process, and therefore can reduce manufacturing time and equipment required for the manufacturing process, increase production and reduce costs; Assist the design of the gate structure. Forming the gate on both sides of the contact window can prevent the contact window from being over-etched and causing a short circuit with the gate. In addition, the black matrix area is formed correspondingly above the contact window to avoid the periphery of the contact window. Light leakage occurs in the area.
附图说明  BRIEF DESCRIPTION OF THE DRAWINGS
为使本发明的上述目的、 特征和优点能更明显易懂, 下文特举较佳实 施例并配合附图作详细说明如下:  In order to make the foregoing objects, features, and advantages of the present invention more comprehensible, the following describes in detail the preferred embodiments with reference to the accompanying drawings as follows:
图 1A至图 1E为显示传统薄膜晶体管液晶显示器制作流程的剖面图。 图 2为显示另一种传统薄膜晶体管液晶显示器的电容器部分结构的剖 面图。  1A to 1E are cross-sectional views showing a manufacturing process of a conventional thin film transistor liquid crystal display. FIG. 2 is a sectional view showing the structure of a capacitor portion of another conventional thin film transistor liquid crystal display.
图 3为显示本发明实施例的薄膜晶体管液晶显示器制作流程的像素布 局上视图。  3 is a top view of a pixel layout showing a manufacturing process of a thin film transistor liquid crystal display according to an embodiment of the present invention.
图 4A至图 4E为显示根据图 3的 AA' 剖面的制作流程剖面图。 具体实施方式  4A to 4E are cross-sectional views showing a manufacturing process according to the AA ′ section of FIG. 3. detailed description
首先, 请参照图 3, 显示了根据本发明实施例的薄膜晶体管液晶显示 器结构的像素布局上视图。 该薄膜晶体管液晶显示器结构包括一透明基 板 100; 栅极区 310; 掺杂硅层 320; 源极 /漏极区 330; 接触区 340; 铟 锡氧化物层 350; 彩色滤光片上的黑矩阵区 360; 电容器线 370以及栅极 线 380。  First, referring to FIG. 3, a top view of a pixel layout of a thin film transistor liquid crystal display structure according to an embodiment of the present invention is shown. The thin film transistor liquid crystal display structure includes a transparent substrate 100; a gate region 310; a doped silicon layer 320; a source / drain region 330; a contact region 340; an indium tin oxide layer 350; a black matrix on a color filter Region 360; capacitor line 370 and gate line 380.
图 4A至图 4E显示了根据图 3的 kk! 剖面的制作流程剖面图, 这 些流程剖面图主要显示了薄膜晶体管液晶显示器的电容器部分。 首先, 如图 4A所示, 将一第一金属层, 如钼一铝一钕合金层, 沉积于一透明基 板 100上, 再利用第一道光蚀刻工艺将该第一金属层定义形成一栅极电 极 (gate electrode) 102。  4A to 4E show cross-sectional views of the manufacturing process according to the kk! Section of FIG. 3, and these process cross-sections mainly show the capacitor portion of the thin film transistor liquid crystal display. First, as shown in FIG. 4A, a first metal layer, such as a molybdenum-aluminum-neodymium alloy layer, is deposited on a transparent substrate 100, and then the first metal layer is defined by a first photo-etching process to form a gate.极 electrode (gate electrode) 102.
接着,如图 4B所示,再在栅极电极 102表面上形成一栅极绝缘层 104, 例如利用化学气相沉积工艺沉积一氧化物层。 之后, 在栅极绝缘层 104 上形成一半导体层(未显示), 如掺杂硅层(n+doped amorphous silicon)。 之后, 再利用第二道光蚀刻工艺定义该半导体层。 Next, as shown in FIG. 4B, a gate insulating layer 104 is formed on the surface of the gate electrode 102. For example, a chemical vapor deposition process is used to deposit an oxide layer. After that, a semiconductor layer (not shown), such as an n + doped amorphous silicon layer, is formed on the gate insulating layer 104. After that, the second photo-etching process is used to define the semiconductor layer.
然后, 如图 4C所示, 在透明基板 100上沉积一第二金属层, 例如是 纯铝金属、 铝一铌合金、 铝一钕合金、 铝一钛合金或铝一硅一铜合金。 之后, 利用第三道光蚀刻工艺, 将第二金属层定义形成一源极 /漏极金属 层 106。  Then, as shown in FIG. 4C, a second metal layer is deposited on the transparent substrate 100, such as pure aluminum metal, aluminum-niobium alloy, aluminum-neodymium alloy, aluminum-titanium alloy, or aluminum-silicon-copper alloy. Then, a third photo-etching process is used to define the second metal layer to form a source / drain metal layer 106.
其次, 如图 4D所示, 在透明基板 100上依序沉积一绝缘层, 如一具 有保护功用的保护层 108及一用以平坦化的平坦层 110, 将整个 TFT元 件完全包覆盖住, 以保护元件免受外界的侵蚀干扰。 保护层 108 例如为 以化学气相沉积法形成的氧化物层或氮化物层, 平坦层 110例如为以化学 气相沉积法形成的氧化物层。 之后, 进行第四道光蚀刻工艺, 定'义平坦 层 110、 保护层 108、 源极 /漏极金属层 106及栅极绝缘层 104, 以形成一 接触窗 112, 且接触窗 112位于上述栅极电极 102之间, 且栅极电极 102 与接触窗 112未连接。  Secondly, as shown in FIG. 4D, an insulating layer is sequentially deposited on the transparent substrate 100, such as a protective layer 108 having a protective function and a flat layer 110 for planarization, so as to completely cover the entire TFT element, so that Protects components from external aggressions. The protective layer 108 is, for example, an oxide layer or a nitride layer formed by a chemical vapor deposition method, and the flat layer 110 is, for example, an oxide layer formed by a chemical vapor deposition method. Then, a fourth photo-etching process is performed to define the flat layer 110, the protective layer 108, the source / drain metal layer 106, and the gate insulating layer 104 to form a contact window 112, and the contact window 112 is located on the gate Between the electrodes 102, and the gate electrode 102 and the contact window 112 are not connected.
最后, 如图 4E所示, 在透明基板 100上沉积一透明导电层, 如一铟 锡氧化物层 114, 并进行第五道光蚀刻工艺, 将铟锡氧化物层 114定义成 一信号线区以及一像素 (pixel) 区。  Finally, as shown in FIG. 4E, a transparent conductive layer, such as an indium tin oxide layer 114, is deposited on the transparent substrate 100, and a fifth photo-etching process is performed to define the indium tin oxide layer 114 as a signal line area and a pixel. (Pixel) area.
请再参见图 4E, 本发明实施例尚包括在距离透明基板 100 的特定距 离处形成一彩色滤光片(color filter) 120。之后,在彩色滤光片(color filter) 120上对应接触窗 112的对应区域上形成黑矩阵 (black matrix) 区 122。 形成黑矩阵区 122 的目的是要遮挡边缘区域 (edge domain) 避免漏光现 象。 然后, 再在透明基板 100及彩色滤光片 120之间形成间隔物(spacer) 及液晶 (liquid crystal) 124。  Referring to FIG. 4E again, an embodiment of the present invention further includes forming a color filter 120 at a specific distance from the transparent substrate 100. Thereafter, a black matrix region 122 is formed on a corresponding region of the color filter 120 corresponding to the contact window 112. The purpose of forming the black matrix region 122 is to shield the edge domain from light leakage. Then, a spacer and a liquid crystal 124 are formed between the transparent substrate 100 and the color filter 120.
如上所述, 本发明实施例的薄膜晶体管液晶显示器包括有一透明基板 100, 其上形成有至少二相邻栅极电极 102; —栅极绝缘层 104形成于栅 极电极 102表面上; 一定义成预定形状的半导体层 (未显示) 形成于栅 极绝缘层 104上; 一源极 /漏极金属层 106形成于透明基板 100上的预定 区域; 一保护层 108及一平坦层 110形成于源极 /漏极金属层 106上; 一 接触窗 112穿过保护层 108、 平坦层 110、 源极 /漏极金属层 106及栅极绝 缘层 104并露出透明基板 100表面; 一铟锡氧化物层 114形成于透明基 板 100上; 以及一黑矩阵区 122形成于接触窗 112的上方对应区域。 As mentioned above, the thin film transistor liquid crystal display of the embodiment of the present invention includes a transparent substrate 100, on which at least two adjacent gate electrodes 102 are formed; a gate insulating layer 104 is formed on the surface of the gate electrode 102; a semiconductor layer (not shown) defined in a predetermined shape is formed on the gate insulating layer 104 A source / drain metal layer 106 is formed on a predetermined area on the transparent substrate 100; a protective layer 108 and a flat layer 110 are formed on the source / drain metal layer 106; a contact window 112 passes through the protective layer 108; , A flat layer 110, a source / drain metal layer 106 and a gate insulating layer 104 and expose the surface of the transparent substrate 100; an indium tin oxide layer 114 is formed on the transparent substrate 100; and a black matrix region 122 is formed on the contact window The corresponding area above 112.
本发明在蚀刻保护层以形成接触窗的过程中, 同时将接触窗的蚀刻过 程继续蚀刻至源极 /漏极金属层和栅极电极, 如此可省略定义栅极绝缘层 的光蚀刻工艺 /过程。 而在电容器区域, 栅极亦对应挖开以避免源极 /漏极 金属层和铟锡氧化物层间的短路。 本发明的方法减少了光蚀刻工艺的掩 屏蔽 (mask ) 次数, 因此可减少制造时间和制造过程中所需设备, 增加 产量及降低成本; 且同时通过栅极结构的设计, 将栅极形成于接触窗两 侧, 可避免接触窗过度蚀刻而与栅极产生短路; 另外, 由于在接触窗上 方位置对应形成有黑矩阵区, 可避免接触窗周边区域产生漏光。  In the process of etching the protective layer to form a contact window, the present invention continues to etch the contact window to the source / drain metal layer and the gate electrode, so that the photo-etching process / process defining the gate insulating layer can be omitted . In the capacitor region, the gate is also dug out to avoid a short circuit between the source / drain metal layer and the indium tin oxide layer. The method of the present invention reduces the number of masks in the photo-etching process, so it can reduce manufacturing time and equipment required in the manufacturing process, increase yield and reduce costs; and meanwhile, the gate is formed on the gate structure through the design of the gate structure. On both sides of the contact window, the contact window can be prevented from being over-etched and short-circuited with the gate; in addition, because a black matrix region is correspondingly formed above the contact window, light leakage can be avoided in the peripheral region of the contact window.
虽然本发明已以较佳实施例的方式说明如上, 然其并非用以限定本发 明, 任何熟习本技术的人员, 在不脱离本发明的精神和范围的情况下, 还可作出各种改进或变化, 这些均应属于本发明的保护范围。 附图标记说明  Although the present invention has been described above in the form of a preferred embodiment, it is not intended to limit the present invention. Any person skilled in the art can make various improvements or changes without departing from the spirit and scope of the present invention. Changes, these should all belong to the protection scope of the present invention. Reference Signs
100〜透明基板; 310〜栅极区; 320〜掺杂硅层; 330〜源极 /漏极区; 340〜接触区; 350〜铟锡氧化物层; 360〜黑矩阵区; 370〜电容器线; 380〜 栅极线; 102〜栅极电极; 104〜栅极绝缘层 106〜源极 /漏极金属层; 108〜 保护层; 110〜平坦层; 112〜接触窗; 114〜铟锡氧化物层; 120〜彩色 滤光片; 122〜黑矩阵区; 124〜间隔物及液晶。  100 ~ transparent substrate; 310 ~ gate area; 320 ~ doped silicon layer; 330 ~ source / drain area; 340 ~ contact area; 350 ~ indium tin oxide layer; 360 ~ black matrix area; 370 ~ capacitor line 380 ~ gate line 102 ~ gate electrode 104 ~ gate insulating layer 106 ~ source / drain metal layer 108 ~ protective layer 110 ~ flat layer 112 ~ contact window 114 ~ indium tin oxide Layer; 120 ~ color filter; 122 ~ black matrix area; 124 ~ spacer and liquid crystal.

Claims

权 利 要 求 Rights request
1、 一种薄膜晶体管液晶显示器的制造方法, 其特征在于, 包括下列 步骤: 1. A method for manufacturing a thin film transistor liquid crystal display, comprising the following steps:
沉积一第一金属层于一透明基板上, 并定义该第一金属层, 以形成至 少二相邻的栅极电极;  Depositing a first metal layer on a transparent substrate, and defining the first metal layer to form at least two adjacent gate electrodes;
在上述栅极电极表面上形成一栅极绝缘层;  Forming a gate insulating layer on the surface of the gate electrode;
在该栅极绝缘层上形成一半导体层, 并定义该半导体层以形成预定的 形状;  Forming a semiconductor layer on the gate insulating layer, and defining the semiconductor layer to form a predetermined shape;
在该透明基板上沉积一第二金属层, 并定义该第二金属层以形成一源 极 /漏极金属层;  Depositing a second metal layer on the transparent substrate, and defining the second metal layer to form a source / drain metal layer;
沉积一绝缘层于该透明基板上;  Depositing an insulating layer on the transparent substrate;
定义该绝缘层、 该源极 /漏极金属层及该栅极绝缘层以形成一接触窗, 且该接触窗位于所述相邻栅极电极之间;  Defining the insulating layer, the source / drain metal layer and the gate insulating layer to form a contact window, and the contact window is located between the adjacent gate electrodes;
沉积一透明导电层于该透明基板上; 以及  Depositing a transparent conductive layer on the transparent substrate; and
形成一黑矩阵区于该接触窗的上方对应区域。  A black matrix area is formed on the corresponding area above the contact window.
2、 如权利要求 1 所述的薄膜晶体管液晶显示器的制造方法, 其中, 该第一金属层是为钼 /铝一钕合金层。  2. The method for manufacturing a thin film transistor liquid crystal display according to claim 1, wherein the first metal layer is a molybdenum / aluminum-neodymium alloy layer.
3、 如权利要求 1 所述的薄膜晶体管液晶显示器的制造方法, 其特征 在于, 该第二金属层为纯铝金属、 铝一铌合金、 铝一钕合金、 铝一钛合 金或铝一硅一铜合金。  3. The method for manufacturing a thin film transistor liquid crystal display according to claim 1, wherein the second metal layer is pure aluminum metal, aluminum-niobium alloy, aluminum-neodymium alloy, aluminum-titanium alloy, or aluminum-silicon- Copper alloy.
4、 如权利要求 1 所述的薄膜晶体管液晶显示器的制造方法, 其特征 在于, 该栅极绝缘层通过利用化学气相沉积工艺沉积一氧化物层的方式 形成。  4. The method for manufacturing a thin film transistor liquid crystal display according to claim 1, wherein the gate insulating layer is formed by depositing an oxide layer using a chemical vapor deposition process.
5、 如权利要求 1 所述的薄膜晶体管液晶显示器的制造方法, 其特征 在于, 该绝缘层为利用化学气相沉积工艺沉积一氧化物层或氮化物层的 方式形成。 5. The method for manufacturing a thin film transistor liquid crystal display according to claim 1, wherein The insulating layer is formed by depositing an oxide layer or a nitride layer by a chemical vapor deposition process.
6、 如权利要求 1 所述的薄膜晶体管液晶显示器的制造方法, 其特征 在于, 更包括:  6. The method for manufacturing a thin film transistor liquid crystal display according to claim 1, further comprising:
在距离该透明基板的一特定距离处形成一彩色滤光片; 以及 在该彩色滤光片上的一对应该接触窗的对应区域上形成一黑矩阵区。 Forming a color filter at a specific distance from the transparent substrate; and forming a black matrix region on a corresponding region of the pair of corresponding color contacts on the color filter.
7、 如权利要求 1 所述的薄膜晶体管液晶显示器的制造方法, 其特征 在于, 该栅极电极与该接触窗未连接。 7. The method for manufacturing a thin film transistor liquid crystal display according to claim 1, wherein the gate electrode is not connected to the contact window.
8、 一种薄膜晶体管液晶显示器, 其特征在于, 包括- 一透明基板, 其上形成有至少二相邻栅极电极;  8. A thin film transistor liquid crystal display, comprising: a transparent substrate on which at least two adjacent gate electrodes are formed;
一栅极绝缘层, 其形成于该些栅极电极表面上;  A gate insulating layer formed on the surfaces of the gate electrodes;
一定义成预定形状的半导体层, 其形成于该栅极绝缘层上; 一源极 /漏极金属层, 其形成于该透明基板上的预定区域;  A semiconductor layer defined in a predetermined shape is formed on the gate insulating layer; a source / drain metal layer is formed in a predetermined region on the transparent substrate;
一绝缘层, 其形成于该源极 /漏极金属层上;  An insulating layer formed on the source / drain metal layer;
一接触窗, 其穿过该绝缘层、 该源极 /漏极金属层及该栅极绝缘层并 露出该些相邻栅极电极之间的透明基板表面;  A contact window that passes through the insulating layer, the source / drain metal layer and the gate insulating layer and exposes the surface of the transparent substrate between the adjacent gate electrodes;
一透明导电层, 其形成于该透明基板上; 以及  A transparent conductive layer formed on the transparent substrate; and
一黑矩阵区, 其形成于该接触窗的上方对应区域。  A black matrix area is formed in a corresponding area above the contact window.
9、 如权利要求 8所述的薄膜晶体管液晶显示器, 其特征在于, 该栅 极电极为钼 /铝一钕合金。  9. The thin film transistor liquid crystal display according to claim 8, wherein the gate electrode is a molybdenum / aluminum-neodymium alloy.
10、 如权利要求 8所述的薄膜晶体管液晶显示器, 其特征在于, 该 源极 /漏极金属层为纯铝金属、 铝一铌合金、 铝一钕合金、 铝一钛合金或 铝一硅一铜合金。  10. The thin film transistor liquid crystal display according to claim 8, wherein the source / drain metal layer is pure aluminum metal, aluminum-niobium alloy, aluminum-neodymium alloy, aluminum-titanium alloy, or aluminum-silicon- Copper alloy.
PCT/CN2003/000067 2003-01-24 2003-01-24 Liquid display device with thin film transistors and method of manufacturing same WO2004066022A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003207225A AU2003207225A1 (en) 2003-01-24 2003-01-24 Liquid display device with thin film transistors and method of manufacturing same
PCT/CN2003/000067 WO2004066022A1 (en) 2003-01-24 2003-01-24 Liquid display device with thin film transistors and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2003/000067 WO2004066022A1 (en) 2003-01-24 2003-01-24 Liquid display device with thin film transistors and method of manufacturing same

Publications (1)

Publication Number Publication Date
WO2004066022A1 true WO2004066022A1 (en) 2004-08-05

Family

ID=32739362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2003/000067 WO2004066022A1 (en) 2003-01-24 2003-01-24 Liquid display device with thin film transistors and method of manufacturing same

Country Status (2)

Country Link
AU (1) AU2003207225A1 (en)
WO (1) WO2004066022A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057889A (en) * 1987-07-06 1991-10-15 Katsuhiko Yamada Electronic device including thin film transistor
US5091792A (en) * 1990-04-13 1992-02-25 International Business Machines Corporation Liquid crystal display having reduced ito shading material and method of manufacturing same
US5466620A (en) * 1993-12-14 1995-11-14 Goldstar Co., Ltd. Method for fabricating a liquid crystal display device
JP2001042355A (en) * 1999-07-29 2001-02-16 Hitachi Ltd Liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057889A (en) * 1987-07-06 1991-10-15 Katsuhiko Yamada Electronic device including thin film transistor
US5091792A (en) * 1990-04-13 1992-02-25 International Business Machines Corporation Liquid crystal display having reduced ito shading material and method of manufacturing same
US5466620A (en) * 1993-12-14 1995-11-14 Goldstar Co., Ltd. Method for fabricating a liquid crystal display device
JP2001042355A (en) * 1999-07-29 2001-02-16 Hitachi Ltd Liquid crystal display device

Also Published As

Publication number Publication date
AU2003207225A1 (en) 2004-08-13
AU2003207225A8 (en) 2004-08-13

Similar Documents

Publication Publication Date Title
US7973312B2 (en) Semiconductor device and method of fabricating the same
KR100598737B1 (en) Thin film transistor array substrate and fabricating method thereof
WO2017166341A1 (en) Method for manufacturing tft substrate and manufactured tft substrate
KR100467944B1 (en) Transflective Liquid Crystal Display Device and Method for fabricating the same
KR101942982B1 (en) Array substrate for liquid crystal display device and method of fabricating the same
JP2001257359A (en) Semiconductor device and its creating method
WO2013071800A1 (en) Display device, thin film transistor, array substrate and manufacturing method thereof
JP2003241687A (en) Thin film transistor apparatus and manufacturing method therefor
US6853405B2 (en) Method of fabricating liquid crystal display
JP6899487B2 (en) TFT substrate and its manufacturing method
US20200348784A1 (en) Touch display substrate, method of manufacturing the same and display device
US10403654B2 (en) Mask for manufacturing TFT in 4M production process and TFT array manufacturing method of 4M production process
US7075603B2 (en) Method of fabricating a semi-transmission LCD by plasma processing and washing organic film, and LCD fabricated thereby
US20070231974A1 (en) Thin film transistor having copper line and fabricating method thereof
US20050001943A1 (en) Thin film array panel
US6440783B2 (en) Method for fabricating a thin film transistor display
US6653159B2 (en) Method of fabricating a thin film transistor liquid crystal display
TWI249642B (en) TFT LCD and manufacturing method thereof
KR100603927B1 (en) Tft lcd
WO2004066022A1 (en) Liquid display device with thin film transistors and method of manufacturing same
JP4118704B2 (en) Method for manufacturing liquid crystal display device
KR20070004276A (en) Method of manufacturing array substrate
KR101057235B1 (en) Etchant and manufacturing method of thin film transistor using same
KR100683142B1 (en) Method for fabricating tft lcd
JP3148775B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP