WO2004054073A1 - Method of manufacturing segment for flat commutator - Google Patents

Method of manufacturing segment for flat commutator Download PDF

Info

Publication number
WO2004054073A1
WO2004054073A1 PCT/JP2003/015424 JP0315424W WO2004054073A1 WO 2004054073 A1 WO2004054073 A1 WO 2004054073A1 JP 0315424 W JP0315424 W JP 0315424W WO 2004054073 A1 WO2004054073 A1 WO 2004054073A1
Authority
WO
WIPO (PCT)
Prior art keywords
segment
manufacturing
flat commutator
segments
base material
Prior art date
Application number
PCT/JP2003/015424
Other languages
French (fr)
Japanese (ja)
Inventor
Shuji Uehara
Hideyuki Minami
Kazuo Iwashita
Hideki Horiuchi
Minoru Isoda
Yasuhiro Takebe
Yoshinori Kojima
Takayuki Ishizeki
Mitsuru Shishido
Original Assignee
Mitsuba Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuba Corporation filed Critical Mitsuba Corporation
Priority to AU2003284535A priority Critical patent/AU2003284535A1/en
Priority to EP03776026A priority patent/EP1575149A4/en
Publication of WO2004054073A1 publication Critical patent/WO2004054073A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/06Manufacture of commutators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R39/00Rotary current collectors, distributors or interrupters
    • H01R39/02Details for dynamo electric machines
    • H01R39/04Commutators
    • H01R39/06Commutators other than with external cylindrical contact surface, e.g. flat commutators

