WO2004055454A1 - Kältemittelkreislauf für eine kfz-klimaanlage - Google Patents

Kältemittelkreislauf für eine kfz-klimaanlage Download PDF

Info

Publication number
WO2004055454A1
WO2004055454A1 PCT/EP2003/013672 EP0313672W WO2004055454A1 WO 2004055454 A1 WO2004055454 A1 WO 2004055454A1 EP 0313672 W EP0313672 W EP 0313672W WO 2004055454 A1 WO2004055454 A1 WO 2004055454A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
compressor
evaporator
outlet
coolant
Prior art date
Application number
PCT/EP2003/013672
Other languages
English (en)
French (fr)
Inventor
Baroto Adiprasito
Peter Hellmann
Original Assignee
Volkswagen Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen Aktiengesellschaft filed Critical Volkswagen Aktiengesellschaft
Publication of WO2004055454A1 publication Critical patent/WO2004055454A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2523Receiver valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Definitions

  • the invention relates to a refrigerant circuit for a motor vehicle air conditioning system, in particular also for CO 2 as a refrigerant (refrigerant R744).
  • the air that is supplied to the passenger cell is cooled by a heat exchanger (evaporator), the refrigerant conducted therein evaporating and extracting the required amount of heat from the air.
  • a heat exchanger evaporator
  • the refrigerant is conditioned by changes in state, so that a limited amount of refrigerant is sufficient for cooling the air.
  • the gas cooler or condenser refrigerant liquefier
  • the amount of heat supplied in the evaporator is extracted from the refrigerant by outside air, for which purpose there must be a temperature difference between the refrigerant and the outside air.
  • the gaseous refrigerant is therefore compressed in a compressor and its temperature is increased before it is fed into the gas cooler and liquefied there.
  • An expansion element is also arranged between the evaporator and the gas cooler in order to relax the refrigerant compressed in the compressor and thus provided with a higher pressure and with a higher temperature and to regulate the refrigerant flow.
  • the compressor and expansion valve separate the refrigerant circuit into a high-pressure and a low-pressure area.
  • a refrigerant collector in the high pressure area, i.e. in the area of the compressed refrigerant, between the compressor and the expansion device, in which the highly hygroscopic refrigerant is dried in order to avoid corrosion damage in the compressor.
  • Capacity control in the refrigerant circuit takes place mainly by regulating the mass flow rate of the refrigerant passing through the evaporator. This is done, for example, by controlling the compressor delivery volume, throttling or draining, but these methods complicate the refrigerant cycle and require additional components.
  • a known liquid regulating device is a thermostatic expansion valve, by means of which the superheating of the evaporated refrigerant at the outlet of the evaporator can be controlled. To operate the expansion valve under changing operating conditions, part of the evaporator is used to overheat the refrigerant.
  • DE 689 08 181 T1 (WO 90/07683) specifies a method for operating a refrigerant circuit in an air conditioning system, in which supercritical pressure is used on the high pressure side.
  • This method provides that the pressure on the high pressure side, that is to say before the expansion, is regulated by changing the respective refrigerant charge on the high pressure side.
  • a refrigerant buffer tank arranged in the refrigerant circuit is used for this. By reducing the content of the same, the pressure is increased and vice versa, which in turn affects the specific capacity of the refrigerant circuit.
  • WO 00/03883 describes an air conditioning system for a motor vehicle which can be operated with C0 2 and in which a fixed throttle is provided in the refrigerant circuit as the expansion element, the throttle opening of which is matched in length and diameter to the system in such a way that in all Operating conditions the pressure in the high pressure section is limited to values of less than 14 Mpa. This ensures that the air conditioning system is operated in every operating state at the high pressure in which the optimum of the cooling capacity and the optimum of the coefficient of performance lies.
  • This air conditioning system can be produced at reduced cost by using a fixed throttle, which promotes the use of the environmentally friendly CO 2 refrigerant in a motor vehicle air conditioning system, which is normally associated with an increase in the cost of such a system compared to the use of other refrigerants.
  • the proposed refrigerant circuit consists of a compressor, at the outlet of which there is a high-pressure section with a gas cooler and on its suction side (Compressor inlet) are connected to a low-pressure section with an evaporator, and a controllable expansion element connecting the high-pressure section to the low-pressure section, a liquid separator with an outlet for separated liquid refrigerant, which is connected to the inlet of the evaporator, being arranged in the low-pressure section in the circuit direction after the expansion element ,
  • the actuator of the expansion element can be actuated to regulate the refrigerant flow by an integrated thermomechanism, which is connected to the refrigerant line at the evaporator outlet via a temperature sensor.
  • thermomechanism instead of the thermal sensor, refrigerant vapor escaping from the evaporator can also be passed through the thermomechanism.
