WO2004060817A1 - 低温殺菌方法 - Google Patents

低温殺菌方法 Download PDF

Info

Publication number
WO2004060817A1
WO2004060817A1 PCT/JP2004/000001 JP2004000001W WO2004060817A1 WO 2004060817 A1 WO2004060817 A1 WO 2004060817A1 JP 2004000001 W JP2004000001 W JP 2004000001W WO 2004060817 A1 WO2004060817 A1 WO 2004060817A1
Authority
WO
WIPO (PCT)
Prior art keywords
microorganisms
treated
microorganism
temperature
hydrogen peroxide
Prior art date
Application number
PCT/JP2004/000001
Other languages
English (en)
French (fr)
Inventor
Mitsuo Yamada
Chang Il Lee
Hiroyasu Nakamura
Original Assignee
Yamada Evidence Research Co, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamada Evidence Research Co, Ltd. filed Critical Yamada Evidence Research Co, Ltd.
Priority to JP2005507952A priority Critical patent/JPWO2004060817A1/ja
Publication of WO2004060817A1 publication Critical patent/WO2004060817A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases
    • A61L2/186Peroxide solutions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/358Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/24Medical instruments, e.g. endoscopes, catheters, sharps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Definitions

  • the present invention is directed to a low temperature that can kill microorganisms present in water, aqueous suspensions, aqueous solutions, aqueous fluids such as 7-slurries and emulsions, or microorganisms present in foods, cooking utensils, medical equipment, etc. at 10 ° C or less. It relates to a sterilization method. More specifically, the present invention relates to a method for sterilizing microorganisms, such as thermostable bacteria, that are difficult to kill at low temperatures at a temperature of 10 ° C or less. Background art
  • the most common sterilization method is heat sterilization, but foods are generally denatured or degraded by heating, so heat sterilization often reduces the commercial value of foods.
  • spores have a high heat resistance, and when heat sterilization is used, the quality of food deteriorates remarkably, and many people cannot use it.
  • ozone utilization technology utilization technology of acid water obtained by electrolysis of water, and utilization technology of combination of strong real water and strong acidic water are disclosed.
  • bacteria develop enzymes such as catalase, gletathione, alkaline hydroperoxide reductase, and superoxide dismutase in response to oxygen stress during the process of evolution.
  • enzymes such as catalase, gletathione, alkaline hydroperoxide reductase, and superoxide dismutase in response to oxygen stress during the process of evolution.
  • These can be effectively sterilized when bacteria are actively growing, such as hydrogen peroxide, hypochlorous acid, and o. It is also resistant to zons.
  • Japanese Patent Application Laid-Open No. 2001-231525 discloses a method for sterilizing soil-derived spores such as Bacillus cereus by contacting an aqueous solution containing hydroxyradiation force.
  • hydroxy radical is a reaction product of hydrogen peroxide and peracetic acid or a mixture of ozone and an aqueous solution of any kind.
  • the mixing ratio of ozone and / or ozone is from 1:10 mol to 10: 1 mol.
  • one or more physical treatments selected from brushing, showering, and vibration energy are applied to the food immersed on the violent night. ing.
  • Japanese Patent Application Laid-Open No. 2001-86964 discloses a method for completely sterilizing thermophilic bacteria and heat-resistant spores present in an object without leaving a bactericide in the object.
  • a sterilization method is disclosed in which a material is treated with a disinfectant such as ozone or hydrogen peroxide and then treated with low-pressure superheated steam.
  • an object of the present invention is to provide a low-bacterial method capable of completely sterilizing microorganisms including microorganisms that are difficult to completely sterilize at low temperatures, such as heat-resistant bacteria. Disclosure of the invention
  • the present inventors have conducted intensive studies in view of the above, and as a result, at a low temperature of 10 ° C. or less, the action of the radical species on microorganisms is not immediate. Instead, there is an action point that acts after a predetermined time, and it has been found that a radical derived from hydrogen peroxide acts on the microorganism at this action point, which led to the creation of the present invention. That is, the present invention provides a method for treating a microorganism to be treated present in water or an aqueous fluid or a microorganism to be treated in an object to be sterilized in water or an aqueous fluid in a 1.5 to 5% concentration range.
  • radical species derived from hydrogen peroxide can be allowed to act on microorganisms to be sterilized at a low temperature, which is very advantageous in terms of safety.
  • the method is characterized in that the microorganism to be treated is subjected to a treatment for a time longer than reaching a point of action of a radical species derived from hydrogen peroxide at a predetermined concentration.
  • microorganisms existing in water or aqueous fluid at low temperature and low free radical concentration especially microorganisms that cannot be completely sterilized by conventional methods, such as thermostable bacteria and spores, can be used. It is possible to completely sterilize.
  • This pasteurization method is particularly effective for the complete sterilization of microorganisms that may be present in the water or aqueous fluid to be treated.
  • the condition of water or aqueous fluid means that it includes the type of water or aqueous medium, additives and their concentrations, viscosity, water content, and pH value, which are factors that shift the point of action.
  • FIG. 1 is a graph showing the relationship between the treatment time and the number of bacteria in the low bacteria method of the present invention.
  • FIG. 2 is a graph showing an example of the processing time and temperature program of the pasteurization method of the present invention.
  • FIG. 3 is an ESR chart showing the residual amount of radicals before and after a lapse of a predetermined time at a low temperature.
  • aqueous fluid is meant to include aqueous suspensions and aqueous solutions having a predetermined flow rate, such as aqueous slurries such as fish surimi, and aqueous emulsions.
  • aqueous slurries such as fish surimi
  • aqueous emulsions such as fish surimi, and aqueous emulsions.
  • water or aqueous fluid is generically referred to as an aqueous system.
  • the predetermined fluidity refers to the treatment of an aqueous system with radicals derived from hydrogen peroxide in the presence of visible light. It means the fluidity that can be irradiated with visible light.
  • organism to be treated means one or more microorganisms existing in the presence of water, that is, microorganisms to be treated by the pasteurization method of the present invention. Therefore, when there are a plurality of microorganisms, in the present invention, the time required to reach the action point, that is, the microorganism having the longest action time is considered as the microorganism to be treated.
  • radical concentration derived from hydrogen peroxide means the total concentration of the amount of radicals derived from hydrogen peroxide present in the aqueous system itself and the amount of hydrogen peroxide added.
  • point of action refers to the point at which a given microorganism-derived radical is inactivated or killed when it is allowed to act on a particular microorganism at a temperature of 1 ° C or less.
  • the time required to reach this point of action is hereinafter referred to as the action time.
  • This action time is a time determined by the concentration and temperature of radicals derived from hydrogen peroxide in a specific microorganism.
  • FIG. 1 is a graph showing the relationship between the processing time and the number of bacteria in the low bacteria method of the present invention
  • FIG. 2 is a graph showing an example of the processing time and the ⁇ program of the pasteurization method of the present invention.
  • FIG. 3 is an ESR chart showing the residual amount of radicals before and after the lapse of a predetermined time at a low temperature.
  • the temperature is 10 ° C or less, preferably 4 ° C or less, more preferably 0 ° C or less.
  • hydrogen peroxide-derived radicals exist in water or an aqueous medium for a long time of 24 hours or more.
  • the effect of the radical species on the microorganisms was This is based on the finding that there is an action point that acts after a predetermined time, not an immediate one, and that a radical derived from hydrogen peroxide acts on the microorganism at this action point.
  • the object to be sterilized in the present invention is not particularly limited as long as it is an aqueous system and can be sterilized at a predetermined temperature, and examples thereof include foods, cooking utensils, medical utensils, beauty utensils, and physical containers. More specifically, marine products such as fish and shellfish, fruits and vegetables such as vegetables and fruits, and processed products thereof, for example, kneaded product raw materials, beverages and the like can be mentioned.
  • the aqueous system used in the treatment is not particularly limited as long as it is an aqueous fluid having a predetermined fluidity, that is, a material which can uniformly mix the object to be treated and can preferably emit visible light.
  • aqueous fluid having a predetermined fluidity that is, a material which can uniformly mix the object to be treated and can preferably emit visible light.
  • Water, saline, dextrose, aqueous solutions in which salts, etc. are dissolved, aqueous suspensions, fish surimi, minced meat, poultry and other minced meats, honey, sausages, and water-containing slurries such as mixtures thereof are appropriately selected. .
  • the microorganism to be treated in the present invention is appropriately selected according to the aqueous system to be treated, and generally includes a microorganism group including thermostable spores.
  • Thermostable spores are bacteria that form spores when exposed to adverse conditions such as drought and high temperature, and typically belong to the aerobic microorganism belonging to the genus Baci 11 us and the anaerobic genus C 1 ostridum.
  • the spores to be treated according to the present invention are not particularly limited, but may be Gens Bacillus, for example, B. cereus, B. coag 1 ans, B. subtilis, B. stearot herrmo pho i 1 us, B. licheniio rmi s, B. ma cerans, B. megateri um, B. sp ha ricus, B. pumi lus, B. thri ng ensis S, Ge nus C lostridi um ⁇ For example, . a s t e u r i an n um C. s p o ro g e ne s, C. b u t y r i cum, C. b i i e r me n t a n s, C. p e r f r i n.
  • radical species used in the present invention are obtained from radical sources known in the art, and are not particularly limited in the present invention.
  • radicals derived from hydrogen peroxide typified by hydroxy radicals. That is, radicals derived from hydrogen peroxide and represented by hydroxy radicals do not remain as water over time at room temperature after sterilization under the conditions of the present invention. Radical species derived from ozone and the like also change to oxygen, but radicals derived from ozone must have a high concentration when sterilizing spores, and their long-term stability is lower than that of hydroxy radicals. Absent. As conventionally known, radicals derived from hydrogen peroxide are generated under irradiation of light such as hydrogen peroxide or peracetic acid, particularly visible light. The following description is based on a radical derived from hydrogen peroxide as a representative radical source.
  • the radical concentration in the aqueous system is set to 0-3 to 3% in consideration of sterilization of foods and the like. If the radical concentration is lower than the above range, the bactericidal effect may not be sufficiently exhibited. Conversely, if the radical concentration derived from hydrogen peroxide exceeds the above range, the concentration in aqueous systems such as foods may decrease. Other components present in, for example, proteins Etc. may be denatured.
  • the target of sterilization is fish
  • farmed fish, poultry, and livestock may be given an ascorbic acid-based antistress agent to prevent stress.
  • the sterilization profile is determined by the ESR device described below. Needs to be corrected.
  • radicals derived from hydrogen peroxide immediately act on microorganisms such as thermostable spores.
  • the present inventors have found that at temperatures exceeding 10 ° C, hydroxyl radicals are relatively easily decomposed and disappear, but at temperatures below 10 ° C for several days. It has been found by the present inventors that it exists stably.
  • thermostable spore bacterium when a given thermostable spore bacterium continues to act on a radical derived from hydrogen peroxide in an aqueous system at a temperature of 10 ° C. or less, for example, 4 ° C., a given time elapses Later, they found that they died completely after a lapse of 24 hours, especially about 96 hours.
  • an action point such an action point
  • the elapsed time from the start of processing to such an action point is called an action time.
  • thermostable spore bacterium was similarly killed at the point of action.
  • the pasteurization method of the present invention is performed based on such a phenomenon.
  • processing conditions are determined corresponding to a predetermined water system.
  • Determinants of the treatment conditions are (1) the type of microorganisms that may or may be present, (2) the type of water system (the presence of salt, pH value), and (3) the separation program for the water system.
  • the microbial species that is or may be present in the material to be treated is known, that is, if it is an aqueous slurry such as egg, slimy meat, or a water extract such as bouillon, it is conventionally known From these data, the microorganism species to be sterilized is predicted.
  • microorganism species present or possibly present in the material to be treated is unknown, it may be present by actually examining and identifying the microorganism to be treated by a conventionally known inspection method. Sexual microorganisms are identified or inferred.
  • the microorganisms having the strongest sterilization resistance under the conditions of the low-temperature treatment method of the present invention such as the microorganisms having heat resistance, for example, Some B acilluscereus, B. stearot nermo philus, and B. subti 1 is selected.
  • the action point of the microorganisms found in this way is stored in a database or in the form of a graph or table as shown in Fig. 1, for example. It can be omitted.
  • Table 1 below shows typical types of microorganisms that can be found in fish surimi slurries and fruits.
  • Thermostable bacteria acidophilic bacteria
  • these bacteria are 1.5 to 5%, preferably 3% or less, more preferably 100 ppm or less in hydrogen peroxide. It was found to die at a temperature of 0 ° C or less in a temperature range of 72 to 96 hours.
  • the action point shifts depending on the conditions of the aqueous system to be treated, that is, pH conditions, additives such as salt and sugar, and the like.
  • the graph shown in FIG. 1 was similarly prepared according to the pH conditions, the aqueous system containing the sugar, and the state of the aqueous system (for example, water ⁇ , zK suspension, aqueous slurry). It is possible to find a shift.
  • the radical treatment derived from hydrogen peroxide is continued at a temperature of 1 ° C or lower, but the temperature program at that time is not particularly limited as long as the temperature is 1 ° C or lower. It may be stored in a refrigerator at a constant temperature of, for example, 4 ° C under irradiation of visible light, or may be stored in a refrigerator at a temperature below freezing (usually more than 120 ° 0). It may be stored in a freezer under irradiation. Further, it is also within the scope of the present invention that the temperature is raised to about 4 ° C. over a predetermined time after performing the hydroxyradiation / reprocessing under the freezing condition for a predetermined time.
  • the present invention it is possible to determine (determine or analogize) the point of action according to such a change in the processing conditions, and to perform the radical treatment derived from hydrogen peroxide based on the point of action. .
  • the same results as in Example 1 were obtained (duration: about 84).
  • Example 1 was repeated, except that the hydrogen peroxide was changed to 0.3, 1.0, 2.0, 3.0%. The results showed that the duration of action was 96 hours (0.3%), 84 hours (1.0-2.0 hours), and 72 hours (3.0%), respectively.
  • Example 1 When Example 1 was repeated under irradiation with ultraviolet rays instead of irradiation with visible light, no reduction in microorganisms was observed.
  • Example 1 When Example 1 was repeated, except that hydrogen peroxide was added at 4 ° C and stored in a freezer (-14 ° C), the same results as in Example were obtained (action time: 96 hours).
  • Example 1 When Example 1 was repeated except that 0.45 and 0.9% NaCl solution were used instead of pure water, the same results as in Example were obtained. [Action time 84 hours (0.45 % Na C1), 96 hours (0.9% Na C1)].
  • the present invention has the following excellent effects.
  • microorganisms that exist in water or aqueous fluid at low temperature and low hydrogen peroxide concentration, especially microorganisms that cannot be completely sterilized by conventional methods, such as thermostable bacteria and spores. It is possible.
  • This pasteurization method is particularly effective for the complete sterilization of microorganisms that may be present in the water or aqueous fluid to be treated.
  • the type of microorganism, the radical concentration, the treatment temperature of water or aqueous medium, the type of aqueous medium, and the pH of water or aqueous medium are important factors that determine the action point.
  • an object to be processed such as a food processing raw material can be sterilized even when stored and transported in a frozen state.

Abstract

低温で、耐熱性細菌等の低温では完全に殺菌することが困難な微生物を含む微生物類を完全に殺菌することが可能な低温殺菌法を提供する。水または水性流体中に存在する処理対象の微生物を、可視光線の存在下で濃度を0.3~3.0%濃度範囲の過酸化水素由来のラジカルにより前記微生物を−20~10℃の温度範囲で殺菌処理する低温殺菌法であって、前記処理対象の微生物に対する所定濃度の過酸化水素由来のラジカルの作用点に到達する以上の時間処理を行う。

Description

明細書
低温殺菌法 産業上の利用分野
本発明は、 水または水性水懸濁液、 水溶液、 7性スラリ、 ェマルジヨン等の水 性流体、 または食品、 調理具、 医療機器等中に存在する微生物を 1 0°C以下の殺 菌する低温殺菌方法に関する。 より詳しく述べると、 耐熱性細菌等の低温では殺 菌が困難な微生物を 1 0 °C以下の温度で殺菌する方法に関する。 背景技術
近年、 食品加工分野では、 食中毒の防止、 食品の変敗の防止、 食品経路からの 感染の防止等を目的として、 種々の殺菌技術の技術が開発されている。
もっとも一般的な殺菌法は加熱による殺菌であるが、 食品は一般的に加熱する ことにより変性あるいは変質するため、 加熱による殺菌は食品の商品価値を減じ ることが多い。 特に、 芽胞菌は耐熱性が高いため、 加熱殺菌法を用いた場合、 食 品の品質劣化が著しく'、 適用できない士^が多い。
そのため、 過酸化水素水や過酢酸水溶液を用いたり、 次亜塩素酸塩、 アルカリ 剤、 洗剤、 ED TA、 殺菌液などを水に溶解して用いることが試みられているが 有効に殺菌できなかったり、 食品の品質が劣化する等問題があった。
また、 その他の殺菌技術として、 オゾン利用技術、 水の電気分解により得た酸 性水の利用技術、 強アル力リアル力リ機能水と強酸性機能水の組み合わせの利用 技術が開示されている。
しかしながら、 これら技術は特定の細菌には効果はあるものの芽胞菌に対して は有効ではないと考えられていた。 すなわち、 細菌は進化の過程で酸素ストレス に対してカタラーゼ、 グレタチオン、 アルカリヒドロペルォキシド還元酵素、 ス 一パーォキシドデイスムターゼなどの酵素を持つようになり、 さらに細菌の中に はその環境が悪化して増殖が停止すると特殊なヒートショックプロティンを産生 したり芽胞を形成して酸素ストレス耐性を増したりするものがいる。 これらは活 発に細菌が増殖しているときには有効に殺菌出来る過酸ィ匕水素、 次亜塩素酸、 ォ ゾンなどに対しても耐性を持つようになっている。
そのため、 特開 2001— 231525号公報では、 ヒドロキシラジ力/レを含 む水溶液を接触させてセレウス菌等の土壌由来の芽胞菌を殺菌する方法が開示さ れている。 特開 2001—231525号公報によると、 ヒドロキシラジカルと は、 過酸化水素と過酢酸の両方又はいずれカゝ一種の水溶液にオゾンを混合して反 応生成させたもので、 過酸化水素と過酢酸の両方又はいずれ力一種とオゾンの混 合比は 1 : 10モル乃至 10 : 1モルとしている。 また食品にヒドロキシラジカ ルを含む水激夜を接触させる工程では、該水激夜に浸漬した食品にブラッシング、 シャワーリング又は振動エネルギーから選ばれる一つもしくは複数の物理的処理 を施すことが記載されている。
また、 特開 2001— 86964号公報には殺菌剤を被処理物中に残存させる ことなく被処理物中に存在する好熱菌及ぴ耐熱性芽胞菌を完全殺菌する方法であ つて、 被処理物をオゾン、 過酸化水素等の殺菌剤で処理した後、 低圧過熱水蒸気 で処理することを特徴とする殺菌法が開示されている。
しかしながら、 特開 2001— 231525号公報によるとある程度耐熱性微 生物の殺菌は可能であるが、 全ての菌を殺菌することができない (例えば、 表 2
〜表 5を参照のこと)。
また、 特開 2001— 86964号公報によると、 芽胞菌等の殺菌は可能であ るが、過熱した水蒸気で処理することが必須であり(例えば請求項 1参照のこと)、 食品等の対象によつては変性等による品質の劣化を免れることができない。更に、
3%濃度以上の過酸化水素を使用する等の食品の品質劣化や食品安全面での課題 も残る。
従って、 本発明の課題は、 耐熱性細菌等の低温では完全に殺菌することが困難 な微生物を含む微生物類を完全に殺菌することが可能な低 ¾菌法を するこ とである。 発明の開示
本発明者は、 このような,に鑑み鋭意検討した結果、 10°C以下という低温 度において、 前記ラジカル種が微生物に対して与える作用は、 即時的なものでは なく所定時間の後に作用する作用点があり、 この作用点において過酸化水素由来 のラジカルが当該微生物に作用することを見出して本発明を創作するに至った。 すなわち、 本発明は、 水または水性流体中に存在する処理対象の微生物あるい は水または水性流体中で殺菌処理を施す被処理物中の処理対象の微生物を、 1 . 5〜 5 %濃度範囲の過酸化水素由来のラジカル種で殺菌する方法であって、 前記ラジカル種を 1 0 °C以下、 好ましくは 4 °C以下、 更に好ましくは 0 °C以下 の温度で処理対象の微生物に作用させることを特徴とするものである。
このように、 本発明におレ、ては、 低温度で過酸化水素由来のラジカル種を殺菌 対象の微生物に作用させることが可能となるので、 安全面で非常に有利である。 また、 本発明の特定の態様において、 前記処理対象の微生物に対する所定濃度 の過酸化水素由来のラジカル種の作用点に到達する以上の時間処理を行うことを 特徴とするものである。
このように構成することによって、 低温度でしかも低いフリーラジカル濃度で 水または水性流体中に存在する微生物、 特に耐熱性菌、 芽胞菌等の従来の方法で は完全に殺菌不能であった微生物を、 完全に殺菌することが可能である。
この低温殺菌法は、 処理すべき水または水性流体中に存在する可能性のある微 生物の完全殺菌に特に有効である。
なお、 水または水性流体の条件とは、 作用点をシフトさせる因子である水また は水性媒体の種類、 添加物およびその濃度、 粘度、 含水率、 p H値を含むことを 意味する。 図面の簡単な説明
図 1は、 本発明の低 菌法における処理時間と菌数との関係を示すグラフで あ 。
図 2は、 本発明の低温殺菌法の処理時間と温度プログラムの一例を示すダラフ である。
図 3は、 低温度における所定時間経過前後のラジカルの残存量を示す E S Rチ ヤートである。 発明を実施するための最良の形態
以下、 本発明の実施の形態を添付図面を参照にして説明する。 し力 しながら、 本発明はこれらの実施形態に限定されるものではない。
なお、 本明細書で使用する用語は、 以下の通りに定義されるものである。
用語 「水性流体」 とは、 所定の流動度を有する水性懸濁液、 水溶液、 例えば魚 のスリミ等の水性スラリ、 水性ェマルジョンを含むことを意味するものである。 以下、 本発明において 「水または水性流体」 を水性系と総称する。
なお、 所定の流動度とは、 本発明を実施するに当たって、 可視光線の存在下で 水性系を過酸化水素由来のラジカルで処理するがその際に、 例えば攪拌等により 水性系の全体に亘って可視光線が照射可能な流動度を意味する。
また、 用語 「処理対象の微生物」 とは、 水の存在下で存在する微生物 1種また は 2種以上、 すなわち本発明の低温殺菌法により処理対象の微生物を意味するも のである。 従って、 複数の微生物が存在する場合には、 本発明においては、 作用 点まで'に要する時間、 すなわち作用時間が一番長い微生物を処理対象の微生物と 考慮される。
また、 用語 「過酸化水素由来のラジカル濃度」 とは、 水性系そのものに存在す る過酸化水素由来のラジカル量と添加する過酸化水素量との合計の濃度を意味す る。
さらに、 用語 「作用点」 とは、 所定の過酸化水素由来のラジカルを 1 o °c以下 の温度で特定の微生物に作用させた際に、微生物が失活または死滅する点を言レ、、 この作用点に至るまでの時間を、 以下作用時間という。 この作用時間は、 特定の 微生物において過酸化水素由来のラジカル濃度、 温度により決定される時間であ る。
以下、本発明の第 1実施形態を添付図面に基づいて、詳細に説明する。図 1は、 本発明の低 菌法における処理時間と菌数との関係を示すグラフであり、 図 2 は、本発明の低温殺菌法の処理時間と ^^プログラムの一例を示すグラフであり、 そして図 3は、 低温度における所定時間経過前後のラジカルの残存量を示す E S Rチヤ一トである。
本発明は、 1 0 °C以下、 好ましくは 4 °C以下、 より好ましくは 0 °C以下という 低温条件下で、 過酸化水素由来のラジカルは、 水又は水性媒体中で 2 4時間以上 の長時間存在し、 このようなラジカル種の作用により、 耐熱性芽法菌等の従来低 温では困難であった微生物に対して過酸化水素由来のラジカルが作用するという 知見 (後述の図 3を参照) および 1 0 °C以下という低温度において、 前記ラジカ ル種が微生物に対して与える作用は、 即時的なものではなく所定時間の後に作用 する作用点があり、 この作用点において過酸化水素由来のラジカルが当該微生物 に-作用することという知見に基づくものである。
本発明において殺菌対象となる被処理物は、 水性系でなおかつ所定温度で殺菌 可能であるものであれば特に限定されず、食品、調理器具、 医療器具、美容器具、 理容器具等が挙げられる。 より具体的には、 魚介類等の水産品、 野菜、 果実等の 青果、 これらの加工品、 例えば、 練り製品原料、 飲料等が挙げられる。
処理する際に使用する水性系は、 所定の流動度、 すなわち被処理物を均一に混 合して、 好ましくは可視光線を照射可能である、 水性の流体であれば特に限定さ れるものではなく、 水、 食塩水、 ブドウ糖、 塩類等を溶解した水溶液、 水性の懸 濁液、 魚のスリミ、 獣肉や鶏肉等のミンチ、 蜂蜜、 ソーセージ類、 これらの混合 物等の含水スラリ等が適宜選択される。
本発明において処理対象となる微生物は、 処理すべき水性系に応じて適宜選択 されるものであり、 一般には、 耐熱性芽胞菌を含む微生物群が挙げられる。 耐熱 性芽胞菌とは、 乾燥、 高温等の悪環境となると芽胞を形成する菌であり、 代表的 には好気性の B a c i 1 1 u s属に属する微生物、 嫌気性の C 1 o s t r i d u m属に属する微生物及ぴ A l i c y c l o B a c i 1 1 u s属に属する耐熱好 酸性微生物が挙げられる。 ' このような芽胞菌は、 物理的、 化学的刺激に対して強い耐性を有しており、 1 2 0 °C以上 1 5分以上のォートクレーブ殺菌により死滅するが 1 0 0 °Cの煮沸に 対しても耐性を有しているのが一般である。 本発明の低 菌法においても、 こ れらの微生物単独あるいはこれらの微生物とその他の一般微生物とが混在する水 性系を殺菌対象にする場合があるが、 一般微生物は、 作用点を有していない場合 かあつたとしても芽胞菌ょりも短い時間に作用点があるので、 以下の説明におい てはこれらの芽胞菌を処理対象として説明する。 本発明にぉ ヽては、 これらの芽胞菌を対象に低温度で殺菌条件を決定すると、 その他の菌の殺菌も同時に行うことが可能であることを見出していた。 特に、 1 0 °c以下の低温度で殺菌を行うことによって、
本発明の処理対象となる芽胞菌として、 特に限定されるものではないが、 Ge n s B a c i l l u s、 例 ば、 B. c e r e u s、 B. c o a g 1 a n s、 B . s ub t i l i s、 B . s t e a r o t he rmo pho i 1 u s、 B. l i c h e n i i o rmi s、 B. ma c e r a n s、 B. m e g a t e r i um、 B . s p ha r i c u s、 B . pumi l u s、 B. t h r i ng i e n s i s等力 S、 Ge nu s C l o s t r i d i um^ 例え ば、 。. a s t e u r i a n um C. s p o r o g e ne s、 C. b u t y r i cum、 C. b i i e rme n t a n s、 C. p e r f r i n. g e n s、 C. d i f f i c i l e、 C. t e t a n ia C. s e p t i c um等が例示される。
(過酸化水素由来のラジカル発生)
本発明で使用するラジカル種は、 当該技術分野に公知のラジカル源から得られ るものであり、 本発明においては特に限定されるものではない。
特に好ましいラジカル種は、 ヒドロキシラジカルに代表される過酸化水素由来 のラジカルである。 すなわち、 ヒドロキシラジカルに代表される過酸ィ匕水素由来 のラジカルは、 本発明の条件下での殺菌後に常温下で経時的に水へと変化して残 存しない。 オゾン等由来のラジカル種も同様に酸素と変化するが、 オゾン由来の ラジカルは、 芽胞菌を殺菌する場合に高い濃度である必婆があり、 またヒドロキ シラジカル等に比べて長期間の安定性はない。 過酸化水素由来のラジカルは、 従 来公知の通り、 過酸化水素または過酢酸等の光、 特に可視光線の照射下で発生す る。 以下の説明では、 代表的なラジカル源として過酸ィ匕水素由来のラジカルに基 づいて説明する。
本発明においては、食品等の殺菌を考慮して水性系におけるラジカル濃度を 0 - 3〜 3 %濃度と設定する。 ラジカル濃度が上記範囲よりも少ない場合には殺菌効 果を充分に発揮できない可能性があり、 逆に過酸ィ匕水素由来のラジカル濃度が上 記範囲を超えた場合、 食品等の水性系中に存在する他の成分、 例えばタンパク質 等の有機化合物を変性してしまう可能性がある。
なお、 例えば殺菌対象が魚である には、 適用する魚に固有の過酸化水素由 来のラジカルが存在することがある。 また、 養殖魚、 家禽類、 家畜類には、 スト レス防止のためにァスコルビン酸系のストレス防止剤を投与している場合があ る、 これらの場合には、 後述する E S R装置により、 殺菌プロフィールの補正を 加える必要がある。
(過酸化水素由来のラジカル処理)
驚くべきことに、例えば 6 3 °C以上の高温では、過酸化水素由来のラジカル(以 下、 単にヒドロキシラジカルと言うことがある) が即時的に耐熱性芽胞菌等の微 生物に作用して殺菌するのに対して、 1 0 °C以下の低温度、好ましくは 0 ° (〜 4°C の低温度におけるこの過酸化水素由来のラジカルは、 対象とする芽胞菌の種類に 依存して作用する点があることを本発明者等が見出した。 また、 1 0 °Cを超えた 温度においては、 ヒドロキシラジカルは、 比較的容易に分解消失するが、 1 0 °C 以下の温度では数日間安定して存在することを本発明者によって見出した。
すなわち、 図 1に示す通り、 所定の耐熱性芽胞菌が、 1 0 °C以下の温度、 例え ば 4 °Cにおいて、 水性系中で過酸化水素由来のラジカルを作用し続けると、 所定 時間経過後、 一般には 2 4時間以上、 特に 9 6時間程度の時間の経過後に完全に 死滅することを見出した。本努明において、このような作用時点を作用点と呼び、 また処理の開始時からこのような作用点までの経過時間を作用時間と呼ぶことに する。
さらに、 図 2に示す通り、 この処理を 0 °C以下、 好ましくは _ 1 5 °C未満の温 度で同様に続けた場合にも同様に作用点において耐熱性芽胞菌が死滅することを 見出した。
また、 図 1に示す通り、 純粋、 食塩水等の使用する系の変ィ匕に伴いこの作用点 が移動することも見出した。
これらの事項は、 図 1の 镍で示す通り、 過酸化水素由来のラジカルによる処 理は、 耐熱性芽胞菌に即時的に作用し、 時間の経過とともに菌数が減少していく (死滅していく) という従来の常識からは考えられない新規の知見である。
従って、 本発明の低温殺菌法は、 このような現象に基づいて行われるものであ る。 '
本発明の低温殺菌法においてまず、所定の水系に対応して処理条件を決定する。 処理条件の決定因子は、 ( 1 )存在するあるいは存在する可能性のある微生物の 種類、 (2)水系の種類(塩の存在、 pH値)、 (3)水系の離プログラム、等で ある。
(1) 微生物の種類
被処理物中に存在するあるいは存在する可能性のある微生物種が既知の場合、 す なわち卵、 スリミゃ獣肉の粉碎物等の水性スラリまたはブイョン等の水抽出物の 場合には、 従来公知のデータより殺菌対象となる微生物種が予測される。
一方、 被処理物中に存在するあるいは存在する可能性のある微生物種が未知の 場合には従来公知の検査法により処理対象の微生物を実際に検査して特定するこ とによつて存在する可能性のある微生物が特定または類推される。
ひとたぴ、存在する可能性がある微生物が決定すると、これらの微生物のうち、 本発明の低温処理法の条件下で耐殺菌性の一番強レ、微生物、 例えば耐熱性の微生 物である B a c i l l u s c e r e u s、 B . s t e a r o t ne rmo p h i l u s、 B. s u b t i 1 i sが選択される。
なお、 未知の作用点を有する微生物を処理する場合、 実験により図 1に示すグ ラフを作成することによつて対応可能である。
このようにして見出された微生物の作用点は、 データベースに保存しあるいは 例えば図 1に示すようなグラフまたは表等の形式で保存し、 次回以降の殺菌の場 合には作用点の特定を省略することが可能である。
しかしながら、 発明者による予備実験によると、 芽胞菌の作用点は、 種属に略 無関係に略同一であることを見出した。 従って、 他の芽胞菌、 好ましくは同一属 に属する既知の芽胞菌の作用点から類推してもよレ、。
以下に、 魚のスリミのスラリ、 果実類に存在し得る代表的な微生物の種類を表 1に記載する。 表 1
半日 3 ~4日 食中毒 Bacillus cereus X 〇 腐敗 Bacillus licheniformis X 〇
Bacillus sphaericus X 〇
Bacillus circulans X 〇
Bacillus subtilis X 〇
Bacillus finnus X 〇
Bacillus megaterium X 〇
Bacillus thuringiensis X 〇
Bacillus spp. X 〇 食中毒 Clostridium permngens X 〇
Clostridium spp. X 〇
Vibrio alginolyticus 〇 〇 コレラ Vibrio cholerae (01) 〇 〇 腸炎 Vibrio cholerae nonOl(NAG) 〇 〇 腸炎 Vibrio parahaemolyticus 〇 〇
Vibrio mimicus 〇 〇
Vibrio salmonicida 〇 〇
Vibrio vulnificus 〇 〇
Vibrio spp. 〇 〇
Aeromonas spp. 〇 〇
Aeromonas hydrophila 〇 〇
Micrococcus spp. 〇 〇 食中毒 Staphylococcus spp. 〇 〇
Staphylococcus aureus 〇 〇
Enterococcus spp. 〇 〇
Streptococcus spp. 〇 〇 Peptostreptococcus spp. 〇 〇 Coryneform bacillus 〇 〇 Kurthia spp. 〇 〇 Moraxella spp. 〇 〇 Acinetobacter spp. 〇 〇 棚系
耐熱性菌 好酸性菌
Bacillus SP X 〇 Bacillus subtilis X 〇 (果実、 原料:果汁)
酸性飲料 有害菌
Alicyclobadllus X 〇
Alicyclobadllus cycloheptaxicus X 〇 A, acidoterristris X 〇 A, aicdocaldari s X 〇
A, mali X 〇
A, acidophil s(TA-67) X 〇 A, herbacous (CP-1) X 〇 Rhizopus SP X 〇 クモノスカビ (プドウ糖)
Rhizopus delemar X 〇 .果実の腐敗の起炎菌
Altennana SP X 〇 m 黒腐病原菌
Alternaria citri X 〇 灰白色 ススカビ
Pichia SP X 〇
PicJiia membranfaciens X 〇 ビール ワインに有害菌種 Botrytis X 〇
Botrytis cinerea X 〇
ボトリチア 多種類の食品、 貴腐ワインなどに有害菌
灰白色 イチゴ ブドウ
上記表は、微生物 1 0 5〜 1 0 7個を純粋 1 0〜1 0 0 c cに添加し、約 1 . 5 % の過酸化水素を添加した溶液を、 4 °Cで 1日、 3日培養した後に光学顕微鏡にて 微生物の有無を判定したものであり、 Xは存在 (1個以上)、 〇は不存在 (0個) を表す。 この表に示すとおり、 3日間低温下で放置することによつて対象となる 微生物が確実に殺菌できることが判る。
すなわち、 これらの菌は、 本発明者等の実験によると、 1 . 5〜5 %、 好まし くは 3 %以下、」より好ましくは 1 0 0 p p m以下の濃度範囲の過酸化水素中、 1 0 °C以下の温度で 7 2〜 9 6時間の温度範囲で死滅することが判った。
( 2 ) 水系の条件 (温度を除く)
また、 本発明の低温処理方法において、 処理する水系の条件、 すなわち p H条 件、 塩分、 糖分等の添加物等によって作用点がシフトする。
すなわち、 本発明者の実験によると塩化ナトリウム等の塩等が存在すると、 同 一の菌種に対して本発明に言う作用点が右側にシフトすること力 本発明者によ る操返しの実験により見出された (以下の実施例参照)。
なお、 ; p H条件、 糖分が含有する水系、 水系の状態 (例えば水赚、 zK性懸濁 液、水性スラリ)に応じて同様にして図 1に示すグラフを作成することによって、 作用点のシフトを見出すことが可能である。
未知の微生物の作用点の決定と同様にして、 条件変化による作用点のシフトは データベースあるいは例えば図 1に示すようなグラフまたは表等の形式で保存し て、 次回以降の殺菌の場合には作用点のシフトの観察を省略することが可能であ る。
なお、 データベース、 グラフ等に保存された作用点のシフトから条件の変ィ匕に 対応する作用点のシフトを類推することが可能である。例えば、食塩濃度 1 . 8 %、 3 %等による特定の微生物の特定条件下での作用点のシフ卜の傾向により、 所定 濃度の食塩水の場合の作用点を予測することも本発明の範囲内である。 (3) 温度プログラム
本発明の低温殺菌法において、 前記過酸化水素由来のラジカル処理を 1 o°c以 下の温度で継続するが、 その際の温度プログラムは、 1 o°c以下の温度であれば 特に限定されるものではなく、 例えば 4°C等の一定温度で可視光線の照射下に冷 蔵庫内で保存してもよくあるいは例えば氷点下の冷凍条件 (一般には一 20 °0以 上) で可視光線の照射下に冷凍庫內で保存しても良い。 更に、 所定時間冷凍条件 でヒドロキシラジ力/レ処理を行つた後、 所定時間かけて 4 °C程度の温度に上昇さ せることも本発明の範囲内である。
従って、 本発明においては、 このような処理条件の変化に応じて作用点を見極 め(決定または類推し)、その作用点に基づいて過酸化水素由来のラジカル処理を 行うことが可能である。
( 4 ) 低? 域でのヒドロキシラジカルの存在
このような本発明の殺菌条件である 10 °c以下という低温度域でのラジカル種 の存在は、 例えば ESR装置により確認することができる。 図 3に示す通り、 殺 菌系におけるヒドロキシラジカルのピークは、 334〜335πιΤ付近に存在す る。 本発明においてはこのようなピークをモニタすることによって、 低いラジカ ル濃度が維持できている力否かを mmすることが可能である。
実施例
以下、 本発明を実施例により説明する。
(実施例 1)
純粋 10 OmLに B a c i l l u s c e r e u s菌 107個を添加し、 4°C にて過酸化水素 1. 5%にて可視光線の照射下 (蛍光灯) で処理を行った。 処理 時間 12時間毎に菌数を力ゥントした所、 図 1に示す通りの結果が得られた (作 用時間: 84時間)。
このことから、 4 °Cで過酸化水素由来のラジカル処理を行うと、 作用時間まで はラジ力/レは微生物に対して明確な作用を示さないが、 96時間後に作用時間が 遅延して起こることが分かる。
(実施例 2)
Ba c i l l u s c e r e u s菌に代えて、 B. c o a gu l a n s B. s ub t i l i s、 B. s t e a r o t h e rmo p o l i B. 1 i c he n i f o rmi s、 B. ma c e r n s、 B. me g a t e r i um、 B . s pha t r i c sN B . p um i 1 u s Λ B . t r i ng e n i s、 C. p a s t u r i a num C. s p o r ong e ne s% C. b u t y r i c um^ C. b i f e rme n t a n s、 C. p e r f r i g e n s、 C. d e f f i c i l e、 C. t e t a n i、 C. s e p t i c umを用いて実施例 1を繰り返した所、 実施例 1と同様の結果が得られた (作 用時間:約 84)。
(実施例 3および比較例 1)
過酸化水素を 0. 3、 1. 0、 2. 0、 3. 0%に代えて実施例 1を繰り返し た。 その結果、 作用時間は各々、 96時間 ( 0. 3 %)、 84時間 ( 1. 0〜 2. 0時間)、 72時間 (3. 0%) であることが判明した。
(比較例 2)
可視光線の照射に代えて紫外線照射下で実施例 1を繰り返した所、 微生物の減 少は観察されなかった。
(実施例 4)
過酸化水素を 4 °C添加後、 冷凍庫 (-14°C) で保存した以外、 実施例 1を繰 り返した所、 実施例と同様の結果が得られた (作用時間 96時間)。
このことから、 7令凍下でも本発明の低温殺菌法が適用可能であることが判つた。 (実施例 5")
純水に代えて各々 0. 45、 0. 9%Na C 1溶液を使用した以外、 実施例 1 を繰り返した所、実施例と同様の結果が得られた [作用時間 84時間(0. 45% Na C l)、 96時間 (0. 9%Na C l)]。
このことから、 塩分の存在により微生物への作用時間が延長するようにシフト することが判った。
(実施例 6)
過酸化水素 1. 5%濃度の水溶液を冷凍し、 冷凍後、 1日及び 3日後のヒドロ キシラジカルの挙動を ESR装置により測定した。 結果を図 3に示す。 図 3に示 す通り、 0°C以下の温度において、ヒドロキシラジカルが残存することが判った。 産業上の利用可能性
以上説明した通り、 本発明は次の優れた効果を有する。
低温度でしかも低い過酸化水素濃度で水または水性流体中に存在する微生物、 特に耐熱性菌、 芽胞菌等の従来の方法では完全に殺菌不能であった微生物を、 完 全に殺菌することが可能である。
この低温殺菌法は、 処理すべき水または水性流体中に存在する可能性のある微 生物の完全殺菌に特に有効である。
処理対象の水または水性流体中に する可能性のある微生物が未知の場合で あっても、 低温度でしかも低いヒドロキシラジカル濃度で水または水性流体中に 存在する微生物、 特に耐熱 I·生菌、 芽胞菌等の従来の方法では完全に殺菌不能であ つた微生物を、 完全に殺菌することが可能である。
微生物の種類、 前記ラジカル濃度、 水または水性媒体の処理温度、 水性媒体の 種類、 水または水性媒体の p Hは、 作用点を決定する重要因子である。 これらの 因子により適合した作用点に基づいて、 作用時間以上の過酸化水素由来のラジカ ル処理を行うことによって、 水または水性媒体中に存在する微生物を完全に殺菌 することが可能となる。
このように構成することによって、 例えば食品加工原料等の被処理物を凍結状 態で保存 ·運搬時にも殺菌処理することが可能となる。

Claims

請求の範囲
1 水または水性流体中に^ &する処理対象の微生物あるいは水または水性流 体中で殺菌処理を施す被処理物中の処理対象の微生物を、 1 . 5〜5 %濃度範囲 の過酸化水素由来のラジカル種で殺菌する方法であって、
前記ラジカル種を 1 0 °c以下の で処理対象の微生物に作用させることを特 徴とする殺菌方法。
2 前記処理対象の微生物に対する所定濃度の過酸ィ匕水素由来のラジカル種の 作用点に到達する以上の時間処理を行うことを特徴とする請求項 1に記載の殺菌 法。
3 さらに、 ラジカル種での処理に先だって、 被処理物中に存在しえる微生物 を検出し、 検出した微生物から耐熱性細菌、 耐酸性細菌おょぴ両者を選択し、 前 記選択した微生物に対する所定濃度のラジカル種の作用点に到達する以上の時間 処理を行うことを特徴とする殺菌法。
4 前記水または水性流体中に存在する微生物を検出し、 検出した各微生物の うち作用点の未知の微生物が存在する場合、 1 . 5〜5 %濃度範囲の所定濃度の ラジカル種により 1 0 °C以下の温度で可視光線の存在下で作用させて、 前記各微 生物の作用時間を調査する工程を含む請求の範囲第 1項に記載の殺菌法。
5 前記ラジカル種を添加した水または水性流体を凍結させて処理を続けるこ とを特徴とする請求の範囲第 1項に記載の殺菌法。
6 前記被処理物が魚であり、 殺菌対象微生物が耐熱性芽胞菌であることを特 徴とする請求の範囲第 1項に記載の殺菌法。
7 前記被処理物が柑橘類であり、 殺菌対象微生物が耐熱耐酸性菌であること を特徴とする請求の範囲第 1項に記載の殺菌法。
8 殺菌条件が 1 0 °C以下の温度及ぴ 7 2〜 9 6時間であることを特徴とする 請求の範囲第 4項から請求の範囲第 8項のレ、ずれか 1項に記載の殺菌法。
PCT/JP2004/000001 2002-12-27 2004-01-05 低温殺菌方法 WO2004060817A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005507952A JPWO2004060817A1 (ja) 2002-12-27 2004-01-05 低温殺菌法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002383656 2002-12-27
JP2002-383656 2002-12-27

Publications (1)

Publication Number Publication Date
WO2004060817A1 true WO2004060817A1 (ja) 2004-07-22

Family

ID=32708746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000001 WO2004060817A1 (ja) 2002-12-27 2004-01-05 低温殺菌方法

Country Status (2)

Country Link
JP (1) JPWO2004060817A1 (ja)
WO (1) WO2004060817A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2407752A (en) * 2003-11-05 2005-05-11 Steritrox Ltd Produce decontamination apparatus
WO2008143123A1 (ja) * 2007-05-21 2008-11-27 Pax Co., Ltd. 病原性微生物の殺滅方法
US8549994B2 (en) 2003-11-05 2013-10-08 Steritrox Limited Produce decontamination apparatus
WO2014188725A1 (ja) * 2013-05-24 2014-11-27 国立大学法人大阪大学 殺菌用液体の生成方法および装置
US20150175994A1 (en) * 2012-08-27 2015-06-25 William Marsh Rice University Heat-inactivated complement factor b compositions and methods
JP2015230303A (ja) * 2014-06-06 2015-12-21 林正祥 廃水診断システム、廃水診断装置及び廃水診断データ処理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215468A (ja) * 1995-12-08 1997-08-19 G F Gijutsu Kaihatsu:Kk 冷凍魚貝類の解凍法
US5858430A (en) * 1997-11-03 1999-01-12 Endico; Felix W. Food preservation and disinfection method utilizing low temperature delayed onset aqueous phase oxidation
JP2001086964A (ja) * 1999-09-22 2001-04-03 Tokai Bussan Kk 有害微生物の完全殺菌方法
JP2001231525A (ja) * 2000-02-24 2001-08-28 Taiyo Kagaku Co Ltd 食品の殺菌法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215468A (ja) * 1995-12-08 1997-08-19 G F Gijutsu Kaihatsu:Kk 冷凍魚貝類の解凍法
US5858430A (en) * 1997-11-03 1999-01-12 Endico; Felix W. Food preservation and disinfection method utilizing low temperature delayed onset aqueous phase oxidation
JP2001086964A (ja) * 1999-09-22 2001-04-03 Tokai Bussan Kk 有害微生物の完全殺菌方法
JP2001231525A (ja) * 2000-02-24 2001-08-28 Taiyo Kagaku Co Ltd 食品の殺菌法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2407752A (en) * 2003-11-05 2005-05-11 Steritrox Ltd Produce decontamination apparatus
GB2407752B (en) * 2003-11-05 2007-08-01 Steritrox Ltd Produce decontamination apparatus
US8549994B2 (en) 2003-11-05 2013-10-08 Steritrox Limited Produce decontamination apparatus
WO2008143123A1 (ja) * 2007-05-21 2008-11-27 Pax Co., Ltd. 病原性微生物の殺滅方法
JP2008284312A (ja) * 2007-05-21 2008-11-27 Tohoku Univ 病原性微生物の殺滅方法
JP4625047B2 (ja) * 2007-05-21 2011-02-02 国立大学法人東北大学 病原性微生物の殺滅方法
US20150175994A1 (en) * 2012-08-27 2015-06-25 William Marsh Rice University Heat-inactivated complement factor b compositions and methods
US9534212B2 (en) * 2012-08-27 2017-01-03 William Marsh Rice University Heat-inactivated complement factor B compositions and methods
WO2014188725A1 (ja) * 2013-05-24 2014-11-27 国立大学法人大阪大学 殺菌用液体の生成方法および装置
JP6025083B2 (ja) * 2013-05-24 2016-11-16 国立大学法人大阪大学 殺菌用液体の生成方法および装置
EP3006408A4 (en) * 2013-05-24 2017-01-04 Osaka University Method and device for producing bactericidal liquid
JP2015230303A (ja) * 2014-06-06 2015-12-21 林正祥 廃水診断システム、廃水診断装置及び廃水診断データ処理方法

Also Published As

Publication number Publication date
JPWO2004060817A1 (ja) 2006-06-22

Similar Documents

Publication Publication Date Title
Zhao et al. Principles and recent applications of novel non-thermal processing technologies for the fish industry—A review
Zhu et al. Feasibility of cold plasma for the control of biofilms in food industry
Turantaş et al. Ultrasound in the meat industry: General applications and decontamination efficiency
Spilimbergo et al. Inactivation of Bacillus subtilis spores by supercritical CO2 treatment
Mukhopadhyay et al. Application of emerging technologies to control Salmonella in foods: A review
Gould Preservation: past, present and future
Piyasena et al. Inactivation of microbes using ultrasound: a review
Iram et al. Electrolyzed oxidizing water and its applications as sanitation and cleaning agent
Erkmen Antimicrobial effects of pressurised carbon dioxide on Brochothrix thermosphacta in broth and foods
EP0661921A1 (en) Hyperpasteurization of food
Zhao et al. Reductions of Shiga toxin–producing Escherichia coli and Salmonella Typhimurium on beef trim by lactic acid, levulinic acid, and sodium dodecyl sulfate treatments
JP2007277229A (ja) プリオシダル活性のためのインビトロモデル
Chinchkar et al. Potential sanitizers and disinfectants for fresh fruits and vegetables: A comprehensive review
Seo et al. Impact of ethanol and ultrasound treatment on mesophilic aerobic bacteria, coliforms, and Salmonella Typhimurium on chicken skin
Rhouma et al. Antimicrobial resistance associated with the use of antimicrobial processing aids during poultry processing operations: cause for concern?
Oh et al. Hurdle enhancement of electrolyzed water with other techniques
Kanaan et al. Evaluation of aqueous Ozone as a method to combat multidrug-resistant Staphylococcus aureus tainting cattle meat sold in Wasit marketplaces
WO2004060817A1 (ja) 低温殺菌方法
Han et al. Processing interventions for enhanced microbiological safety of beef carcasses and beef products: A review
NO319258B1 (no) Kvarternaer ammoniumforbindelsesopplosning samt anvendelse derav.
US20090324786A1 (en) Underwater Pressure Arc Discharge System for Disinfection of Food and Food Products
Roy et al. Effects of nonthermal dielectric barrier discharge plasma against Listeria monocytogenes and quality of smoked salmon fillets
Zweifel et al. Microbial decontamination of poultry carcasses
Liu et al. Spoilage bacteria growth reduction and microbial community variation of chilled chicken packaged in PA/PE treated with pulsed light
WO2006043351A1 (ja) ラジカル含有水の調整装置及びその用途

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005507952

Country of ref document: JP

122 Ep: pct application non-entry in european phase