Definitions

  • the present invention relates to a method for manufacturing a commutator for a rotating electric machine, and more particularly to a method for manufacturing a segment in a disk-type flat commutator.
  • This flat type commutator has a disk-shaped brush sliding surface that extends in the radial direction from the rotation axis, unlike a general cylindrical commutator.
  • a metal member called commutator metal is molded integrally with synthetic resin. Is done. After integral molding, the commutator metal is cut radially so as to be insulated from each other and separated in the circumferential direction to form a plurality of segments. Then, the brush slides on the brush sliding surface made of the commutator metal from the axial direction, and the armature current is switched.
  • FIG. 6 is an explanatory diagram showing the influence of the corner R at the time of resin molding. Shown in Figure 6 As described above, at the corner R, the resin supplied from the gate 51 tries to move from the corner 53 of the commutator metal 52 to the brush sliding surface 54 side. Then, the commutator metal 52 is deformed upward by the pressure, and the resin may leak to the inner diameter side of the brush sliding surface 54. When resin leakage occurs, not only is it necessary to remove the spar on the brush sliding surface 54, but also there is a step between the segments due to the burrs, and further cutting work is required to absorb the difference. For this reason, the number of steps in the process after the resin molding is increased, resulting in a problem that the cost is increased. In particular, in the case of pressed commutator metal, the metal may be deformed more than the spring pack, and measures to prevent resin leakage were required.
  • FIG. 7 is a partial cross-sectional side view showing the configuration of the cylindrical commutator
  • FIG. 8 is an explanatory diagram of a method for manufacturing the segments used in FIG.
  • the segment 56 is formed by appropriately cutting a rod-shaped member called a teeter bar.
  • the theta-ta 57 is a drawn material made of copper and has a trapezoidal cross section as shown in FIG.
  • the segment 56 is formed by punching out the taper 57 in the form shown by the broken line in the figure to have a shape used in the cylindrical commutator 55 in FIG.
  • FIG. 9 is an explanatory view showing a state in which a segment of a flat commutator is manufactured from a teeter bar. If the segment 58 is cut out from the theta bar 57 as shown by the broken line in FIG. 9, the end of the brush sliding surface 59 will not be rounded. Therefore, even if the segment 58 is resin-molded, the resin does not flow around the brush sliding surface 59, and the number of post-processing steps can be reduced.
  • An object of the present invention is to manufacture a segment that can prevent resin leakage in a resin commutation step of a flat commutator easily and inexpensively, and to reduce the number of manufacturing steps of the flat commutator. Disclosure of the invention
  • the method for manufacturing a flat commutator segment according to the present invention includes: a holder formed into a disc shape by a synthetic resin; and a plurality of segments disposed along one circumferential surface of one end in the axial direction of the holder.
  • a method for manufacturing the segment in the flat type commutator provided comprising: a step of forming a base material having a portion having a cross-sectional shape similar to the cross-sectional shape of the segment by drawing, and cutting the base material. Forming the segment by using the above method.
  • the segments are manufactured by cutting the base material having the same cross-sectional shape as the segments, for example, the segments can be formed by only one punching process on the base material, Many punching operations are not required. Therefore, there is no dimensional variation due to matching and feeding errors in each step, and the segment can be molded with high dimensional accuracy.
  • segment manufacturing equipment can be handled by general-purpose and inexpensive equipment, and it becomes possible to process segments at low cost.
  • the segment is radially arranged on one axial end surface of the holder portion, and the base material has a cross-sectional shape similar to a cross-sectional shape along a radial direction of the segment. You may have it.
  • the direction in which the base material is drawn may be substantially the same as the direction in which the brush slides on the segment.
  • the processing direction of the brush sliding surface substantially matches the brush sliding direction, and the drawn surface can be used directly as the brush sliding surface without cutting after punching. It becomes.
  • the drawn surface of the base material may be a brush sliding surface of the segment.
  • the portion where the work hardening occurs in the drawing becomes the brush sliding surface, the hardness of the brush sliding surface can be improved, and the durability of the commutator can be improved.
  • an anchor portion for preventing the segment from coming off in the axial direction with respect to the holder portion may be formed on the base material by the drawing process. This eliminates the need for an anchor portion forming operation such as taper processing and nail shaving processing after the drawing process, thereby reducing man-hours.
  • the segment in the method of manufacturing a segment for a flat commutator, the segment may be formed by punching the base material in a direction perpendicular to the drawing direction.
  • the segments may be punched out in a state where the adjacent segments have their inner and outer diameter sides inverted.
  • FIG. 1 is a partially cutaway perspective view showing an example of a flat commutator using a segment manufactured by a manufacturing method according to the present invention.
  • FIG. 2 is a perspective view showing a configuration of a segment of the flat commutator.
  • FIG. 3 is an explanatory diagram showing a segment manufacturing method according to the first embodiment of the present invention.
  • FIG. 4 is an explanatory diagram showing a segment manufacturing method according to the first embodiment of the present invention.
  • FIG. 5 is an explanatory diagram showing a segment manufacturing method according to the second embodiment of the present invention.
  • FIG. 6 is an explanatory diagram showing the influence of the corner R at the time of resin molding.
  • FIG. 7 is a partial cross-sectional side view showing the configuration of the cylindrical commutator.
  • FIG. 8 is an explanatory diagram of a method of manufacturing the segment used in FIG.
  • Figure 9 shows how a flat commutator segment is manufactured from a teeter bar.
  • FIG. 1 is a partially cut perspective view showing an example of a flat commutator using a segment manufactured by a manufacturing method according to the present invention.
  • the commutator 1 has a flat structure as shown in FIG. 1, and is used for a starter motor, an in-tank fuel supply pump, and the like.
  • the commutator 1 includes a synthetic resin holder 2 and a plurality of metal segments 3, and the segment 3 is molded integrally with the holder 2.
  • the surface of segment 3 (the upper surface in Fig. 1) is a brush sliding surface 4, where a brush (not shown) comes into contact from the axial direction.
  • Such a commutator 1 is formed by mounting the individual segments 3 on a circular cartridge, and then molding the whole with synthetic resin in that state.
  • the molded commutator 1 is assembled together with a rotating shaft armature core and a coil winding (not shown), and then coated with a synthetic resin to form an armature assembly.
  • the holder part 2 is formed in a thick, substantially disk shape, and a shaft hole 5 for fixing a motor rotation shaft is formed in a center part.
  • a plurality of segments 3 are arranged at equal intervals on one axial end surface of the holder 2.
  • Each segment 3 is formed in a substantially sector shape, and is radially arranged on the surface of the holder 2.
  • Slits 6 are formed between the segments 3 to electrically insulate the adjacent segments 3 from each other.
  • FIG. 2 is a perspective view showing the configuration of the segment 3.
  • the segment 3 has a main body portion 7 on which the brush sliding surface 4 is formed, and an outer peripheral portion 8 formed with a step outside the main body portion 7.
  • An outer peripheral portion 8 is provided with a U-shaped coil mounting groove 9.
  • An armature coil (not shown) is fixed to the coil mounting groove 9 by fusing or the like.
  • a boss 11 is provided on the inner peripheral side of the main body 7, and a taper 1 2a is formed.
  • the boundary between the main body 7 and the outer peripheral portion 8 is a stepped portion 13, and the inner surface side is also a tapered portion 12 b.
  • the tapered portions 12 a and 12 b are expanded toward the main body 7 side, and form an anchor portion 14 which serves as an axial stopper for the segment 3 with respect to the holder portion 2.
  • segment 3 is formed as follows. 3 and 4 are explanatory diagrams showing a method for manufacturing the segment 3 according to the first embodiment of the present invention.
  • segment 3 is also cut from a copper tether bar (base metal).
  • the theta bar 15 is formed by drawing a copper material in the direction indicated by the arrow X.
  • the cross section is the same as the A-A cross section (radial cross section) in Fig. 2 of the segment 3 as shown in Figs. It is molded into. That is, the tether bar 15 has a form in which a main body forming part 17 that becomes the main body part 7, an outer peripheral forming part 18 that becomes the outer peripheral part 8, and a boss forming part 21 that becomes the boss part 11 are formed into a body. Has become.
  • a stepped portion 23 is formed between the main body forming portion 17 and the outer peripheral forming portion 18 of the tether bar 15, and tapered surfaces 22 a and 22 b are respectively formed inside them. Since the cross-sectional shape of the theta bar 15 is determined by the drawing die, the degree of freedom of the cross-sectional shape is greater than that of the bending process, and the inside of the boss 11 and the inside of the step 23 are also easily tapered 2 a , 2 2 b. In the case of the commutator metal 52 formed by pressing, as shown in Fig. 6, a process of forming the boss portion 61 into a tapered shape and a nail shaving process of forming the engaging piece 62 are required as shown in FIG. . On the other hand, in the segment 3, the anchor shape is formed at the same time in the drawing process, so that taper processing, nail shaving processing, and the like become unnecessary, thereby reducing man-hours.
  • Segment 3 is stamped side-by-side from the tether bar 15, as shown in Figure 4. Punching is performed in a direction perpendicular to the drawing direction X (Y direction in Fig. 3). Segment molding from the data bar 15 can be performed by a single punching process. Compared to multiple punching, there is no dimensional variation due to matching and feeding errors in each process, and segment 3 can be formed with high dimensional accuracy. Can be molded. The equipment used at that time also requires only punching and does not require feed accuracy, so general-purpose and inexpensive equipment can be used, and segment 3 can be processed at low cost.
  • the punching of segment 3 The area to be deleted can be reduced. Therefore, the material is effectively used and the yield is improved. Furthermore, there is no bending in the molding of segment 3 and the radius of the corner is minimized. Therefore, the resin does not flow around the brush sliding surface 4 due to the resin mold, and the number of post-processing steps can be reduced.
  • the brush sliding surface 4 is the outer surface 17a of the main body forming portion 17. That is, the drawn surface becomes the brush sliding surface 4.
  • the drawing surface has higher surface roughness and flatness than the fractured surface by punching, and can be used as the brush sliding surface 4 as it is.
  • the drawing surface is buried in the resin mold, and the fracture surface is the brush sliding surface 4, which is not used despite its good surface.
  • the drawing surface is set to be the brush sliding surface 4, and the good surface is actively used. Therefore, if the segment 3 is used, the finishing of the brush sliding surface 4 after the resin molding becomes unnecessary, and the man-hour for manufacturing the commutator 1 can be reduced.
  • the outer surface 17a of the body forming portion 17 has a higher hardness due to work hardening by drawing, and the durability of the brush sliding surface 4 is also improved.
  • the withdrawal direction X of the tether bar is perpendicular to the brush sliding direction (rotation direction) Z, as shown in FIGS.
  • the processing direction and the brush sliding direction match.
  • the brush sliding surface of the segment is scheduled to be cut and finished after punching, so there is not much effect even if the directions of both are different.
  • the pulling direction (the X direction in FIG. 3) of the theta bar 15 is substantially the same as the force brush sliding direction (the Z direction in FIG. 2).
  • the tangential direction of the brush sliding direction Z on the circumferential center line (the line A_A in FIG. 2) of the segment 3 matches the drawing direction X of the thetaper 15. Therefore, in segment 3, post-machining caused by the difference between the machining direction and the brush sliding direction can be omitted, and due to the goodness of the drawn surface and the surface hardness, punching of the data bar 15 is performed. Can be commercialized as it is.
  • FIG. 5 is an explanatory diagram showing a segment manufacturing method according to the second embodiment of the present invention.
  • the same parts and members as in Embodiment 1 are given the same reference numerals, and description thereof is omitted.
  • so-called staggered cutting is performed on the tether bar (base material) 25 as shown in FIG. 5 in order to further increase the yield of the segment 3.
  • the theta-taper 25 has a portion having the same cross-sectional shape as that of the segment 3 so as to penetrate the adjacent segment 3 in the vertically opposite direction, and has a vertically symmetrical form. That is, the outer peripheral portion 18 of the theta bar 15 having the same cross-sectional shape as the segment 3 is provided at both ends, and the outer end portion 26 is formed at both ends. .
  • the adjacent segment 3 is punched up and down, that is, with the inside diameter side and the outside diameter side reversed.
  • the outer end 26 of the theta bar 25 on the inner diameter side (tapered side) is punched at an intermediate position to form a boss 11.
  • the unnecessary portion of the tether bar 25 is small in this manufacturing method, and the segment 3 is punched out very efficiently. Therefore, the yield of segment 3 can be improved, and not only can the manufacturing cost be reduced, but also the amount of waste can be reduced.
  • theta bars 15 and 25 may have not only the same cross-sectional shape as the segment 3 but also a shape that can be easily formed into the segment 3 by post-processing. Not including cross-sectional shapes. In the case of performing post-processing, the number of steps such as grinding can be reduced as compared with the conventional case.
  • a base material having a section having the same cross-sectional shape as that of the segment is formed by drawing, and the base material is cut to form a segment.
  • the segment can be formed by cutting the base material, eliminating the need for multi-step processing. Therefore, there is no variation in dimensions due to matching of each process or a feeding error, and a segment can be molded with high dimensional accuracy.
  • segment manufacturing equipment can be handled by general-purpose and inexpensive equipment, and it becomes possible to process segments at low cost.
  • the drawing direction of the base material to be substantially the same as the brush sliding direction of the segment, the processing direction of the brush sliding surface can be substantially matched with the brush sliding direction.
  • the drawing surface can be used as it is as the brush sliding surface without performing.
  • the brushed surface of the base material as the brush sliding surface of the segment, the portion where work hardening occurs during the drawing becomes the brush sliding surface, and the hardness of the brush sliding surface can be improved.
  • the durability of the commutator is improved.
  • the anchor portion by forming the anchor portion on the base material by drawing, the anchor portion forming work such as tapering and nail shaving after the drawing process is not required, thereby reducing man-hours.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Motor Or Generator Current Collectors (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

A method of manufacturing a segment (3) for a flat commutator, comprising the steps of forming a theta section bar (15) having the same cross sectional shape as that of the segment (3) by drawing, punching out the theta section bar (15) in a direction Z perpendicular to a drawing direction X to form the segment (3) for the flat commutator, wherein the drawing direction X for the theta section bar (15) is aligned in the generally same direction as the slidable contact direction of a brush on the segment (3) and a draw-finished surface is formed to be used as a brush sliding surface (4) of the segment (3), and an anchor part (14) forming an extraction stopper for the segment (3) is formed on the theta section bar (15) in drawing, whereby the segment for the flat commutator capable of preventing the leakage of resin in a resin mold process can be easily manufactured at a low cost.

Description

明 細 書 偏平型コンミテータ用セグメントの製造方法  Description Method for manufacturing flat commutator segments
技術分野 Technical field
本発明は、 回転電機のコンミテータ製造方法に関し、 特に、 ディスクタイプの 偏平型コンミテータにおけるセグメントの製造方法に関する。 背景技術  The present invention relates to a method for manufacturing a commutator for a rotating electric machine, and more particularly to a method for manufacturing a segment in a disk-type flat commutator. Background art
近年、 電動パワーステアリングやエンジンスタータ、 燃料ポンプなどに使用さ れるモータでは、 装置小型化等の要請から、 偏平型のコンミテータ (フラットコ ンミ) を採用したものが登場している。 この偏平型コンミテータは、 円筒状の一 般的なコンミテータと異なり、 回転軸から径方向に延びるディスク状のブラシ摺 動面を有しており、 コンミテータメタルと呼ばれる金属部材が合成樹脂と一体に 成型される。 一体成型後、 コンミテータメタルは、 互いに絶縁状態となるように 放射状に切断されて周方向に分離され、 複数のセグメントが形成される。 そして、 このコンミテータメタルからなるブラシ摺動面に軸方向からブラシが摺接し、 ァーマチュア電流の切替が行われる。  In recent years, motors used in electric power steering, engine starters, fuel pumps, and the like have come to use flat commutators (flat connectors) due to demands for downsizing the equipment. This flat type commutator has a disk-shaped brush sliding surface that extends in the radial direction from the rotation axis, unlike a general cylindrical commutator. A metal member called commutator metal is molded integrally with synthetic resin. Is done. After integral molding, the commutator metal is cut radially so as to be insulated from each other and separated in the circumferential direction to form a plurality of segments. Then, the brush slides on the brush sliding surface made of the commutator metal from the axial direction, and the armature current is switched.
このような偏平型コンミテータにおけるコンミテータメタルの製造方法として は、 各セグメント用のものを個別に冷間鍛造にて形成したり、 順送プレスにて円 環状に連鎖体を形成したりする方式が採られている。 しかしながら、 これらの方 式によると、 プレス曲げやしごき、 絞り等の加工により、 曲げ角部の曲面 (R) が大きくなるという問題があった。 角部の Rが大きくなると、 ブラシ摺動面の長 さが R部分だけ少なくなり、 摺動面長確保の点で不利となる。 また、 角部の Rは 樹脂モールド時において、 樹脂圧力に対しセグメントを浮かせる方向の分力を発 生させる。 さらに、 コンミテータメタルは順送プレスを要する複雑な多工程にて 製造されるため、 設備費が増大すると共に、 送りパイロット穴を確保するためブ ランク面積も大きくなり、 その分、 歩留まりも低下する。  As a method of manufacturing commutator metal in such a flat type commutator, a method of individually forming each segment for cold forging or forming a chain in an annular shape by a progressive press is adopted. Have been. However, according to these methods, there is a problem that the curved surface (R) at the bending corner becomes large due to press bending, ironing, drawing and the like. When the radius of the corner increases, the length of the brush sliding surface decreases by the radius, which is disadvantageous in securing the length of the sliding surface. Also, the R at the corner generates a component force in the direction of lifting the segment against resin pressure during resin molding. Furthermore, commutator metal is manufactured in a complex multi-step process requiring progressive presses, which increases equipment costs and increases the blank area to secure feed pilot holes, which lowers the yield.
図 6は、 樹脂モールド時における角部 Rの影響を示す説明図である。 図 6に示 すように、 角部 Rでは、 ゲート 5 1から供給された樹脂は、 コンミテータメタル 5 2の角部 5 3からブラシ摺動面 5 4側に回り込もうとする。 すると、 その圧力 にてコンミテータメタル 5 2が上方に変形し、 ブラシ摺動面 5 4の内径側に樹脂 が漏れる恐れがある。 樹脂漏れが生じると、 ブラシ摺動面 5 4上のパリ取りが必 要となるのみならず、 バリの分だけセグメント間に段差が生じ、 それを吸収する ための切削加工がさらに必要となる。 このため、 樹脂モールド後の工程における 工数が増大し、 コストアップを招来するという問題があった。 特に、 プレス品の コンミテータメタルでは、 スプリングパックよりメタルが変形する可能性もあり、 樹脂漏れへの対策が求められていた。 FIG. 6 is an explanatory diagram showing the influence of the corner R at the time of resin molding. Shown in Figure 6 As described above, at the corner R, the resin supplied from the gate 51 tries to move from the corner 53 of the commutator metal 52 to the brush sliding surface 54 side. Then, the commutator metal 52 is deformed upward by the pressure, and the resin may leak to the inner diameter side of the brush sliding surface 54. When resin leakage occurs, not only is it necessary to remove the spar on the brush sliding surface 54, but also there is a step between the segments due to the burrs, and further cutting work is required to absorb the difference. For this reason, the number of steps in the process after the resin molding is increased, resulting in a problem that the cost is increased. In particular, in the case of pressed commutator metal, the metal may be deformed more than the spring pack, and measures to prevent resin leakage were required.
一方、 通常の筒型コンミテータにて用いられているセグメントの製造方法を適 用し、 前記の問題の解決を図る試みも行われている。 図 7は筒型コンミテータの 構成を示す一部断面の側面図、 図 8は図 7にて使用されているセグメントの製造 方法の説明図である。 筒型コンミテータ 5 5では、 セグメント 5 6はテーター バーと呼ばれる棒状部材を適宜カツトして形成される。 テーターパ一 5 7は銅製 の引抜材であり、 図 8に示すように、 台形断面に形成されている。 セグメント 5 6は、 このテーターパ一 5 7を図中に破線にて示したような形で打ち抜き、 図 7 の筒型コンミテータ 5 5にて使用される形状とする。  On the other hand, an attempt has been made to solve the above-mentioned problem by applying a method for manufacturing a segment used in an ordinary cylindrical commutator. FIG. 7 is a partial cross-sectional side view showing the configuration of the cylindrical commutator, and FIG. 8 is an explanatory diagram of a method for manufacturing the segments used in FIG. In the cylindrical commutator 55, the segment 56 is formed by appropriately cutting a rod-shaped member called a teeter bar. The theta-ta 57 is a drawn material made of copper and has a trapezoidal cross section as shown in FIG. The segment 56 is formed by punching out the taper 57 in the form shown by the broken line in the figure to have a shape used in the cylindrical commutator 55 in FIG.
そこで、 偏平型コンミテータのセグメント (コンミテータメタル) もこのよう なテーターパ一 5 7から製造すれはプレス品のような角部の Rは生ぜず、 スプリ ングパックの問題もない。 図 9は、 偏平型コンミテータのセグメントをテーター バーから製造する様子を示す説明図である。 テーターバー 5 7から図 9に破線に て示したようにセグメント 5 8を切り出せば、 ブラシ摺動面 5 9の端部が Rとな ることもない。 従って、 セグメント 5 8を樹脂モールドしてもブラシ摺動面 5 9 に樹脂が回り込むことがなく、 後加工の工数を減らすことが可能となる。  Therefore, the flat commutator segment (commutator metal) manufactured from such a taper plate 57 does not have a rounded corner like a pressed product, and there is no problem with the spring pack. FIG. 9 is an explanatory view showing a state in which a segment of a flat commutator is manufactured from a teeter bar. If the segment 58 is cut out from the theta bar 57 as shown by the broken line in FIG. 9, the end of the brush sliding surface 59 will not be rounded. Therefore, even if the segment 58 is resin-molded, the resin does not flow around the brush sliding surface 59, and the number of post-processing steps can be reduced.
ところが、 図 9のようなテーターバー 5 7からセグメント 5 8を打ち抜くと、 加工面がブラシ摺動面 5 4となる。 すなわち、 破断面がブラシ摺動面 5 4となる。 このため、 ブラシ摺動面 5 4の表面粗さが大きくなり、 打抜加工後にさらに切削 加工が必要となる。 従って、 モールド後の工数は削減されるものの、 セグメント 製造工数が増大し、 効果的なコスト削減が図れない。 また、 セグメント 5 8形成 に際しテ一ターバー 5 7の削除部分が比較的大きいため、 歩留まりが悪く製造コ スト上不利となる。 さらに、 テーターバー 5 7表面より軟らかいの内部の部位が プラシ摺動面 5 4となるため、 その表面硬度が低くなるなどの問題があり、 その 改善が望まれていた。 However, when the segment 58 is punched out of the tether bar 57 as shown in FIG. 9, the machined surface becomes the brush sliding surface 54. That is, the fracture surface becomes the brush sliding surface 54. For this reason, the surface roughness of the brush sliding surface 54 becomes large, and further cutting is required after punching. Therefore, although the man-hour after molding is reduced, the number of man-hours for manufacturing the segment increases, and effective cost reduction cannot be achieved. Also, segment 5 8 formation In this case, since the deleted portion of the tea bar 57 is relatively large, the yield is low and the production cost is disadvantageous. Furthermore, since the inside portion softer than the surface of the tether bar 57 becomes the plush sliding surface 54, there is a problem that the surface hardness is lowered, and the improvement has been desired.
本発明の目的は、 偏平型コンミテータの樹脂モールド工程における樹脂漏れを 防止し得るセグメントを容易かつ安価に製造し、 偏平型コンミテータの製造工数 の削減を図ることにある。 発明の開示  SUMMARY OF THE INVENTION An object of the present invention is to manufacture a segment that can prevent resin leakage in a resin commutation step of a flat commutator easily and inexpensively, and to reduce the number of manufacturing steps of the flat commutator. Disclosure of the invention
本発明の偏平型コンミテータ用セグメントの製造方法は、 合成樹脂によって円 盤状に形成されたホルダ部と、 前記ホルダ部の軸方向一端面に周方向に沿って配 設された複数のセグメントとを有してなる偏平型コンミテータにおける前記セグ メントの製造方法であって、 引抜加工により、 前記セグメントの断面形状と同様 の断面形状の部位を有する母材を形成する工程と、 前記母材を切断して前記セグ メントを形成する工程とを有することを特徴とする。  The method for manufacturing a flat commutator segment according to the present invention includes: a holder formed into a disc shape by a synthetic resin; and a plurality of segments disposed along one circumferential surface of one end in the axial direction of the holder. A method for manufacturing the segment in the flat type commutator provided, comprising: a step of forming a base material having a portion having a cross-sectional shape similar to the cross-sectional shape of the segment by drawing, and cutting the base material. Forming the segment by using the above method.
本発明にあっては、 セグメントと同様の断面形状を備えた母材を切断すること によってセグメントを製造しているので、 例えば、 母材に対する 1回の打抜加工 のみにてセグメントを成型でき、 多数回の打抜加工が不要となる。 従って、 各ェ 程のマツチングゃ送り誤差による寸法のパラツキがなく、 寸法精度良くセグメン トを成型できる。 また、 母材の加工は打ち抜きのみであり送り精度が求められな いことから、 セグメントの製造設備も汎用の安価な設備にて対応でき、 セグメン トを安価に加工することが可能となる。  In the present invention, since the segments are manufactured by cutting the base material having the same cross-sectional shape as the segments, for example, the segments can be formed by only one punching process on the base material, Many punching operations are not required. Therefore, there is no dimensional variation due to matching and feeding errors in each step, and the segment can be molded with high dimensional accuracy. In addition, since the processing of the base material is only punching and no feed accuracy is required, segment manufacturing equipment can be handled by general-purpose and inexpensive equipment, and it becomes possible to process segments at low cost.
前記偏平型コンミテータ用セグメントの製造方法において、 前記セグメントが 前記ホルダ部の軸方向一端面に放射状に配置され、 前記母材が前記セグメントの 径方向に沿った断面形状と同様の断面形状の部位を有するようにしても良い。 前記偏平型コンミテータ用セグメントの製造方法において、 前記母材の引抜方 向を前記セグメントにおけるブラシ摺接方向と略同一方向としても良い。 これに より、 ブラシ摺動面の加工方向がブラシ摺接方向と略一致し、 打抜加工後に切削 仕上げを行うことなく引抜面をそのままブラシ摺動面として使用することが可能 となる。 In the method for manufacturing a flat commutator segment, the segment is radially arranged on one axial end surface of the holder portion, and the base material has a cross-sectional shape similar to a cross-sectional shape along a radial direction of the segment. You may have it. In the method for manufacturing a segment for a flat commutator, the direction in which the base material is drawn may be substantially the same as the direction in which the brush slides on the segment. As a result, the processing direction of the brush sliding surface substantially matches the brush sliding direction, and the drawn surface can be used directly as the brush sliding surface without cutting after punching. It becomes.
また、 前記偏平型コンミテータ用セグメントの製造方法において、 前記母材に おける引抜加工面が前記セグメントにおけるブラシ摺動面となるようにしても良 い。 これにより、 引抜加工にて加工硬化が生じた部位がブラシ摺動面となり、 ブ ラシ摺動面の硬度を向上させることができ、 コンミテータの耐久性の向上が図ら れる。  In the method of manufacturing a flat commutator segment, the drawn surface of the base material may be a brush sliding surface of the segment. As a result, the portion where the work hardening occurs in the drawing becomes the brush sliding surface, the hardness of the brush sliding surface can be improved, and the durability of the commutator can be improved.
さらに、 前記偏平型コンミテータ用セグメントの製造方法において、 前記セグ メントの前記ホルダ部に対する軸方向の抜け止めとなるアンカ部を前記引抜加工 によって前記母材に形成しても良い。 これにより、 引抜工程後にテーパ加工や爪 削ぎ加工などのアンカ部形成作業が不要となり、 工数削減が図られる。  Further, in the method for manufacturing a flat commutator segment, an anchor portion for preventing the segment from coming off in the axial direction with respect to the holder portion may be formed on the base material by the drawing process. This eliminates the need for an anchor portion forming operation such as taper processing and nail shaving processing after the drawing process, thereby reducing man-hours.
一方、 前記偏平型コンミテータ用セグメントの製造方法において、 前記セグメ ントを、 前記母材をその引抜方向と直角方向に打ち抜いて形成しても良い。 この 場合、 前記セグメントを、 隣接する前記セグメントが互いに内径側と外径側が反 転した状態で打ち抜くようにしても良い。 これにより、 母材の不要部分が小さく なり、 非常に効率良くセグメントを打ち抜くことができ、 セグメントの歩留まり 向上が図られ、 製造コストを低減できるのみならず、 廃棄物を削減することも可 能となる。 図面の簡単な説明  On the other hand, in the method of manufacturing a segment for a flat commutator, the segment may be formed by punching the base material in a direction perpendicular to the drawing direction. In this case, the segments may be punched out in a state where the adjacent segments have their inner and outer diameter sides inverted. As a result, unnecessary portions of the base material are reduced, segments can be punched very efficiently, segment yield can be improved, manufacturing costs can be reduced, and waste can be reduced. Become. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明による製造方法によって製造されたセグメントを用いた偏平型 コンミテータの一例を示す一部切断斜視図である。  FIG. 1 is a partially cutaway perspective view showing an example of a flat commutator using a segment manufactured by a manufacturing method according to the present invention.
図 2は、 偏平型コンミテータのセグメントの構成を示す斜視図である。  FIG. 2 is a perspective view showing a configuration of a segment of the flat commutator.
図 3は、 本発明の実施の形態 1であるセグメント製造方法を示す説明図である。 図 4は、 本発明の実施の形態 1であるセグメント製造方法を示す説明図である。 図' 5は、 本発明の実施の形態 2であるセグメント製造方法を示す説明図である。 図 6は、 樹脂モールド時における角部 Rの影響を示す説明図である。  FIG. 3 is an explanatory diagram showing a segment manufacturing method according to the first embodiment of the present invention. FIG. 4 is an explanatory diagram showing a segment manufacturing method according to the first embodiment of the present invention. FIG. 5 is an explanatory diagram showing a segment manufacturing method according to the second embodiment of the present invention. FIG. 6 is an explanatory diagram showing the influence of the corner R at the time of resin molding.
図 7は、 筒型コンミテータの構成を示す一部断面の側面図である。  FIG. 7 is a partial cross-sectional side view showing the configuration of the cylindrical commutator.
図 8は、 図 7にて使用されているセグメントの製造方法の説明図である。  FIG. 8 is an explanatory diagram of a method of manufacturing the segment used in FIG.
図 9は、 偏平型コンミテータのセグメントをテーターバーから製造する様子を 示す説明図である。 発明を実施するための最良の形態 Figure 9 shows how a flat commutator segment is manufactured from a teeter bar. FIG. BEST MODE FOR CARRYING OUT THE INVENTION
(実施の形態 1 )  (Embodiment 1)
以下、 本発明の実施の形態を図面に基づいて詳細に説明する。 図 1は本発明に よる製造方法によって製造されたセグメントを用いた偏平型コンミテータの一例 を示す一部切断斜視図である。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a partially cut perspective view showing an example of a flat commutator using a segment manufactured by a manufacturing method according to the present invention.
コンミテータ 1は、 図 1に示すように偏平構造に構成されており、 スタータ モータやインタンク式燃科供給ポンプ等に使用される。 コンミテータ 1は、 合成 樹脂製のホルダ部 2と複数の金属製セグメント 3とを備えており、 セグメント 3 はホルダ部 2と一体にモールド成型されている。 セグメント 3の表面 (図 1にお いて上面) はブラシ摺動面 4となっており、 そこに軸方向から図示しないブラシ が接触する。  The commutator 1 has a flat structure as shown in FIG. 1, and is used for a starter motor, an in-tank fuel supply pump, and the like. The commutator 1 includes a synthetic resin holder 2 and a plurality of metal segments 3, and the segment 3 is molded integrally with the holder 2. The surface of segment 3 (the upper surface in Fig. 1) is a brush sliding surface 4, where a brush (not shown) comes into contact from the axial direction.
このようなコンミテータ 1は、 個々のセグメント 3を円形のカートリッジに装 着し、 その状態で合成樹脂にて全体をモールド成型して形成される。 成型された コンミテータ 1は、 図示しない回転軸ゃァーマチュアコア、 コイル卷線と共に組 み付けられ、 その後、 合成樹脂にてコーティングが施されァーマチュアアッセン プリとなる。  Such a commutator 1 is formed by mounting the individual segments 3 on a circular cartridge, and then molding the whole with synthetic resin in that state. The molded commutator 1 is assembled together with a rotating shaft armature core and a coil winding (not shown), and then coated with a synthetic resin to form an armature assembly.
ホルダ部 2は、 厚肉の略円盤形状に形成されており、 中心部にはモータ回転軸 固定用の軸孔 5が形成されている。 ホルダ部 2の軸方向一端面には、 複数のセグ メント 3が等間隔に配設されている。 各セグメント 3は略扇形形状に形成されて おり、 ホルダ部 2の表面上に放射状に配されている。 セグメント 3の間は、 隣合 うセグメント 3を互いに電気的に絶縁するためのスリット 6が形成されている。 図 2は、 セグメント 3の構成を示す斜視図である。 図 2に示すように、 セグメ ント 3は、 ブラシ摺動面 4が形成される本体部 7と、 本体部 7の外側に段差を設 けて形成された外周部 8を有している。 外周部 8には U字型のコィル取付溝 9が 設けられている。 コイル取付溝 9には、 図示しないァーマチュアコイルがフュー ジング等によって固定される。  The holder part 2 is formed in a thick, substantially disk shape, and a shaft hole 5 for fixing a motor rotation shaft is formed in a center part. A plurality of segments 3 are arranged at equal intervals on one axial end surface of the holder 2. Each segment 3 is formed in a substantially sector shape, and is radially arranged on the surface of the holder 2. Slits 6 are formed between the segments 3 to electrically insulate the adjacent segments 3 from each other. FIG. 2 is a perspective view showing the configuration of the segment 3. As shown in FIG. 2, the segment 3 has a main body portion 7 on which the brush sliding surface 4 is formed, and an outer peripheral portion 8 formed with a step outside the main body portion 7. An outer peripheral portion 8 is provided with a U-shaped coil mounting groove 9. An armature coil (not shown) is fixed to the coil mounting groove 9 by fusing or the like.
本体部 7の内周側にはボス部 1 1が設けられており、 その内面側にはテーパ部 1 2 aが形成されている。 本体部 7と外周部 8との境界は段部 1 3となっており、 その内面側もまたテーパ部 1 2 bとなっている。 テーパ部 1 2 a , 1 2 bは本体 部 7側に向かって拡開しており、 セグメント 3のホルダ部 2に対する軸方向の抜 け止めとなるアンカ部 1 4を形成している。 A boss 11 is provided on the inner peripheral side of the main body 7, and a taper 1 2a is formed. The boundary between the main body 7 and the outer peripheral portion 8 is a stepped portion 13, and the inner surface side is also a tapered portion 12 b. The tapered portions 12 a and 12 b are expanded toward the main body 7 side, and form an anchor portion 14 which serves as an axial stopper for the segment 3 with respect to the holder portion 2.
このようなセグメント 3は、 次のようにして形成される。 図 3 , 4は本発明の 実施の形態 1であるセグメント 3の製造方法を示す説明図である。 図 3に示すよ うに、 セグメント 3もまた銅製のテーターバー (母材) 1 5力 ら切り出される。 テーターバー 1 5は銅材を矢示 X方向に引抜加工して形成され、 その断面は、 図 3 , 4に示すように、 セグメント 3の図 2における A— A断面 (径方向断面) と 同一形状に成型されている。 すなわち、 テーターバー 1 5は、 本体部 7となる本 体形成部 1 7、 外周部 8となる外周形成部 1 8、 ボス部 1 1となるボス形成部 2 1がー体に成型された形態となっている。  Such a segment 3 is formed as follows. 3 and 4 are explanatory diagrams showing a method for manufacturing the segment 3 according to the first embodiment of the present invention. As shown in Figure 3, segment 3 is also cut from a copper tether bar (base metal). The theta bar 15 is formed by drawing a copper material in the direction indicated by the arrow X. The cross section is the same as the A-A cross section (radial cross section) in Fig. 2 of the segment 3 as shown in Figs. It is molded into. That is, the tether bar 15 has a form in which a main body forming part 17 that becomes the main body part 7, an outer peripheral forming part 18 that becomes the outer peripheral part 8, and a boss forming part 21 that becomes the boss part 11 are formed into a body. Has become.
テーターバー 1 5の本体形成部 1 7と外周形成部 1 8との間は段部 2 3となつ ており、 それらの内側にはそれぞれテーパ面 2 2 a, 2 2 bが形成されている。 テーターバー 1 5の断面形状は、 引抜ダイスによって決まるため、 曲げ加工に比 して断面形状の自由度が大きく、 ボス部 1 1の内側と段部 2 3の内側にも容易に テーパ面 2 2 a , 2 2 bを形成できる。 プレス加工によるコンミテータメタル 5 2では、 図 6に示すように、 抜け止めのためにボス部 6 1をテーパ形状に加工す る工程や、 係合片 6 2を形成する爪削ぎ工程が必要となる。 これに対し当該セグ メント 3では、 引抜工程にて同時にアンカ形状が成型され、 テーパ加工や爪削ぎ 加工などが不要となり、 工数削減が図られる。 A stepped portion 23 is formed between the main body forming portion 17 and the outer peripheral forming portion 18 of the tether bar 15, and tapered surfaces 22 a and 22 b are respectively formed inside them. Since the cross-sectional shape of the theta bar 15 is determined by the drawing die, the degree of freedom of the cross-sectional shape is greater than that of the bending process, and the inside of the boss 11 and the inside of the step 23 are also easily tapered 2 a , 2 2 b. In the case of the commutator metal 52 formed by pressing, as shown in Fig. 6, a process of forming the boss portion 61 into a tapered shape and a nail shaving process of forming the engaging piece 62 are required as shown in FIG. . On the other hand, in the segment 3, the anchor shape is formed at the same time in the drawing process, so that taper processing, nail shaving processing, and the like become unnecessary, thereby reducing man-hours.
セグメント 3は、 図 4に示すように、 テーターバー 1 5から横並びに打ち抜か れる。 打抜加工は引抜方向 Xと直角の方向 (図 3の Y方向) に行われる。 テー ターバー 1 5からのセグメント成型は 1回の打抜加工にて可能であり、 多数回の 打ち抜きに比して、 各工程のマッチングや送り誤差による寸法のバラツキがなく、 寸法精度良くセグメント 3を成型できる。 その際に使用する設備も、 プレスは打 抜加工のみであり送り精度も求められないことから、 汎用の安価な設備にて対応 でき、 セグメント 3を安価に加工することが可能となる。  Segment 3 is stamped side-by-side from the tether bar 15, as shown in Figure 4. Punching is performed in a direction perpendicular to the drawing direction X (Y direction in Fig. 3). Segment molding from the data bar 15 can be performed by a single punching process.Compared to multiple punching, there is no dimensional variation due to matching and feeding errors in each process, and segment 3 can be formed with high dimensional accuracy. Can be molded. The equipment used at that time also requires only punching and does not require feed accuracy, so general-purpose and inexpensive equipment can be used, and segment 3 can be processed at low cost.
また、 図 4に示すように、 セグメント 3の打抜加工では、 図 9の場合に比して 削除面積を少なく抑えることができる。 従って、 材料が有効活用され歩留まりの 向上が図られる。 さらに、 セグメント 3の成型に際しては曲げ加工がなく、 角部 の Rは最小限に抑えられる。 このため、 樹脂モールドによるブラシ摺動面 4への 樹脂の回り込みがなく、 後加工の工数削減が図られる。 Also, as shown in Fig. 4, the punching of segment 3 The area to be deleted can be reduced. Therefore, the material is effectively used and the yield is improved. Furthermore, there is no bending in the molding of segment 3 and the radius of the corner is minimized. Therefore, the resin does not flow around the brush sliding surface 4 due to the resin mold, and the number of post-processing steps can be reduced.
—方、 セグメント 3では、 ブラシ摺動面 4は本体形成部 1 7の外面 1 7 aとな る。 つまり、 引抜加工面がブラシ摺動面 4となる。 引抜^]口工面は、 打抜加工によ る破断面に比して表面粗さや平面度が高く、 そのままブラシ摺動面 4として使用 することも可能である。 図 8 , 9の従来のセグメントでは引抜面は榭脂モールド 内に埋もれ、 破断面がブラシ摺動面 4となっており、 良好な面があるにもかかわ らずそれが活用されていない。 これに対し、 当該セグメント 3では引抜加工面が ブラシ摺動面 4となるように設定し、 その良好な面を積極的に活用している。 従 つて、 セグメント 3を用いれば、 樹脂モールド後におけるブラシ摺動面 4の仕上 げ加工が不要となり、 コンミテータ 1の製造工数の削減が可能となる。 なお、 本 体形成部 1 7の外面 1 7 aは、 引抜加工による加工硬化により硬度が高くなつて おり、 ブラシ摺動面 4の耐久性向上も図られる。  On the other hand, in segment 3, the brush sliding surface 4 is the outer surface 17a of the main body forming portion 17. That is, the drawn surface becomes the brush sliding surface 4. The drawing surface] has higher surface roughness and flatness than the fractured surface by punching, and can be used as the brush sliding surface 4 as it is. In the conventional segments shown in Figs. 8 and 9, the drawing surface is buried in the resin mold, and the fracture surface is the brush sliding surface 4, which is not used despite its good surface. In contrast, in segment 3, the drawing surface is set to be the brush sliding surface 4, and the good surface is actively used. Therefore, if the segment 3 is used, the finishing of the brush sliding surface 4 after the resin molding becomes unnecessary, and the man-hour for manufacturing the commutator 1 can be reduced. The outer surface 17a of the body forming portion 17 has a higher hardness due to work hardening by drawing, and the durability of the brush sliding surface 4 is also improved.
また、 一般にテーターバーの引抜方向 Xは、 図 8 , 9に示すように、 ブラシ摺 接方向 (回転方向) Zと直角方向となる。 ブラシ摺動面 4の表面における素材の 配向から見ると、 その加工方向とブラシ摺接方向は一致している方が好ましい。 しかしながら、 図 8, 9の場合には、 セグメントのブラシ摺動面は打抜加工後に 切削仕上げが予定されているため、 両者の方向が異なっても余り影響はない。 こ れに対し、 セグメント 3のブラシ搢動面 4では、 テーターバー 1 5の引抜方向 (図 3の X方向) 力 ブラシ摺接方向 (図 2の Z方向) と略同一方向となってい る。 当該実施の形態では、 セグメント 3の周方向の中心線 (図 2の A _ A線) 上 におけるブラシ摺接方向 Zの接線方向が、 テーターパ一 1 5の引抜方向 Xと一致 している。 従って、 セグメント 3では加工方向とブラシ摺接方向の相違に起因す る後加工を省くことができ、 引抜面の良好性や表面硬度の点も相俟って、 テー ターバー 1 5を打ち抜いたものをそのまま製品化することができる。  Generally, the withdrawal direction X of the tether bar is perpendicular to the brush sliding direction (rotation direction) Z, as shown in FIGS. In view of the orientation of the material on the surface of the brush sliding surface 4, it is preferable that the processing direction and the brush sliding direction match. However, in the case of Figs. 8 and 9, the brush sliding surface of the segment is scheduled to be cut and finished after punching, so there is not much effect even if the directions of both are different. On the other hand, on the brush driving surface 4 of the segment 3, the pulling direction (the X direction in FIG. 3) of the theta bar 15 is substantially the same as the force brush sliding direction (the Z direction in FIG. 2). In this embodiment, the tangential direction of the brush sliding direction Z on the circumferential center line (the line A_A in FIG. 2) of the segment 3 matches the drawing direction X of the thetaper 15. Therefore, in segment 3, post-machining caused by the difference between the machining direction and the brush sliding direction can be omitted, and due to the goodness of the drawn surface and the surface hardness, punching of the data bar 15 is performed. Can be commercialized as it is.
(実施の形態 2 ) '  (Embodiment 2) ''
図 5は、 本発明の実施の形態 2であるセグメント製造方法を示す説明図である。 なお、 実施の形態 1と同様の部分、 部材については同一の符号を付し、 その説明 は省略する。 FIG. 5 is an explanatory diagram showing a segment manufacturing method according to the second embodiment of the present invention. The same parts and members as in Embodiment 1 are given the same reference numerals, and description thereof is omitted.
実施の形態 2の製造方法では、 セグメント 3の歩留まりをさらに高くするため、 図 5のように、 テーターバー (母材) 2 5に対しいわゆる千鳥抜きを行っている。 テーターパ一 2 5は、 隣接するセグメント 3を上下反対方向に打ち抜けるように、 セグメント 3と同様の断面形状を有する部位が形成され、 上下に対称な形態とな つている。 すなわち、 テーターバー 2 5は、 全部がセグメント 3と同様の断面形 状となっているテーターバー 1 5における外周形成部 1 8を両端に設け、 外端部 2 6を両端に形成した形となっている。  In the manufacturing method according to the second embodiment, so-called staggered cutting is performed on the tether bar (base material) 25 as shown in FIG. 5 in order to further increase the yield of the segment 3. The theta-taper 25 has a portion having the same cross-sectional shape as that of the segment 3 so as to penetrate the adjacent segment 3 in the vertically opposite direction, and has a vertically symmetrical form. That is, the outer peripheral portion 18 of the theta bar 15 having the same cross-sectional shape as the segment 3 is provided at both ends, and the outer end portion 26 is formed at both ends. .
隣接するセグメント 3は、 上下、 すなわち、 内径側と外径側が反転した形で打 ち抜かれる。 テーターバー 2 5は、 内径側 (先細側) となる外端部 2 6が途中の 位置で打ち抜かれ、 ボス部 1 1が形成される。 図 4 , 5を比較すれは明らかなよ うに、 当該製造方法ではテーターバー 2 5の不要部分が小さく、 非常に効率良く セグメント 3が打ち抜かれる。 従って、 セグメント 3の歩留まりを向上させるこ とができ、 製造コストを低減できるのみならず、 廃棄物の削減も図られる。  The adjacent segment 3 is punched up and down, that is, with the inside diameter side and the outside diameter side reversed. The outer end 26 of the theta bar 25 on the inner diameter side (tapered side) is punched at an intermediate position to form a boss 11. As is clear from comparison of FIGS. 4 and 5, the unnecessary portion of the tether bar 25 is small in this manufacturing method, and the segment 3 is punched out very efficiently. Therefore, the yield of segment 3 can be improved, and not only can the manufacturing cost be reduced, but also the amount of waste can be reduced.
本発明は前記実施の形態に限定されるものではなく、 その要旨を逸脱しない範 囲で種々変更可能であることは言うまでもない。  The present invention is not limited to the above embodiment, and it goes without saying that various modifications can be made without departing from the gist of the present invention.
例えば、 前述のコンミテータ 1では、 ブラシ摺動面 4を清浄化するための切削 仕上げを省くことが可能であるが、 要求される完成品精度に応じて平面度や面粗 さを切削加工によって適宜仕上げ加工を行っても良い。 従って、 テーターバー 1 5 , 2 5は、 セグメント 3と同一の断面形状のみならず、 後加工によって容易に セグメント 3とし得る形状にしても良く、 セグメントと同様の断面形状にはこの ような完全同一ではない断面形状も含まれる。 なお、 後加工を行う場合も、 従来 に比して研削等の工数を少なくすることが可能である。  For example, in the commutator 1 described above, it is possible to omit the cutting finish for cleaning the brush sliding surface 4, but the flatness and surface roughness may be appropriately reduced by cutting according to the required accuracy of the finished product. Finishing may be performed. Therefore, the theta bars 15 and 25 may have not only the same cross-sectional shape as the segment 3 but also a shape that can be easily formed into the segment 3 by post-processing. Not including cross-sectional shapes. In the case of performing post-processing, the number of steps such as grinding can be reduced as compared with the conventional case.
本発明の偏平型コンミテータ用セグメントの製造方法によれば、 引抜加工によ りセグメントの断面形状と同様の断面形状の部位を有する母材を形成し、 この母 材を切断してセグメントを形成するようにしたので、 母材の切断加工によってセ グメントを成型でき、 多工程の加工が不要となる。 従って、 各工程のマッチング や送り誤差による寸法のバラツキがなく、 寸法精度良くセグメントを成型できる。 また、 母材の加工に送り精度が求められないことから、 セグメントの製造設備も 汎用の安価な設備にて対応でき、 セグメントを安価に加工することが可能となる。 また、 母材の引抜方向をセグメントのブラシ摺接方向と略同一方向とすること により、 ブラシ摺動面の加工方向がブラシ摺接方向と略一致させることができ、 打抜加工後に切削仕上げを行うことなく引抜面をそのままブラシ摺動面として使 用することが可能となる。 According to the method for manufacturing a flat commutator segment of the present invention, a base material having a section having the same cross-sectional shape as that of the segment is formed by drawing, and the base material is cut to form a segment. In this way, the segment can be formed by cutting the base material, eliminating the need for multi-step processing. Therefore, there is no variation in dimensions due to matching of each process or a feeding error, and a segment can be molded with high dimensional accuracy. In addition, since feed precision is not required for the processing of the base material, segment manufacturing equipment can be handled by general-purpose and inexpensive equipment, and it becomes possible to process segments at low cost. In addition, by setting the drawing direction of the base material to be substantially the same as the brush sliding direction of the segment, the processing direction of the brush sliding surface can be substantially matched with the brush sliding direction. The drawing surface can be used as it is as the brush sliding surface without performing.
さらに、 母材の引抜加工面をセグメントのブラシ摺動面とすることにより、 引 抜加工にて加工硬化が生じた部位がブラシ摺動面となり、 ブラシ摺動面の硬度を 向上させることができ、 コンミテータの耐久性の向上が図られる。  Furthermore, by using the brushed surface of the base material as the brush sliding surface of the segment, the portion where work hardening occurs during the drawing becomes the brush sliding surface, and the hardness of the brush sliding surface can be improved. The durability of the commutator is improved.
加えて、 アンカ部を引抜加工によって母材に形成することにより、 引抜工程後 にテーパ加工や爪削ぎ加工などのアンカ部形成作業が不要となり、 工数削減が図 られる。  In addition, by forming the anchor portion on the base material by drawing, the anchor portion forming work such as tapering and nail shaving after the drawing process is not required, thereby reducing man-hours.
一方、 醉接するセグメントが互いに内径側と外径側が反転した状態で母材から 打ち抜くことにより、 母材の不要部分が小さくなり、 効率良くセグメントを打ち 抜くことができ、 セグメントの歩留まり向上が図られ、 製造コストを低減できる のみならず、 廃棄物を削減することも可能となる。  On the other hand, by punching out the base metal in a state where the inner and outer diameters of the adjoining segments are inverted with each other, unnecessary portions of the base metal can be reduced, and the segments can be punched efficiently, thereby improving the segment yield. Not only can manufacturing costs be reduced, but also waste can be reduced.

Claims

請 求 の 範 囲 The scope of the claims
1 . 合成樹脂によって円盤状に形成されたホルダ部と、 前記ホルダ部の軸方向一 端面に周方向に沿って配設された複数のセグメントとを有してなる偏平型コン ミテータにおける前記セグメントの製造方法であって、 1. A flat type commutator having a disk-shaped holder made of a synthetic resin and a plurality of segments disposed along one end face of the holder in the axial direction along the circumferential direction. A manufacturing method,
引抜加工により、 前記セグメントの断面形状と同様の断面形状の部位を有す る母材を形成する工程と、  Forming a base material having a site having a cross-sectional shape similar to the cross-sectional shape of the segment by drawing;
前記母材を切断して前記セグメントを形成する工程とを有することを特徴と する偏平型コンミテータ用セグメントの製造方法。  Cutting the base material to form the segments. A method for manufacturing a flat commutator segment, comprising the steps of:
2 . 請求項 1記載の偏平型コンミテータ用セグメントの製造方法において、 前記 セグメントは前記ホルダ部の軸方向一端面に放射状に配置され、 前記母材は、 前記セグメントの径方向に沿った断面形状と同様の断面形状の部位を有するこ とを特徴とする偏平型コンミテータ用セグメントの製造方法。 2. The method for manufacturing a flat commutator segment according to claim 1, wherein the segments are radially arranged on one axial end surface of the holder portion, and the base material has a cross-sectional shape along a radial direction of the segments. A method of manufacturing a segment for a flat commutator, comprising a portion having a similar cross-sectional shape.
3 . 請求項 1又は 2記載の偏平型コンミテータ用セグメントの製造方法において、 前記母材の引抜方向は、 前記セグメントにおけるブラシ摺接方向と略同一方向 であることを特徴とする偏平型コンミテータ用セグメントの製造方法。 3. The method for manufacturing a flat commutator segment according to claim 1 or 2, wherein a drawing direction of the base material is substantially the same as a brush sliding direction of the segment. Manufacturing method.
4 . 請求項 l〜3 p何れか 1項に記載の偏平型コンミテータ用セグメントの製造 方法において、 前記母材における引抜加工面が前記セグメントにおけるブラシ 摺動面となることを特徴とする偏平型コンミテータ用セグメントの製造方法。 4. The method for manufacturing a flat commutator segment according to any one of claims 1 to 3 p, wherein the drawing surface of the base material is a brush sliding surface of the segment. Manufacturing method of segment for automobile.
5 . 請求項 1〜4の何れか 1項に記載の偏平型コンミテータ用セグメントの製造 方法において、 前記セグメントの前記ホルダ部に対する軸方向の抜け止めとな るアンカ部を、 前記引抜加工により前記母材に形成することを特徴とする偏平 型コンミテータ用セグメントの製造方法。 5. The method for manufacturing a flat commutator segment according to any one of claims 1 to 4, wherein the anchor portion serving as an axial stopper for the segment with respect to the holder portion is formed by the drawing process. A method for manufacturing a flat commutator segment, wherein the segment is formed in a material.
6 . 請求項 1〜 5の何れか 1項に記載の偏平型コンミテータ用セグメントの製造 方法において、 前記セグメントは、 前記母材をその引抜方向と直角方向に打ち 抜いて形成されることを特徴とする偏平型コンミテータ用セグメントの製造方 法。  6. The method for manufacturing a flat commutator segment according to any one of claims 1 to 5, wherein the segment is formed by punching the base material in a direction perpendicular to a drawing direction thereof. Manufacturing method for flat commutator segments.
7 . 請求項 6記載の偏平型コンミテータ用セグメントの製造方法において、 前記 セグメントは、 隣接する前記セグメントが互いに内径側と外径側が反転した状 態で打ち抜かれることを特徴とする偏平型コンミテータ用セグメントの製造方 法。 7. The method for manufacturing a flat commutator segment according to claim 6, wherein the segments are formed such that adjacent segments have their inner diameter side and outer diameter side inverted with respect to each other. A method for manufacturing a flat commutator segment, characterized by being punched out in a state.
PCT/JP2003/015424 2002-12-10 2003-12-02 Method of manufacturing segment for flat commutator WO2004054073A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003284535A AU2003284535A1 (en) 2002-12-10 2003-12-02 Method of manufacturing segment for flat commutator
EP03776026A EP1575149A4 (en) 2002-12-10 2003-12-02 Method of manufacturing segment for flat commutator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-357510 2002-12-10
JP2002357510A JP4252795B2 (en) 2002-12-10 2002-12-10 Manufacturing method of segment for flat commutator

Publications (1)

Publication Number Publication Date
WO2004054073A1 true WO2004054073A1 (en) 2004-06-24

Family

ID=32500853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015424 WO2004054073A1 (en) 2002-12-10 2003-12-02 Method of manufacturing segment for flat commutator

Country Status (5)

Country Link
EP (1) EP1575149A4 (en)
JP (1) JP4252795B2 (en)
CN (1) CN100342624C (en)
AU (1) AU2003284535A1 (en)
WO (1) WO2004054073A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106911232B (en) * 2017-04-01 2024-04-16 宁波韵升电驱动技术有限公司 Pressing device and pressing method for armature commutator
JP6962798B2 (en) * 2017-12-01 2021-11-05 三菱重工業株式会社 Circulation boiler system, thermal power plant, and waste heat recovery method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4857102A (en) * 1971-11-19 1973-08-10
JPS53131407A (en) * 1977-04-22 1978-11-16 Mitsuba Electric Mfg Co Method of manufacturing compact commutator
JPS5845013A (en) * 1981-09-10 1983-03-16 Mitsuba Denki Seisakusho:Kk Manufacture of molded commutator
JPS5889049A (en) * 1981-11-21 1983-05-27 Mitsuba Denki Seisakusho:Kk Manufacture of molded commutator
US6161275A (en) 1998-07-08 2000-12-19 Siemens Canada Limited Method of manufacturing commutators for electric motors

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA733925B (en) * 1972-06-20 1974-05-29 Lucas Electrical Co Ltd Commutators

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4857102A (en) * 1971-11-19 1973-08-10
JPS53131407A (en) * 1977-04-22 1978-11-16 Mitsuba Electric Mfg Co Method of manufacturing compact commutator
JPS5845013A (en) * 1981-09-10 1983-03-16 Mitsuba Denki Seisakusho:Kk Manufacture of molded commutator
JPS5889049A (en) * 1981-11-21 1983-05-27 Mitsuba Denki Seisakusho:Kk Manufacture of molded commutator
US6161275A (en) 1998-07-08 2000-12-19 Siemens Canada Limited Method of manufacturing commutators for electric motors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1575149A4 *

Also Published As

Publication number Publication date
AU2003284535A1 (en) 2004-06-30
EP1575149A4 (en) 2008-08-06
JP4252795B2 (en) 2009-04-08
CN1723598A (en) 2006-01-18
JP2004194396A (en) 2004-07-08
CN100342624C (en) 2007-10-10
EP1575149A1 (en) 2005-09-14

Similar Documents

Publication Publication Date Title
CN211063434U (en) Stator assembly of hairpin winding motor
JP3938090B2 (en) Manufacturing method of rotor core
US6369484B1 (en) Commutator of rotary electric machine and method of manufacturing the same
JP6324812B2 (en) Press fitting structure for rotating electrical machine and stator
WO2004054073A1 (en) Method of manufacturing segment for flat commutator
JPH06209545A (en) Rotor shaft with slot for lead wire and color support formation by cold heading processing
JP4587256B2 (en) Commutator, commutator manufacturing method, and fuel pump
US7877857B2 (en) Manufacturing method of electric motor
JP4230358B2 (en) Manufacturing method and apparatus for manufacturing flat commutator
JP2005278316A (en) Armature rotor and method for manufacturing core of the same
JP4595674B2 (en) Electric motor
JP4149790B2 (en) Flat commutator manufacturing method and flat commutator manufacturing apparatus
US7219411B2 (en) Method for manufacturing commutator having commutator segments
JP5146077B2 (en) Motor and manufacturing method thereof
JP3992272B2 (en) Commutator and manufacturing method thereof
JP6667471B2 (en) Commutator, motor, and method of manufacturing commutator
KR101717959B1 (en) Stator structure of the BLDC motor vehicle fuel pump
JPH09322484A (en) Commutator motor and its manufacture
JP5884274B2 (en) Manufacturing method of rotor of rotating electric machine
JP5152990B2 (en) Commutator manufacturing method
JP2000125517A (en) Commutator and its manufacture
KR100426237B1 (en) Two piece type commutator for start motor
JPH0586136B2 (en)
CN116683665A (en) Continuous wave winding stator assembly and assembly method thereof
JP4782657B2 (en) Commutator manufacturing method and commutator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1200500958

Country of ref document: VN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038A56998

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003776026

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003776026

Country of ref document: EP