  • the liquid separator ensures that only liquid refrigerant enters the evaporator.
  • the refrigeration cycle is set so that the refrigerant evaporates completely in the evaporator.
  • the liquid separator takes on this task. Since only superheated refrigerant vapor reaches the suction line of the compressor at the evaporator outlet, there is no need for an accumulator, which is supposed to retain liquid refrigerant in order to protect the compressor from liquid hammer.
  • This refrigerant circuit can generally be operated with the usual refrigerants.
  • the liquid separator can also be provided with an outlet for the gaseous refrigerant, which is connected via a throttle element to the refrigerant line on the evaporator outlet side, which is also the suction line of the compressor.
  • a throttle element to the refrigerant line on the evaporator outlet side, which is also the suction line of the compressor.
  • An internal heat exchanger can also be arranged on the high rear side in the outlet line of the refrigerant condenser, through which the high-pressure cooled refrigerant is directed to the expansion element and the overheated, relaxed refrigerant to the compressor, so that the refrigerant to be expanded and evaporated is cooled, with the result that that the liquid portion of the refrigerant increases after the expansion and thus more liquid refrigerant is available for evaporation.
  • the internal heat exchanger thus increases the cooling capacity and also the efficiency of the cooling circuit.
  • An internal heat exchanger is also advantageous because of the rapid change in operating conditions. This version with an internal heat exchanger is particularly suitable for CO 2 refrigerants.
  • a thematic expansion valve is advantageously used as the expansion element.
  • the air conditioning system starts up, the overheating at the evaporator outlet is increased, so that the expansion valve opens wide and the refrigerant mass flow is increased, as a result of which the maximum cooling capacity is reached in the shortest possible time.
  • Fig. 1 a refrigerant circuit for CO 2 refrigerants with an internal heat exchanger
  • the refrigerant circuit shown in FIG. 1 has a compressor 1, a gas cooler (refrigerant condenser) 2, an inner heat exchanger 3 with a first refrigerant line coil 3.1, a thermostatic expansion valve 4 of known type with a thermostatic sensor 5, and a liquid separator 6 in the circuit direction an outlet in its lower part for liquid refrigerant separated in this, an evaporator 7, at the Output of the sensor 5 is arranged, and the heat exchanger 3 with a second refrigerant line coil 3.2 in front of the compressor 1.
  • the CO 2 refrigerant which has a pressure of approximately 35 to 45 bar and a temperature of approximately 20 ° C. on the suction side of the compressor 1, is compressed in the compressor 1 to a pressure of essentially 110 bar, the temperature of the Refrigerant rises to approx. 100 ° C.
  • the refrigerant is cooled to about 55 ° to 60 ° C. by the outside air flowing past and liquefied in the process.
  • the heat extracted from the CO 2 refrigerant is dissipated with the outside air.
  • the CO 2 refrigerant flowing through the line coil 3.1 emits heat to the refrigerant flowing through the line coil 3.2, which is integrated into the suction line of the compressor, wherein it is cooled to a temperature of essentially 25 ° C.
  • the liquid C0 2 refrigerant which has a pressure of about 110 bar and a temperature of essentially 25 ° C on the high pressure side, is converted into the wet vapor state, whereby it is expanded to a pressure of 35 to 45 bar and a Temperature is cooled from 0 ° to 10 ° C. With this state, the C0 2 refrigerant enters the liquid separator 6, in the lower part of which the liquid phase settles.
  • liquid C0 2 refrigerant enters the evaporator 7, in which it absorbs heat from the outside or recirculated air for the passenger compartment at a constant pressure of 35 to 45 bar, which corresponds to the suction pressure at the compressor 1 corresponds, evaporates.
  • the expansion valve 4 as an adjustable mass flow valve is set so that the refrigerant mass flow passing through the expansion valve 4 for cooling the air is set so that the refrigerant in the evaporator 7 is completely converted into the gaseous state and at the evaporator outlet by about 2 ° to 4 ° C is overheated.
  • a liquid separator 8 is arranged instead of the liquid separator described there , This also has an outlet for gaseous refrigerant via a Gas bypass 9, in which a fixed throttle 10 is arranged, is connected to the suction line 11 of the compressor 1.
  • the 2 refrigerant mass flow rate at the expansion valve leads to increased CO 4, and the gas content of CO relaxed by the expansion valve 4, and thereby transferred into a NadeddampfGerman 2 refrigerant is larger.
  • excess gas is discharged via the gas bypass 9 and the fixed throttle 10 arranged therein and the superheated steam in the outlet line of the evaporator 7, that of the suction line 11 of the compressor 1 corresponds to the area between the sensor 5 and the inner heat exchanger 3.
  • a ratio of 1: 4 of gaseous to liquid CO 2 refrigerant is preferably set. A gas portion exceeding 20% due to an increased mass throughput is thus dissipated via the fixed throttle 10.
  • the regulation of the expansion valve 4 by the superheated CO 2 refrigerant vapor emerging at the evaporator 7 is not impaired by the gas bypass 9 in the arrangement described.
  • the measure ensures that only liquid CO 2 refrigerant is present at the inlet of the evaporator 7, even when the cooling capacity is high.

