WO2004065946A1 - Micro-composant étalon pour le calibrage ou l'étalonnage d'équipements de mesure de fluorescence et biopuce le comportant. - Google Patents

Micro-composant étalon pour le calibrage ou l'étalonnage d'équipements de mesure de fluorescence et biopuce le comportant. Download PDF

Info

Publication number
WO2004065946A1
WO2004065946A1 PCT/FR2003/003656 FR0303656W WO2004065946A1 WO 2004065946 A1 WO2004065946 A1 WO 2004065946A1 FR 0303656 W FR0303656 W FR 0303656W WO 2004065946 A1 WO2004065946 A1 WO 2004065946A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescence
micro
component according
thin
standard micro
Prior art date
Application number
PCT/FR2003/003656
Other languages
English (en)
Inventor
Martine Cochet
François PERRAUT
Patrick Pouteau
Frédéric Revol-Cavalier
Original Assignee
Commissariat A L'energie Atomique
Biomerieux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique, Biomerieux filed Critical Commissariat A L'energie Atomique
Priority to AU2003296803A priority Critical patent/AU2003296803A1/en
Priority to JP2004566985A priority patent/JP2006510916A/ja
Priority to EP03815387A priority patent/EP1573304A1/fr
Priority to US10/538,866 priority patent/US20060060931A1/en
Publication of WO2004065946A1 publication Critical patent/WO2004065946A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • G01N21/278Constitution of standards
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters

Definitions

  • Standard micro-component for calibrating or calibrating fluorescence measurement equipment and biochip comprising it.
  • the invention relates to a standard micro-component for calibrating and calibrating fluorescence measurement equipment comprising a substrate on which is arranged at least one thin layer comprising fluorescent components, said micro-component comprising at least first and second fluorescence levels.
  • the invention also relates to a biochip comprising said micro-component.
  • the invention also relates to a method of manufacturing said microcomponent comprising the deposition on a substrate of at least one thin layer comprising fluorescent components.
  • a known standard micro-component (FIG. 1) comprises a non-fluorescent glass substrate 1, on which is deposited a layer 2 of fluorescent organic material, 3 microns thick. It also has openings 3 formed in layer 2 by etching. This type of micro-component makes it possible to obtain a level of fluorescence corresponding to that of layer 2. However, the openings 3 are approximately 4 microns wide and are spaced from each other by 8 microns, which is not satisfactory for the calibration of the instruments generally used.
  • the document WO-A-0159503 describes a standard micro-component comprising a fluorescent layer deposited on a substrate. It is generally used to establish a reference base between different microscopes and to characterize an image quality, for example in terms of resolution, contrast, depth of field and distortion.
  • the layer is covered by a thin mask, having openings and not fluorescent.
  • the mask and the fluorescent layer are plated one on top of the other, which requires three manufacturing operations: the production of the layer, the production of the mask and their assembly.
  • the mask and the layer being made of two different materials, they cannot be placed on the same optical plane, at the risk of distorting the optical image of the observed area.
  • Document DE-A-10200865 describes a standard for fluorescence detector, the standard comprising several levels of fluorescence respectively defined by zones of different thicknesses. Each zone of a predetermined thickness corresponds to the superposition of a predetermined number of thin polymer layers.
  • the fluorescence characteristic of a thin layer depends on the rate of crosslinking of the thin layer of polymer, the rate of crosslinking being obtained by exposure of the thin layer during a photolithography step. It is also indicated that the phenomenon of oxidation of the fluorescent components due to insolation (so-called "bleaching" phenomenon) is a harmful phenomenon which is avoided in the standard described in document DE-A-10200865. Such a standard is however impractical to implement, its manufacture requiring a succession of long and tedious production steps and the standard thus produced can prove to be bulky. Subject of the invention
  • the object of the invention is to provide a standard micro-component which does not have the drawbacks of standard micro-components of the prior art and which is easy to produce.
  • first and second levels of fluorescence are respectively defined by a non-exposed part and by at least one exposed area of said thin layer, the second level of fluorescence being lower than the first level of fluorescence .
  • the thin layer comprises at least one opening defining a third level of fluorescence lower than the first and second levels of fluorescence.
  • the thin layer comprises a plurality of exposed areas so as to define a plurality of different fluorescence levels.
  • the standard micro-component comprises a plurality of superimposed thin layers, so as to define a plurality of fluorescence levels.
  • the invention also relates to a biochip comprising, on the same substrate, at least one biological probe and at least one standard micro-component as described above.
  • the object of the invention is also a method of manufacturing such a standard microcomponent.
  • this object is achieved by the fact that the method consists in exposing at least one area of the thin layer so that first and second levels of fluorescence are defined respectively by the non-exposed portion and by the area insolated from the thin layer.
  • Figure 1 is a schematic representation of a standard micro-component according to the prior art.
  • FIG. 2 schematically represents a first embodiment of a standard micro-component according to the invention.
  • Figures 3 and 4 show a second embodiment of a standard microcomponent according to the invention, respectively before and after etching of a second thin layer.
  • Figure 5 is a schematic representation of a biochip comprising a standard micro-component according to the invention.
  • Figures 6 and 7 show third and fourth embodiments of a standard micro-component comprising a thin protective layer according to the invention. Description of particular embodiments.
  • a standard micro-component 4 intended for calibrating or calibrating fluorescence measurement equipment such as confocal or non-confocal fluorescence microscopes, comprises a substrate 1, non-fluorescent, on which is placed at least one thin layer 2.
  • the substrate 1 is preferably made of a material chosen from silicon, silica, quartz, plastics and glasses.
  • the thin layer 2 comprises fluorescent components defining a first level of fluorescence. It can be made of fluorescent material or include particles or fluorescent molecules. Thus, it can be constituted by a photosensitive resin, fluorescent or comprising fluorescent particles, such as Duramide® 7505 sold by the company OLIN Microelectronic Material.
  • the thin layer 2 is deposited on the substrate 1, by any type of known method.
  • it can be deposited by a chemical vapor deposition process, under low pressure called the LPCVD process (“Low Pressure Chemical Vapor Deposition”), or under plasma also called process
  • the thin layer 2 can also be produced by a deposition of tetraethoxysilane (Si (OC 2 H 5 ) 4 or TEOS), by a process of deposition by centrifugation of a layer of photoresist known under the Anglo-Saxon terms of “spin- coating ”, by localized deposition of resin (“ lift-off ”process), by evaporation, by spraying or by dip-stretching.
  • the thin layer 2 preferably comprises at least one opening 3 freeing the surface of the substrate 1. In FIG. 2, seven openings 3 are formed in the thin layer 2 and they define a second level of fluorescence corresponding to the level of fluorescence of the substrate 1.
  • the level of fluorescence of the substrate is at least 10 times lower than the first level of fluorescence of the thin layer 2, and preferably 100 lower than the first level of fluorescence.
  • All of the openings 3 form patterns and they are produced by any type of known means. They are, for example, formed by etching, by photolithography, by photolithography followed by etching ("lift-off" process). Thus, for a thin layer 2 of photosensitive resin, the openings 3 are preferably produced by a conventional photolithography step (exposure then chemical development).
  • the thin layer 2 comprises at least one zone 2a exposed by a light source 5, which is, for example, a mercury vapor lamp. Two zones
  • the zones 2a then have an intermediate level of fluorescence, lower than the first level of fluorescence defined by the non-exposed part of the layer thin 2 not exposed and, in the example described, greater than the second level of fluorescence of the openings 3.
  • the choice of parameters such as the wavelength, the power and the time period of the light radiation emitted by the light source 5 determine the intermediate level of fluorescence, so that it is lower than the first level of fluorescence of the non-exposed thin layer and higher than the second level of fluorescence, that is to say, most often, not zero. These parameters are adjusted according to the type of material constituting the thin layer as well as the thickness thereof.
  • the fluorescence level of a thin layer of Duramide® 7505 resin of approximately 10 microns thick can be halved by insulating the thin layer with a mercury vapor lamp, with a power of 14500W / m 2 and an exposure time of 240 minutes.
  • the micro-component 4 has the advantage of being easy to produce. Indeed, the implementation techniques are usual techniques in microelectronics which make it possible to achieve pattern dimensions of the order of 0.3 ⁇ m. They make it possible to collectively manufacture a large number of standard microcomponents on the same substrate and the number of production steps is limited.
  • a method of manufacturing a micro-component consists in depositing on a substrate at least one thin layer comprising fluorescent components and in exposing at least one area of the thin layer so that first and second fluorescence levels are respectively defined by the non-exposed part and by the exposed part of the thin layer.
  • the thin layer 2 may include a plurality of exposed areas, so as to define a plurality of different intermediate levels of fluorescence. Fluorescence levels intermediates are determined according to the global local characteristics of sunshine (power and duration of sunshine). These global characteristics are obtained during one or more successive, independent or complementary sunstrokes
  • the standard micro-component can additionally comprise a plurality of superimposed thin layers, which can be totally, partially or not exposed, so as to define a plurality of fluorescence levels.
  • Each thin layer has at least one opening 3 and the openings 3 of at least two layers can be superimposed.
  • the method of manufacturing such a micro-component then comprises depositing, on the substrate, a plurality of superimposed thin layers.
  • This has the advantage of producing a standard micro-component having dimensions equivalent to those of the objects that the reader, whose calibration or calibration is desired.
  • the thickness of the fluorescent material constituting the patterns is close to that of the areas to be measured on biochips, for example. This makes it possible to calibrate the reader under optical conditions equivalent to those of usual readings.
  • the thickness of the standard micro-component is preferably less than 50 microns, see 10 microns.
  • a second thin layer 6 is deposited by any type of suitable means on the standard micro-component 4 comprising a first layer 2 such as that described in FIG. 2.
  • the second layer 6 then covers the openings 3 , the first thin layer 2 and the exposed areas 2a.
  • the first and second layers 2 and 6 have distinct fluorescence characteristics, either by the nature of the respective fluorescent components that they contain, either by their respective concentrations of fluorescent components.
  • a part of the second layer 6 is then removed (FIG. 4) by any type of suitable means, so as to form zones 6a, 6b and 6c, respectively covering part of the zones 2a of the first thin layer 2, part of the openings 3 and part of the thin layer 2.
  • the zones 6b define a third level of fluorescence corresponding to the fluorescence characteristic of the second thin layer 6.
  • the accumulation of several thin fluorescent layers on each other increasing d 'As much the level of fluorescence, the zones 6a and 6c, respectively superimposed on the zones 2a and on the thin layer 2, define a fourth and a fifth level of fluorescence.
  • the fourth and fifth levels of fluorescence are greater than the highest level of fluorescence of the first and second layers 2 and 6 which are not exposed.
  • the standard micro-component 4 according to FIG. 4 then has 5 different fluorescence levels.
  • a biochip 7 comprises a substrate 1, on which biological probes 8 and the standard micro-component are deposited 4. It is then possible to produce biochips comprising, on the same substrate, at least one micro - standard component and at least one biological probe.
  • the fluorescence levels of the standard micro-component can also be stabilized over time, by depositing, after exposure, at least one thin protective layer, on at least part of the thin layers. of the standard micro-component.
  • the thin protective layer makes it possible to isolate, from the external environment, at least part of the thin layers.
  • a micro-component 4 of the type represented in FIG. 2 comprises a non-fluorescent substrate 1, on which is arranged at least a first structured thin layer 2.
  • the thin layer 2 can also consist of biological molecules marked by particles or fluorescent molecules.
  • this layer is produced and defined by any type of process known in the field of biochips (functionalization, hybridization, adsorption, etc.).
  • the micro-component comprising this type of thin layer can then serve as a reference biochip.
  • the first thin layer 2 is covered with a thin protective layer 9, intended to isolate the first thin layer 2 from the external medium in which the micro-component 4 is located.
  • the external medium is generally air.
  • the protective layer 9 prevents oxidation of the fluorescent components contained in the thin layer 2, which makes the fluorescent components stable over time,
  • the protective layer can be opaque or semi-transparent, when the micro-component is read through the substrate.
  • the substrate is then transparent to the optical reading signals and which can be, for example, glass, silica or plastic.
  • the protective layer 9 must be transparent to the optical reading signals received and returned by the first thin layer 2. This makes it possible to excite and to observe the phenomenon of fluorescence, without disturbing it.
  • the thin protective layer 9 is produced by any type of process suitable for the requirements of the protective layer 9. For example, it can be produced by an LPCVD, PECVD process, by evaporation, by spraying or by "spin- coating ".
  • the protective layer 9 can be structured by any type of means known in microelectronics, so as to cover, for example, at least part of the fluorescent zones.
  • the thin layer 2 can be covered by a plurality of superimposed thin protective layers.
  • the thin protective layer or layers can be used to reinforce the fluorescence characteristics of the thin layer 2.
  • the thin protective layers can be of the type of thin layers described in document WO-A-0248691 .
  • the material forming the thin protective layer can be chosen from the following materials: Ti0 2 , Ta 2 0 5 . Hf0 2 , Zr0 2 , MgO, Si0 2 , Si 3 N 4 , MgF 2 , and YF 3 ⁇ Al 2 0 3> Zr0 4 Ti, Y 2 0 3 , diamond and oxynitrides.
  • the optical thickness corresponds to the product of the refractive index n with the thickness of the thin layer considered, for the wavelength considered.
  • the standard micro-component can, as in FIG. 4, comprise a plurality of thin layers 2 and 6 superimposed, so as to define a plurality of levels of fluorescence.
  • the protective thin layer 9 is deposited on the micro- component 4, so as to completely cover, for example, layers 2 and 6 and the exposed parts of the substrate 1.
  • microcomponents such as standard chips or standard micro-components, having fluorescence characteristics stable over time, which makes it possible to make comparisons between several measurements spread over the time or between different measuring devices, with respect to a time invariant reference.
  • the invention is not limited to the embodiments described above.
  • at least part of the second thin layer 6 can also be exposed, at the same time as the zones 2 a, before or after, with exposure parameters, such as the wavelength, the duration or the power d sunstroke, different or identical.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Un micro-composant étalon (4), destiné au calibrage ou à l'étalonnage d'équipements de mesure de fluorescence, comprend un substrat (1) sur lequel est disposée au moins une couche mince (2). La couche mince (2) comporte des composants fluorescents. Au moins une première zone (3) d'épaisseur nulle est formée dans la couche mince (2), exposant ainsi le substrat (1). La couche mince (2) comporte au moins une zone (2a) insolée, de sorte que des premier et second niveaux de fluorescence sont respectivement définis dans la partie non insolée et dans la zone insolée (2a) de la couche mince 2. Le second niveau de fluorescence est inférieur au premier niveau de fluorescence. Le micro­composant étalon (4) peut également comporter une pluralité de couches minces superposées de manière à définir une pluralité de niveau de fluorescence.

Description

Micro-composant étalon pour le calibrage ou l'étalonnage d'équipements de mesure de fluorescence et biopuce le comportant.
Domaine technique de l'invention
L'invention concerne un micro-composant étalon pour le calibrage et l'étalonnage d'équipements de mesure de fluorescence comprenant un substrat sur lequel est disposée au moins une couche mince comportant des composants fluorescents, ledit micro-composant comportant au moins des premier et second niveaux de fluorescence.
L'invention concerne également une biopuce comportant ledit micro-cόmposant.
L'invention concerne également un procédé de fabrication dudit microcomposant comprenant le dépôt sur un substrat d'au moins une couche mince comportant des composants fluorescents.
État de la technique
Un micro-composant étalon connu (figure 1) comporte un substrat 1 en verre, non fluorescent, sur lequel est déposée une couche 2 en matériau organique fluorescent, de 3 microns d'épaisseur. Il comporte également des ouvertures 3 formées dans la couche 2 par gravure. Ce type de micro-composant permet d'obtenir un niveau de fluorescence correspondant à celui de la couche 2. Cependant les ouvertures 3 ont approximativement une largeur de 4 microns et sont espacées les unes des autres de 8 microns, ce qui n'est pas satisfaisant pour le calibrage des instruments généralement employés.
Le document WO-A-0159503 décrit un micro-composant étalon comportant une couche fluorescente déposée sur un substrat. Il est généralement utilisé pour établir une base de référence entre différents microscopes et pour caractériser une qualité d'image, par exemple en termes de résolution, de contraste, de profondeur de champ et de distorsion. La couche est recouverte par un masque fin, comportant des ouvertures et non fluorescent. Le masque et la couche fluorescente sont plaqués l'un sur l'autre, ce qui nécessite trois opérations de fabrication : la réalisation de la couche, la réalisation du masque et leur assemblage. De plus, le masque et la couche étant réalisés en deux matériaux différents, ils ne peuvent pas être placés sur le même plan optique, au risque de déformer l'image optique de la zone observée.
Le document DE-A-10200865 décrit un étalon pour détecteur de fluorescence, l'étalon comportant plusieurs niveaux de fluorescence respectivement définis par des zones d'épaisseurs différentes. Chaque zone d'une épaisseur prédéterminée correspond à la superposition d'un nombre prédéterminé de couches minces en polymère. De plus, la caractéristique de fluorescence d'une couche mince dépend du taux de réticulation de la couche mince en polymère, le taux de réticulation étant obtenu par l'insolation de la couche mince lors d'une étape de photolithographie. Il est également indiqué que le phénomène d'oxydation des composants fluorescents dû à une insolation (phénomène dit de "Bleaching") est un phénomène néfaste qui est évité dans l'étalon décrit dans le document DE-A-10200865. Un tel étalon est cependant peu pratique à mettre en œuvre, sa fabrication nécessitant une succession d'étapes de réalisation longues et fastidieuses et l'étalon ainsi réalisé peut se révéler encombrant. Objet de l'invention
L'invention a pour but un micro-composant étalon ne présentant pas les inconvénients des micro-composants étalons de l'art antérieur et facile à réaliser.
Selon l'invention, ce but est atteint par les revendications annexées.
Plus particulièrement, ce but est atteint par le fait que les premier et second niveaux de fluorescence sont respectivement définis par une partie non insolée et par au moins une zone insolée de ladite couche mince, le second niveau de fluorescence étant inférieur au premier niveau de fluorescence.
Selon un développement de l'invention, la couche mince comporte au moins une ouverture définissant un troisième niveau de fluorescence inférieur aux premier et second niveaux de fluorescence.
Selon un mode de réalisation préférentiel, la couche mince comporte une pluralité de zones insolées de manière à définir une pluralité de niveaux de fluorescence différents.
Selon une autre caractéristique de l'invention, le micro-composant étalon comporte une pluralité de couches minces superposées, de manière à définir une pluralité de niveaux de fluorescence.
L'invention a également pour objet une biopuce comportant, sur un même substrat, au moins une sonde biologique et au moins un micro-composant étalon tel que décrit ci-dessus. L'invention a également pour but un procédé de fabrication d'un tel microcomposant étalon.
Selon l'invention, ce but est atteint par le fait que le procédé consiste à insoler au moins une zone de la couche mince de manière à ce que des premier et second niveaux de fluorescence soient respectivement définis par la partie non insolée et par la zone insolée de la couche mince.
Description sommaire des dessins
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :
La figure 1 est une représentation schématique d'un micro-composant étalon selon l'art antérieur.
La figure 2 représente schématiquement un premier mode de réalisation d'un micro-composant étalon selon l'invention.
Les figures 3 et 4 représentent un second mode de réalisation d'un microcomposant étalon selon l'invention, respectivement avant et après gravure d'une seconde couche mince. La figure 5 est une représentation schématique d'une biopuce comprenant un micro-composant étalon selon l'invention.
Les figures 6 et 7 représentent des troisième et quatrième modes de réalisation d'un micro-composant étalon comportant une couche mince de protection selon l'invention. Description de modes particuliers de réalisation.
Sur la figure 2, un micro-composant étalon 4 destiné au calibrage ou à l'étalonnage d'équipements de mesure de fluorescence, tels que les microscopes de fluorescence confocale ou non, comporte un substrat 1 , non- fluorescent , sur lequel est disposée au moins une couche mince 2. Le substrat 1 est, de préférence, constitué par un matériau choisi parmi le silicium, la silice, le quartz, les plastiques et les verres.
La couche mince 2 comporte des composants fluorescents définissant un premier niveau de fluorescence. Elle peut être réalisée en matériau fluorescent ou comporter des particules ou des molécules fluorescentes. Ainsi, elle peut être constituée par une résine photosensible, fluorescente ou comportant des particules fluorescentes, telles que la Duramide® 7505 commercialisée par la société OLIN Microelectronic Material.
La couche mince 2 est déposée sur le substrat 1 , par tout type de procédé connu. À titre d'exemple, elle peut être déposée par un procédé de dépôt chimique en phase vapeur, sous basse pression dit procédé LPCVD (« Low Pressure Chemical Vapor Déposition »), ou sous plasma aussi appelé procédé
PECVD (« Plasma Enhanced Chemical Vapor Déposition »). La couche mince 2 peut également être réalisée par un dépôt de tetraethoxysilane (Si(OC2H5)4 ou TEOS), par un procédé de dépôt par centrifugation d'une couche de photorésine connu sous les termes anglo-saxon de « spin-coating », par un dépôt localisé de résine (procédé « lift-off »), par évaporation, par pulvérisation ou par trempage- étirage. La couche mince 2 comporte, de préférence, au moins une ouverture 3 libérant la surface du substrat 1. Sur la figure 2, sept ouvertures 3 sont formées dans la couche mince 2 et elles définissent un second niveau de fluorescence correspondant au niveau de fluorescence du substrat 1. Le niveau de fluorescence du substrat est au moins 10 fois inférieur au premier niveau de fluorescence de la couche mince 2, et préférentiellement 100 inférieur au premier niveau de fluorescence. L'ensemble des ouvertures 3 forme des motifs et elles sont réalisées par tout type de moyens connus. Elles sont, par exemple, formées par gravure, par photolithographie, par photolithographie suivie d'une gravure (procédé « lift-off »). Ainsi, pour une couche mince 2 en résine photosensible, les ouvertures 3 sont, de préférence, réalisées par une étape de photolithographie classique (insolation puis révélation chimique).
La couche mince 2 comporte au moins une zone 2a insolée par une source lumineuse 5, qui est, par exemple, une lampe à vapeur de mercure. Deux zones
2a insolées sont représentées sur la figure 2. L'insolation des zones 2a de la couche mince 2 engendre une oxydation des composants fluorescents de la couche mince 2 réduisant leur caractéristique de fluorescence. Ce phénomène plus connu sous le nom anglo-saxon de « bleaching » est généralement considéré comme néfaste. Malgré ce préjugé, ce phénomène est, selon l'invention, utilisé pour diminuer, de manière contrôlée, les caractéristiques de fluorescence de la couche mince 2 au niveau des zones 2a, et donc le niveau de fluorescence des zones 2a. Ainsi, la couche mince 2 présente deux niveaux de fluorescence distincts respectivement définis par la partie non insolée de la couche mince 2 et par les zones insolées 2a.
Les zones 2a ont alors un niveau de fluorescence intermédiaire, inférieur au premier niveau de fluorescence défini par la partie non insolée de la couche mince 2 non insolée et, dans l'exemple décrit, supérieur au second niveau de fluorescence des ouvertures 3. Le choix des paramètres tels que la longueur d'onde, la puissance et la période de temps du rayonnement lumineux émis par la source lumineuse 5 déterminent le niveau de fluorescence intermédiaire, pour qu'il soit inférieur au premier niveau de fluorescence de la couche mince non insolée et supérieur au second niveau de fluorescence, c'est-à-dire, le plus souvent, non nul. Ces paramètres sont ajustés en fonction du type de matériau constituant la couche mince ainsi que de l'épaisseur de celle-ci. À titre d'exemple, le niveau de fluorescence d'une couche mince en résine Duramide® 7505 d'environ 10 microns d'épaisseur peut être réduit de moitié en insolant la couche mince avec une lampe à vapeur de mercure, avec une puissance de 14500W/m2 et une durée d'insolation de 240 minutes.
Le micro-composant 4 présente l'avantage d'être facile à réaliser. En effet, les techniques de mise en œuvre sont des techniques usuelles en microélectronique qui permettent d'atteindre des dimensions de motifs de l'ordre de 0,3μm. Elles permettent de fabriquer collectivement un grand nombre de microcomposants étalons sur un même substrat et le nombre d'étapes de réalisation est limité. Ainsi, selon l'invention, un procédé de fabrication d'un micro- composant consiste à déposer sur un substrat au moins une couche mince comportant des composants fluorescents et à insoler au moins une zone de la couche mince de manière à ce que des premier et second niveaux de fluorescence soient respectivement définis par la partie non insolée et par la zone insolée de la couche mince.
Selon une première variante de réalisation, la couche mince 2 peut comporter une pluralité de zones insolées, de manière à définir une pluralité de niveaux intermédiaires de fluorescence différents. Les niveaux de fluorescence intermédiaires sont déterminés en fonction des caractéristiques locales globales d'insolation (puissance et durée d'insolation). Ces caractéristiques globales sont obtenues au cours d'une ou plusieurs insolations successives, indépendantes ou complémentaires
Selon une autre variante de réalisation, le micro-composant étalon peut comporter en plus, une pluralité de couches minces superposées, pouvant être totalement, partiellement ou non insolées, de manière à définir une pluralité de niveaux de fluorescence. Chaque couche mince comporte au moins une ouverture 3 et les ouvertures 3 d'au moins deux couches peuvent être superposées. Le procédé de fabrication d'un tel micro-composant comporte alors le dépôt, sur le substrat, d'une pluralité de couches minces superposées. Ceci présente l'avantage de réaliser un micro-composant étalon ayant des dimensions équivalentes à celles des objets que le lecteur, dont on souhaite le calibrage ou l'étalonnage. En particulier, l'épaisseur du matériau fluorescent constituant les motifs est proche de celle des zones à mesurer sur des biopuces, par exemple. Ceci permet de calibrer le lecteur dans des conditions optiques équivalentes à celles de lectures usuelles. L'épaisseur du micro- composant étalon est, de préférence, inférieure à 50 microns, voir 10 microns.
Ainsi, sur la figure 3, une seconde couche mince 6 est déposée par tout type de moyen approprié sur le micro-composant étalon 4 comportant une première couche 2 telle que celle décrite à la figure 2. La seconde couche 6 recouvre alors les ouvertures 3, la première couche mince 2 et les zones 2a insolées. Les première et seconde couches 2 et 6 ont des caractéristiques de fluorescence distinctes, soit par la nature des composants fluorescents respectifs qu'elles comportent, soit par leurs concentrations respectives en composants fluorescents.
Une partie de la seconde couche 6 est ensuite retirée (figure 4) par tout type de moyen approprié, de manière à former des zones 6a, 6b et 6c, recouvrant respectivement une partie des zones 2a de la première couche mince 2, une partie des ouvertures 3 et une partie de la couche mince 2. Les zones 6b définissent un troisième niveau de fluorescence correspondant à la caractéristique de fluorescence de la seconde couche mince 6. L'accumulation de plusieurs couches minces fluorescentes l'une sur l'autre augmentant d'autant le niveau de fluorescence, les zones 6a et 6c, respectivement superposées aux zones 2a et à la couche mince 2, définissent un quatrième et un cinquième niveau de fluorescence. Les quatrième et cinquième niveaux de fluorescence sont supérieurs au niveau de fluorescence le plus élevé des première et seconde couches 2 et 6 non insolées. Le micro-composant étalon 4 selon la figure 4, comporte alors 5 niveaux de fluorescence différents.
Le micro-composant étalon peut être réalisé sur un substrat, sur lequel sont ensuite réalisées des sondes biologiques. Ainsi, sur la figure 5, une biopuce 7 comporte un substrat 1 , sur lequel sont déposés des sondes biologiques 8 et le micro-composant étalon 4. Il est alors possible de réaliser des biopuces comportant, sur un même substrat, au moins un micro-composant étalon et au moins une sonde biologique.
Les niveaux de fluorescence du micro-composant étalon peuvent également être stabilisés dans le temps, en disposant par dépôt, après insolation, au moins une couche mince de protection, sur au moins une partie des couches minces du micro-composant étalon. La couche mince de protection permet d'isoler, du milieu extérieur, au moins une partie des couches minces.
À titre d'exemple représenté sur la figure 6, un micro-composant 4 du type représenté sur la figure 2, comporte un substrat 1 non-fluorescent, sur lequel est disposée au moins une première couche mince 2 structurée. La couche mince 2 peut également être constituée de molécules biologiques marquées par des particules ou des molécules fluorescentes. Dans ce cas, cette couche est réalisée et définie par tout type de procédés connus dans le domaine des biopuces (fonctionnalisation, hybridation, adsorption...). Le micro-composant comportant ce type de couche mince peut, alors, servir de biopuce de référence.
La première couche mince 2 est recouverte d'une couche mince de protection 9, destinée à isoler la première couche mince 2 du milieu extérieur dans lequel se trouve le micro-composant 4. Le milieu extérieur est généralement de l'air. Ainsi, la couche de protection 9 évite l'oxydation des composants fluorescents contenus dans la couche mince 2, ce qui rend les composants fluorescents stables dans le temps,
La couche de protection peut être opaque ou semi-transparente, lorsque la lecture du micro-composant est réalisée à travers le substrat. Le substrat est, alors, transparent aux signaux optiques de lecture et qui peut être, par exemple, en verre, en silice ou en plastique. Au contraire, dans le cas où la lecture du micro-composant est réalisée du côté opposé au substrat, la couche de protection 9 doit être transparente aux signaux optiques de lecture reçus et renvoyés par la première couche mince 2. Ceci permet d'exciter et d'observer le phénomène de fluorescence, sans le perturber. La couche mince de protection 9 est réalisée par tout type de procédé approprié aux exigences de la couche de protection 9. À titre d'exemple, elle peut être réalisée par un procédé LPCVD, PECVD, par évaporation, par pulvérisation ou par "spin-coating". Avantageusement, la couche de protection 9 peut être structurée par tout type de moyens connus dans la microélectronique, de manière à recouvrir, par exemple, au moins une partie des zones fluorescentes.
Selon une variante de réalisation, la couche mince 2 peut être recouverte par une pluralité de couches minces de protection superposées. De plus, la ou les couches minces de protection peuvent être utilisées pour renforcer les caractéristiques de fluorescence de la couche mince 2. Dans ce cas, les couches minces de protection peuvent être du type des couches minces décrites dans le document WO-A-0248691. En particulier, le matériau formant la couche mince de protection peut être choisi parmi les matériaux suivants : Ti02, Ta205. Hf02, Zr02, MgO, Si02, Si3N4, MgF2, et YF Al203> Zr04Ti, Y203, le diamant et les oxynitrures. De plus, l'épaisseur de la couche mince de protection ou de chaque couche mince de protection est, de préférence, calculée à partir de la formule suivante : n.é = . λ / 4, dans laquelle n est l'indice de réfraction du matériau composant la couche mince de protection pour une longueur d'onde λ du signal optique de lecture reçu par la première couche mince, e est l'épaisseur optique de la couche de protection et k est un entier impair. L'épaisseur optique correspond au produit de l'indice de réfraction n avec l'épaisseur de la couche mince considérée, pour la longueur d'onde considérée.
Comme représenté à la figure 7, le micro-composant étalon peut, comme sur la figure 4, comporter une pluralité de couches minces 2 et 6 superposées, de manière à définir une pluralité de niveaux de fluorescence. Après structuration de la couche mince 6, la couche mince de protection 9 est déposée sur le micro- composant 4, de manière à recouvrir, par exemple, totalement les couches 2 et 6 et les parties découvertes du substrat 1. Le micro-composant 4, notamment destiné à l'étalonnage ou au calibrage des équipements de mesure de la fluorescence, comporte alors plusieurs niveaux de fluorescence protégés contre le milieu extérieur.
L'emploi d'une couche mince de protection permet de réaliser des microcomposants, tels que les puces étalons ou micro-composants étalons, ayant des caractéristiques de fluorescence stables dans le temps, ce qui permet de réaliser des comparaisons entre plusieurs mesures étalées dans le temps ou entre différents appareils de mesure, par rapport à une référence invariant dans le temps.
L'invention n'est pas limitée aux modes de réalisation décrits ci-dessus. Ainsi, au moins une partie de la seconde couche mince 6 peut également être insolée, en même temps que les zones 2a, avant ou après, avec des paramètres d'insolation, tels que la longueur d'onde, la durée ou la puissance d'insolation, différents ou identiques.

Claims

Revendications
1. Micro-composant étalon pour le calibrage et l'étalonnage d'équipements de mesure de fluorescence comprenant un substrat (1) sur lequel est disposée au moins une couche mince (2, 6) comportant des composants fluorescents, ledit micro-composant comportant au moins des premier et second niveaux de fluorescence, micro-composant caractérisé en ce que les premier et second niveaux de fluorescence sont respectivement définis par une partie non insolée et par au moins une zone insolée (2a) de ladite couche mince (2, 6), le second niveau de fluorescence étant inférieur au premier niveau de fluorescence.
2. Micro-composant étalon selon la revendication 1 , caractérisé en ce que la couche mince (2, 6) comporte au moins une ouverture (3) définissant un troisième niveau de fluorescence inférieur aux premier et second niveaux de fluorescence.
3. Micro-composant étalon selon la revendication 2, caractérisé en ce que le troisième niveau de fluorescence correspond au niveau de fluorescence du substrat.
4. Micro-composant étalon selon l'une quelconque des revendications 2 ou 3, caractérisé en ce que le troisième niveau de fluorescence est au moins 10 fois inférieur au premier niveau de fluorescence.
5. Micro-composant étalon selon la revendication 4, caractérisé en ce que le troisième niveau de fluorescence est 100 fois inférieur au premier niveau de fluorescence.
6. Micro-composant étalon selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la couche mince (2, 6) est constituée par un matériau fluorescent.
7. Micro-composant étalon selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la couche mince (2, 6) comporte une pluralité de zones insolées de manière à définir une pluralité de niveaux de fluorescence différents.
8. Micro-composant étalon selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la couche mince (2, 6) est constituée par une résine photosensible.
9. Micro-composant étalon selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le substrat (1) est constitué par un matériau choisi parmi le silicium, la silice synthétique, le quartz, les plastiques et les verres.
10. Micro-composant étalon selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'au moins une partie de la couche mince (2, 6) est recouverte par une couche mince de protection (9).
11. Micro-composant selon la revendication 10, caractérisé en ce que la couche mince de protection (9) est transparente à des signaux optiques de lecture reçus et renvoyés par la couche mince (2, 6).
12. Micro-composant selon l'une quelconque des revendications 10 et 11 , caractérisé en ce que le micro-composant (4) comporte une pluralité de couches minces de protection (9) superposées.
13. Micro-composant selon l'une quelconque des revendications 10 à 12, caractérisé en ce que le matériau formant la couche mince de protection (9) est choisi parmi les matériaux suivants : Ti02, Ta205, Hf02, Zr02, MgO, Si02, Si3N4, MgF2, YF3, Al203, Zr04Ti, Y2O3, le diamant et les oxynitrures.
14. Micro-composant selon l'une quelconque des revendications 10 à 13, caractérisé en ce que l'épaisseur de la couche mince de protection (9) est calculée à partir de la formule suivante : n.e = k. λ / 4, dans laquelle n est l'indice de réfraction du matériau composant la couche mince de protection (9) pour une longueur d'onde λ du signal optique de lecture reçu par la couche mince (2, 6), e est l'épaisseur optique de la couche mince de protection (9) et k est un entier impair.
15. Micro-composant étalon selon l'une quelconque des revendications 1 à 14, caractérisé en ce que le micro-composant étalon (4) comporte une pluralité de couches minces (2, 6) superposées de manière à définir une pluralité de niveaux de fluorescence.
16. Micro-composant étalon selon la revendication 15, caractérisé en ce que les ouvertures (3) d'au moins deux couches minces (2, 6) sont superposées.
17. Biopuce caractérisée en ce qu'elle comporte, sur un même substrat, au moins une sonde biologique et au moins un micro-composant étalon selon l'une quelconque des revendications 1 à 16.
18. Procédé de fabrication d'un micro-composant étalon selon l'une quelconque des revendications 1 à 16, comprenant le dépôt sur un substrat (1) d'au moins une couche mince (2, 6) comportant des composants fluorescents, procédé caractérisé en ce qu'il consiste à insoler au moins une zone (2a) de la couche mince (2, 6) de manière à ce que des premier et second niveaux de fluorescence soient respectivement définis par la partie non insolée et par la zone insolée (2a) de la couche mince (2, 6).
19. Procédé de fabrication d'un micro-composant étalon selon la revendication 18, caractérisé en ce qu'il comporte le dépôt, sur le substrat (1), d'une pluralité de couches minces superposées (2, 6).
20. Procédé de fabrication d'un micro-composant étalon selon l'une des revendications 18 et 19, caractérisé en ce qu'il comporte après insolation le dépôt d'une couche mince de protection (9).
PCT/FR2003/003656 2002-12-17 2003-12-10 Micro-composant étalon pour le calibrage ou l'étalonnage d'équipements de mesure de fluorescence et biopuce le comportant. WO2004065946A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2003296803A AU2003296803A1 (en) 2002-12-17 2003-12-10 Standard micro-component for calibrating or standardizing fluorescence measuring instruments and biochip comprising same
JP2004566985A JP2006510916A (ja) 2002-12-17 2003-12-10 蛍光測定器を較正又は標準化するための標準マイクロ素子及びこれを備えるバイオチップ
EP03815387A EP1573304A1 (fr) 2002-12-17 2003-12-10 Micro-composant etalon pour le calibrage ou l'etalonnage d'equipements de mesure de fluorescence et biopuce le comportant
US10/538,866 US20060060931A1 (en) 2002-12-17 2003-12-10 Standard micro-component for calibrating or standardizing fluorescence measuring instruments and biochip comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0216012 2002-12-17
FR0216012A FR2848670B1 (fr) 2002-12-17 2002-12-17 Micro-composant etalon pour le calibrage ou l'etalonnage d'equipements de mesure de fluorescence et biopuce le comportant

Publications (1)

Publication Number Publication Date
WO2004065946A1 true WO2004065946A1 (fr) 2004-08-05

Family

ID=32338898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/003656 WO2004065946A1 (fr) 2002-12-17 2003-12-10 Micro-composant étalon pour le calibrage ou l'étalonnage d'équipements de mesure de fluorescence et biopuce le comportant.

Country Status (6)

Country Link
US (1) US20060060931A1 (fr)
EP (1) EP1573304A1 (fr)
JP (1) JP2006510916A (fr)
AU (1) AU2003296803A1 (fr)
FR (1) FR2848670B1 (fr)
WO (1) WO2004065946A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208384A (ja) * 2005-01-25 2006-08-10 Samsung Electronics Co Ltd 光学的スキャナを補正するための装置、それを製造する方法及びそれを利用して光学的スキャナを補正する方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8189887B2 (en) * 2006-10-02 2012-05-29 Johnson & Johnson Consumer Companies, Inc. Imaging standard apparatus and method
US8107696B2 (en) * 2006-10-02 2012-01-31 Johnson & Johnson Consumer Companies, Inc. Calibration apparatus and method for fluorescent imaging
GB0707291D0 (en) * 2007-04-16 2007-05-23 Cancer Rec Tech Ltd Microscope test sample
JP6087049B2 (ja) 2011-11-02 2017-03-01 浜松ホトニクス株式会社 蛍光ファントム装置および蛍光イメージング方法
CN108603836A (zh) * 2015-12-02 2018-09-28 美国政府健康及人类服务部 作为用于显微术和荧光成像的基准标记的荧光纳米金刚石

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242114B1 (en) * 1994-07-05 2001-06-05 Optical Coating Laboratory Solid fluorescence reference and method
WO2002048691A1 (fr) * 2000-12-14 2002-06-20 Commissariat A L'energie Atomique Dispositif de renforcement de fluorescence large bande a faibles pertes et capteur optique biologique ou chimique l'utilisant.
DE10200865A1 (de) * 2001-03-28 2002-10-10 Clondiag Chip Tech Gmbh Vorrichtung zur Referenzierung von Fluoreszenzsignalen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242114B1 (en) * 1994-07-05 2001-06-05 Optical Coating Laboratory Solid fluorescence reference and method
WO2002048691A1 (fr) * 2000-12-14 2002-06-20 Commissariat A L'energie Atomique Dispositif de renforcement de fluorescence large bande a faibles pertes et capteur optique biologique ou chimique l'utilisant.
DE10200865A1 (de) * 2001-03-28 2002-10-10 Clondiag Chip Tech Gmbh Vorrichtung zur Referenzierung von Fluoreszenzsignalen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208384A (ja) * 2005-01-25 2006-08-10 Samsung Electronics Co Ltd 光学的スキャナを補正するための装置、それを製造する方法及びそれを利用して光学的スキャナを補正する方法
JP4504929B2 (ja) * 2005-01-25 2010-07-14 三星電子株式会社 光学的スキャナを補正するための装置、それを製造する方法及びそれを利用して光学的スキャナを補正する方法

Also Published As

Publication number Publication date
FR2848670B1 (fr) 2005-06-10
EP1573304A1 (fr) 2005-09-14
FR2848670A1 (fr) 2004-06-18
AU2003296803A1 (en) 2004-08-13
JP2006510916A (ja) 2006-03-30
US20060060931A1 (en) 2006-03-23
AU2003296803A8 (en) 2004-08-13

Similar Documents

Publication Publication Date Title
EP2613181B1 (fr) Détecteur infrarouge comportant un boîtier intégrant au moins un réseau de diffraction
EP3824326A1 (fr) Systeme optique et son procede de fabrication
US11747529B2 (en) Wafer level microstructures for an optical lens
FR2965067A1 (fr) Filtre spectral passe bande a forte selectivite et polarisation controlee
FR3065132A1 (fr) Dispositif et procede d'imagerie multispectrale dans l'infrarouge
FR2926635A1 (fr) Dispositif de spectroscopie en longueur d'onde a filtres integres
EP3391027B1 (fr) Supports amplificateurs de contraste utilisant un materiau bidimensionnel
EP1573304A1 (fr) Micro-composant etalon pour le calibrage ou l'etalonnage d'equipements de mesure de fluorescence et biopuce le comportant
CA2637223C (fr) Detecteur de rayonnement electromagnetique et procede de fabrication d'un tel detecteur
EP2368099B1 (fr) Dispositif de spectroscopie optique comportant une pluralité de sources d'émission
WO2021083787A1 (fr) Element optique diffractif comprenant une metasurface pour la microscopie tirf
EP3583402A1 (fr) Détecteur optique de particules
FR3137448A1 (fr) Matrice de filtrage multispectral à filtres de Fabry-Pérot incurvés et procédés de fabrication
EP3832301A1 (fr) Dispositif pour la caractérisation photo-acoustique d'une substance gazeuse et procédé de fabrication d'un tel dispositif
FR2779835A1 (fr) Dispositif de diffraction de lumiere enfoui dans un materiau
FR2849922A1 (fr) Support d'elements chromophores.
EP3655821A1 (fr) Procédé de lithographie interférentielle
Behl et al. Characterization of Thin AlN/Ag/AlN-Reflector Stacks on Glass Substrates for MEMS Applications. Micro 2024, 4, 142–156
FR2793560A1 (fr) Support d'analyse a microcavites
EP4392762A1 (fr) Lame optique biocompatible destinee a la microscopie a reflexion totale interne et systeme d'imagerie microscopique comportant une telle lame
Grabarnik et al. Concave diffraction gratings fabricated with planar lithography
FR3111979A1 (fr) Revetement reflechissant des moyens de reflexion d’un codeur optique et codeur optique ainsi realise
FR3088446A1 (fr) Procede de fabrication d'un filtre multi-spectral et filtre multi-spectral ainsi fabrique
FR2984489A1 (fr) Lame interferometrique a deux ondes comportant une cavite pleine partiellement resonante et son procede de fabrication
WO2004017055A2 (fr) Dispositif de support d'elements chromophores

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006060931

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10538866

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003815387

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004566985

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2003815387

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10538866

Country of ref document: US