Abstract

Die Erfindung betrifft einen Kältemittelkreislauf für eine Kfz-Klimaanlage, bei dem das Kältemittel nacheinander einen Kompressor (1), einen Kältemittelverflüssiger (2), ein den Kältemittelfluss regelndes Expansionsorgan (4) und einen Verdampfer (7), die jeweils durch eine Kältemittelleitung miteinander verbunden sind, durchströmt. Sie lost die Aufgabe, den Kältemittelkreislauf und die Kreislaufführung so zu gestalten, dass dessen Wirkungsgrad auf einfache Weise erhöht wird. Dazu ist zwischen dem Expansionsorgan (4) und dem Verdampfer (7) ein Flüssigkeitsabscheider (6) mit einem Ausgang für flüssiges Kältemittel angeordnet, der dem Eingang des Verdampfers (7) vorgeschaltet ist, und das Stellglied des Expansionsorgans (4) ist über einen Thermomechanismus betätigbar, der über einen Temperaturfühler (5) mit der Kältemittelleitung am Ausgang des Verdampfers (7) verbunden ist, die ausschliesslich verdampftes Kältemittel führt.

Description

Kältemittelkreislauf für eine Kfz-Klimaanlage
Die Erfindung betrifft einen Kältemittelkreislauf für eine Kfz-Klimaanlage, insbesondere auch für CO2 als Kältemittel (Kältemittel R744).
In Kfz-Klimaanlagen wird die Luft, die der Fahrgastzelle zugeführt wird, an einem Wärmetauscher (Verdampfer) gekühlt, wobei das in diesen geleitete Kältemittel verdampft und die dafür erforderliche Wärmemenge der Luft entzieht. In einem Kreisprozeß wird das Kältemittel durch Zustandsänderungen aufbereitet, so daß für das Kühlen der Luft eine begrenzte Kältemittelmenge ausreicht. In einem zweiten Wärmetauscher, dem Gaskühler oder Kondensator (Kältemittelverflüsslger), wird dem Kältemittel die im Verdampfer zugeführte Wärmemenge durch Außenluft wieder entzogen, wozu zwischen dem Kältemittel und der Außenluft eine Temperaturdifferenz herrschen muß. Daher wird das gasförmige Kältemittel in einem Kompressor verdichtet und in seiner Temperatur erhöht, bevor es in den Gaskühler geleitet und dort verflüssigt wird. Zwischen dem Verdampfer und dem Gaskühler ist des weiteren ein Expansionsorgan angeordnet, um das im Kompressor verdichtete und somit mit einem höheren Druck und mit einer höheren Temperatur versehene Kältemittel wieder zu entspannen und um den Kältemittelfluß zu regeln. Kompressor und Expansionsventil trennen den Kältemittelkreislauf in einen Hochdruck- und einen Niederdruckbereich. Üblicherweise befindet sich im Hochdruckbereich, also im Bereich des verdichteten Kältemittels zwischen dem Kompressor und dem Expansionsorgan auch ein Kältemittelsammler, in dem das stark hygroskopische Kältemittel getrocknet wird, um Korrossionsschäden im Verdichter zu vermeiden.
Wegen der schnellen Änderung der Betriebsbedingungen infolge der Fahrzeugbewegung mit wechselnden Fahrgeschwindigkeiten und unterschiedlichem Wärmeeinfall unterliegt der Kältebedarf großen Schwankungen, an den sich die Kälteleistung des Verdichters anpassen muß. Eine Kapazitätssteuerung im Kaltemittelkreislauf erfolgt hauptsächlich durch eine Regulierung des Massendurchsatzes des den Verdampfer passierenden Kältemittels. Dazu dienen beispielsweise eine Steuerung des Kompressorfördervolumens, eine Drosselung oder ein Ableiten, wobei diese Verfahren jedoch den Kaltemittelkreislauf verkomplizieren und zusätzliche Komponenten erfordern. Eine bekannte Flüssigkeitsreguliervorrichtung ist ein thermostatisches Expansionsventil, durch das die Überhitzung des verdampften Kältemittels am Ausgang des Verdampfers gesteuert werden kann. Zum Betreiben des Expansionsventils unter wechselnden Betriebsbedingungen wird ein Teil des Verdampfers zum Überhitzen des Kältemittels verwendet.
In der DE 689 08 181 T1 (WO 90/07683) wird ein Verfahren zum Betreiben eines Kältemittelkreislaufs in einer Klimaanlage angegeben, bei dem mit überkritischem Druck auf der Hochdruckseite gearbeitet wird. Dieses Verfahren sieht vor, daß der Druck auf der Hochdruckseite, also vor dem Entspannen, durch eine Veränderung der jeweiligen Kältemittelfüllung auf der Hochdruckseite reguliert wird. Dazu dient ein im Kaltemittelkreislauf angeordneter Kältemittel-Pufferbehälter. Durch eine Verringerung des Inhaltes desselben wird der Druck erhöht und umgekehrt, wodurch wiederum die spezifische Kapazität des Kältemittelkreislaufs beeinflußt wird.
Des weiteren ist in der WO 00/03883 eine mit C02 betreibbare Klimaanlage für ein Kraftfahrzeug beschrieben, bei der im Kaltemittelkreislauf als Expansionsorgan eine Festdrossel vorgesehen ist, deren Drosselöffnung in ihrer Länge und in ihrem Durchmesser derart auf die Anlage abgestimmt ist, daß in allen Betriebszuständen der Druck im Hochdruckabschnitt auf Werte von weniger als 14 Mpa begrenzt ist. Damit wird erreicht, daß die Klimaanlage in jedem Betriebszustand mit dem Hochdruck betrieben wird, in welchem das Optimum der Kälteleistung und das Optimum der Leistungszahl liegt. Diese Klimaanlage ist durch die Verwendung einer Festdrossel kostenreduziert herstellbar, wodurch der Einsatz des umweltfreundlichen CO2-Kältemittels in einer Kfz- Klimaanlage, der gegenüber dem Einsatz von anderen Kältemitteln normalerweise mit einer Verteuerung einer solchen Anlage verbunden ist, gefördert wird.
Es ist Aufgabe der Erfindung, einen Kaltemittelkreislauf nach dem Oberbegriff des Anspruchs 1 und die Kältekreislaufführung so zu gestalten, daß dessen Wirkungsgrad auf einfache Weise erhöht wird.
Diese Aufgabe wird bei einem Kaltemittelkreislauf nach dem Oberbegriff des Anspruchs 1 durch dessen kennzeichnende Merkmale und ein Verfahren mit den Merkmalen des Anspruchs 5 gelöst.
Der vorgeschlagene Kaltemittelkreislauf besteht aus einem Kompressor, an dessen Ausgang ein Hochdruckabschnitt mit einem Gaskühler und an dessen Saugseite (Kompressoreingang) ein Niederdruckabschnitt mit einem Verdampfer angeschlossen sind, und einem den Hochdruckabschnitt mit dem Niederdruckabschnitt verbindenden regelbaren Expansionsorgan, wobei im Niederdruckabschnitt in Kreislaufrichtung nach dem Expansionsorgan ein Flüssigkeitsabscheider mit einem Ausgang für abgeschiedenes flüssiges Kältemittel angeordnet ist, der mit dem Eingang des Verdampfers verbunden ist. Das Stellglied des Expansionsorgans ist zur Regelung des Kältemittelflusses durch einen integrierten Thermomechanismus betätigbar, der über einen Temperaturfühler mit der Kältemittelleitung am Verdampferausgang verbunden ist. Anstelle des Thermofühlers kann auch aus dem Verdampfer austretender Kältemitteldampf durch den Thermomechanismus geleitet werden. Der Flüssigkeitsabscheider stellt sicher, daß nur flüssiges Kältemittel in den Verdampfer eintritt. Der Kältekreislauf ist so eingestellt, daß das Kältemittel im Verdampfer vollständig verdampft.
Dieses wird durch eine entsprechende Kreislaufführung und durch eine Überhitzung des im Verdampfer entstehenden Kältemitteldampfes erreicht, wobei die Temperatur des Kältemittels am Verdampferaustritt von Bedeutung ist. Ist diese zu hoch und damit die Überhitzung zu groß, wird der Kältemittel-Massendurchsatz durch das Expansionsorgan erhöht. Ist die Temperatur zu niedrig, und damit die Überhitzung zu gering, wird der Kältemittel-Massendurchsatz reduziert. Eine Erhöhung des Wikungsgrades bei gleichbleibender Kompressorleistung und gleichbleibendem durch den Kompressor verursachten Kraftstoffverbrauch wird somit auf einfache Weise auf der Niederdruckseite durch einen erhöhten Kältemittel-Massendurchsatz durch das Expansionsventil und den Flüssigkeitsabscheider erreicht. Der Kraftstoffverbrauch wird dabei nicht erhöht. In diesem Kaltemittelkreislauf wird kein Akkumulator benötigt, um den schwankenden Kältemittelbedarf im Kaltemittelkreislauf auszugleichen. Diese Aufgabe übernimmt der Flüssigkeitsabscheider. Da am Verdampferausgang nur überhitzter Kältemitteldampf in die Saugleitung des Kompressors gelangt, erübrigt sich ein Akkumulator, der noch flüssiges Kältemittel zurückzuhalten soll, um den Kompressor vor Flüssigkeitsschlägen zu schützen. Dieser Kaltemittelkreislauf ist grundsätzlich mit den üblichen Kältemitteln betreibbar.
Der Flüssigkeitsabscheider kann zusätzlich mit einem Ausgang für das gasförmige Kältemittel versehen sein, der über ein Drosselorgan mit der verdampf erausgangsseitigen Kältemittelleitung, die zugleich die Saugleitung des Kompressors ist, verbunden ist. Über diesen Ausgang wird bei hoher Kälteleistung, die zu einer größeren Überhitzung und einem erhöhten Kältemittel-Massendurchsatz führt, ein dadurch entstehender Gasüberschuß im Flüssigkeitsabscheider abgeführt, um den erforderlichen Kältemittel-Massendurchsatz an flüssigem Kältemittel zum Verdampfer sicherzustellen.
Auch kann ein innerer Wärmetauscher hochd rückseitig in der Ausgangsleitung des Kältemittelverflüssigers angeordnet sein, durch den das unter Hochdruck stehende gekühlte Kältemittel zum Expansionsorgan und das überhitzte entspannte Kältemittel zum Kompressor geleitet werden, so daß das zu entspannende und zu verdampfende Kältemittel abgekühlt wird mit der Folge, daß der Flüssigkeitsanteil des Kältemittels nach der Expansion steigt und somit mehr flüssiges Kältemittel zur Verdampfung zur Verfügung steht. Der innere Wärmetauscher erhöht damit die Kälteleistung und auch den Wirkungsgrad des Kältekreislaufs. Aber auch wegen der schnellen Änderung der Betriebsbedingungen ist ein innerer Wärmetauscher vorteilhaft. Diese Ausführung mit einem inneren Wärmetauscher eignet sich insbesondere für CO2-Kältemittel.
Als Expansionsorgan wird vorteilhafterweise ein themostatisches Expansionsventil eingesetzt. Im Anfahrzustand der Klimaanlage ist die Überhitzung am Verdampferausgang erhöht, so daß das Expansionsventil weit öffnet und der Kältemittelmassenstrom erhöht wird, wodurch in kürzester Zeit die maximale Kälteleistung erreicht wird.
Die Erfindung wird nachstehend anhand von Ausführungsbeispielen erläutert. In den zugehörigen Zeichnungen zeigen schematisch:
Fig. 1 : einen Kaltemittelkreislauf für CO2-Kältemittel mit einem inneren Wärmetauscher
und
Fig. 2: einen Kaltemittelkreislauf für CO2-Kältemittel mit einem inneren Wärmetauscher, mit einem Gas-Bypass und einem in diesem angeordneten Drosselorgan.
Der in Fig. 1 gezeigte Kaltemittelkreislauf weist in Kreislaufrichtung nacheinander einen Kompressor 1, einen Gaskühler (Kältemittelverflüssiger) 2, einen inneren Wärmetauscher 3 mit einer ersten Kältemittel-Leitungsschlange 3.1 , ein thermostatisches Expansionsventil 4 bekannter Bauart mit einem thermostatischen Sensor 5, einen Flüssigkeitsabscheider 6 mit einem Ausgang in dessen unteren Teil für in diesem abgeschiedenes flüssiges Kältemittel, einen Verdampfer 7, an dessen Ausgang der Sensor 5 angeordnet ist, und den Wärmetauscher 3 mit einer zweiten Kältemittel-Leitungsschlange 3.2 vor dem Kompressor 1 auf.
Das CO2-Kältemittel, das auf der Saugseite des Kompressors 1 einen Druck von etwa 35 bis 45 bar und eine Temperatur von ca. 20° C aufweist, wird im Kompressor 1 auf einen Druck von im wesentlichen 110 bar verdichtet, wobei die Temperatur des Kältemittels auf ca. 100°C steigt. Im Gaskühler 2 wird das Kältemittel durch vorbeiströmende Außenluft auf ca. 55° bis 60°C abgekühlt und dabei verflüssigt. Die dem CO2-Kältemittel entnommene Wärme wird mit der Außenluft abgeführt. Im inneren Wärmetauscher 3 gibt das durch die Leitungsschlange 3.1 strömende C02-Kältemittel Wärme an das durch die Leitungsschlange 3.2 strömende Kältemittel ab, die in die Saugleitung des Kompressors integriert ist, wobei es auf eine Temperatur von im wesentlichen 25°C abgekühlt wird. Im Expansionsventil 4 wird das flüssige C02- Kältemittel, das auf der Hochdruckseite einen Druck von etwa 110 bar und eine Temperatur von im wesentlichen 25°C aufweist, in den Naßdampfzustand überführt, wobei es auf einen Druck von 35 bis 45 bar entspannt und eine Temperatur von 0° bis 10°C abgekühlt wird. Mit diesem Zustand gelangt das C02-Kältemittel in den Flussigkeitsabscheider 6, in dessen unteren Teil sich die flüssige Phase absetzt. Über den Ausgang am Flüssigkeitsabscheider 6 gelangt ausschließlich flüssiges C02- Kältemittel in den Verdampfer 7, in dem es durch Wärmeaufnahme von der zu kühlenden Außen- oder Umluft für den Fahrgastraum bei einem gleichbleibendem Druck von 35 bis 45 bar, der dem Saugdruck am Kompressor 1 entspricht, verdampft. Das Expansionsventil 4 als verstellbares Massenstromventil wird dabei so eingestellt, daß der zum Kühlen der Luft das Expansionsventil 4 passierende Kältemittel-Massenstrom so eingestellt ist, daß das Kältemittel im Verdampfer 7 vollständig in den gasförmigen Zustand überführt wird und am Verdampferausgang um etwa 2° bis 4°C überhitzt ist. Bei einer erhöhten geforderten Kälteleistung, also wenn das CO2-Kältemittel mehr Wärme von der Außen- oder Umluft aufnehmen muß, steigt der Anteil der gasförmigen Phase im Verdampfer 7 und damit auch die Überhitzung, und es wird über den Sensor 5 die Ventilöffnung im Expansionsventil 4 geweitet, so daß der Kältemittel-Massenstrom verstärkt und die Überhitzung reduziert werden.
Bei dem in Fig. 2 gezeigten Kältemittel-Kreislauf, der bis auf den Flussigkeitsabscheider die gleichen Komponenten wie der vorbeschriebene und diese in gleicher Reihenfolge aufweist und der ebenfalls bevorzugt mit C02-Käitemittel betrieben wird, ist anstelle des dort beschriebenen Flüssigkeitsabscheiders ein Flüssigkeitsabscheider 8 angeordnet. Dieser weist zusätzlich einen Ausgang für gasförmiges Kältemittel auf, der über einen Gas-Bypass 9, in dem eine Festdrossel 10 angeordnet ist, mit der Saugleitung 11 des Kompressors 1 verbunden ist.
Bei höherer Kälteleistung, die zu einem erhöhten CO2-Kältemittel-Massendurchsatz am Expansionsventil 4 führt, ist auch der Gasanteil des durch das Expansionsventil 4 entspannten und dabei in einen Naßdampfzustand überführten CO2-Kältemittels größer. Damit das Flüsigkeitsvolumen im Flüssigkeitsabscheider 8 konstant bleibt und infolge des erhöhten Massenstromes nicht schwindet, wird überschüssiges Gas über den Gas- Bypass 9 und die in diesem angeordnete Festdrossel 10 abgeleitet und dem überhitzten Dampf in der Ausgangsleitung des Verdampfers 7, die der Saugleitung 11 des Kompressors 1 entspricht, im Bereich zwischen dem Sensor 5 und dem inneren Wärmetauscher 3 zugeführt. Bevorzugt wird ein Verhältnis von 1 : 4 von gasförmigem zu flüssigem C02-Kältemittel eingestellt. Ein über die 20% hinausgehender Gasanteil infolge eines erhöhten Massendurchsatzes wird somit über die Festdrossel 10 abgeführt. Die Regelung des Expansionsventils 4 durch am Verdampfer 7 austretenden überhitzten C02-Käitemitteldampf wird bei der beschriebenen Anordnung durch den Gas-Bypass 9 nicht beeinträchtigt. Mit der Maßnahme wird sichergestellt, daß auch bei einer hohen geforderten Kälteleistung am Eingang des Verdampfers 7 nur flüssiges CO2-Kältemittel vorhanden ist.
BEZUGSZEICHEN LISTE
1 Kompressor
2 Gaskühler
3 Wärmetauscher
3.1 Kältemittel-Leitungsschlange
3.2 Kältemittel-Leitungsschlange
4 Expansionsventii
5 Sensor
6 Flüssigkeitsabscheider
7 Verdampfer
8 Flüssigkeitsabscheider
9 Gas-Bypass
10 Festdrossel
11 Saugleitung

Claims

PATE N TANS P RÜ C H E
1. Kaltemittelkreislauf für eine Kfz-Klimaanlage, bei dem das Kältemittel nacheinander einen Kompressor, einen Kältemittelkühler als Kältemittelverflüssiger, ein den Kältemittelfluß regelndes Expansionsorgan und einen Verdampfer, die jeweils durch eine Kältemittelleitung miteinander verbunden sind, durchströmt, dadurch gekennzeichnet, daß zwischen dem Expansionsorgan (4) und dem Verdampfer (7) ein Flüssigkeitsabscheider (6) mit einem Ausgang für flüssiges Kältemittel angeordnet ist, der mit dem Eingang des Verdampfers (7) verbunden ist, und daß das Stellglied des Expansionsorgans (4) über einen Thermomechanismus betätigbar ist, der über einen Temperaturfühler (5) mit der Kältemittelleitung am Ausgang des Verdampfers (7) verbunden ist, die ausschließlich verdampftes Kältemittel führt.
2. Kaltemittelkreislauf nach Anspruch 1, dadurch gekennzeichnet, daß der Flüssigkeitsabscheider (6) einen Ausgang für gasförmiges Kältemittel aufweist, der mit der Saugleitung (11) des Kompressors (1) über ein Drosselorgan (10) verbunden ist.
3. Kaltemittelkreislauf nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß in der Ausgangsleitung des Kältemittelverflüssigers (2) ein innerer Wärmetauscher (3) mit der Saugleitung (11) des Kompressors (1) gebildet ist.
4. Kaltemittelkreislauf nach Anspruch 1, dadurch gekennzeichnet, daß das Expansionsorgan ein thermostatisches Expansionsventil (4) ist.
5. Verfahren zum Betreiben einer Kfz-Klimaanlage mit einem Kaltemittelkreislauf, bei dem gasförmiges Kältemittel in einem Kompressor verdichtet und erwärmt wird, durch einen Wärmetauscher gefördert, in diesem abgekühlt und verflüssigt wird, danach in einem Expansionsorgan entspannt und in einem als Wärmetauscher genutzten Verdampfer wieder in den gasförmigen Zustand versetzt und vom Kompressor angesaugt wird, dadurch gekennzeichnet, daß das im Expansionsorgan (4) entspannte Kältemittel über einen Flüssigkeitsabscheider (6) geleitet wird, aus dem nur flüssiges Kältemittel zum Verdampfer (7) strömt, und daß der Kältemittel-Massenstrom, der die Niederdruckseite des Expansionsorgans (4) und den Flüssigkeitsabscheider (6) durchströmt, durch eine am Ausgang des Verdampfers (7) eingestellte Überhitzung geregelt wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß ein im Flüssigkeitsabscheider (6) entstehender Gasüberschuß in die Saugleitung (11) des Kompressors (1) geleitet wird.
7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß zwischen dem vom Kompressor (1) angesaugten gasförmigen Kältemittel und dem durch das im Kältemittelverflüssiger (2) gekühlten Kältemittel ein Wärmeaustausch stattfindet.
8. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß das Kältemittel R134a ist.
9. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß das Kältemittel R744 (C02-Kältemittel) ist.
PCT/EP2003/013672 2002-12-14 2003-12-04 Kältemittelkreislauf für eine kfz-klimaanlage WO2004055454A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2002158524 DE10258524A1 (de) 2002-12-14 2002-12-14 Kältemittelkreislauf für eine Kfz-Klimaanlage
DE10258524.5 2002-12-14

Publications (1)

Publication Number Publication Date
WO2004055454A1 true WO2004055454A1 (de) 2004-07-01

Family

ID=32518954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/013672 WO2004055454A1 (de) 2002-12-14 2003-12-04 Kältemittelkreislauf für eine kfz-klimaanlage

Country Status (2)

Country Link
DE (1) DE10258524A1 (de)
WO (1) WO2004055454A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1808655A2 (de) * 2006-01-11 2007-07-18 Güntner AG & Co.KG Kälteanlage
WO2008019689A2 (en) * 2006-08-18 2008-02-21 Knudsen Køling A/S A transcritical refrigeration system with a booster
EP2244040A3 (de) * 2004-08-09 2011-10-12 Linde Kältetechnik GmbH Kältekreislauf und Verfahren zum Betreiben eines Kältekreislaufes
CN106871472A (zh) * 2016-12-27 2017-06-20 广东技术师范学院 一种获得多个不同温度的新型制冷循环装置
US20190056154A1 (en) * 2017-08-18 2019-02-21 Rolls-Royce North American Technologies Inc. Recuperated superheat return trans-critical vapor compression system
US10234181B2 (en) 2013-11-18 2019-03-19 Carrier Corporation Flash gas bypass evaporator
IT202100018296A1 (it) * 2021-07-12 2023-01-12 Irinox S P A Macchina frigorifera per prodotti alimentari

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015207808A1 (de) 2014-04-29 2015-10-29 Mahle International Gmbh Volumenausgleichsvorrichtung
CN107990579B (zh) * 2017-11-08 2020-02-18 西安交通大学 制冷系统、具有该制冷系统的冰箱及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5056329A (en) * 1990-06-25 1991-10-15 Battelle Memorial Institute Heat pump systems
US5619861A (en) * 1994-04-12 1997-04-15 Nippondenso Co., Ltd. Refrigeration apparatus
EP0837291A2 (de) * 1996-08-22 1998-04-22 Denso Corporation Kälteanlage des Dampfkompressionstyps
EP0976991A2 (de) * 1998-07-31 2000-02-02 Zexel Corporation Kältekreislauf
JP2000283607A (ja) * 1999-03-29 2000-10-13 Shimadzu Corp 冷却装置
EP1202003A2 (de) * 2000-10-31 2002-05-02 Modine Manufacturing Company Kälteanlage mit Phasentrennung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5056329A (en) * 1990-06-25 1991-10-15 Battelle Memorial Institute Heat pump systems
US5619861A (en) * 1994-04-12 1997-04-15 Nippondenso Co., Ltd. Refrigeration apparatus
EP0837291A2 (de) * 1996-08-22 1998-04-22 Denso Corporation Kälteanlage des Dampfkompressionstyps
EP0976991A2 (de) * 1998-07-31 2000-02-02 Zexel Corporation Kältekreislauf
JP2000283607A (ja) * 1999-03-29 2000-10-13 Shimadzu Corp 冷却装置
EP1202003A2 (de) * 2000-10-31 2002-05-02 Modine Manufacturing Company Kälteanlage mit Phasentrennung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 13 5 February 2001 (2001-02-05) *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2244040A3 (de) * 2004-08-09 2011-10-12 Linde Kältetechnik GmbH Kältekreislauf und Verfahren zum Betreiben eines Kältekreislaufes
EP1808655A2 (de) * 2006-01-11 2007-07-18 Güntner AG & Co.KG Kälteanlage
EP1808655A3 (de) * 2006-01-11 2008-04-02 Güntner AG & Co.KG Kälteanlage
WO2008019689A2 (en) * 2006-08-18 2008-02-21 Knudsen Køling A/S A transcritical refrigeration system with a booster
WO2008019689A3 (en) * 2006-08-18 2008-04-03 Knudsen Koeling As A transcritical refrigeration system with a booster
US10234181B2 (en) 2013-11-18 2019-03-19 Carrier Corporation Flash gas bypass evaporator
CN106871472A (zh) * 2016-12-27 2017-06-20 广东技术师范学院 一种获得多个不同温度的新型制冷循环装置
US20190056154A1 (en) * 2017-08-18 2019-02-21 Rolls-Royce North American Technologies Inc. Recuperated superheat return trans-critical vapor compression system
EP3444540A3 (de) * 2017-08-18 2019-05-15 Rolls-Royce North American Technologies, Inc. Transkritisches dampfverdichtersystem mit rückführung von wiedergewonnener überhitzung
US11035595B2 (en) 2017-08-18 2021-06-15 Rolls-Royce North American Technologies Inc. Recuperated superheat return trans-critical vapor compression system
IT202100018296A1 (it) * 2021-07-12 2023-01-12 Irinox S P A Macchina frigorifera per prodotti alimentari
EP4119868A1 (de) * 2021-07-12 2023-01-18 Irinox S.p.A. Lebensmittel-kältemaschine

Also Published As

Publication number Publication date
DE10258524A1 (de) 2004-07-15

Similar Documents

Publication Publication Date Title
EP1262347B1 (de) Heiz-/Kühlkreislauf für eine Klimaanlage eines Kraftfahrzeuges, Klimaanlage und Verfahren zur Regelung derselben
DE102015122721B4 (de) Klimatisierungssystem eines Kraftfahrzeugs und Verfahren zum Betreiben des Klimatisierungssystems
EP0701096A2 (de) Verfahren zum Betreiben einer Kälteerzeugungsanlage für das Klimatisieren von Fahrzeugen und eine Kälteerzeugungsanlage zur Durchführung desselben
DE102013021360A1 (de) Thermomanagementsystem eines Kraftfahrzeugs und korrespondierendes Verfahren zum Betreiben eines Thermomanagementsystems eines Kraftfahrzeugs
DE102012222594B4 (de) Verfahren zum Betreiben eines Kältemittelkreislaufs als Wärmepumpe sowie als Wärmepumpe betreibbarer Kältemittelkreislauf
DE102015212550A1 (de) Kältekreis, Verfahren zur Klimatisierung eines Fahrzeugs und Fahrzeug
DE102012111672A1 (de) Kältemittelkreislauf einer Klimaanlage mit Wärmepumpen- und Nachheizfunktionalität
DE102010051976A1 (de) Klimaanlage für ein Kraftfahrzeug
DE102017100591B3 (de) Kältemittelkreislauf, insbesondere für Kraftfahrzeuge mit Elektro- oder Hybridantrieb und Verfahren zum Betreiben des Kältemittelkreislaufes
DE102015015125A1 (de) Fahrzeugklimaanlage
WO2015132113A1 (de) Kälteanlage
DE102013214267A1 (de) Wärmepumpen-Anlage für ein Fahrzeug, insbesondere ein Elektro- oder Hybridfahrzeug, sowie Verfahren zum Betrieb einer solchen Wärmepumpen-Anlage
DE102018114762B4 (de) Verfahren zum Betreiben einer Klimaanlage eines Kraftfahrzeuges
EP3595919B1 (de) Kälteanlage eines fahrzeugs mit einem als kältekreislauf für einen ac-betrieb und als wärmepumpenkreislauf für einen heizbetrieb betreibaren kältemittelkreislauf
DE112018001092B4 (de) Ejektormodul
WO2019214927A1 (de) Kälteanlage für ein fahrzeug mit einem eine wärmepumpenfunktion aufweisenden kältemittelkreislauf
DE102019105035A1 (de) Wärmepumpe mit Teillastregelung
DE10358944A1 (de) Kältemittelkreislauf und Kälteanlage
EP1462281B1 (de) Klimaanlage mit mehreren Verdampfern für ein Kraftfahrzeug
DE102008005076A1 (de) Kältemittelkreis und Verfahren zum Betreiben eines Kältemittelkreises
WO2004055454A1 (de) Kältemittelkreislauf für eine kfz-klimaanlage
EP1578628B1 (de) Klimaanlage für ein fahrzeug und zugehöriges betriebsverfahren
DE102005005430A1 (de) Verfahren zum Betreiben einer Klimaanlage
DE102019201428A1 (de) Verfahren zum Betreiben einer einen Kältemittelkreislauf aufweisenden Kälteanlage eines Fahrzeugs
DE102011012644A1 (de) Kälteanlage

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP