WO2004053967A1 - Semiconductor apparatus, wiring board forming method, and substrate treatment apparatus - Google Patents

Semiconductor apparatus, wiring board forming method, and substrate treatment apparatus Download PDF

Info

Publication number
WO2004053967A1
WO2004053967A1 PCT/JP2003/015808 JP0315808W WO2004053967A1 WO 2004053967 A1 WO2004053967 A1 WO 2004053967A1 JP 0315808 W JP0315808 W JP 0315808W WO 2004053967 A1 WO2004053967 A1 WO 2004053967A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
substrate
main surface
forming
semiconductor substrate
Prior art date
Application number
PCT/JP2003/015808
Other languages
French (fr)
Japanese (ja)
Inventor
Kanae Nakagawa
Masataka Mizukoshi
Kazuo Teshirogi
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2005502368A priority Critical patent/JP4489016B2/en
Publication of WO2004053967A1 publication Critical patent/WO2004053967A1/en
Priority to US11/097,937 priority patent/US7485962B2/en
Priority to US11/727,004 priority patent/US7648907B2/en
Priority to US11/727,003 priority patent/US7704856B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/34Accessories
    • B24B37/345Feeding, loading or unloading work specially adapted to lapping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4857Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5389Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68345Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during the manufacture of self supporting substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a method for forming a multilayer wiring together with an electronic device such as an LSI on a substrate, particularly a semiconductor substrate, and further forming a multilayer wiring layer on a supporting base made of a metal material or an insulating material, and removing the supporting base.
  • the present invention relates to a method for forming a multilayer wiring film, a semiconductor device having a multilayer wiring, and a substrate processing apparatus.
  • an insulating layer or wiring layer to be processed is formed relatively flat in advance, a flat polishing pad is pressed, and a slurry (chemical polishing material) is used to chemically and mechanically surface the surface. Is precisely processed to be flat.
  • the previously provided hard insulating material surface ⁇ metal surface becomes the stop layer, and the CMP is completed.
  • CMP is a method that does not depend on TTV (Total Thickness Variation) defined by the thickness variation of the semiconductor substrate and the difference between the maximum thickness and the minimum thickness of the semiconductor substrate.
  • a thin-film multilayer wiring board without through-holes a single resin film filled with a conductive base and a plurality of wirings formed with peer holes and prepared in a final process by batch lamination Is being developed.
  • the via diameter is about 120 to 200 ⁇ m; LZS (line space) is about 100 urn / 100; 0 u rn / 200; approx. Wm, making miniaturization difficult. Therefore, in order to realize both miniaturization and low cost, it is effective to separate a multilayer wiring thin film formed on a substrate into a substrate.
  • the adhesion improving material is applied only to the outer peripheral portion of the substrate by utilizing the low adhesiveness between the insulating resin of the multilayer wiring thin film and the supporting base, and after the formation of the wiring layer is completed, the application portion of the adhesion improving material is applied.
  • the method of removing the supporting substrate is a method of removing the supporting substrate by a grinder and etching, for example, when the supporting substrate is a semiconductor substrate.
  • Patent Document 1 If a metal plate such as A 1 or Cu is used as the support base, it is removed by etching. Whichever of these methods is adopted, the supporting substrate itself is reflected in the cost, and when the supporting substrate is used as the semiconductor substrate in the latter method, the residue left by the grinding becomes waste as it is. The garbage generated in the process is enormous, and the negative impact on the environment cannot be ignored.
  • Patent Document 2
  • the present invention has been made in view of the above-described problems, and has as its main object a machining method other than CMP represented as a planarization method.
  • uniformity in thickness of substrates is uniform, and high-speed flattening is easy and inexpensive without inconveniences such as dicing and with no restrictions on wiring design.
  • precise control of the film thickness of each wiring layer constituting the multilayer wiring thin film is easily performed, and efficiently and at low cost. It is an object of the present invention to provide a method for forming a wiring board, a semiconductor device, and a substrate processing apparatus, which are capable of realizing a wiring thin film having a fine wiring structure by removing a copper plate. Disclosure of the invention
  • the method of forming a wiring board according to the present invention is a method of forming wiring on a substrate, wherein a flattening process is performed by a first machining process on a back surface of the wiring forming surface with reference to the wiring forming surface of the substrate. And an insulation covering the wiring and the wiring on the wiring forming surface.
  • a step of uniforming the thickness of a support base by a first machining is provided, and a wiring and an insulating film covering the wiring are formed on the surface of the support base having a uniform thickness.
  • Forming a wiring layer composed of the wiring and the insulating film by performing a flattening process by a second machining so that the surface of the wiring and the surface of the insulating film are continuously flat.
  • a semiconductor device of the present invention includes a semiconductor substrate, a semiconductor element formed on a surface of the semiconductor substrate, and a multi-layer wiring in which each wiring is stacked in a plurality of layers in an insulator together with the semiconductor element.
  • the semiconductor substrate is subjected to machining based on the front surface on a rear surface side of the front surface on which the semiconductor element is formed, so that the rear surface is flattened and the substrate thickness is made uniform.
  • the substrate processing apparatus of the present invention is a substrate processing apparatus for forming wiring on a substrate, has a flat support surface, adsorbs the substrate to the support surface on one side, and forcibly applies the one side.
  • a substrate support for supporting and fixing the substrate as a flat reference surface, and a byte for cutting the other surface of the substrate supported and fixed to the substrate support, and forming the wiring of the substrate with the byte.
  • the surface is cut and flattened so that the surface of the wiring and the surface of the insulating film are continuously flat.
  • FIGS. 1A to 1E are schematic sectional views showing the method for forming the multilayer wiring board according to the present embodiment in the order of steps.
  • 2A to 2C are schematic cross-sectional views illustrating a method of forming a multilayer wiring board according to the first embodiment in the order of steps.
  • 3A to 3C are schematic cross-sectional views showing a method for forming a multilayer wiring board according to the first embodiment in the order of steps.
  • 4A to 4C are schematic cross-sectional views illustrating a method for forming a multilayer wiring board according to the first embodiment in the order of steps.
  • FIG. 5 is a schematic diagram showing a specific example of each of the planarization steps in FIGS. 2A, 3A, and 4B.
  • FIG. 6 is a schematic diagram showing another specific example of each of the flattening steps in FIGS. 2A, 3A, and 4B.
  • FIG. 7 is a schematic sectional view showing a comparative example of the first embodiment.
  • 8A and 8B are configuration diagrams of a grinding device.
  • FIG. 9 is a block diagram showing the configuration of the cutting device.
  • 10A to 10G are schematic configuration diagrams showing the configuration of the cutting device.
  • FIG. 11 is a schematic configuration diagram showing an arrangement configuration of each part of the cutting apparatus.
  • FIG. 12 is a flowchart of the cutting process.
  • FIG. 13 is a schematic perspective view showing an overview of a semiconductor device to which the present invention is applied.
  • FIG. 14 is a schematic plan view showing an overview of a semiconductor device to which the present invention is applied and disclosed in the present embodiment.
  • 15A to 15D are schematic cross-sectional views illustrating a method of manufacturing a semiconductor device including multilayer wiring according to the second embodiment in the order of steps.
  • 16A to 16C are schematic cross-sectional views illustrating a method of manufacturing a semiconductor device including multilayer wiring according to the second embodiment in the order of steps.
  • FIGS. 17A to 17C are schematic cross-sectional views illustrating a method of manufacturing a semiconductor device including multilayer wiring according to the second embodiment in the order of steps.
  • FIG. 18A to FIG. 18C are schematic cross-sectional views illustrating a method of manufacturing a semiconductor device including multilayer wiring according to the second embodiment in the order of steps.
  • FIGS. 19A to 19C are schematic cross-sectional views illustrating a method of manufacturing a semiconductor device including multilayer wiring according to the second embodiment in the order of steps.
  • FIG. 2 OA and FIG. 2 OB are schematic cross-sectional views showing a state in which a MOS transistor is formed in an element region.
  • FIG. 21 is a schematic cross-sectional view showing main steps in a modification of the method for manufacturing a semiconductor device including the multilayer wiring according to the second embodiment.
  • 22A to 22C are schematic cross-sectional views illustrating a method of forming a multilayer wiring board according to the third embodiment in the order of steps.
  • 23A to 23C are schematic cross-sectional views illustrating a method of forming a multilayer wiring board according to the third embodiment in the order of steps.
  • 24A to 24C are schematic cross-sectional views illustrating a method of forming a multilayer wiring board according to the fourth embodiment in the order of steps.
  • 25A and 25B are schematic cross-sectional views illustrating a method of forming a multilayer wiring board according to the fourth embodiment in the order of steps.
  • the main object of the flattening method is a machining method other than CMP represented by cutting using a byte.
  • Metals such as copper, aluminum and nickel, and insulating materials such as polyimide are materials that can be easily cut with a byte. Wiring and insulating films made of these materials on a semiconductor substrate can be easily and rapidly planarized by using cutting. There is no dishing in cutting.
  • the problem when using cutting for flattening a semiconductor substrate typified by a silicon wafer is that cutting is performed on the back side (back side) of the substrate.
  • the TTV of a silicon substrate is in the range of 1 m to 5 m, and 5! ! ! Degree of order has no effect on photolithography and is usually not considered.
  • the present inventor before forming the wiring and the insulating film, first grinds the back surface with reference to the surface on which the wiring is formed, and reduces the cutting accuracy to below the TTV of the semiconductor substrate. I thought of keeping it down. In this case, it is ideal that ⁇ TV is reduced and the thickness variation of each semiconductor substrate is suppressed to the cutting accuracy or less. However, if the TTV can be made smaller, the thickness of individual semiconductor substrates can be detected during cutting.
  • the amount of cutting can be controlled by detecting the thickness of each individual semiconductor substrate.
  • the above-mentioned cutting technique is applied to the formation of a film-like multilayer wiring thin film. That is, it is used when a wiring layer is laminated on a support base made of an insulating material and a conductive material to form a multilayer wiring thin film, and then the support base is removed to provide only the multilayer wiring thin film as an interposer.
  • the flattening (uniform thickness) step of the support base which is a pre-process of forming a wiring layer, can be performed by cutting.
  • the flattening process at the time of forming each wiring layer is performed by cutting, and the supporting base can be removed by cutting in the supporting base removing step.
  • the flattening of the support base, the flattening of each wiring layer at the time of formation, and the series of cutting of the support base can all be performed by cutting using a byte.
  • High precision planarization of the layer and substrate removal are achieved.
  • the support base is an insulating plate
  • the support base is removed by an arbitrary thickness when the support base is removed by utilizing the easy, high-speed, and high-precision flatness controllability of the cutting process. It is also possible to leave it flat and to use it as an insulating layer.
  • the support base is a metal plate, it becomes possible to collect the cuttings generated by the cutting and reuse it for forming the support base.
  • a silicon semiconductor substrate (silicon wafer) is exemplified as a substrate, and a case is described in which a multilayer wiring in which wirings are stacked in a plurality of layers in an insulator is formed on the semiconductor substrate.
  • FIG. 1A to 1E, 2A to 2C, 3A to 3C, and 4A to 4C are schematic cross-sectional views illustrating a method of forming a multilayer wiring board according to the present embodiment in the order of steps.
  • FIG. 1A a silicon semiconductor substrate 1 is prepared. Normally, the silicon semiconductor substrate is not uniform in thickness as shown in the figure, but is in a state accompanied by undulation. Therefore, as a pre-process for performing cutting using a byte, which will be described later, on one main surface of the semiconductor substrate 1, here, the substrate surface (wiring forming surface la), the other main surface of the semiconductor substrate 1, here Then, the back surface 1b (of the wiring forming surface 1a) is flattened.
  • a substrate support table 201 having a flat support surface 201a is prepared, and a wiring is formed by suction on the support surface 201a, for example, by vacuum suction.
  • the semiconductor substrate 1 is fixed to the substrate support 201 by adsorbing the surface 1a.
  • the wiring forming surface 1a is forcibly made flat by adsorption to the support surface 201a, whereby the wiring forming surface 1a becomes a reference surface for flattening the back surface 1b.
  • the back surface 1 b is machined, in this case, ground, and the convex portion 12 of the back surface 1 b is ground and removed to be flattened.
  • the thickness of the semiconductor substrate 1 is controlled to be constant, specifically, TTV (the difference between the maximum thickness and the minimum thickness of the substrate) is equal to or less than a predetermined value, specifically, the TTV is controlled to 1 m or less. Will be.
  • TTV the difference between the maximum thickness and the minimum thickness of the substrate
  • the TTV is controlled to 1 m or less. Will be.
  • a metal for example, a copper film is formed on the wiring forming surface 1 a by, for example, a sputtering method so as to cover the photosensitive polyimide 13, thereby forming a seed layer 2.
  • a metal for example, a copper film is formed on the wiring forming surface 1 a by, for example, a sputtering method so as to cover the photosensitive polyimide 13, thereby forming a seed layer 2.
  • copper is deposited by a plating method so as to embed the photosensitive polyimide 13 to form a ground (GND) electrode 3.
  • GND ground
  • a cutting process using a byte is performed on the wiring forming surface 1a to make it flat. Specifically, as shown in FIG.
  • the back surface 1 b of the semiconductor substrate 1 is attracted to the support surface 11 a of the substrate support 11 by, for example, vacuum suction, and the semiconductor substrate 1 is attached to the substrate support 11. Fixed to. At this time, the thickness of the semiconductor substrate 1 is kept constant by the flattening process shown in FIG. 1B, and further, there is no undulation or the like due to the suction shown in FIG. 2A. This is a reference plane for flattening the wiring forming surface 1a. In this state, the surface layer of the GND electrode 3 on the wiring forming surface 1a is machined, in this case, cut using a byte 10 made of diamond or the like, and is flattened. Subsequently, as shown in FIG.
  • a photoresist 14 is applied on the flattened GND electrode 3, and the photoresist 14 is processed by photolithography to form a predetermined via pattern 14a. An opening is formed. Then, copper or the like is buried in the opening of the via pattern 14a by a plating method to form the via portion 4. Subsequently, as shown in FIG. 2C, for example, after the photoresist 14 is peeled off, an insulating resin 5 is formed on the wiring forming surface 1a so as to cover and bury the via portion 4. Next, the wiring forming surface 1a is cut again using a byte and flattened. Specifically, as shown in FIG.
  • the back surface 1b is attracted to the support surface 11a of the substrate support 11 by, for example, vacuum suction, and the semiconductor substrate 1 is fixed to the substrate support 11.
  • the back surface 1b becomes a reference surface for flattening the wiring forming surface 1a.
  • the via layer 4 and the surface layer of the insulating resin 5 on the wiring forming surface 1a are machined.
  • the pipe 10 is used, and the semiconductor substrate 1 is rotated, for example, at 800 rpm to 160 rpm. They are cut at a rotation speed of about a degree to flatten them.
  • the via layer 4 exposes its upper surface, and the via layer 4 is embedded in the insulating resin 5 to form the peer layer 21 having a uniform thickness.
  • a copper film is deposited on the planarized via portion 4 and the surface of the insulating resin 5 by a sputtering method to form a shield layer 6, and then the first photoresist is formed.
  • the first photoresist 15 is processed by photolithography to form a predetermined wiring pattern 15a.
  • the shield layer 6 as an electrode, the wiring pattern 15 a of the first photoresist 15 is buried by a plating method to form a wiring 7.
  • FIG. 1 the wiring pattern 15 a of the first photoresist 15 is buried by a plating method to form a wiring 7.
  • a second photoresist 16 is applied to the wiring 7 so as to bury the same.
  • the second photoresist 16 is processed by photolithography to form a predetermined via pattern 16a.
  • a via pattern 16a is buried with copper or the like by a plating method to form a via portion 8.
  • wiring is formed so as to cover and bury the wiring 7 and the via portion 8.
  • An insulating resin 9 is formed on the surface 1a.
  • the wiring forming surface 1a is again subjected to cutting using a byte and flattened.
  • the back surface 1b is sucked to the support surface 11a of the substrate support 11 by, for example, vacuum suction, and the semiconductor substrate 1 is fixed to the substrate support 11.
  • the back surface 1b becomes a reference surface for flattening the wiring forming surface 1a.
  • the via layer 8 and the surface layer of the insulating resin 9 on the wiring forming surface 1a are machined and flattened.
  • cutting using byte 10 is performed as an example of machining.
  • the wiring 7 and the via portion 8 connected thereto are buried in the insulating resin 9 so that the upper surface of the via portion 8 is exposed. 22 is formed. Then, as shown in FIG. 4C, a series of steps similar to those at the time of forming the first wiring layer 22, that is, FIGS. 3B, 3C, 4A, and 4B are performed several times.
  • the wiring and the via connected thereto are embedded in the insulating resin to form a laminated structure.
  • the wiring 31 and the via portion 32 connected thereto are embedded in the insulating resin 33, and the second wiring layer 23 having a uniform thickness, and the second wiring layer 23
  • the wiring 34 formed above is illustrated.
  • a multilayer wiring structure is completed on the semiconductor substrate 1 through formation of a protective film (not shown) covering the entire surface of the semiconductor substrate 1 and the like.
  • a protective film (not shown) covering the entire surface of the semiconductor substrate 1 and the like.
  • one semiconductor substrate has been described.
  • the steps of the present embodiment may be performed on a plurality of semiconductor substrates constituting a lot, and the thickness of each semiconductor substrate may be made uniform. .
  • the semiconductor substrate 1 is parallelized based on the back surface lb, and the position of the wiring forming surface 1a is detected and detected.
  • the amount of shaving is calculated from the wiring formation surface 1a, and the byte 10 is controlled.
  • “parallel alignment” means, as shown in FIG. 5, when detecting the position of the wiring forming surface 1 a using the laser beam irradiation means 17, the portion around the wiring forming surface 1 a is detected. Insulating resin 5, 9 and photosensitive poly at a plurality of locations, for example, three locations A, B, C Irradiation is performed by irradiating the laser light 17a to the imid 13 (or the seed layer 2 in some cases), heating and scattering them, and exposing a part of the wiring forming surface 1a. In this case, as shown in FIG.
  • the semiconductor substrate 1 when detecting the position of the wiring forming surface 1a, the semiconductor substrate 1 is suction-fixed to the substrate support base 11 having the opening 11b and the infrared laser
  • the backside 1b is irradiated with infrared laser light from the opening 11b using the light irradiator 18 to reflect the reflected light from the wiring forming surface 1a to this infrared laser light irradiator 18 (or
  • the measurement may be performed by a laser light measuring device provided in the vicinity.
  • a comparative example of the present embodiment is shown in FIG. In this comparative example, a case where a multilayer wiring structure 202 is formed on a semiconductor substrate 201 without performing the flattening process of the present embodiment will be exemplified.
  • the back surface 1b of the semiconductor substrate 1 is flattened on the basis of the wiring formation layer 1a, and then the thickness of the wiring formation layer 1a is determined on the basis of the back surface 1b. Since a uniform via layer 21 and wiring layers 22 and 23 are sequentially formed, even if a larger number of wiring layers are stacked, the generation of unevenness is suppressed without impairing the flatness. A fine wiring structure is realized. As described above, according to the present embodiment, the thickness variation of the semiconductor substrate 1 is equalized, and inconvenience such as dicing does not occur. As a result, high-speed flattening can be performed easily and inexpensively without restriction of wiring design. Further, it is possible to easily and precisely realize a fine multilayer wiring structure.
  • Fig. 8 shows the configuration of the grinding machine.
  • Fig. 8A is a plan view and Fig. 8B is a side view. is there.
  • the grinding apparatus includes a storage section 202 for storing a semiconductor substrate (semiconductor wafer 18) 1, a hand section 203 for transporting the semiconductor substrate 1 to each processing section, and a semiconductor for grinding. It comprises a turntable 204 on which the substrate 1 is mounted and fixed, and a grinder part 205 for grinding the semiconductor substrate 1.
  • the storage section 202 has a storage cassette 211 in which a plurality of semiconductor substrates 1 are stored, and each semiconductor substrate 1 is stored as shown in FIG. 8B.
  • the hand section 203 has a transfer hand 211, which removes the semiconductor substrate 1 from the storage cassette 211, transfers the semiconductor substrate 1 to the turntable 204 in the illustrated example, and also processes the semiconductor substrate 1 after the processing.
  • the semiconductor substrate 1 is transported from the turntable 204 to the storage section 202.
  • the turntable 204 is provided with a plurality (three in this case) of chuck tables 2 13 for chucking the semiconductor substrate 1 on the surface, and is rotatable, for example, in the direction of arrow M in FIG. 8B.
  • the grinder part 205 has a grindstone 214 attached to its lower surface in a detachable manner, and the grindstone 214 is brought into contact with the surface of the semiconductor substrate 1 chucked on the chuck table 213. 8 Grind and grind in the direction of arrow N of B.
  • two types of whetstones with different roughness are used.
  • the semiconductor substrate 1 is taken out of the storage portion 202 by the transfer hand 211 of the hand portion 203, and the chuck table 210 of the turntable 204 is taken out. Place and fix on 3.
  • the grindstone 2 14 of the grinder part 205 is brought into contact with the surface of the semiconductor substrate 1 to perform grinding, and the surface is ground. At this time, first grind with a coarse grindstone, and then with a fine grindstone for finishing.
  • the semiconductor substrate 1 after finishing grinding is removed from the chuck table 2 13 by the transfer hand 2 12 and stored in the storage section 202.
  • FIG. 9 is a block diagram showing the configuration of the cutting apparatus, and FIGS. 10A to 10G are similar schematic configuration diagrams.
  • This cutting device includes a storage unit 101 (FIGS. 9 and 10A) for storing a semiconductor substrate (semiconductor wafer 18) 1 and a hand unit 1 for transporting the semiconductor substrate 1 to each processing unit. 0 2 (Fig. 9, Fig. 10B, Fig. 10C), a chuck table section 103 for chucking the semiconductor substrate 1 during cutting (Fig. 9, Fig. 10D), and a Positioning Sensing unit 104 (Fig. 9, Fig. 10E), Cutting unit 105 for flattening the semiconductor substrate 1 (Fig. 9, Fig. 10F), and cleaning after cutting Cleaning unit 106 (Fig. 9, Fig.
  • the storage section 101 includes a storage cassette 111 for storing a plurality of semiconductor substrates 1 and an elevator mechanism 1 1 2 for raising and lowering the semiconductor substrate 1 to a height at which the transfer hand 114 is taken out. And a Z-axis drive unit 113 that drives the elevator mechanism up and down.
  • the hand unit 102 removes the semiconductor substrate 1 from the storage cassette 111, sucks the vacuum, suctions the semiconductor substrate 1, and transports the semiconductor substrate 1 to the sensing unit 104.
  • the transfer hand 114 is a scalar type 1 pot and can be easily handled to each processing unit.
  • the port mechanism of the transfer hand 114 is not limited to this, and may be, for example, an XY axis orthogonal type.
  • the chuck table section 103 mounts and fixes the semiconductor substrate 1 by, for example, vacuum suction, and the substrate support table (rotating table) 11 configured to rotate the semiconductor substrate 1 at a predetermined rotation speed. And a rotation drive unit 116 for driving the substrate support 11.
  • the substrate support 11 fixes the semiconductor substrate 1 by a vacuum mechanism.
  • the substrate support 11 serves as a reference plane for processing. Therefore, in order to maintain planar accuracy at the time of fixing and processing, it is preferable that the chuck surface (supporting and fixing surface) is made of a porous material and the entire surface of the semiconductor substrate 1 is chucked. Metal, ceramic, resin, etc. are used for the material including the chuck surface.
  • the semiconductor substrate 1 mounted and fixed on the substrate support 11 is rotated at a rotation speed of, for example, about 800 rpm to about 160 rpm.
  • Rotate for cutting The sensing unit 104 includes a CCD camera 117, a semiconductor substrate 1 mounted thereon and fixed, and a rotary table 118 configured to freely rotate the semiconductor substrate 1 at a predetermined rotation speed. And a rotation drive unit 119 for driving the semiconductor substrate 1.
  • the CCD camera 117 captures an image of the outer periphery of the semiconductor substrate 1 installed on the rotary table 118.
  • the cutting section 105 includes a hard byte 10 which is a cutting tool made of diamond or the like, and an X-axis stage 120 and a Y-axis stage 122 on which the byte 10 is installed, and an X-axis stage.
  • the X-axis drive unit 122 drives the byte 10 in the X direction (shown by the arrow M in Fig. 10E) at the stage 120 and the Y direction (Fig. 10E) (Indicated by an arrow N in the middle) and a Y-axis drive unit 123 for driving the byte 10.
  • the cleaning unit 106 includes a spin table 124 for fixing the semiconductor substrate 1 in a vacuum and rotating at a predetermined rotation speed, a rotation driving unit 125 for rotating the spin table 124, and a semiconductor substrate 1.
  • a nozzle 1226 for discharging cleaning water is provided on the surface, and while the semiconductor substrate 1 is vacuum-fixed by the spin table 124, the semiconductor substrate 1 is rotated from the nozzle 126 while rotating. Cleaning water is discharged onto the surface of the Wash away foreign objects. Thereafter, the semiconductor substrate 1 is rotated at a high speed by a spin table 124 while air blowing, and dried while blowing off cleaning water remaining on the substrate surface.
  • the optical sensor unit 107 has a light emitting unit 127 and a light receiving unit 128 arranged opposite to the semiconductor substrate 1 mounted and fixed on the substrate support table 11 of the chuck table unit 103.
  • the light emitting section 127 is arranged on one side and the light receiving section 128 is arranged on the other side.
  • the control unit 108 is a Z-axis drive unit 113 of the storage unit 101, a 1-axis to a 3-axis drive unit 1150 of the node unit 102, and a Z-axis drive unit.
  • a main control unit 132 that integrally controls the drive control unit 12 9, the detection unit 13 0, and the calculation unit 13 1, and a display unit 13 that displays the control state of the main control unit 13 2 3 and various drive commands to the main control And a movement command unit 1 34 for obtaining.
  • the cutting process will be described with reference to FIGS. 11 and 12.
  • FIG. 11 is a schematic diagram showing an arrangement state of the storage unit 101, the chuck table unit 103, the sensing unit 104, the cutting unit 105, and the cleaning unit 106 centered on the hand unit 102. is there.
  • illustration of the optical sensor unit 107 and the control unit 108 is omitted.
  • FIG. 12 is a flowchart showing the cutting process.
  • the transfer hand 114 of the hand unit 102 takes out the semiconductor substrate 1 from the storage cassette 111 of the storage unit 101 in which the semiconductor substrate 1 is stored (step S1). Income By the elevator mechanism 112 of the storage section 101, it is moved up and down to the take-out height of the semiconductor substrate 1 of the transfer hand 114.
  • the transport hand 114 vacuum sucks the semiconductor substrate 1 and transports it to the sensing unit 104.
  • the sensing unit 104 the semiconductor substrate 1 is rotated by 360 ° using the rotary table 118, the outer periphery of the semiconductor substrate 1 is imaged by the CCD camera 112, and the result is stored in the control unit 108. Processing is performed by the operation unit 13 1 to calculate the sensor 1 position of the semiconductor substrate 1 (step S 2).
  • the transfer hand 114 corrects the center one position based on the calculation result of the center one position, and conveys the semiconductor substrate 1 to the chuck table part 103, and the substrate support base 11 vacuums this. Fix (step S3).
  • the substrate support 11 serves as an additional reference plane. Therefore, in order to maintain the planar accuracy at the time of fixing and processing, it is preferable that the chuck surface is made of a porous material and the entire surface of the semiconductor substrate 1 is chucked.
  • the material is metal, ceramic, resin, etc.
  • a light-emitting unit 114 and a light-receiving unit 115 are arranged opposite to the top and bottom of the chucked semiconductor substrate 1, respectively, and the dimensions of the semiconductor substrate 1 are measured and calculated together with the control unit 108, and the result is calculated. It feeds back to the X-axis drive unit 112 of the cutting unit 105 to instruct the movement amount for cutting.
  • the cut surface is a wiring forming surface, specifically, as shown in FIG. 5, it is preferable to irradiate a laser beam, heat and scatter the resist mask, and expose the surface. Then, the position is measured using a reflection sensor using infrared laser light as shown in FIG. Note that a transmission sensor may be used for measuring the position.
  • the byte 10 to be cut is moved by the X-axis stage 120 in the direction of the arrow M as in FIG. 1 OF, and cutting is started (step S4). ). In this way, when the cutting amount reaches the set value, the cutting to the set dimension is completed (step S5).
  • the transfer hand 1 14 removes the semiconductor substrate 1 from the substrate Step S6), and transport to the cleaning section 106. In the cleaning unit 106, while the semiconductor substrate 1 is vacuum-fixed to the spin table 124 and rotated, the foreign matter remaining on the surface of the processed semiconductor substrate 1 is washed away by the cleaning water discharged from the nozzle 126.
  • Step S7 After that, it is rotated at high speed with air blow and dried while blowing off the washing water (Step S7). After the drying is completed, the transfer hand takes out the semiconductor substrate 1 again and finally stores it in the storage cassette 111 of the storage section 101 (step S8).
  • each of the above-described grinding machines is used to reference the back surface. The surface of the wiring and the surface of the insulating film are planarized.
  • a silicon semiconductor substrate is exemplified as a substrate, and a case where a multilayer wiring layer formed by laminating a plurality of wiring layers formed of respective wirings in an insulator when manufacturing an LSI is disclosed.
  • a semiconductor device including a multilayer wiring layer there is a semiconductor device having a form as shown in FIGS.
  • an electrode 63 a is formed on a silicon semiconductor substrate 101 so as to surround an element region 102 in which a plurality (many) of semiconductor elements (such as MOS transistors) are formed. It is formed so that each semiconductor element is electrically connected to the electrode 63a.
  • a plurality of electrodes 63 a are formed in a matrix on a silicon semiconductor substrate 101, and a plurality (many) of semiconductor elements are formed between the electrodes 63 a. It is. That is, in the case of FIG. 14, the region between the electrodes 63 a becomes the element region 103.
  • the present invention is applicable to both the semiconductor devices of FIGS. 13 and 14. However, in the following description, for convenience, the semiconductor device of the embodiment shown in FIG. 14 is exemplified.
  • the schematic cross section along the line I is shown in Fig. 15 and subsequent figures.
  • FIG. 15A a silicon semiconductor substrate 1 is prepared, and an impurity diffusion region 61 and an impurity diffusion region 61 each having an impurity diffusion layer of each semiconductor element formed on the substrate surface (wiring forming surface 1a).
  • a protective film 64 is sequentially formed on the LSI wiring 63 so that the surface of the LSI wiring 63 embedded in the insulating layer 62 made of, for example, an inorganic material, and the electrode 63 a of the LSI wiring 63 is exposed. I do.
  • the region between the adjacent electrodes 63a (and the LSI wiring 63) is the element region 103 in FIG.
  • the element region 103 collectively covers the region between the adjacent electrodes 63a.
  • FIG. 15A illustration of each semiconductor element is omitted for convenience.
  • a plurality (many) of semiconductor elements here a MOS transistor 104, are formed in the element region 103.
  • a gate electrode 112 is patterned on the surface of the element region 103 via a gate insulating film 111, and the gate electrode 110 is patterned.
  • Impurities are introduced into the impurity diffusion regions 61 on both sides of the substrate 12 to form a pair of impurity diffusion layers 113 serving as a source / drain.
  • wirings 114 are patterned so as to be connected to the respective impurity diffusion layers 113. These wirings 114 constitute a part of the LSI wiring 63. I do.
  • the impurity diffusion region 61 is a region in which a large number of impurity diffusion layers are formed in a large number of MOS transistors, and there are portions where the impurity diffusion layer actually exists and portions where the impurity diffusion layer does not exist. For convenience, these regions are collectively expressed as impurity diffusion regions.
  • the MOS transistor 104 Since an extremely large number of MOS transistors 104 are formed only in one region between the adjacent electrodes 63a, the MOS transistor 104 is illustrated in FIG. 15A and the following drawings for convenience. Is omitted. Then, as described above, the MOS transistor 104, the LSI wiring 63, the protective film 6 The back surface 1b of the wiring forming surface 1a is flattened as a pre-process for performing a cutting process using a byte, which will be described later, on the wiring forming surface 1a formed with 4 or the like. Specifically, as shown in FIG. 15B, a substrate support table 201 having a flat support surface 201a is prepared, and the support surface 201a is suctioned, for example, wiring is performed by vacuum suction.
  • the semiconductor substrate 1 is fixed to the substrate support 201 by adsorbing the formation surface 1a.
  • the wiring forming surface 1a is forcibly flattened by adsorption to the support surface 201a, whereby the wiring forming surface 1a becomes a reference surface for flattening the back surface 1b.
  • the back surface 1b is machined, in this case, ground, and the convex portion 12 of the back surface 1b is ground and removed to be flattened. In this case, it is preferable to control the cutting amount of the back surface 1b by the distance from the back surface 1b.
  • the thickness of the semiconductor substrate 1 is controlled to be constant, specifically, the TTV (difference between the maximum thickness and the minimum thickness of the substrate) is controlled to 1 or less.
  • the semiconductor substrate 1 is detached from the substrate support base 201, and a photosensitive resin, for example, photosensitive polyimide 13 is applied onto the wiring forming surface 1a of the semiconductor substrate 1.
  • the photosensitive polyimide 13 is processed by photolithography to form a wiring pattern 13b having a shape exposing some of the electrodes 63a of the LSI wiring 63.
  • FIG. 15C the thickness of the semiconductor substrate 1 is controlled to be constant, specifically, the TTV (difference between the maximum thickness and the minimum thickness of the substrate) is controlled to 1 or less.
  • a metal for example, a copper film (a gold film or the like may be used) on the wiring forming surface 1 a by, for example, a sputtering method so as to cover the photosensitive polyimide 13. Then, it will be described as copper.
  • a seed layer 2 To form a seed layer 2.
  • a photoresist 92 is applied on the wiring forming surface 1a, the photoresist 92 is processed by photolithography, and a predetermined pattern is formed on the photoresist 92. After the opening, copper is deposited by plating using the shield layer 2 as an electrode. Subsequently, as shown in FIG. 16B, the photoresist 92 is peeled off and deposited.
  • the seed layer 2 is removed by etching using the copper as a mask. Subsequently, as shown in FIG. 16C, an insulating resin 42 is applied so as to embed the wiring 41 and is solidified. When forming the insulating resin 42, the exposed seed layer 2 may be removed. Subsequently, a cutting process using a byte is performed on the wiring forming surface 1a to make it flat.
  • the back surface 1 b is sucked to the support surface 11 a of the substrate support 11 by, for example, vacuum suction, and the semiconductor substrate 1 is fixed to the substrate support 11.
  • the thickness of the semiconductor substrate 1 is kept constant by flattening the back surface lb as shown in FIG. 15B, and the back surface 1b is forcibly undulated by the adsorption to the support surface 11a.
  • the back surface 1b becomes a reference surface for flattening the wiring forming surface 1a.
  • the surface layers of the wiring 41 and the insulating resin 42 on the wiring forming surface 1a are machined.
  • the semiconductor substrate 1 is rotated at, for example, 800 rpm to 160 rpm. It is cut at a rotation speed of about a degree and flattened.
  • a first wiring layer 51 is formed in which the upper surface of the wiring 41 is exposed and embedded in the insulating resin 42.
  • FIG. 17A for convenience, the surface layers of the wiring 41 and the insulating resin 42 are illustrated as continuous flat surfaces. Subsequently, as shown in FIG.
  • a photoresist 14 is applied, and a photoresist 14 is applied.
  • the photoresist 14 is processed by photolithography to form an opening in a predetermined via pattern 14a.
  • the via pattern 14a is buried with copper or the like by a plating method to form the via portion 4.
  • the seed layer 19 is removed by, for example, wet etching using hydrofluoric acid, and the via portion 4 is covered and buried.
  • An insulating resin 5 is formed on the wiring forming surface 1a.
  • the wiring forming surface 1a is again subjected to cutting using a byte, and is flattened.
  • the back surface 1 b is sucked to the support surface 11 a of the substrate support 11 by, for example, vacuum suction, and the semiconductor substrate 1 is fixed to the substrate support 11.
  • the back surface 1b becomes a reference surface for flattening the wiring forming surface 1a.
  • the surface layer of the pier portion 4 and the insulating resin 5 on the wiring forming surface 1a is machined, in this case, cut using a byte 10 and flattened.
  • the via layer 4 has its upper surface exposed and is embedded in the insulating resin 5 to form the peer layer 21 having a uniform thickness.
  • the via layer 4 and the surface layer of the insulating film 5 are flattened for the first time by cutting with the byte 10, but in FIG. 18A, for convenience of illustration, the byte 10 has not yet passed.
  • the surface layers of the via portion 4 and the insulating film 5 are also shown as continuous flat surfaces.
  • a copper film is deposited on the planarized via portion 4 and the surface of the insulating resin 5 by a sputtering method to form a seed layer 6, and then a photoresist 15 is applied.
  • the photoresist 15 is processed by photolithography to form a predetermined wiring pattern 15a.
  • a wiring 7 for embedding the wiring pattern 15a of the photoresist 15 is formed by a plating method.
  • a photoresist 16 is applied so as to embed the photoresist 16 on the wiring 7, and the photoresist 16 is applied.
  • 16 is processed by photolithography to form a predetermined via pattern 16a.
  • the via pattern 16a is buried with copper or the like by a plating method to form the via portion 8.
  • the seed layer 6 is removed by wet etching using, for example, hydrofluoric acid, and the wiring 7 and the via portion 8 are covered and buried. Resin 9 is formed on wiring forming surface 1a as described above. Subsequently, the wiring forming surface 1a is again subjected to cutting using a byte and flattened. More specifically, as shown in FIG. 19B, the back surface 1b is sucked to the support surface 11a of the substrate support 11 by, for example, vacuum suction, and the semiconductor substrate 1 is fixed to the substrate support 11.
  • the back surface 1b becomes a reference surface for flattening the wiring forming surface 1a.
  • the via layer 8 and the surface layer of the insulating resin 9 on the wiring forming surface 1a are machined, in this case, cut using a byte 10 to flatten them.
  • the wiring 7 and the via portion 8 connected thereto are buried in the insulating resin 9 so that the upper surface of the via portion 8 is exposed. 2 is formed.
  • FIG. 19B for convenience of illustration, the via layer 8 and the surface layer of the insulating film 9 are illustrated as continuous flat surfaces. Then, as shown in FIG.
  • the back surface 1 b of the semiconductor substrate 1 is flattened on the basis of the wiring forming layer 1 a, and then the via layer 2 having a uniform thickness is formed on the wiring forming layer 1 a on the basis of the back surface 1 b. 1 and each wiring layer 5 1 to 5 3 are formed in order.
  • the thickness variation of the semiconductor substrate 1 is reduced.
  • cutting chips are generated during the cutting process and may adhere to the cutting surface.
  • the cuttings of the insulating material are only attached to the cut surface by static electricity, so they can be removed after cutting.
  • wiring materials, especially Au cuttings adhere to the cutting surface, they will be bonded to it and cannot be easily removed by washing or the like.
  • a cutting surface having a size of several im to several tens of meters adheres to a cutting surface having high flatness on the order of nanometers, which may hinder the flattening process. This is particularly remarkable when the wiring material is Au as described above, but also causes a problem with Cu and its alloys.
  • the surface layer of the wiring 41 and the insulating resin 42 on the wiring forming surface 1a is cut using a byte 10 and flattened.
  • a byte 10 As shown in Fig. 21, with the semiconductor substrate 1 fixed on the substrate support 11, trace the byte 10 at the same byte position (cut 0) as the cut position at the time of finishing the flattening process .
  • the feed at this time is the same as the finish, for example, 10 ⁇ ⁇ rotation.
  • air is blown from the air delivery section 93 to the cut surface in the same direction as the feed direction of the byte 10 to prevent the cutting chips 94 from re-adhering.
  • water or a cutting oil may be blown at a high pressure instead of air.
  • the tracing process of the present modified example is similarly applied to the cutting process of FIG. 18 and the cutting process of FIG.
  • the thickness variation of the semiconductor substrate 1 is made uniform, the occurrence of undulation and warpage is prevented, and high-speed operation can be performed easily and inexpensively without inconveniences such as dishing and without any restrictions on wiring design.
  • a semiconductor device with an easy and precise fine multilayer wiring structure is realized, which enables fine flattening and also reliably removes cutting chips at the time of flattening and maintains the flatness of the cut surface. can do.
  • FIG. 22A to FIG. 22C and FIG. 23A to FIG. 23C are schematic cross-sectional views showing the method of forming the multilayer wiring board according to the present embodiment in the order of steps. First, as shown in FIG.
  • a copper plate 71 having a thickness of a little over l mm and a diameter of 8 inches is attracted to, for example, the chuck table 104 of the above-mentioned cutting apparatus, and a The copper plate 71 is cut using a pad 10 until the byte 10 abuts on the entire surface of the copper plate 71 to make the thickness of the copper plate 71 uniform.
  • the cutting chips generated at this time are collected and used for copper plate regeneration.
  • a resist is applied to the surface of the copper plate 71 and processed by lithography to form a first-layer wiring pattern.
  • the LZS of the wiring pattern at this time is, for example, 5 im / 5.
  • the wiring 72 is formed by electrolytic plating using the copper plate 71 as a seed layer.
  • a protective film (not shown) is attached to the back surface of the copper plate 71 to prevent adhesion of the plating.
  • the resist is removed.
  • a via pattern is formed by a resist, and a via post 73 having, for example, a height of about 12 xm and a diameter of about 10 m is formed by electric plating using the copper plate 71 as a seed layer in the same manner as described above.
  • a protective film (not shown) is attached to the back surface of the copper plate 71 to prevent the adhesion of the plating. After that, the resist is removed.
  • a polyimide precursor for example, product name PI2611 manufactured by HD Microsystems
  • a polyimide precursor for example, product name PI2611 manufactured by HD Microsystems
  • the resin is cured by heating at a temperature rate to form a resin film 74.
  • a hole reaching the surface of the copper plate 71 is formed in a part of the resin film 74 by laser light.
  • the copper plate 71 was placed on the chuck table 104 with the back side down, and The depth of the hole is measured, and it is flattened by cutting using a byte 10 from the surface of the copper plate 7 to a height of about 10 mm using a byte 10, and the film thickness is uniform, and the wiring 7 A first wiring layer 81 in which the second and via posts 73 are embedded is formed.
  • the upper surface of the via post 73 is exposed from the surface of the wiring layer 81.
  • the cutting conditions at this time are, for example, a rotation speed of 100 rpm, a feed speed of S mm Z min, a rake angle of 10 bytes of 10 °, and a cutting depth of 1 jum.
  • a seed layer (a laminated film of CrZCu with a thickness of about 100 nm and 300 nm) by a sputtering method, as shown in FIG.
  • the wiring 75 and the via post 76 are patterned.
  • the seed layer is etched away.
  • the polyimide precursor is cured by heating at, for example, 370 ° C. at a heating rate of 2 V / min.
  • a resin film 77 is formed. Thereafter, a hole reaching the surface of the copper plate 71 is formed in a part of the resin film 77 by laser light.
  • the copper plate 71 is placed on the chuck table 104 with the back surface facing down, the depth of the hole is measured, and a byte 10 is extended from the surface of the copper plate 71 to a height of about 10 m.
  • a second wiring layer 82 having a uniform film thickness and having the wiring 75 and the via posts 76 embedded in the resin film 77 is formed.
  • the upper surface of the via post 76 is exposed from the surface of the wiring layer 82.
  • the above-described wiring layer forming step is repeatedly executed to form a multilayer wiring thin film including a desired number of wiring layers.
  • a protective layer made of polyimide and having a thickness of about 13 is formed. Via via laser anywhere 7
  • the protective layer is flattened to a thickness of about 10 by cutting using a byte 10.
  • the wiring layer is composed of four wiring layers, and the uppermost wiring layer has a surface formed with only the vias 78 by the above-described cutting process using the byte 10.
  • the layer wiring thin film 80 will be exemplified.
  • a portion of the protective layer cut to a thickness of about 10 is indicated by a broken line.
  • the protective layer is placed on the chuck table 104 with the protective layer facing down, and the copper plate 71 is left in a byte 10 to leave a thickness of, for example, about 0.5 / zm. Use cutting to remove.
  • the remaining copper plate 71 is removed by etching to complete a film-like multilayer wiring thin film 80.
  • dicing may be performed slightly deeper than the wiring layer, and the wiring layer may be chipped.
  • the thickness of each of the wiring layers constituting the multilayer wiring thin film 80 must be precise. The control is easily performed, and the copper plate 71 is easily and efficiently removed at low cost.
  • the via diameter is about 5 m to 10 tm
  • S is 5 ⁇ , ⁇ / 5 ⁇ m-20 urn
  • a multilayer wiring thin film having a fine wiring structure of / 20 can be realized.
  • a support base specifically, a copper plate is used as a substrate to form a film-like multilayer wiring thin film used as an interposer or the like.
  • the method is different.
  • FIGS. 25A and 25B are schematic cross-sectional views showing the method of forming the multilayer wiring board according to the present embodiment in the order of steps.
  • Fig. 24A for example, a copper plate having a thickness of just over 1 mm and a diameter of 8 inches 7
  • the copper plate 71 is cut using a diamond-made byte 10 until the byte 10 comes into contact with the entire surface of the copper plate 71 to make the thickness of the copper plate 71 uniform.
  • the cutting chips generated at this time are collected and used for copper plate regeneration.
  • a laminating film 83 made of a photosensitive epoxy resin and having a thickness of about 20 tm was formed on the surface of the copper plate 71, and exposed and developed to have a diameter of 2 ⁇ m. 0; A via hole 84 of about m is formed.
  • a seed layer is formed by electroless plating.
  • the copper plate 71 was placed on the chuck table 104 with the back side down, and the lamination film 83 was cut up to a height of about 5 m from the surface by using a byte 10.
  • a first wiring layer 91 is formed in which the via holes 84 and the wiring layers 85, which are flattened and have a uniform film thickness and are filled in the laminate film 83, are embedded.
  • the cutting conditions at this time are, for example, a rotation speed of 100 rpm, a feed rate of S mmZmin, a rake angle of byte 10 of 0 °, and a cutting depth of 1 Atm.
  • the resist is removed and the seed layer is etched away.
  • the above-described wiring layer forming step is repeatedly executed to form a multilayer wiring thin film including a desired number of wiring layers.
  • a protective layer made of polyimide and having a thickness of about 13 tm is formed. Via via laser anywhere 7
  • the protective layer is flattened by cutting using a byte 10 to a thickness of about 10 / zm.
  • the multilayer wiring thin film 90 has three wiring layers, and the uppermost wiring layer has only the vias 78 formed by the above-described cutting process using the bytes 10. Is exemplified.
  • the cut thickness is about 10 / zm.
  • the portion of the protective layer that is shown is indicated by a broken line.
  • the protective layer is placed on the chuck table 104 with the protective layer facing down, and the copper plate 71 is cut and removed using a byte 10 so as to leave a thickness of about 5 only. I do.
  • the remaining copper plate 71 is patterned to form predetermined wirings 82, thereby completing a film-shaped multilayer wiring thin film 90.
  • the support base is finally removed to obtain a multilayer wiring thin film alone, precise control of the film thickness of each wiring layer constituting the multilayer wiring thin film is performed. And easily remove the copper plate 71 efficiently and at low cost.
  • the peer diameter is 5; m to 10 ⁇ m, and L / S is 5 ⁇ . / 5 m to 20 n.
  • a multilayer wiring thin film having a fine wiring structure of / 20 m can be realized.
  • a conductor substrate (copper plate) is exemplified as the support base, but the support base may be formed of an insulating substrate such as a resin.
  • the thickness of the support base is made uniform by cutting using a byte, and then the wiring layers are layered while being flattened and the film thickness is made uniform by cutting to form a multilayer wiring thin film. Then, the support base is removed by cutting from the back surface. In this cutting process, it is also preferable to leave the support base at an arbitrary thickness and flatten it to provide the support base with an insulating layer.
  • the rake angle of the byte should be 5 ° or more to reduce the roughness of the finished surface. Can be desirable. Industrial applicability
  • the thickness variation of a substrate is considered in consideration of a main object other than CMP represented by cutting as a planarization method. It is possible to realize high-speed flattening easily and inexpensively without inconvenience such as dishing and without any restrictions on wiring design. Further, according to the present invention, when the support base is finally removed to obtain the multilayer wiring thin film alone, fine control of the thickness of each wiring layer constituting the multilayer wiring thin film is easily performed. In addition, the copper plate can be removed efficiently and easily at low cost, and a multilayer wiring thin film having a fine wiring structure can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A wiring board forming method, wherein a substrate supporting base (201) having a flat supporting surface (201a) is prepared, and a semiconductor substrate (1) is fixed to the substrate supporting base (201) by sucking a wiring formation surface (1a) onto the supporting surface (201a), for example, by vacuum sucking. The wiring formation surface (1a) is forcibly flattened by the suction thereof onto the supporting surface (201a) so that the wiring formation surface (1a) can be used as a reference plane for flattening a rear surface (1b). In this state, the rear surface (1b) is mechanically ground to grind off projected parts (12) from the rear surface (1b) for flattening treatment. Thus, the flattening can be easily and rapidly performed at low cost without producing any inconvenience such as dishing and without being restricted by wiring design by uniformizing a variation in the thickness of the substrate (particularly, semiconductor substrate).

Description

明 細 書 半導体装置、 配線基板の形成方法及び基板処理装置 技術分野  Description: Semiconductor device, method for forming wiring substrate, and substrate processing apparatus
本発明は、 基板、 特に半導体基板上に L S Iなどの電子デバイスと共に多層配 線を形成する方法、 更には金属材又は絶縁材からなる支持基体上に多層配線層を 形成し、 支持基体を除去することで多層配線フィルムを形成する方法、 多層配線 を有する半導体装置及び基板処理装置に関する。 背景技術  The present invention relates to a method for forming a multilayer wiring together with an electronic device such as an LSI on a substrate, particularly a semiconductor substrate, and further forming a multilayer wiring layer on a supporting base made of a metal material or an insulating material, and removing the supporting base. The present invention relates to a method for forming a multilayer wiring film, a semiconductor device having a multilayer wiring, and a substrate processing apparatus. Background art
近時では、 半導体装置の更なる小型化 ·高集積化の要請が高まっており、 それ に伴い多層配線化が必要となり、 そのため高度の平坦化技術が求められている。 この平坦化技術が適用されるのは、 主にシリコンゥエーハに代表される半導体基 板であり、 更には最近注目されている例えば S i P ( Silicon in Package) への適 用に有望視されているフィルム状の多層配線薄膜がある。 従来、 シリコン半導体基板上に形成された絶縁層や配線層を平坦化する手法と しては、 主に化学—機械研磨 (Chemical Mechanical Polishing: C M P ) 法が用 いられている。 この方法は、 被加工面となる絶縁層や配線層を予め比較的平坦に 形成しておき、 平坦な研磨パッドを押し当て、 スラリー (化学的研磨材) を用い て化学的 ·機械的に表面を精緻に平坦加工するものである。 予め設けられた硬い 絶縁材面ゃ金属面がストップ層となり、 C M Pは完了する。 C M Pは半導体基板 の厚みのばらつきや半導体基板の最大厚みと最小厚みとの差で定義される T T V (Total Thickness Variation)には依存しない方法である。  In recent years, the demand for further miniaturization and higher integration of semiconductor devices has been increasing, and accordingly, multilayer wiring has been required, and accordingly, advanced flattening technology has been required. This flattening technology is applied mainly to semiconductor substrates typified by silicon wafers, and is also expected to be applied to, for example, SIP (Silicon in Package), which has recently attracted attention. There is a film-shaped multi-layer wiring thin film. Conventionally, as a method of flattening an insulating layer or a wiring layer formed on a silicon semiconductor substrate, a chemical mechanical polishing (CMP) method is mainly used. In this method, an insulating layer or wiring layer to be processed is formed relatively flat in advance, a flat polishing pad is pressed, and a slurry (chemical polishing material) is used to chemically and mechanically surface the surface. Is precisely processed to be flat. The previously provided hard insulating material surface ゃ metal surface becomes the stop layer, and the CMP is completed. CMP is a method that does not depend on TTV (Total Thickness Variation) defined by the thickness variation of the semiconductor substrate and the difference between the maximum thickness and the minimum thickness of the semiconductor substrate.
C M P法以外でも、 例えば切削工具を用いた平坦化方法がいくつか案出されて いる (例えば、 特許文献 1, 2 , 3 , 4参照)。 しかしながら、 いずれも L S I上 における部分領域の S O G膜の平坦化を対象としたものであり、 C M Pと同様、 被切削面を基準として切削する方法であって半導体基板の T T Vには依存しない < 一方、 S i Pの実現に求められる実装基板において、 安価にかつ簡便に形成す るために薄膜配線層のみをィン夕一ポーザとして使用することが考えられる。 従 来、 スルーホールのない薄膜多層の配線基板として、 1枚の樹脂膜に導電性べ一 ストを充填したピアホールと配線を形成したものを複数枚用意して、 最終工程で 一括積層したものが開発されている。 この配線基板は低コストで実現可能である が、 ビア径が 1 2 0 i m〜 2 0 0; u m程度、 L Z S (ラインノスペース) が 1 0 0 u rn / 1 0 0; a m程度〜 2 0 0 u rn / 2 0 0; w m程度であって微細化は困難で ある。 そこで、 微細化と低コストとを両方実現するために、 基板上に形成した多 層配線薄膜を分離して基板とすることが有効である。 Other than the CMP method, for example, several flattening methods using a cutting tool have been devised (for example, see Patent Documents 1, 2, 3, and 4). However, all of them are aimed at flattening the SOG film in the partial region on the LSI, and like CMP, This method is based on the surface to be cut and does not depend on the TTV of the semiconductor substrate.On the other hand, in the mounting substrate required for realizing SIP, only the thin film wiring layer is required to be formed inexpensively and easily. It is conceivable to use it as a poser. Conventionally, as a thin-film multilayer wiring board without through-holes, a single resin film filled with a conductive base and a plurality of wirings formed with peer holes and prepared in a final process by batch lamination Is being developed. Although this wiring board can be realized at low cost, the via diameter is about 120 to 200 μm; LZS (line space) is about 100 urn / 100; 0 u rn / 200; approx. Wm, making miniaturization difficult. Therefore, in order to realize both miniaturization and low cost, it is effective to separate a multilayer wiring thin film formed on a substrate into a substrate.
C M P法を用いれば、 精緻な平坦化を実現することは可能であるが、 加工装置 が高価であってスループッ トも低く、 製造コス トの高いプロセスとなる。 また、 銅などの金属と絶縁物を同時に平坦化する場合、 パターンが疎の部分にディッシ ングと呼ばれる窪みが現れることがある。 このディッシングの発生を避ける必要 性から、 L S I等における配線パターンのサイズが限定されてしまうため、 パ夕 ーンの空白部分が形成されないように配置することを要する。 一方、 上述の多層配線薄膜の形成には、 先ず支持基体上に多層配線薄膜を形成 し、支持基体を剥離もしくは除去することが必要である。剥離する方法としては、 多層配線薄膜の絶縁樹脂と支持基体との密着性が低いことを利用して基板の外周 部のみ密着改良材を塗布し、 配線層の形成完了後に密着改良材の塗布部と未塗布 部とを切り離して多層配線薄膜を支持基体から離間する方法がある。 この剥離す る方法は言わばフィルムを引き剥がすイメージであり、 回路にダメージを与える 恐れがある。 他方、 支持基体除去の方法は、 例えば支持基体を半導体基板とした 場合に、 グラインダ及ぴエッチングによりこれを除去する方法である。 また A 1 や C uなどの金属板を支持基体とした場合には、 エッチングによりこれを除去す る。 これらの何れの手法を採るにしても、 支持基体そのものがコストに反映してし まうことに加え、 後者の手法で支持基体を半導体基板とした場合にはグラインダ した残滓がそのままゴミとなるため、プロセスで生じるゴミが膨大なものとなり、 環境への悪影響も無視できない。 特許文献 1 If CMP is used, fine planarization can be achieved, but the processing equipment is expensive, the throughput is low, and the manufacturing cost is high. When a metal such as copper and an insulator are planarized at the same time, a depression called dishing may appear in a portion where the pattern is sparse. Since it is necessary to avoid the occurrence of dishing, the size of the wiring pattern in an LSI or the like is limited. Therefore, it is necessary to arrange the wiring pattern so that a blank portion of the pattern is not formed. On the other hand, in order to form the above-described multilayer wiring thin film, it is necessary to first form a multilayer wiring thin film on a support base and peel or remove the support base. As a method of peeling, the adhesion improving material is applied only to the outer peripheral portion of the substrate by utilizing the low adhesiveness between the insulating resin of the multilayer wiring thin film and the supporting base, and after the formation of the wiring layer is completed, the application portion of the adhesion improving material is applied. There is a method of separating the multi-layered wiring thin film from the supporting base by separating the multi-layer wiring thin film from the supporting base by separating the uncoated portion from the support. This method of peeling is the image of peeling the film, which may damage the circuit. On the other hand, the method of removing the supporting substrate is a method of removing the supporting substrate by a grinder and etching, for example, when the supporting substrate is a semiconductor substrate. If a metal plate such as A 1 or Cu is used as the support base, it is removed by etching. Whichever of these methods is adopted, the supporting substrate itself is reflected in the cost, and when the supporting substrate is used as the semiconductor substrate in the latter method, the residue left by the grinding becomes waste as it is. The garbage generated in the process is enormous, and the negative impact on the environment cannot be ignored. Patent Document 1
特開平 7— 3 2 6 6 1 4号公報  Japanese Patent Application Laid-Open No. Hei 7—3 2 6 6 14
特許文献 2  Patent Document 2
特開平 8 - 1 1 0 4 9号公報  Unexamined Japanese Patent Publication No. Hei 8-11109
特許文献 3  Patent Document 3
特開平 9 一 8 2 6 1 6号公報  Japanese Patent Application Laid-Open No. 9-1 8 2 6 16
特許文献 4  Patent Document 4
特開 2 0 0 0— 1 7 3 9 5 4号公報 本発明は、 上記した課題に鑑みてなされたものであり、 平坦化方法として代表 される C M P以外の機械加工法を主な対象とすることを考慮して、 基板 (特に半 導体基板や導体 ·絶縁基板) の厚みばらつきを均一化し、 デイツシング等の不都 合を発生させることなく容易且つ安価に配線デザィンの制約も無く高速な平坦化 を実現する。 また、 最終的に基板を除去して多層配線薄膜を単体で得る場合に、 多層配線薄膜を構成する各配線層の膜厚の精緻な制御を容易に実行するとともに, 効率良く低コストで容易に銅板を除去し、 微細配線構造を有する配線薄膜を実現 することを可能とする配線基板の形成方法及び半導体装置並びに基板処理装置を 提供することを目的とする。 発明の開示  SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and has as its main object a machining method other than CMP represented as a planarization method. In consideration of this, uniformity in thickness of substrates (especially semiconductor substrates, conductors, and insulating substrates) is uniform, and high-speed flattening is easy and inexpensive without inconveniences such as dicing and with no restrictions on wiring design. To achieve. In addition, when the substrate is finally removed to obtain a multilayer wiring thin film by itself, precise control of the film thickness of each wiring layer constituting the multilayer wiring thin film is easily performed, and efficiently and at low cost. It is an object of the present invention to provide a method for forming a wiring board, a semiconductor device, and a substrate processing apparatus, which are capable of realizing a wiring thin film having a fine wiring structure by removing a copper plate. Disclosure of the invention
本発明の配線基板の形成方法は、 基板上に配線を形成する方法であって、 前記 基板の前記配線形成面を基準として、 前記配線形成面の裏面を第 1の機械加工に より平坦化処理する工程と、 前記配線形成面に前記配線及び前記配線を覆う絶縁 膜を形成する工程と、 前記裏面を基準として、 第 2の機械加工により前記配線の 表面及ぴ前記絶縁膜の表面が連続して平坦となるように平坦化処理する工程とを 含む。 本発明の配線基板の形成方法は、 支持基体の厚みを第 1の機械加工により均一 化する工程と、 厚みの均一化された前記支持基体の表面に配線及び前記配線を覆 う絶縁膜を形成する工程と、 第 2の機械加工により前記配線の表面及び前記絶縁 膜の表面が連続して平坦となるように平坦化処理し、 前記配線及び前記絶縁膜か らなる配線層を形成する工程と、 前記支持基体を除去することにより、 前記配線 層を有してなる厚みの均一な配線薄膜を形成する工程とを含む。 本発明の半導体装置は、 半導体基板と、 前記半導体基板の表面に形成されてな る半導体素子と、 前記半導体素子とともに、 絶縁物内で各配線が複数の層に積層 してなる多層配線とを含む半導体装置であって、 前記半導体基板は、 前記半導体 素子の形成されてなる前記表面の裏面側に前記表面を基準とした機械加工が施さ れ、 前記裏面の平坦化及び基板厚の均一化がなされている。 本発明の基板処理装置は、基板上に配線を形成する際の基板処理装置であって、 平坦な支持面を有しており、 基板をその一面で前記支持面に吸着させ、 前記一面 を強制的に平坦な基準面として支持固定する基板支持台と、 前記基板支持台に支 持固定された前記基板の他面を切削加工するバイ 卜とを含み、 前記バイ トにより 前記基板の前記配線形成面を切削加工し、 前記配線の表面及び絶縁膜の表面が連 続して平坦となるように平坦化処理する。 図面の簡単な説明 The method of forming a wiring board according to the present invention is a method of forming wiring on a substrate, wherein a flattening process is performed by a first machining process on a back surface of the wiring forming surface with reference to the wiring forming surface of the substrate. And an insulation covering the wiring and the wiring on the wiring forming surface. A step of forming a film; and a step of performing a planarization process by a second mechanical processing so that a surface of the wiring and a surface of the insulating film are continuously flattened with reference to the back surface. In the method for forming a wiring board according to the present invention, a step of uniforming the thickness of a support base by a first machining is provided, and a wiring and an insulating film covering the wiring are formed on the surface of the support base having a uniform thickness. Forming a wiring layer composed of the wiring and the insulating film by performing a flattening process by a second machining so that the surface of the wiring and the surface of the insulating film are continuously flat. Forming a wiring thin film having the wiring layer and having a uniform thickness by removing the support base. A semiconductor device of the present invention includes a semiconductor substrate, a semiconductor element formed on a surface of the semiconductor substrate, and a multi-layer wiring in which each wiring is stacked in a plurality of layers in an insulator together with the semiconductor element. In the semiconductor device, the semiconductor substrate is subjected to machining based on the front surface on a rear surface side of the front surface on which the semiconductor element is formed, so that the rear surface is flattened and the substrate thickness is made uniform. Has been done. The substrate processing apparatus of the present invention is a substrate processing apparatus for forming wiring on a substrate, has a flat support surface, adsorbs the substrate to the support surface on one side, and forcibly applies the one side. A substrate support for supporting and fixing the substrate as a flat reference surface, and a byte for cutting the other surface of the substrate supported and fixed to the substrate support, and forming the wiring of the substrate with the byte. The surface is cut and flattened so that the surface of the wiring and the surface of the insulating film are continuously flat. BRIEF DESCRIPTION OF THE FIGURES
図 1 A〜図 1 Eは、 本実施形態による多層配線基板の形成方法を工程順に示す 概略断面図である。  1A to 1E are schematic sectional views showing the method for forming the multilayer wiring board according to the present embodiment in the order of steps.
図 2 A〜図 2 Cは、 第 1の実施形態による多層配線基板の形成方法を工程順に 示す概略断面図である。 図 3 A〜図 3 Cは、 第 1の実施形態による多層配線基板の形成方法を工程順に 示す概略断面図である。 2A to 2C are schematic cross-sectional views illustrating a method of forming a multilayer wiring board according to the first embodiment in the order of steps. 3A to 3C are schematic cross-sectional views showing a method for forming a multilayer wiring board according to the first embodiment in the order of steps.
図 4 A〜図 4 Cは、 第 1の実施形態による多層配線基板の形成方法を工程順に 示す概略断面図である。  4A to 4C are schematic cross-sectional views illustrating a method for forming a multilayer wiring board according to the first embodiment in the order of steps.
図 5は、 図 2 A、 図 3 A、 及ぴ図 4 Bの各平坦化工程の具体例を示す模式図で ある。  FIG. 5 is a schematic diagram showing a specific example of each of the planarization steps in FIGS. 2A, 3A, and 4B.
図 6は、 図 2 A、 図 3 A、 及び図 4 Bの各平坦化工程の他の具体例を示す模式 図である。  FIG. 6 is a schematic diagram showing another specific example of each of the flattening steps in FIGS. 2A, 3A, and 4B.
図 7は、 第 1の実施形態の比較例を示す概略断面図である。  FIG. 7 is a schematic sectional view showing a comparative example of the first embodiment.
図 8A, 図 8 Bは、 研削加工装置の構成図である。  8A and 8B are configuration diagrams of a grinding device.
図 9は、 切削加工装置の構成を示すブロック図である。  FIG. 9 is a block diagram showing the configuration of the cutting device.
図 1 0 A〜図 1 0 Gは、 切削加工装置の構成を示す概略構成図である。  10A to 10G are schematic configuration diagrams showing the configuration of the cutting device.
図 1 1は、 切削加工装置の各部の配置構成を示す概略構成図である。  FIG. 11 is a schematic configuration diagram showing an arrangement configuration of each part of the cutting apparatus.
図 1 2は、 切削加工工程のフロー図である。  FIG. 12 is a flowchart of the cutting process.
図 1 3は、 本発明が適用される半導体装置の概観を示す概略斜視図である。 図 1 4は、 本発明が適用され、 本実施形態において開示される半導体装置の概 観を示す概略平面図である。  FIG. 13 is a schematic perspective view showing an overview of a semiconductor device to which the present invention is applied. FIG. 14 is a schematic plan view showing an overview of a semiconductor device to which the present invention is applied and disclosed in the present embodiment.
図 1 5 A〜図 1 5 Dは、 第 2の実施形態による多層配線を含む半導体装置の製 造方法を工程順に示す概略断面図である。  15A to 15D are schematic cross-sectional views illustrating a method of manufacturing a semiconductor device including multilayer wiring according to the second embodiment in the order of steps.
図 1 6 A〜図 1 6 Cは、 第 2の実施形態による多層配線を含む半導体装置の製 造方法を工程順に示す概略断面図である。  16A to 16C are schematic cross-sectional views illustrating a method of manufacturing a semiconductor device including multilayer wiring according to the second embodiment in the order of steps.
図 1 7 A〜図 1 7 Cは、 第 2の実施形態による多層配線を含む半導体装置の製 造方法を工程順に示す概略断面図である。  FIGS. 17A to 17C are schematic cross-sectional views illustrating a method of manufacturing a semiconductor device including multilayer wiring according to the second embodiment in the order of steps.
図 1 8 A〜図 1 8 Cは、 第 2の実施形態による多層配線を含む半導体装置の製 造方法を工程順に示す概略断面図である。  FIG. 18A to FIG. 18C are schematic cross-sectional views illustrating a method of manufacturing a semiconductor device including multilayer wiring according to the second embodiment in the order of steps.
図 1 9 A〜図 1 9 Cは、 第 2の実施形態による多層配線を含む半導体装置の製 造方法を工程順に示す概略断面図である。  FIGS. 19A to 19C are schematic cross-sectional views illustrating a method of manufacturing a semiconductor device including multilayer wiring according to the second embodiment in the order of steps.
図 2 O A, 図 2 O Bは、 素子領域に MO S トランジスタが形成された様子を示 す概略断面図である。 図 2 1は、 第 2の本実施形態による多層配線を含む半導体装置の製造方法の変 形例において、 その主要工程を示す概略断面図である。 FIG. 2 OA and FIG. 2 OB are schematic cross-sectional views showing a state in which a MOS transistor is formed in an element region. FIG. 21 is a schematic cross-sectional view showing main steps in a modification of the method for manufacturing a semiconductor device including the multilayer wiring according to the second embodiment.
図 2 2 A〜図 22 Cは、 第 3の実施形態による多層配線基板の形成方法を工程 順に示す概略断面図である。  22A to 22C are schematic cross-sectional views illustrating a method of forming a multilayer wiring board according to the third embodiment in the order of steps.
図 23 A〜図 2 3 Cは、 第 3の実施形態による多層配線基板の形成方法を工程 順に示す概略断面図である。  23A to 23C are schematic cross-sectional views illustrating a method of forming a multilayer wiring board according to the third embodiment in the order of steps.
図 24A〜図 24 Cは、 第 4の実施形態による多層配線基板の形成方法を工程 順に示す概略断面図である。  24A to 24C are schematic cross-sectional views illustrating a method of forming a multilayer wiring board according to the fourth embodiment in the order of steps.
図 2 5 A, 図 2 5 Bは、 第 4の実施形態による多層配線基板の形成方法を工程 順に示す概略断面図である。 発明を実施するための最良の形態  25A and 25B are schematic cross-sectional views illustrating a method of forming a multilayer wiring board according to the fourth embodiment in the order of steps. BEST MODE FOR CARRYING OUT THE INVENTION
一本発明の基本骨子一  One basic principle of the present invention
初めに、 本発明の基本骨子について説明する。  First, the basic gist of the present invention will be described.
本発明では、 平坦化方法として例えばバイ トを用いた切削加工に代表される C MP以外の機械加工法を主な対象とすることを前提としている。 銅、 アルミニゥ ム、 ニッケル等の金属やポリイミ ド等の絶縁材は、 容易にバイ トで切削可能な材 料である。 半導体基板上においてこれらの材料で構成されている配線及び絶縁膜 は、 切削を用いることで容易且つ高速に平坦化することが可能である。 また、 切 削ではディッシングの発生はない。 切削加工をシリコンゥェ一ハに代表される半導体基板の平坦化に利用する際の 課題は、 切削が基板の背面 (裏面) 基準で行われるという点にある。 一般的に、 シリコン基板の TTVは、 1 m~ 5 mの範囲内にあり、 L S Iのプロセスで は 5 !!!程度の丁丁 はフォトリソグラフィ一に影響を与えることはなく、 通常 では考慮の対象外となる。 しかしながら、 切削加工の場合では TTVの値に大き く影響される。 切削による平坦精度は T TVの値以下にはならない。 従って、 切 削加工を半導体基板の平坦化に用いる場合には、 基板の T T Vを目標の切削精度 以下に制御することが先ず必要になる。 本発明者は、 上記の事情を勘案し、 配線及び絶縁膜を形成する前に、 先ず配線 形成面となる表面を基準に裏面を研削し、 半導体基板の T T Vを目的とする切削 精度以下に小さく抑えることに想到した。この場合、 τ T Vを小さくして且つ個々 の半導体基板の厚みばらつきも切削精度以下に抑えることが理想的である。 しか しながら、 T T Vさえ小さくできれば、 個々の半導体基板の厚みについては切削 時に検出可能である。 切削量は、 この個々の半導体基板の厚みを検出することに より制御可能である。 更に本発明では、 フィルム状の多層配線薄膜の形成に、 上述の切削加工技術を 適用する。 即ち、 絶縁材ゃ導電材からなる支持基体上に配線層を積層してゆき、 多層配線薄膜を形成した後に、 支持基体を除去して多層配線薄膜のみをインタ一 ポーザとして供する場合に利用する。 この場合、 支持基体として金属板または絶 縁板を用いるため、 配線層を形成する前工程である当該支持基体の平坦化 (厚み の均一化) 工程を切削加工で行うことができる。 そして、 各配線層の形成時の平 坦化処理を切削加工で行い、 更には支持基体の除去工程においても支持基体を切 削により除去することができる。 このように、 支持基体の平坦化、 各配線層の形 成時の平坦化及び支持基体の一連の切削を全てバイ トを用いた切削により実行す ることができ、 容易且つ高速に、 各配線層の高精度の平坦化及び基体除去が実現 される。 更には、 支持基体が絶縁板である場合、 切削加工のもつ容易且つ高速、 高精度 の平坦化制御性を利用して、 支持基体の除去の際に、 支持基体を任意の厚さ分だ け残して平坦化し、 これを絶縁層に供することも可能となる。 また、 支持基体が 金属板である場合、 切削により生じた切削屑を収集し、 支持基体の形成に再利用 することが可能となる。 一本発明の具体的な実施形態一 In the present invention, it is assumed that the main object of the flattening method is a machining method other than CMP represented by cutting using a byte. Metals such as copper, aluminum and nickel, and insulating materials such as polyimide are materials that can be easily cut with a byte. Wiring and insulating films made of these materials on a semiconductor substrate can be easily and rapidly planarized by using cutting. There is no dishing in cutting. The problem when using cutting for flattening a semiconductor substrate typified by a silicon wafer is that cutting is performed on the back side (back side) of the substrate. Generally, the TTV of a silicon substrate is in the range of 1 m to 5 m, and 5! ! ! Degree of order has no effect on photolithography and is usually not considered. However, in the case of cutting, it is greatly affected by the value of TTV. The flatness accuracy by cutting does not fall below the value of TTV. Therefore, when cutting is used for flattening a semiconductor substrate, it is first necessary to control the TTV of the substrate to a target cutting accuracy or less. In consideration of the above circumstances, the present inventor, before forming the wiring and the insulating film, first grinds the back surface with reference to the surface on which the wiring is formed, and reduces the cutting accuracy to below the TTV of the semiconductor substrate. I thought of keeping it down. In this case, it is ideal that τ TV is reduced and the thickness variation of each semiconductor substrate is suppressed to the cutting accuracy or less. However, if the TTV can be made smaller, the thickness of individual semiconductor substrates can be detected during cutting. The amount of cutting can be controlled by detecting the thickness of each individual semiconductor substrate. Further, in the present invention, the above-mentioned cutting technique is applied to the formation of a film-like multilayer wiring thin film. That is, it is used when a wiring layer is laminated on a support base made of an insulating material and a conductive material to form a multilayer wiring thin film, and then the support base is removed to provide only the multilayer wiring thin film as an interposer. In this case, since a metal plate or an insulating plate is used as the support base, the flattening (uniform thickness) step of the support base, which is a pre-process of forming a wiring layer, can be performed by cutting. Then, the flattening process at the time of forming each wiring layer is performed by cutting, and the supporting base can be removed by cutting in the supporting base removing step. In this way, the flattening of the support base, the flattening of each wiring layer at the time of formation, and the series of cutting of the support base can all be performed by cutting using a byte. High precision planarization of the layer and substrate removal are achieved. Furthermore, when the support base is an insulating plate, the support base is removed by an arbitrary thickness when the support base is removed by utilizing the easy, high-speed, and high-precision flatness controllability of the cutting process. It is also possible to leave it flat and to use it as an insulating layer. In addition, when the support base is a metal plate, it becomes possible to collect the cuttings generated by the cutting and reuse it for forming the support base. One specific embodiment of the present invention
以下、 上述した基本骨子を踏まえ、 本発明の具体的な諸実施形態について図面 を用いて詳細に説明する。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings based on the above-described basic structure. This will be described in detail with reference to FIG.
(第 1の実施形態) (First Embodiment)
ここでは、 基板としてシリコン半導体基板 (シリコンゥェ一ハ) を例示し、 こ の半導体基板上に絶縁物内で各配線が複数の層に積層してなる多層配線を形成す る場合について開示する。  Here, a silicon semiconductor substrate (silicon wafer) is exemplified as a substrate, and a case is described in which a multilayer wiring in which wirings are stacked in a plurality of layers in an insulator is formed on the semiconductor substrate.
図 1 A〜図 1 E, 図 2 A〜図 2 C, 図 3 A〜図 3 C, 図 4 A〜図 4 Cは、 本実 施形態による多層配線基板の形成方法を工程順に示す概略断面図である。 先ず、 図 1 Aに示すように、 シリコン半導体基板 1を用意する。 通常、 シリコ ン半導体基板は、 図示の如く厚みが一様ではなく、 しかもうねりを伴う状態にあ る。 そこで、 半導体基板 1の一方の主面、 ここでは基板表面 (配線形成面 l a ) に 後述するバイ 卜を用いた切削加工を施すための前工程として、 半導体基板 1の他 方の主面、 ここでは (配線形成面 1 aの) 裏面 1 bを平坦化する。  1A to 1E, 2A to 2C, 3A to 3C, and 4A to 4C are schematic cross-sectional views illustrating a method of forming a multilayer wiring board according to the present embodiment in the order of steps. FIG. First, as shown in FIG. 1A, a silicon semiconductor substrate 1 is prepared. Normally, the silicon semiconductor substrate is not uniform in thickness as shown in the figure, but is in a state accompanied by undulation. Therefore, as a pre-process for performing cutting using a byte, which will be described later, on one main surface of the semiconductor substrate 1, here, the substrate surface (wiring forming surface la), the other main surface of the semiconductor substrate 1, here Then, the back surface 1b (of the wiring forming surface 1a) is flattened.
具体的には、 図 1 Bに示すように、 支持面 2 0 1 aが平坦とされた基板支持台 2 0 1を用意し、 この支持面 2 0 1 aに吸着、 例えば真空吸着により配線形成面 1 aを吸着させて半導体基板 1を基板支持台 2 0 1に固定する。 このとき、 配線 形成面 1 aは支持面 2 0 1 aへの吸着により強制的に平坦とされており、 これに より配線形成面 1 aが裏面 1 bの平坦化の基準面となる。 この状態で、 裏面 1 b を機械加工、 ここでは研削加工し、 裏面 1 bの凸部 1 2を研削除去して平坦化処 理する。 この場合、 裏面 1 bの切削量を配線形成面 1 aからの距離により制御す ることが好ましい。 これにより、 半導体基板 1の厚みが一定、 具体的には T T V (基板の最大厚みと最小厚みとの差) が所定値以下となるように、 具体的には T T Vが 1 m以下に制御されることになる。 続いて、 図 1 Cに示すように、 半導体基板 1を基板支持台 2 0 1から外し、 半 導体基板 1の配線形成面 1 a上に感光性樹脂、 例えば感光性ポリイミ ド 1 3を塗 布し、 この感光性ポリイミ ド 1 3をフォトリソグラフィ一により加工して、 所定 の電極パターン 1 3 aを形成する。 続いて、 図 1 Dに示すように、 配線形成面 1 a上に、 感光性ポリイミ ド 1 3を 覆うように例えばスパッタ法により金属、 例えば銅膜を形成し、 シード層 2を形 成する。 続いて、 図 1 Eに示すように、 シード層 2を電極として用いてメツキ法により 感光性ポリイミ ド 1 3を埋め込む膜厚に銅を堆積させ、 接地 (G N D ) 電極 3を 形成する。 続いて、 配線形成面 1 aにバイ トを用いた切削加工を施し、 平坦化する。 具体的には、 図 2 Aに示すように、 基板支持台 1 1の支持面 1 1 aに例えば真 空吸着により半導体基板 1の裏面 1 bを吸着させ、 半導体基板 1を基板支持台 1 1に固定する。 このとき、 図 1 Bの平坦化処理により半導体基板 1の厚みが一定 の状態とされており、 更に図 2 Aの吸着により強制的にうねり等もない状態とな ることから、 裏面 1 bが配線形成面 1 aの平坦化の基準面となる。 この状態で、 配線形成面 1 aにおける G N D電極 3の表層を機械加工、 ここではダイヤモンド 等からなるバイ 卜 1 0を用いて切削加工し、 これを平坦化する。 続いて、 図 2 Bに示すように、 平坦化された G N D電極 3上にフォトレジスト 1 4を塗布し、 フォトリソグラフィ一によりフォトレジスト 1 4を加工して、 所 定のビアパターン 1 4 aを開口形成する。 そして、 メツキ法によりビアパターン 1 4 aの開口部に銅等を埋め込み、 ビア部 4を形成する。 続いて、 図 2 Cに示すように、 例えばフォ トレジスト 1 4を剥離した後、 ビア 部 4を覆いこれを埋め込むように配線形成面 1 a上に絶縁樹脂 5を形成する。 続いて、 再び配線形成面 1 aにバイ トを用いた切削加工を施し、 平坦化する 具体的には、 図 3 Aに示すように、 基板支持台 1 1の支持面 1 1 aに例えば真 空吸着により裏面 1 bを吸着させ、 半導体基板 1を基板支持台 1 1に固定する。 このとき上記と同様に、 裏面 1 bが配線形成面 1 aの平坦化の基準面となる。 こ の状態で、 配線形成面 1 aにおけるビア部 4及び絶縁樹脂 5の表層を機械加工、 ここではパイ ト 1 0を用い、 半導体基板 1を例えば回転数 8 0 0 r p m ~ 1 6 0 0 r p m程度の回転速度で回転させて切削加工し、 これらを平坦化する。 この平 坦化処理により、 ビア部 4がその上面を露出させるとともに、 ビア部 4が絶縁樹 脂 5内に埋設されてなる厚みが均一化されたピア層 2 1が形成される。 続いて、 図 3 Bに示すように、 平坦化されたビア部 4及び絶縁樹脂 5の表面に スパッタ法により銅膜を堆積してシ一ド層 6を形成した後、 第 1のフォトレジス ト 1 5を塗布し、 この第 1のフォトレジスト 1 5をフォトリソグラフィ一により 加工して、 所定の配線パターン 1 5 aを形成する。 そして、 シ一ド層 6を電極と して用いてメツキ法により第 1のフォトレジスト 1 5の配線パターン 1 5 a部分 を埋め込み、 配線 7を形成する。 続いて、 図 3 Cに示すように、 例えばアルカリ性の剥離液を用いて第 1のフォ トレジスト 1 5を除去した後、 配線 7上にこれを埋め込むように第 2のフオトレ ジスト 1 6を塗布し、 この第 2のフォトレジスト 1 6をフォトリソグラフィ一に より加工して、 所定のビアパターン 1 6 aを開口形成する。 そして、 メツキ法に よりビアパターン 1 6 aを銅等により埋め込み、 ビア部 8を形成する。 続いて、 図 4 Aに示すように、 例えばアルカリ性の剥離液を用いて第 2のフォ トレジスト 1 6及びシード層 6を除去した後、 配線 7及びビア部 8を覆いこれを 埋め込むように配線形成面 1 a上に絶縁樹脂 9を形成する。 続いて、 再び配線形成面 1 aにバイ トを用いた切削加工を施し、 平坦化する。 具体的には、 図 4 Bに示すように、 基板支持台 1 1の支持面 1 1 aに例えば真 空吸着により裏面 1 bを吸着させ、 半導体基板 1を基板支持台 1 1に固定する。 このとき上記と同様に、 裏面 1 bが配線形成面 1 aの平坦化の基準面となる。 こ の状態で、配線形成面 1 aにおけるビア部 8及び絶縁樹脂 9の表層を機械加工し、 これらを平坦化する。 なお、 ここでは機械加工の一例としてバイ ト 1 0を用いた 切削加工を行う。 この平坦化処理により、 ビア部 8の上面が露出するように、 配 線 7及びこれと接続されたビア部 8が絶縁樹脂 9内に埋設されてなる厚みが均一 化された第 1の配線層 2 2が形成される。 そして、 図 4 Cに示すように、 第 1の配線層 2 2の形成時と同様に、 即ち図 3 B , 図 3 C, 図 4 A , 図 4 Bと同様の一連工程を数回経て、 配線及ぴこれと接続 されたビア部が絶縁樹脂内に埋設されてなる積層構造を形成する。 図示では、 配 線 3 1及びこれと接続されたビア部 3 2が絶縁樹脂 3 3内に埋設されてなる厚み が均一化された第 2の配線層 2 3、 この第 2の配線層 2 3上に形成された配線 3 4が例示されている。 しかる後、 半導体基板 1の全面を覆う保護膜 (不図示) の形成等を経て、 半導 体基板 1上に多層配線構造が完成される。 なお、 本実施形態では、 1枚の半導体基板について説明したが、 ロットを構成 する複数の半導体基板について本実施形態の各工程を実行し、 各半導体基板の厚 みを同一に均一化しても良い。 これにより、 例えば 1つの同一ロット内の各基板 に対して同一条件内で切削等の処理を行うことが可能となる。 また、 図 2 A、 図 3 A、 及び図 4 Bの各平坦化工程において、 裏面 l bを基準 に半導体基板 1の平行出しを行うとともに、 配線形成面 1 aの位置を検出し、 検 出された配線形成面 1 aから削り量を算出して、 バイ ト 1 0を制御する。 Specifically, as shown in FIG. 1B, a substrate support table 201 having a flat support surface 201a is prepared, and a wiring is formed by suction on the support surface 201a, for example, by vacuum suction. The semiconductor substrate 1 is fixed to the substrate support 201 by adsorbing the surface 1a. At this time, the wiring forming surface 1a is forcibly made flat by adsorption to the support surface 201a, whereby the wiring forming surface 1a becomes a reference surface for flattening the back surface 1b. In this state, the back surface 1 b is machined, in this case, ground, and the convex portion 12 of the back surface 1 b is ground and removed to be flattened. In this case, it is preferable to control the amount of cutting of the back surface 1b by the distance from the wiring forming surface 1a. As a result, the thickness of the semiconductor substrate 1 is controlled to be constant, specifically, TTV (the difference between the maximum thickness and the minimum thickness of the substrate) is equal to or less than a predetermined value, specifically, the TTV is controlled to 1 m or less. Will be. Subsequently, as shown in FIG. 1C, the semiconductor substrate 1 is detached from the substrate support base 201, and a photosensitive resin, for example, photosensitive polyimide 13 is coated on the wiring forming surface 1a of the semiconductor substrate 1. Then, the photosensitive polyimide 13 is processed by photolithography to form a predetermined electrode pattern 13a. Subsequently, as shown in FIG. 1D, a metal, for example, a copper film is formed on the wiring forming surface 1 a by, for example, a sputtering method so as to cover the photosensitive polyimide 13, thereby forming a seed layer 2. Subsequently, as shown in FIG. 1E, using the seed layer 2 as an electrode, copper is deposited by a plating method so as to embed the photosensitive polyimide 13 to form a ground (GND) electrode 3. Subsequently, a cutting process using a byte is performed on the wiring forming surface 1a to make it flat. Specifically, as shown in FIG. 2A, the back surface 1 b of the semiconductor substrate 1 is attracted to the support surface 11 a of the substrate support 11 by, for example, vacuum suction, and the semiconductor substrate 1 is attached to the substrate support 11. Fixed to. At this time, the thickness of the semiconductor substrate 1 is kept constant by the flattening process shown in FIG. 1B, and further, there is no undulation or the like due to the suction shown in FIG. 2A. This is a reference plane for flattening the wiring forming surface 1a. In this state, the surface layer of the GND electrode 3 on the wiring forming surface 1a is machined, in this case, cut using a byte 10 made of diamond or the like, and is flattened. Subsequently, as shown in FIG. 2B, a photoresist 14 is applied on the flattened GND electrode 3, and the photoresist 14 is processed by photolithography to form a predetermined via pattern 14a. An opening is formed. Then, copper or the like is buried in the opening of the via pattern 14a by a plating method to form the via portion 4. Subsequently, as shown in FIG. 2C, for example, after the photoresist 14 is peeled off, an insulating resin 5 is formed on the wiring forming surface 1a so as to cover and bury the via portion 4. Next, the wiring forming surface 1a is cut again using a byte and flattened. Specifically, as shown in FIG. 3A, the back surface 1b is attracted to the support surface 11a of the substrate support 11 by, for example, vacuum suction, and the semiconductor substrate 1 is fixed to the substrate support 11. At this time, similarly to the above, the back surface 1b becomes a reference surface for flattening the wiring forming surface 1a. In this state, the via layer 4 and the surface layer of the insulating resin 5 on the wiring forming surface 1a are machined.In this case, the pipe 10 is used, and the semiconductor substrate 1 is rotated, for example, at 800 rpm to 160 rpm. They are cut at a rotation speed of about a degree to flatten them. By this flattening process, the via layer 4 exposes its upper surface, and the via layer 4 is embedded in the insulating resin 5 to form the peer layer 21 having a uniform thickness. Subsequently, as shown in FIG. 3B, a copper film is deposited on the planarized via portion 4 and the surface of the insulating resin 5 by a sputtering method to form a shield layer 6, and then the first photoresist is formed. Then, the first photoresist 15 is processed by photolithography to form a predetermined wiring pattern 15a. Then, using the shield layer 6 as an electrode, the wiring pattern 15 a of the first photoresist 15 is buried by a plating method to form a wiring 7. Subsequently, as shown in FIG. 3C, after removing the first photoresist 15 using, for example, an alkaline stripper, a second photoresist 16 is applied to the wiring 7 so as to bury the same. The second photoresist 16 is processed by photolithography to form a predetermined via pattern 16a. Then, a via pattern 16a is buried with copper or the like by a plating method to form a via portion 8. Subsequently, as shown in FIG. 4A, after removing the second photoresist 16 and the seed layer 6 using, for example, an alkaline stripper, wiring is formed so as to cover and bury the wiring 7 and the via portion 8. An insulating resin 9 is formed on the surface 1a. Subsequently, the wiring forming surface 1a is again subjected to cutting using a byte and flattened. Specifically, as shown in FIG. 4B, the back surface 1b is sucked to the support surface 11a of the substrate support 11 by, for example, vacuum suction, and the semiconductor substrate 1 is fixed to the substrate support 11. At this time, similarly to the above, the back surface 1b becomes a reference surface for flattening the wiring forming surface 1a. In this state, the via layer 8 and the surface layer of the insulating resin 9 on the wiring forming surface 1a are machined and flattened. Here, cutting using byte 10 is performed as an example of machining. By this planarization process, the wiring 7 and the via portion 8 connected thereto are buried in the insulating resin 9 so that the upper surface of the via portion 8 is exposed. 22 is formed. Then, as shown in FIG. 4C, a series of steps similar to those at the time of forming the first wiring layer 22, that is, FIGS. 3B, 3C, 4A, and 4B are performed several times. The wiring and the via connected thereto are embedded in the insulating resin to form a laminated structure. In the drawing, the wiring 31 and the via portion 32 connected thereto are embedded in the insulating resin 33, and the second wiring layer 23 having a uniform thickness, and the second wiring layer 23 The wiring 34 formed above is illustrated. Thereafter, a multilayer wiring structure is completed on the semiconductor substrate 1 through formation of a protective film (not shown) covering the entire surface of the semiconductor substrate 1 and the like. In the present embodiment, one semiconductor substrate has been described. However, the steps of the present embodiment may be performed on a plurality of semiconductor substrates constituting a lot, and the thickness of each semiconductor substrate may be made uniform. . As a result, for example, it is possible to perform processing such as cutting on each substrate in one and the same lot under the same conditions. In each of the flattening steps in FIGS. 2A, 3A, and 4B, the semiconductor substrate 1 is parallelized based on the back surface lb, and the position of the wiring forming surface 1a is detected and detected. The amount of shaving is calculated from the wiring formation surface 1a, and the byte 10 is controlled.
「平行出し」 は、 具体的には、 図 5に示すように、 レーザ光照射手段 1 7を用 いて、 配線形成面 1 aの位置を検出する際に、 配線形成面 1 aの周辺部位の複数 箇所、 ここでは例えば 3箇所 A, B , Cにおける絶縁樹脂 5, 9及び感光性ポリ イミ ド 1 3 (場合によりシード層 2 ) にレ一ザ光 1 7 aを照射し、 これらを加熱 飛散させ、 配線形成面 1 aの一部を露出させることにより行う。 またこの場合、 図 6に示すように、 配線形成面 1 aの位置を検出する際に、 半 導体基板 1を開口 1 1 bの形成された基板支持台 1 1に吸着固定し、 赤外レーザ 光照射器 1 8を用いて開口 1 1 bから裏面 1 bに赤外レーザ光を照射して、 配線 形成面 1 aからの反射光をこの赤外レ一ザ光照射器 1 8 (又はその近傍に設けら れたレーザ光測定器) により測定するようにしても良い。 ここで、 本実施形態の比較例を図 7に示す。 この比較例では、 本実施形態の平 坦化処理を行うことなく、 半導体基板 2 0 1上に多層配線構造 2 0 2を形成した 場合を例示する。 このように、 平坦化処理を実行しない場合、 配線の層数が増加 するにつれて、 上面の凹凸が顕著となり、 多層配線化が妨げられることになる。 これに比べて、 本実施形態では、 先ず配線形成層 1 aを基準として半導体基板 1の裏面 1 bを平坦化処理した後、 これに基づき裏面 1 bを基準として配線形成 層 1 aに厚みの均一なビア層 2 1及び各配線層 2 2 , 2 3が順次形成されてゆく 構成を採るため、 更に多数の配線層を積層しても平坦性を損なうことなく、 凹凸 の発生を抑止して微細な配線構造が実現する。 以上説明したように、 本実施形態によれば、 半導体基板 1の厚みばらつきを均 —化し、 デイツシング等の不都合を発生させることがない。 そして、 その結果、 容易且つ安価に配線デザインの制約も無く高速な平坦化が可能なる。 更には、 容 易且つ精緻に微細な多層配線構造を実現することができる。 Specifically, “parallel alignment” means, as shown in FIG. 5, when detecting the position of the wiring forming surface 1 a using the laser beam irradiation means 17, the portion around the wiring forming surface 1 a is detected. Insulating resin 5, 9 and photosensitive poly at a plurality of locations, for example, three locations A, B, C Irradiation is performed by irradiating the laser light 17a to the imid 13 (or the seed layer 2 in some cases), heating and scattering them, and exposing a part of the wiring forming surface 1a. In this case, as shown in FIG. 6, when detecting the position of the wiring forming surface 1a, the semiconductor substrate 1 is suction-fixed to the substrate support base 11 having the opening 11b and the infrared laser The backside 1b is irradiated with infrared laser light from the opening 11b using the light irradiator 18 to reflect the reflected light from the wiring forming surface 1a to this infrared laser light irradiator 18 (or The measurement may be performed by a laser light measuring device provided in the vicinity. Here, a comparative example of the present embodiment is shown in FIG. In this comparative example, a case where a multilayer wiring structure 202 is formed on a semiconductor substrate 201 without performing the flattening process of the present embodiment will be exemplified. As described above, when the flattening process is not performed, as the number of wiring layers increases, unevenness on the upper surface becomes remarkable, and multilayer wiring is hindered. On the other hand, in the present embodiment, first, the back surface 1b of the semiconductor substrate 1 is flattened on the basis of the wiring formation layer 1a, and then the thickness of the wiring formation layer 1a is determined on the basis of the back surface 1b. Since a uniform via layer 21 and wiring layers 22 and 23 are sequentially formed, even if a larger number of wiring layers are stacked, the generation of unevenness is suppressed without impairing the flatness. A fine wiring structure is realized. As described above, according to the present embodiment, the thickness variation of the semiconductor substrate 1 is equalized, and inconvenience such as dicing does not occur. As a result, high-speed flattening can be performed easily and inexpensively without restriction of wiring design. Further, it is possible to easily and precisely realize a fine multilayer wiring structure.
[研削加工装置の構成] [Configuration of grinding machine]
ここで、 図 1 Bを用いて説明した研削加工工程を実行するための具体的な装置 構成を説明する。  Here, a specific apparatus configuration for performing the grinding process described with reference to FIG. 1B will be described.
図 8は研削加工装置の構成を表しており、 図 8 Aが平面図、 図 8 Bが側面図で ある。 この研削加工装置は、 半導体基板 (半導体ゥェ一八) 1を収納する収納部 2 0 2と、 半導体基板 1を各処理部へ搬送するためのハンド部 2 0 3と、 研削時の半 導体基板 1が載置固定されるターンテーブル 2 0 4と、 半導体基板 1を研削する グラインダ一部 2 0 5とを有して構成されている。 収納部 2 0 2は、 複数の半導体基板 1が収納される収納カセット 2 1 1を有し ており、 図 8 Bのように各半導体基板 1が収納される。 Fig. 8 shows the configuration of the grinding machine. Fig. 8A is a plan view and Fig. 8B is a side view. is there. The grinding apparatus includes a storage section 202 for storing a semiconductor substrate (semiconductor wafer 18) 1, a hand section 203 for transporting the semiconductor substrate 1 to each processing section, and a semiconductor for grinding. It comprises a turntable 204 on which the substrate 1 is mounted and fixed, and a grinder part 205 for grinding the semiconductor substrate 1. The storage section 202 has a storage cassette 211 in which a plurality of semiconductor substrates 1 are stored, and each semiconductor substrate 1 is stored as shown in FIG. 8B.
ハンド部 2 0 3は、 搬送ハンド 2 1 2を有しており、 半導体基板 1を収納カセ ット 2 1 1から取り出し、 図示の例ではターンテーブル 2 0 4へ搬送し、 また処 理後の半導体基板 1をターンテーブル 2 0 4から収納部 2 0 2へ搬送する。 ターンテーブル 2 0 4は、 表面に半導体基板 1をチャックする複数 (ここでは 3つ) のチヤックテーブル 2 1 3を備えており、 例えば図 8 Bの矢印 Mの方向へ 回転自在とされている。  The hand section 203 has a transfer hand 211, which removes the semiconductor substrate 1 from the storage cassette 211, transfers the semiconductor substrate 1 to the turntable 204 in the illustrated example, and also processes the semiconductor substrate 1 after the processing. The semiconductor substrate 1 is transported from the turntable 204 to the storage section 202. The turntable 204 is provided with a plurality (three in this case) of chuck tables 2 13 for chucking the semiconductor substrate 1 on the surface, and is rotatable, for example, in the direction of arrow M in FIG. 8B.
グラインダ一部 2 0 5は、 下面に砥石 2 1 4が着脱自在に設けられており、 チ ャックテーブル 2 1 3にチヤックされた半導体基板 1の表面に砥石 2 1 4を当接 させて、 例えば図 8 Bの矢印 Nの方向へグラインドさせて研磨する。 ここで、 砥 石 2 1 4としては、 例えば粗度の異なる 2種類のものを使用する。 この研削加工装置を用いて研削加工を行うには、 先ずハンド部 2 0 3の搬送ハ ンド 2 1 2により半導体基板 1を収納部 2 0 2から取り出し、 ターンテーブル 2 0 4のチャックテーブル 2 1 3に載置固定する。 続いて、 グラインダ一部 2 0 5 の砥石 2 1 4を半導体基板 1の表面に当接させてグラインドし、 当該表面を研削 する。 このとき、 先ず粗い砥石で研削した後、 仕上げ用のきめ細かい砥石で研削 する。 そして、 搬送ハンド 2 1 2により、 仕上げ研削を終えた半導体基板 1をチ ャックテーブル 2 1 3から外し、 収納部 2 0 2に収納する。  The grinder part 205 has a grindstone 214 attached to its lower surface in a detachable manner, and the grindstone 214 is brought into contact with the surface of the semiconductor substrate 1 chucked on the chuck table 213. 8 Grind and grind in the direction of arrow N of B. Here, for example, two types of whetstones with different roughness are used. In order to perform a grinding process using this grinding device, first, the semiconductor substrate 1 is taken out of the storage portion 202 by the transfer hand 211 of the hand portion 203, and the chuck table 210 of the turntable 204 is taken out. Place and fix on 3. Subsequently, the grindstone 2 14 of the grinder part 205 is brought into contact with the surface of the semiconductor substrate 1 to perform grinding, and the surface is ground. At this time, first grind with a coarse grindstone, and then with a fine grindstone for finishing. Then, the semiconductor substrate 1 after finishing grinding is removed from the chuck table 2 13 by the transfer hand 2 12 and stored in the storage section 202.
[切削加工装置の構成] ここで、 図 2 A, 図 3 A, 図 4 Bを用いて説明した切削加工工程を実行するた めの具体的な装置構成を説明する。 [Configuration of cutting equipment] Here, a specific device configuration for executing the cutting process described with reference to FIGS. 2A, 3A, and 4B will be described.
図 9は切削加工装置の構成を表したブロック図、 図 1 O A〜図 1 0 Gは同様の 概略構成図である。 この切削加工装置は、 半導体基板 (半導体ゥェ一八) 1を収納する収納部 1 0 1 (図 9 , 図 1 0 A) と、 半導体基板 1を各処理部へ搬送するためのハンド部 1 0 2 (図 9 , 図 1 0 B, 図 1 0 C) と、 切削時の半導体基板 1をチャックするチ ャックテ一ブル部 1 0 3 (図 9, 図 1 0 D) と、 半導体基板 1の位置決めを行う センシング部 1 04 (図 9, 図 1 0 E) と、 半導体基板 1の平坦化切削を行う切 削部 1 0 5 (図 9, 図 1 0 F) と、 切削後の洗浄を行う洗浄部 1 0 6 (図 9, 図 1 0 G) と、 切削状態を撮影するための光センサ部 1 0 7 (図 9 , 図 1 0 D) と、 そしてこれらをコントロールする制御部 1 0 8 (図 9) とを有して構成されてい る。 なお、 図 1 0 A〜図 1 0 Gは各部の部品図であり、 便宜上、 設置方向及び縮 尺等は正確ではない。 収納部 1 0 1は、 複数の半導体基板 1が収納される収納カセッ ト 1 1 1と、 半 導体基板 1を搬送ハンド 1 1 4の取り出し高さまで昇降させるためのエレべ一夕 機構 1 1 2と、 このエレベータ機構の昇降駆動を行う Z軸駆動部 1 1 3とを有し ている。 ハンド部 1 0 2は、 半導体基板 1を収納カセッ ト 1 1 1から取り出してバキュ ーム吸着し、 センシング部 1 04へ搬送する搬送ハンド 1 1 4と、 この搬送八ン ド 1 1 4を Θ 1軸 (第 1回転軸) 〜Θ 3軸 (第 3回転軸) で駆動する ® 1軸駆動 部 1 1 5 a, Θ 2軸 (第 2回転軸) 駆動部 1 1 5 b, ® 3軸駆動部 1 1 5 c、 及 び Z軸駆動する Z軸駆動部 1 1 5 dとを有している。 搬送ハンド 1 1 4はスカラ 一型口ポットとされており、 各処理部へ容易にハンドリングすることができる。 なお、 搬送ハンド 1 14の口ポッ ト機構はこの限りではなく、 例えば XY軸直交 型でも良い。 チャックテーブル部 1 0 3は、 半導体基板 1を例えば真空吸着により載置固定 し、 半導体基板 1を所定の回転速度で回転自在に構成されてなる基板支持台 (回 転テーブル) 1 1と、 この基板支持台 1 1を駆動する回転駆動部 1 1 6とを有し ている。 基板支持台 1 1は真空機構により半導体基板 1を固定する。 この基板支 持台 1 1が加工の基準面となる。従って固定時及び加工時の平面精度を保っため、 チャック面 (支持固定面) は多孔質の材料を使用して半導体基板 1を全面チヤッ クする構造が好ましい。 チャック面を含む部分の材質は金属系、 セラミック系、 樹脂系などを用いる。 本実施形態では、 半導体基板 1の表面の切削加工時におい て、 基板支持台 1 1に載置固定された半導体基板 1を例えば回転数 8 0 0 r p m 〜 1 6 0 0 r p m程度の回転速度で回転させて切削に供する。 センシング部 1 0 4は、 C C Dカメラ 1 1 7と、 半導体基板 1を載置固定し、 半導体基板 1を所定の回転速度で回転自在に構成されてなる回転テーブル 1 1 8 と、 この回転テーブル 1 1 8を駆動する回転駆動部 1 1 9とを有しており、 C C Dカメラ 1 1 7により、 回転テーブル 1 1 8に設置された半導体基板 1の外周を 撮像する。 切削部 1 0 5は、 ダイヤモンド等からなる切削工具である硬質のバイ ト 1 0を 備え、 このバイ ト 1 0が設置される X軸ステージ 1 2 0及び Y軸ステージ 1 2 1 と、 X軸ステージ 1 2 0で X方向 (図 1 0 E中、 矢印 Mで示す) にバイ ト 1 0を 駆動する X軸駆動部 1 2 2と、 Y軸ステージ 1 2 1で Y方向 (図 1 0 E中、 矢印 Nで示す) にバイ ト 1 0を駆動する Y軸駆動部 1 2 3とを有する。 洗浄部 1 0 6は、 半導体基板 1を真空固定し所定の回転速度で回転するスピン テーブル 1 2 4と、 このスピンテーブル 1 2 4を回転駆動する回転駆動部 1 2 5 と、 半導体基板 1の表面に洗浄水を吐出するノズル 1 2 6とを有しており、 スピ ンテーブル 1 2 4により半導体基板 1を真空固定した状態でこれを回転させなが ら、 ノズル 1 2 6から半導体基板 1の表面に洗浄水を吐出し、 加工後の表面残留 異物を洗い流す。 その後、 エアブローしながらスピンテーブル 1 24により半導 体基板 1を高速回転させ、 基板表面に残存する洗浄水を吹き飛ばしながら乾燥さ せる。 光センサ部 1 0 7は、 チャックテーブル部 1 0 3の基板支持台 1 1に載置固定 された半導体基板 1に対向して配置される投光部 1 2 7及び受光部 1 2 8を有し ており、 一方に投光部 1 2 7が、 他方に受光部 1 2 8が配置される。 制御部 1 0 8は、 収納部 1 0 1の Z軸駆動部 1 1 3、 ノヽンド部 1 0 2の Θ 1軸 〜Θ 3軸駆動部 1 1 5 a〜 1 1 5 c及び Z軸駆動部 1 1 5 d、 チヤックテーブル 部 1 0 3の回転駆動部 1 1 6、 センシング部 1 04の回転駆動部 1 1 9、 切削部 1 0 5の X軸駆動部 1 2 2及び Y軸駆動部 1 2 3、 洗浄部 1 0 6の回転駆動部 1 2 5をそれぞれ制御する駆動制御部 1 2 9と、 光センサ部 1 0 7の投光及び受光 を検出する検出部 1 3 0と、 センシング部 1 04の C CDカメラ 1 1 7による撮 像結果を用いて半導体基板 1のセンタ一位置を算出し、 光センサ部 1 0 7と共に 半導体基板 1の寸法を測定及び演算する演算部 1 3 1と、 駆動制御部 1 2 9、 検 出部 1 3 0及び演算部 1 3 1を統括制御する主制御部 1 3 2と、 主制御部 1 3 2 の制御状態等を表示する表示部 1 3 3と、 主制御部 1 3 2に対して種々の駆動指 令を与えるための移動指令部 1 34とを有している。 切削加工工程について、 図 1 1及ぴ図 1 2を用いて説明する。 FIG. 9 is a block diagram showing the configuration of the cutting apparatus, and FIGS. 10A to 10G are similar schematic configuration diagrams. This cutting device includes a storage unit 101 (FIGS. 9 and 10A) for storing a semiconductor substrate (semiconductor wafer 18) 1 and a hand unit 1 for transporting the semiconductor substrate 1 to each processing unit. 0 2 (Fig. 9, Fig. 10B, Fig. 10C), a chuck table section 103 for chucking the semiconductor substrate 1 during cutting (Fig. 9, Fig. 10D), and a Positioning Sensing unit 104 (Fig. 9, Fig. 10E), Cutting unit 105 for flattening the semiconductor substrate 1 (Fig. 9, Fig. 10F), and cleaning after cutting Cleaning unit 106 (Fig. 9, Fig. 10G), optical sensor unit 107 for photographing the cutting state (Fig. 9, Fig. 10D), and control unit 108 for controlling these (FIG. 9). Note that FIGS. 10A to 10G are component diagrams of each part, and the installation direction, scale, and the like are not accurate for convenience. The storage section 101 includes a storage cassette 111 for storing a plurality of semiconductor substrates 1 and an elevator mechanism 1 1 2 for raising and lowering the semiconductor substrate 1 to a height at which the transfer hand 114 is taken out. And a Z-axis drive unit 113 that drives the elevator mechanism up and down. The hand unit 102 removes the semiconductor substrate 1 from the storage cassette 111, sucks the vacuum, suctions the semiconductor substrate 1, and transports the semiconductor substrate 1 to the sensing unit 104. Driving with 1 axis (1st rotation axis) to Θ 3 axis (3rd rotation axis) ® 1 axis drive unit 1 15 a, Θ 2 axis (2nd rotation axis) drive unit 1 15 b, ® 3 axis It has a drive unit 115c and a Z-axis drive unit 115d that drives the Z-axis. The transfer hand 114 is a scalar type 1 pot and can be easily handled to each processing unit. The port mechanism of the transfer hand 114 is not limited to this, and may be, for example, an XY axis orthogonal type. The chuck table section 103 mounts and fixes the semiconductor substrate 1 by, for example, vacuum suction, and the substrate support table (rotating table) 11 configured to rotate the semiconductor substrate 1 at a predetermined rotation speed. And a rotation drive unit 116 for driving the substrate support 11. The substrate support 11 fixes the semiconductor substrate 1 by a vacuum mechanism. The substrate support 11 serves as a reference plane for processing. Therefore, in order to maintain planar accuracy at the time of fixing and processing, it is preferable that the chuck surface (supporting and fixing surface) is made of a porous material and the entire surface of the semiconductor substrate 1 is chucked. Metal, ceramic, resin, etc. are used for the material including the chuck surface. In the present embodiment, during the cutting of the surface of the semiconductor substrate 1, the semiconductor substrate 1 mounted and fixed on the substrate support 11 is rotated at a rotation speed of, for example, about 800 rpm to about 160 rpm. Rotate for cutting. The sensing unit 104 includes a CCD camera 117, a semiconductor substrate 1 mounted thereon and fixed, and a rotary table 118 configured to freely rotate the semiconductor substrate 1 at a predetermined rotation speed. And a rotation drive unit 119 for driving the semiconductor substrate 1. The CCD camera 117 captures an image of the outer periphery of the semiconductor substrate 1 installed on the rotary table 118. The cutting section 105 includes a hard byte 10 which is a cutting tool made of diamond or the like, and an X-axis stage 120 and a Y-axis stage 122 on which the byte 10 is installed, and an X-axis stage. The X-axis drive unit 122 drives the byte 10 in the X direction (shown by the arrow M in Fig. 10E) at the stage 120 and the Y direction (Fig. 10E) (Indicated by an arrow N in the middle) and a Y-axis drive unit 123 for driving the byte 10. The cleaning unit 106 includes a spin table 124 for fixing the semiconductor substrate 1 in a vacuum and rotating at a predetermined rotation speed, a rotation driving unit 125 for rotating the spin table 124, and a semiconductor substrate 1. A nozzle 1226 for discharging cleaning water is provided on the surface, and while the semiconductor substrate 1 is vacuum-fixed by the spin table 124, the semiconductor substrate 1 is rotated from the nozzle 126 while rotating. Cleaning water is discharged onto the surface of the Wash away foreign objects. Thereafter, the semiconductor substrate 1 is rotated at a high speed by a spin table 124 while air blowing, and dried while blowing off cleaning water remaining on the substrate surface. The optical sensor unit 107 has a light emitting unit 127 and a light receiving unit 128 arranged opposite to the semiconductor substrate 1 mounted and fixed on the substrate support table 11 of the chuck table unit 103. The light emitting section 127 is arranged on one side and the light receiving section 128 is arranged on the other side. The control unit 108 is a Z-axis drive unit 113 of the storage unit 101, a 1-axis to a 3-axis drive unit 1150 of the node unit 102, and a Z-axis drive unit. 1 1 5 d, rotation table 1 16 of the check table section 103, rotation drive section 1 19 of the sensing section 104, X axis drive section 1 2 2 of the cutting section 105, and Y axis drive section 1 2 3, a drive control unit 1 2 9 that controls the rotary drive 1 2 5 of the cleaning unit 1 06, a detection unit 1 3 0 that detects light emission and reception of the optical sensor 1 7 0, and sensing Calculating unit 1 3 1 that calculates the center position of the semiconductor substrate 1 using the image captured by the CCD camera 1 17 of the unit 104, and measures and calculates the dimensions of the semiconductor substrate 1 together with the optical sensor unit 107. And a main control unit 132 that integrally controls the drive control unit 12 9, the detection unit 13 0, and the calculation unit 13 1, and a display unit 13 that displays the control state of the main control unit 13 2 3 and various drive commands to the main control And a movement command unit 1 34 for obtaining. The cutting process will be described with reference to FIGS. 11 and 12.
図 1 1は、 ハンド部 1 0 2を中心とした収納部 1 0 1、 チヤックテーブル部 1 0 3センシング部 1 04、 切削部 1 0 5及び洗浄部 1 0 6の配置状態を示す模式 図である。 ここで、 光センサ部 1 0 7及び制御部 1 0 8については図示を省略す る。 図 1 2は、 この切削加工工程を示すフロ一図である。  Fig. 11 is a schematic diagram showing an arrangement state of the storage unit 101, the chuck table unit 103, the sensing unit 104, the cutting unit 105, and the cleaning unit 106 centered on the hand unit 102. is there. Here, illustration of the optical sensor unit 107 and the control unit 108 is omitted. FIG. 12 is a flowchart showing the cutting process.
先ず、 ハンド部 1 0 2の搬送ハンド 1 1 4は、 半導体基板 1が収納された収納 部 1 0 1の収納カセット 1 1 1から半導体基板 1を取り出す(ステップ S 1)。収 納部 1 0 1のエレベータ機構 1 1 2により、 搬送ハンド 1 1 4の半導体基板 1の 取り出し高さまで昇降する。 次に、 搬送ハンド 1 1 4は、 半導体基板 1をバキューム吸着し、 センシング部 1 0 4へ搬送する。 センシング部 1 0 4では、 回転テーブル 1 1 8により半導体 基板 1を 3 6 0 ° 回転させ、 その半導体基板 1の外周を C C Dカメラ 1 1 2で撮 像し、 その結果を制御部 1 0 8の演算部 1 3 1で処理して半導体基板 1のセン夕 一位置を算出する (ステップ S 2 )。 次に、 搬送ハンド 1 1 4は、 センタ一位置の算出結果に基づき、 センタ一位置 を補正して半導体基板 1をチャックテーブル部 1 0 3へ搬送し、 基板支持台 1 1 はバキュームによってこれを固定する (ステップ S 3 )。 この基板支持台 1 1が加 ェの基準面となる。 従って、 固定時及び加工時の平面精度を保っため、 チャック 面は多孔質の材料を使用して半導体基板 1を全面チャックする構造が好ましい。 材質は金属系、 セラミック系、 樹脂系などを用いる。 チャックされた半導体基板 1との上下と対向して投光部 1 1 4及び受光部 1 1 5がそれぞれ配置され、 制御 部 1 0 8と共に半導体基板 1の寸法を測定及び演算し、 その結果を切削部 1 0 5 の X軸駆動部 1 1 2へフィードバックし、 切削するための移動量を指令する。 こ こで、 切削面が配線形成面の場合、 具体的には図 5に示すように、 レーザ光を照 射し、 レジストマスクを加熱飛散させ、 表面を露出させることが好ましい。 そし て図 6に示すような赤外レーザ光を利用した反射型センサを利用して位置を計測 する。 なお、 前記位置の計測には透過型センサを用いても良い。 そして、 上記の演算結果 (基板寸法) に基づき、 切削を行うバイ ト 1 0が X軸 ステージ 1 2 0により図 1 O Fと同じ矢印 Mの方向に移動し、切削を開始する(ス テツプ S 4 )。 このようにして、切削量が設定値に達すれば設定寸法までの切削を 完了する (ステップ S 5 )。 次に、 搬送ハンド 1 1 4は、 基板支持台 1 1から半導体基板 1を取り外し (ス テツプ S 6)、 洗浄部 1 0 6へと搬送する。 洗浄部 1 0 6では、 スピンテーブル 1 24に半導体基板 1をバキューム固定して回転させながら、 ノズル 1 2 6から吐 出する洗浄水により加工後の半導体基板 1の表面残留異物を洗い流す。 その後、 エアブローしながら高速回転させ、 洗浄水を吹き飛ばしながら乾燥させる (ステ ップ S 7)。 乾燥が完了した後、 再び搬送ハンドが半導体基板 1を取り出し、 最後 に収納部 1 0 1の収納カセット 1 1 1に収納する (ステップ S 8)。 本実施形態では、 上述の研削加工装置を用いて、 配線及び絶縁膜が形成されて いる配線形成面を基準としてその裏面を研削した後、 上述の切削加工装置を用い て、 裏面を基準として各配線の表面及び絶縁膜の表面を平坦化処理する。 First, the transfer hand 114 of the hand unit 102 takes out the semiconductor substrate 1 from the storage cassette 111 of the storage unit 101 in which the semiconductor substrate 1 is stored (step S1). Income By the elevator mechanism 112 of the storage section 101, it is moved up and down to the take-out height of the semiconductor substrate 1 of the transfer hand 114. Next, the transport hand 114 vacuum sucks the semiconductor substrate 1 and transports it to the sensing unit 104. In the sensing unit 104, the semiconductor substrate 1 is rotated by 360 ° using the rotary table 118, the outer periphery of the semiconductor substrate 1 is imaged by the CCD camera 112, and the result is stored in the control unit 108. Processing is performed by the operation unit 13 1 to calculate the sensor 1 position of the semiconductor substrate 1 (step S 2). Next, the transfer hand 114 corrects the center one position based on the calculation result of the center one position, and conveys the semiconductor substrate 1 to the chuck table part 103, and the substrate support base 11 vacuums this. Fix (step S3). The substrate support 11 serves as an additional reference plane. Therefore, in order to maintain the planar accuracy at the time of fixing and processing, it is preferable that the chuck surface is made of a porous material and the entire surface of the semiconductor substrate 1 is chucked. The material is metal, ceramic, resin, etc. A light-emitting unit 114 and a light-receiving unit 115 are arranged opposite to the top and bottom of the chucked semiconductor substrate 1, respectively, and the dimensions of the semiconductor substrate 1 are measured and calculated together with the control unit 108, and the result is calculated. It feeds back to the X-axis drive unit 112 of the cutting unit 105 to instruct the movement amount for cutting. Here, when the cut surface is a wiring forming surface, specifically, as shown in FIG. 5, it is preferable to irradiate a laser beam, heat and scatter the resist mask, and expose the surface. Then, the position is measured using a reflection sensor using infrared laser light as shown in FIG. Note that a transmission sensor may be used for measuring the position. Then, based on the above calculation results (substrate dimensions), the byte 10 to be cut is moved by the X-axis stage 120 in the direction of the arrow M as in FIG. 1 OF, and cutting is started (step S4). ). In this way, when the cutting amount reaches the set value, the cutting to the set dimension is completed (step S5). Next, the transfer hand 1 14 removes the semiconductor substrate 1 from the substrate Step S6), and transport to the cleaning section 106. In the cleaning unit 106, while the semiconductor substrate 1 is vacuum-fixed to the spin table 124 and rotated, the foreign matter remaining on the surface of the processed semiconductor substrate 1 is washed away by the cleaning water discharged from the nozzle 126. After that, it is rotated at high speed with air blow and dried while blowing off the washing water (Step S7). After the drying is completed, the transfer hand takes out the semiconductor substrate 1 again and finally stores it in the storage cassette 111 of the storage section 101 (step S8). In this embodiment, after the back surface is ground using the above-described grinding apparatus with reference to the wiring forming surface on which the wiring and the insulating film are formed, each of the above-described grinding machines is used to reference the back surface. The surface of the wiring and the surface of the insulating film are planarized.
(第 2の実施形態) (Second embodiment)
ここでは、 基板としてシリコン半導体基板を例示し、 L S I を製造する際に絶 縁物内で各配線からなる配線層を複数積層してなる多層配線層を形成する場合に ついて開示する。 多層配線層を含む半導体装置としては、 図 1 3及び図 1 4に示すような形態の ものがある。 図 1 3の半導体装置は、 シリコン半導体基板 1 0 1において、 複数 (多数) の半導体素子 (MO S トランジスタ等) が形成されてなる素子領域 1 0 2の周囲を取り囲むように電極 6 3 aが形成され、 各半導体素子と電極 6 3 aと が電気的に接続されてなるものである。 他方、 図 1 4の半導体装置は、 シリコン 半導体基板 1 0 1において、 複数の電極 6 3 aがマトリクス状に形成され、 各電 極 6 3 aの間に複数 (多数) の半導体素子が形成されてなるものである。 即ち図 1 4の場合、 電極 6 3 aの間の領域が素子領域 1 0 3となる。 本発明は、 図 1 3 及び図 1 4の半導体装置の双方に適用可能であるが、 以下の説明では便宜上、 図 1 4に示す形態の半導体装置を例示し、 例えば図 1 4の一点鎖線 I 一 I に沿った 概略断面の様子を図 1 5以降で示す。 図 1 5 A〜図 1 5 D, 図 1 6 A〜図 1 6 C, 図 1 7 A〜図 1 7 C, 図 1 8 A~ 図 1 8 C, 図 1 9 A〜図 1 9 Cは、 本実施形態による多層配線を含む半導体装置 の製造方法を工程順に示す概略断面図である。 図 1 5 Aに示すように、 シリコン半導体基板 1を用意し、 基板表面 (配線形成 面 1 a) に各半導体素子の不純物拡散層が形成されてなる不純物拡散領域 6 1、 不純物拡散領域 6 1上で例えば無機物よりなる絶縁層 6 2内に埋設されてなる L S I配線 6 3、 及び L S I配線 6 3の電極 6 3 aの表面が露出するように L S I 配線 6 3上に保護膜 64を順次形成する。 なお図示の例では、 隣接する電極 6 3 a (及び L S I配線 6 3 )間の領域が図 1 4の素子領域 1 0 3となる。この場合、 素子領域 1 0 3は各々の隣接する電極 6 3 a間の領域を総括するものである。 ここで、 図 1 5 Aでは便宜上、 各半導体素子の図示を省略している。 より正確 には、 図 2 0 Aに示すように、 素子領域 1 0 3に複数 (多数) の半導体素子、 こ こでは MO S トランジスタ 1 04が形成されている。 各 MO S トランジスタ 1 0 4は、 図 2 0 Bに示すように、 素子領域 1 0 3の表面上にゲート絶縁膜 1 1 1を 介してゲート電極 1 1 2がパターン形成され、 このゲート電極 1 1 2の両側にお ける不純物拡散領域 6 1に不純物が導入されてソース/ドレインとなる一対の不 純物拡散層 1 1 3が形成されて構成される。 そして、 素子領域 1 0 3の表面上で 各不純物拡散層 1 1 3と接続されるように配線 1 1 4がパターン形成されており. これら配線 1 1 4が L S I配線 6 3の一部を構成する。 なお、 不純物拡散領域 6 1は、 多数の MO S トランジス夕の多数の不純物拡散層が形成されてなる領域で あり、 実際には不純物拡散層の存する箇所と存しない箇所とがあるが、 図示の便 宜上、 一括して不純物拡散領域として表現した領域である。 Here, a silicon semiconductor substrate is exemplified as a substrate, and a case where a multilayer wiring layer formed by laminating a plurality of wiring layers formed of respective wirings in an insulator when manufacturing an LSI is disclosed. As a semiconductor device including a multilayer wiring layer, there is a semiconductor device having a form as shown in FIGS. In the semiconductor device of FIG. 13, an electrode 63 a is formed on a silicon semiconductor substrate 101 so as to surround an element region 102 in which a plurality (many) of semiconductor elements (such as MOS transistors) are formed. It is formed so that each semiconductor element is electrically connected to the electrode 63a. On the other hand, in the semiconductor device shown in FIG. 14, a plurality of electrodes 63 a are formed in a matrix on a silicon semiconductor substrate 101, and a plurality (many) of semiconductor elements are formed between the electrodes 63 a. It is. That is, in the case of FIG. 14, the region between the electrodes 63 a becomes the element region 103. The present invention is applicable to both the semiconductor devices of FIGS. 13 and 14. However, in the following description, for convenience, the semiconductor device of the embodiment shown in FIG. 14 is exemplified. The schematic cross section along the line I is shown in Fig. 15 and subsequent figures. Figure 15 A to Figure 15 D, Figure 16 A to Figure 16 C, Figure 17 A to Figure 17 C, Figure 18 A FIGS. 18C and 19A to 19C are schematic cross-sectional views showing the method of manufacturing the semiconductor device including the multilayer wiring according to the present embodiment in the order of steps. As shown in FIG. 15A, a silicon semiconductor substrate 1 is prepared, and an impurity diffusion region 61 and an impurity diffusion region 61 each having an impurity diffusion layer of each semiconductor element formed on the substrate surface (wiring forming surface 1a). A protective film 64 is sequentially formed on the LSI wiring 63 so that the surface of the LSI wiring 63 embedded in the insulating layer 62 made of, for example, an inorganic material, and the electrode 63 a of the LSI wiring 63 is exposed. I do. In the illustrated example, the region between the adjacent electrodes 63a (and the LSI wiring 63) is the element region 103 in FIG. In this case, the element region 103 collectively covers the region between the adjacent electrodes 63a. Here, in FIG. 15A, illustration of each semiconductor element is omitted for convenience. More precisely, as shown in FIG. 20A, a plurality (many) of semiconductor elements, here a MOS transistor 104, are formed in the element region 103. As shown in FIG. 20B, in each MOS transistor 104, a gate electrode 112 is patterned on the surface of the element region 103 via a gate insulating film 111, and the gate electrode 110 is patterned. Impurities are introduced into the impurity diffusion regions 61 on both sides of the substrate 12 to form a pair of impurity diffusion layers 113 serving as a source / drain. On the surface of the element region 103, wirings 114 are patterned so as to be connected to the respective impurity diffusion layers 113. These wirings 114 constitute a part of the LSI wiring 63. I do. Note that the impurity diffusion region 61 is a region in which a large number of impurity diffusion layers are formed in a large number of MOS transistors, and there are portions where the impurity diffusion layer actually exists and portions where the impurity diffusion layer does not exist. For convenience, these regions are collectively expressed as impurity diffusion regions.
MO S トランジスタ 1 04は、 隣接する電極 6 3 a間の一の領域のみでも極め て多数形成されることから、 図 1 5 A及び以下の各図では便宜上、 MO S トラン ジス夕 1 04の図示を省略する。 そして、 上述のように MO S トランジスタ 1 04や L S I配線 6 3、 保護膜 6 4等の形成された配線形成面 1 aに後述するバイ トを用いた切削加工を施すため の前工程として、 配線形成面 1 aの裏面 1 bを平坦化する。 具体的には、 図 1 5 Bに示すように、 支持面 2 0 1 aが平坦とされた基板支持 台 2 0 1を用意し、 この支持面 2 0 1 aに吸着、 例えば真空吸着により配線形成 面 1 aを吸着させて半導仵基板 1を基板支持台 2 0 1に固定する。 このとき、 配 線形成面 1 aは支持面 2 0 1 aへの吸着により強制的に平坦とされており、 これ により配線形成面 1 aが裏面 1 bの平坦化の基準面となる。 この状態で、 裏面 1 bを機械加工、 ここでは研削加工し、 裏面 1 bの凸部 1 2を研削除去して平坦化 処理する。 この場合、 裏面 1 bの切削量を当該裏面 1 bからの距離により制御す ることが好ましい。 これにより、 半導体基板 1の厚みが一定、 具体的には T T V (基板の最大厚みと最小厚みとの差) が 1 以下に制御される。 続いて、 図 1 5 Cに示すように、 半導体基板 1を基板支持台 2 0 1から外し、 半導体基板 1の配線形成面 1 a上に感光性樹脂、 例えば感光性ポリイミ ド 1 3を 塗布し、 この感光性ポリイミ ド 1 3をフォトリソグラフィ一により加工して、 L S I配線 6 3の電極 6 3 aのいくつかを露出させる形状の配線パターン 1 3 bを 形成する。 続いて、 図 1 5 Dに示すように、 配線形成面 1 a上に、 感光性ポリイミ ド 1 3 を覆うように例えばスパッ夕法により金属、 例えば銅膜 (金膜等でも良いが、 以 下では銅として説明する。) を形成し、 シード層 2を形成する。 続いて、 図 1 6 Aに示すように、 配線形成面 1 a上にフォトレジスト 9 2を塗 付し、 フォトリソグラフィ一によりフォトレジスト 9 2を加工し、 フォトレジス ト 9 2に所定のパターンを開口した後、 シ一ド層 2を電極として用いてメツキ法 により銅を堆積させる。 続いて、 図 1 6 Bに示すように、 フォ トレジスト 9 2を剥離した後、 堆積させ た銅をマスクとしてシード層 2をエッチングにより除去する。 続いて、 図 1 6 Cに示すように、 配線 4 1を埋め込むように絶縁樹脂 4 2を塗 布し、 固化させる。 なお、 絶縁樹脂 4 2を形成する際に、 露出するシード層 2を 除去しておいても良い。 続いて、 配線形成面 1 aにバイ トを用いた切削加工を施し、 平坦化する。 Since an extremely large number of MOS transistors 104 are formed only in one region between the adjacent electrodes 63a, the MOS transistor 104 is illustrated in FIG. 15A and the following drawings for convenience. Is omitted. Then, as described above, the MOS transistor 104, the LSI wiring 63, the protective film 6 The back surface 1b of the wiring forming surface 1a is flattened as a pre-process for performing a cutting process using a byte, which will be described later, on the wiring forming surface 1a formed with 4 or the like. Specifically, as shown in FIG. 15B, a substrate support table 201 having a flat support surface 201a is prepared, and the support surface 201a is suctioned, for example, wiring is performed by vacuum suction. The semiconductor substrate 1 is fixed to the substrate support 201 by adsorbing the formation surface 1a. At this time, the wiring forming surface 1a is forcibly flattened by adsorption to the support surface 201a, whereby the wiring forming surface 1a becomes a reference surface for flattening the back surface 1b. In this state, the back surface 1b is machined, in this case, ground, and the convex portion 12 of the back surface 1b is ground and removed to be flattened. In this case, it is preferable to control the cutting amount of the back surface 1b by the distance from the back surface 1b. Thereby, the thickness of the semiconductor substrate 1 is controlled to be constant, specifically, the TTV (difference between the maximum thickness and the minimum thickness of the substrate) is controlled to 1 or less. Subsequently, as shown in FIG. 15C, the semiconductor substrate 1 is detached from the substrate support base 201, and a photosensitive resin, for example, photosensitive polyimide 13 is applied onto the wiring forming surface 1a of the semiconductor substrate 1. The photosensitive polyimide 13 is processed by photolithography to form a wiring pattern 13b having a shape exposing some of the electrodes 63a of the LSI wiring 63. Subsequently, as shown in FIG. 15D, a metal, for example, a copper film (a gold film or the like may be used) on the wiring forming surface 1 a by, for example, a sputtering method so as to cover the photosensitive polyimide 13. Then, it will be described as copper.) To form a seed layer 2. Subsequently, as shown in FIG. 16A, a photoresist 92 is applied on the wiring forming surface 1a, the photoresist 92 is processed by photolithography, and a predetermined pattern is formed on the photoresist 92. After the opening, copper is deposited by plating using the shield layer 2 as an electrode. Subsequently, as shown in FIG. 16B, the photoresist 92 is peeled off and deposited. The seed layer 2 is removed by etching using the copper as a mask. Subsequently, as shown in FIG. 16C, an insulating resin 42 is applied so as to embed the wiring 41 and is solidified. When forming the insulating resin 42, the exposed seed layer 2 may be removed. Subsequently, a cutting process using a byte is performed on the wiring forming surface 1a to make it flat.
具体的には、 図 1 7 Aに示すように、 基板支持台 1 1の支持面 1 1 aに例えば 真空吸着により裏面 1 bを吸着させ、半導体基板 1を基板支持台 1 1に固定する。 このとき、 裏面 l bへの図 1 5 Bの平坦化処理により半導体基板 1の厚みが一定 の状態とされており、 更に裏面 1 bが支持面 1 1 aへの吸着により強制的にうね り等もない状態となり、 これにより裏面 1 bが配線形成面 1 aの平坦化の基準面 となる。 この状態で、 配線形成面 1 aにおける配線 4 1及び絶縁樹脂 4 2の表層 を機械加工、 ここではバイ ト 1 0を用い、 半導体基板 1を例えば回転数 8 0 0 r p m ~ 1 6 0 0 r p m程度の回転速度で回転させて切削加工し、 これを平坦化す る。 この平坦化処理により、 配線 4 1がその上面を露出させて絶縁樹脂 4 2内に 埋設されてなる第 1の配線層 5 1が形成される。 なお、 図 1 7 Aでは便宜上、 配 線 4 1及び絶緣樹脂 4 2の表層を連続した平坦面として図示している。 続いて、 図 1 7 Bに示すように、 平坦化された第 1の配線層 5 1上にメッキ電 極となるシード層 1 9をスパッ夕形成した後、 フォトレジスト 1 4を塗布し、 フ ォ卜リソグラフィ一によりフォ卜レジスト 1 4を加工して、 所定のビアパターン 1 4 aを開口形成する。 そして、 メツキ法によりビアパターン 1 4 aを銅等によ り埋め込み、 ビア部 4を形成する。 続いて、 図 1 7 Cに示すように、 フォトレジスト 1 4を剥離した後、 例えばフ ッ酸を用いたゥエツ トエッチングによりシード層 1 9を除去し、 ビア部 4を覆い これを埋め込むように配線形成面 1 a上に絶縁樹脂 5を形成する。 続いて、 再び配線形成面 1 aにバイ 卜を用いた切削加工を施し、 平坦化する。 具体的には、 図 1 8 Aに示すように、 基板支持台 1 1の支持面 1 1 aに例えば 真空吸着により裏面 1 bを吸着させ、半導体基板 1を基板支持台 1 1に固定する。 このとき上記と同様に、 裏面 1 bが配線形成面 1 aの平坦化の基準面となる。 こ の状態で、 配線形成面 1 aにおけるピア部 4及び絶縁樹脂 5の表層を機械加工、 ここではバイ ト 1 0を用いた切削加工し、 これらを平坦化する。 この平坦化処理 により、 ビア部 4がその上面を露出させて絶縁樹脂 5内に埋設されてなる厚みが 均一化されたピア層 2 1が形成される。 なお実際には、 ビア部 4及び絶縁膜 5の 表層はバイ ト 1 0による切削によりはじめて平坦化されるのであるが、 図 1 8 A では図示の便宜上、 バイ ト 1 0の未だ通過していないビア部 4及び絶縁膜 5の表 層も連続した平坦面として図示している。 続いて、 図 1 8 Bに示すように、 平坦化されたビア部 4及び絶縁樹脂 5の表面 にスパッ夕法により銅膜を堆積してシード層 6を形成した後、 フォトレジスト 1 5を塗布し、 このフォトレジスト 1 5をフォトリソグラフィーにより加工して、 所定の配線パターン 1 5 aを形成する。 そして、 シード層 6を電極として用いて メツキ法によりフォトレジスト 1 5の配線パターン 1 5 aを埋め込む配線 7を形 成する。 続いて、 図 1 8 Cに示すように、 例えばアルカリ性の剥離液を用いてフオ トレ ジスト 1 5を除去した後、 配線 7上にこれを埋め込むようにフォトレジスト 1 6 を塗布し、 このフォ トレジスト 1 6をフォ トリソグラフィ一により加工して、 所 定のビアパターン 1 6 aを開口形成する。 そして、 メツキ法によりビアパターン 1 6 aを銅等により埋め込み、 ビア部 8を形成する。 続いて、 図 1 9 Aに示すように、 フォトレジスト 1 6を剥離した後、 例えばフ ッ酸を用いたウエッ トエッチングによりシード層 6を除去し、 配線 7及びビア部 8を覆いこれを埋め込むように配線形成面 1 a上に絶縁樹脂 9を形成する。 続いて、 再び配線形成面 1 aにバイ トを用いた切削加工を施し、 平坦化する。 具体的には、 図 1 9 Bに示すように、 基板支持台 1 1の支持面 1 1 aに例えば 真空吸着により裏面 1 bを吸着させ、半導体基板 1を基板支持台 1 1に固定する。 このとき上記と同様に、 裏面 1 bが配線形成面 1 aの平坦化の基準面となる。 こ の状態で、 配線形成面 1 aにおけるビア部 8及び絶縁樹脂 9の表層を機械加工、 ここではバイ ト 1 0を用いた切削加工し、 これらを平坦化する。 この平坦化処理 により、 ビア部 8の上面が露出するように、 配線 7及びこれと接続されたビア部 8が絶縁樹脂 9内に埋設されてなる厚みが均一化された第 2の配線層 5 2が形成 される。 なお、 図 1 9 Bでは図示の便宜上、 ビア部 8及ぴ絶縁膜 9の表層を連続 した平坦面として図示している。 そして、 図 1 9 Cに示すように、 第 2の配線層 5 2の形成時と同様に、 即ち図 1 8 B , 図 1 8 C , 図 1 9 A, 図 1 9 Bと同様の一連工程を数回経て、 配線及び これと接続されたビア部が絶縁樹脂内に埋設されてなる積層構造を形成する。 図 示では、 配線 3 1及びこれと接続されたピア部 3 2が絶縁樹脂 3 3内に埋設され てなる厚みが均一化された第 3の配線層 5 3、 及びこの第 3の配線層 5 3上に形 成された配線 3 4が例示されている。 しかる後、 半導体基板 1の全面を覆う保護膜 (不図示) の形成等を経て、 半導 体基板 1に素子領域 1 0 3 (複数の M〇 S トランジスタ 1 0 4を含む) 及び多層 配線構造を有する半導体装置が完成される。 本実施形態では、 先ず配線形成層 1 aを基準として半導体基板 1の裏面 1 bを 平坦化処理した後、 これに基づき裏面 1 bを基準として配線形成層 1 aに厚みの 均一なビア層 2 1及び各配線層 5 1 ~ 5 3が順次形成されてゆく構成を採るため. 更に多数の配線層を積層しても平坦性を損なうことなく、 凹凸パターンの発生を 抑止して微細な配線構造が実現する。 以上説明したように、 本実施形態によれば、 半導体基板 1 の厚みばらつきを均 一化し、 ディッシング等の不都合を発生させることなく容易且つ安価に配線デザ ィンの制約も無く高速な平坦化を可能として、 容易且つ精緻に微細な多層配線構 造を備えた半導体装置を実現することができる。 なお、 本実施形態では、 1枚の半導体基板について説明したが、 ロットを構成 する複数の半導体基板について本実施形態の各工程を実行し、 各半導体基板の厚 みを同一に均一化しても良い。 これにより、 例えば 1つの同一ロット内の各基板 に対して同一条件内で切削等の処理を行うことが可能となる。 (変形例) Specifically, as shown in FIG. 17A, the back surface 1 b is sucked to the support surface 11 a of the substrate support 11 by, for example, vacuum suction, and the semiconductor substrate 1 is fixed to the substrate support 11. At this time, the thickness of the semiconductor substrate 1 is kept constant by flattening the back surface lb as shown in FIG. 15B, and the back surface 1b is forcibly undulated by the adsorption to the support surface 11a. In this state, the back surface 1b becomes a reference surface for flattening the wiring forming surface 1a. In this state, the surface layers of the wiring 41 and the insulating resin 42 on the wiring forming surface 1a are machined.In this case, using the byte 10, the semiconductor substrate 1 is rotated at, for example, 800 rpm to 160 rpm. It is cut at a rotation speed of about a degree and flattened. By this flattening process, a first wiring layer 51 is formed in which the upper surface of the wiring 41 is exposed and embedded in the insulating resin 42. In FIG. 17A, for convenience, the surface layers of the wiring 41 and the insulating resin 42 are illustrated as continuous flat surfaces. Subsequently, as shown in FIG. 17B, after a seed layer 19 serving as a plating electrode is formed on the planarized first wiring layer 51 by sputtering, a photoresist 14 is applied, and a photoresist 14 is applied. The photoresist 14 is processed by photolithography to form an opening in a predetermined via pattern 14a. Then, the via pattern 14a is buried with copper or the like by a plating method to form the via portion 4. Subsequently, as shown in FIG. 17C, after the photoresist 14 is peeled off, the seed layer 19 is removed by, for example, wet etching using hydrofluoric acid, and the via portion 4 is covered and buried. An insulating resin 5 is formed on the wiring forming surface 1a. Subsequently, the wiring forming surface 1a is again subjected to cutting using a byte, and is flattened. Specifically, as shown in FIG. 18A, the back surface 1 b is sucked to the support surface 11 a of the substrate support 11 by, for example, vacuum suction, and the semiconductor substrate 1 is fixed to the substrate support 11. At this time, similarly to the above, the back surface 1b becomes a reference surface for flattening the wiring forming surface 1a. In this state, the surface layer of the pier portion 4 and the insulating resin 5 on the wiring forming surface 1a is machined, in this case, cut using a byte 10 and flattened. By this flattening process, the via layer 4 has its upper surface exposed and is embedded in the insulating resin 5 to form the peer layer 21 having a uniform thickness. Actually, the via layer 4 and the surface layer of the insulating film 5 are flattened for the first time by cutting with the byte 10, but in FIG. 18A, for convenience of illustration, the byte 10 has not yet passed. The surface layers of the via portion 4 and the insulating film 5 are also shown as continuous flat surfaces. Subsequently, as shown in FIG. 18B, a copper film is deposited on the planarized via portion 4 and the surface of the insulating resin 5 by a sputtering method to form a seed layer 6, and then a photoresist 15 is applied. Then, the photoresist 15 is processed by photolithography to form a predetermined wiring pattern 15a. Then, using the seed layer 6 as an electrode, a wiring 7 for embedding the wiring pattern 15a of the photoresist 15 is formed by a plating method. Subsequently, as shown in FIG. 18C, after removing the photoresist 15 using, for example, an alkaline stripping solution, a photoresist 16 is applied so as to embed the photoresist 16 on the wiring 7, and the photoresist 16 is applied. 16 is processed by photolithography to form a predetermined via pattern 16a. Then, the via pattern 16a is buried with copper or the like by a plating method to form the via portion 8. Subsequently, as shown in FIG. 19A, after the photoresist 16 is peeled off, the seed layer 6 is removed by wet etching using, for example, hydrofluoric acid, and the wiring 7 and the via portion 8 are covered and buried. Resin 9 is formed on wiring forming surface 1a as described above. Subsequently, the wiring forming surface 1a is again subjected to cutting using a byte and flattened. More specifically, as shown in FIG. 19B, the back surface 1b is sucked to the support surface 11a of the substrate support 11 by, for example, vacuum suction, and the semiconductor substrate 1 is fixed to the substrate support 11. At this time, similarly to the above, the back surface 1b becomes a reference surface for flattening the wiring forming surface 1a. In this state, the via layer 8 and the surface layer of the insulating resin 9 on the wiring forming surface 1a are machined, in this case, cut using a byte 10 to flatten them. By this flattening process, the wiring 7 and the via portion 8 connected thereto are buried in the insulating resin 9 so that the upper surface of the via portion 8 is exposed. 2 is formed. In FIG. 19B, for convenience of illustration, the via layer 8 and the surface layer of the insulating film 9 are illustrated as continuous flat surfaces. Then, as shown in FIG. 19C, a series of steps similar to those at the time of forming the second wiring layer 52, that is, the same steps as those of FIGS. 18B, 18C, 19A, and 19B are performed. After several times, a wiring and a via connected thereto are buried in an insulating resin to form a laminated structure. In the figure, a wiring 31 and a peer portion 32 connected to the wiring 31 are embedded in an insulating resin 33, and the third wiring layer 53 having a uniform thickness, and the third wiring layer 5 The wiring 34 formed on 3 is illustrated. Thereafter, after forming a protective film (not shown) covering the entire surface of the semiconductor substrate 1, the element region 103 (including a plurality of MOS transistors 104) and the multilayer wiring structure are formed on the semiconductor substrate 1. Is completed. In the present embodiment, first, the back surface 1 b of the semiconductor substrate 1 is flattened on the basis of the wiring forming layer 1 a, and then the via layer 2 having a uniform thickness is formed on the wiring forming layer 1 a on the basis of the back surface 1 b. 1 and each wiring layer 5 1 to 5 3 are formed in order. In order to adopt this structure, even if a large number of wiring layers are stacked, the generation of uneven pattern is suppressed without impairing the flatness and the fine wiring structure. Is realized. As described above, according to the present embodiment, the thickness variation of the semiconductor substrate 1 is reduced. It realizes a semiconductor device having a fine and multi-layered wiring structure easily and precisely, enabling high-speed flattening easily and inexpensively without any limitation of wiring design without causing inconvenience such as dishing. be able to. In the present embodiment, one semiconductor substrate has been described. However, the steps of the present embodiment may be performed on a plurality of semiconductor substrates constituting a lot, and the thickness of each semiconductor substrate may be made uniform. . As a result, for example, it is possible to perform processing such as cutting on each substrate in one and the same lot under the same conditions. (Modification)
以下、 本実施形態の変形例について説明する。  Hereinafter, a modified example of the present embodiment will be described.
この変形例においては、 第 2の実施形態で説明したバイ トを用いた切削加工ェ 程において、 切削面のトレース処理を付加する。 以下、 本トレース処理の概要を 図 2 1に示す。 第 2の実施形態によるバイ トを用いた切削加工では、 低コストにより短時間で 広範囲の切削を極めて高精度に(ナノオーダーの平坦粗さで)行うことができる。  In this modification, in the cutting process using the bytes described in the second embodiment, trace processing of the cut surface is added. The outline of this trace processing is shown below in Figure 21. In the cutting process using the byte according to the second embodiment, a wide range of cutting can be performed with extremely high precision (with a nano-order flat roughness) at low cost and in a short time.
ところがこの場合、 切削加工に伴って切削屑が発生し、 これが切削面に付着す ることがある。 切削対象となる絶縁層及び配線 (ビア部を含む) のうち、 絶縁材 料の切削屑は静電気によって切削面に付着しているだけであるため、 切削後に除 去が可能であるのに対して、 配線材料、 特に A uの切削屑は切削面に付着すると これに接合してしまい、 洗浄等では容易に除去できない。 その結果、 ナノオーダ 一粗さの平坦性の高い切削面に数 i m〜十数 mサイズの切削屑が付着する表面 形状となり、 平坦化処理を阻害する虞れがある。 このことは、 上述のように配線 材料が A uの場合に特に顕著となるが、 C uやその合金等でも同様に問題となる。 本変形例では、 バイ トを用いた切削加工工程において、 切削により平坦な切削 面を形成した後に、 再びこのバイ トを用いて前記切削と同位置 (切り込み 0 ) で 切削面をトレースする。 切り込み 0であるため、 新たな切削屑をほとんど発生さ せることなく、 しかも切削面上に付着した切削屑を確実に除去できる。 しかしながら、 トレース処理により除去した切削屑が再々度、 切削面に付着す ることが予想される。 これを防止するため、 当該トレース処理の際に、 バイ トの 送り方向にエア又は水、 若しくは切削油剤を吹き付けることが効果的である。 こ こで、 切削面の全面にバイ トが接触するためには、 バイ トの送り速度は切削時と 同じ又はそれ以下にする必要がある。 具体的には、 図 1 7 Aに示す切削加工工程において、 バイ ト 1 0を用いて配線 形成面 1 aにおける配線 4 1及び絶縁樹脂 4 2の表層を切削加工し、 平坦化処理 した後、図 2 1に示すように、半導体基板 1を基板支持台 1 1に固定した状態で、 平坦化処理の仕上げ時の切り込み位置と同じバイ ト位置 (切り込み 0 ) で、 バイ ト 1 0をトレースする。 このときの送りは仕上げ時と同じ、 例えば 1 0 πι Ζ回 転とする。 このとき、 バイ ト 1 0の送り方向と同じ方向にエア送出部 9 3から切 削面に対してエアを吹き付け、 切削屑 9 4の再々付着を防止する。 ここで、 特に 切削屑が付着し易い状況の場合、 エアの替わりに水や切削油剤等を高圧で吹き付 けるようにしても良い。 なお、 本変形例のトレース処理は、 更に図 1 8 Αの切削加工工程及び図 1 9 Β の切削加工工程にも同様に適用される。 本変形例によれば、 半導体基板 1の厚みばらつきを均一化するとともに、 うね りや反りの発生を防止し、 ディッシング等の不都合を発生させることなく容易且 つ安価に配線デザィンの制約も無く高速且つ精緻な平坦化を可能とし、 しかも平 坦化時の切削屑を確実に除去して切削面の平坦性を保持して、 容易且つ精緻に微 細な多層配線構造を備えた半導体装置を実現することができる。 However, in this case, cutting chips are generated during the cutting process and may adhere to the cutting surface. Of the insulating layers and wiring (including vias) to be cut, the cuttings of the insulating material are only attached to the cut surface by static electricity, so they can be removed after cutting. However, if wiring materials, especially Au cuttings adhere to the cutting surface, they will be bonded to it and cannot be easily removed by washing or the like. As a result, a cutting surface having a size of several im to several tens of meters adheres to a cutting surface having high flatness on the order of nanometers, which may hinder the flattening process. This is particularly remarkable when the wiring material is Au as described above, but also causes a problem with Cu and its alloys. In this modified example, in a cutting process using a byte, after a flat cut surface is formed by cutting, the cut surface is traced again using the byte at the same position (cut 0) as that of the cut. Since the depth of cut is 0, almost all new cutting chips are generated Without removing, the cutting chips adhering to the cutting surface can be reliably removed. However, it is expected that the cuttings removed by the trace treatment will adhere to the cutting surface again. In order to prevent this, it is effective to spray air, water, or a cutting oil in the byte feed direction during the trace processing. Here, in order for the byte to come into contact with the entire surface of the cutting surface, the feed speed of the byte must be equal to or lower than that during cutting. Specifically, in the cutting process shown in FIG. 17A, the surface layer of the wiring 41 and the insulating resin 42 on the wiring forming surface 1a is cut using a byte 10 and flattened. As shown in Fig. 21, with the semiconductor substrate 1 fixed on the substrate support 11, trace the byte 10 at the same byte position (cut 0) as the cut position at the time of finishing the flattening process . The feed at this time is the same as the finish, for example, 10 πι Ζ rotation. At this time, air is blown from the air delivery section 93 to the cut surface in the same direction as the feed direction of the byte 10 to prevent the cutting chips 94 from re-adhering. Here, especially in a situation where cutting chips easily adhere, water or a cutting oil may be blown at a high pressure instead of air. The tracing process of the present modified example is similarly applied to the cutting process of FIG. 18 and the cutting process of FIG. According to the present modification, the thickness variation of the semiconductor substrate 1 is made uniform, the occurrence of undulation and warpage is prevented, and high-speed operation can be performed easily and inexpensively without inconveniences such as dishing and without any restrictions on wiring design. In addition, a semiconductor device with an easy and precise fine multilayer wiring structure is realized, which enables fine flattening and also reliably removes cutting chips at the time of flattening and maintains the flatness of the cut surface. can do.
(第 3の実施形態) (Third embodiment)
二こでは、 基板として支持基体、 具体的には銅板を用い、 インターポーザ等と して用いられるフィルム状の多層配線薄膜を形成する場合について開示する。 図 2 2 A〜図 2 2 C及び図 2 3 A〜図 2 3 Cは、 本実施形態による多層配線基 板の形成方法を工程順に示す概略断面図である。 先ず、 図 2 2 Aに示すように、 例えば厚みが l mm強で径が 8インチの銅板 7 1を、 例えば上述した切削加工装置のチャックテーブル部 1 0 4に吸着させ、 ダ ィャモンド製のバイ 卜 1 0を用いて銅板 7 1の表面全体にバイ ト 1 0が当接する まで切削し、 銅板 7 1の厚みを均一化する。 なお、 このときに発生する切削屑を 回収し、 銅板の再生に供する。 続いて、 図 2 2 Bに示すように、 銅板 7 1の表面にレジストを塗付し、 リソグ ラフィ一によりこれを加工して 1層目の配線パターンを形成する。 このときの配 線パターンの L Z Sは例えば 5 i m / 5 である。 そして、 銅板 7 1をシード 層として電解メツキにより配線 7 2を形成する。 ここで、 銅板 7 1の裏面には保 護フィルム (不図示) を貼付してメツキの付着を防止する。 しかる後、 レジスト を除去する。 続いて、 レジストによりビアパターンを形成し、 上記と同様に銅板 7 1をシー ド層として電気メツキにより例えば高さが 1 2 x m程度で径が 1 0 m程度のビ アポスト 7 3を形成する。 この場合も、 銅板 7 1の裏面には保護フィルム (不図 示) を貼付してメツキの付着を防止する。 しかる後、 レジストを除去する。 続いて、ポリイミ ド前駆体(例えば、 H Dマイクロシステム製の製品名 PI2611 ) を配線 7 2及びビアポスト 7 3を埋め込むようにスピンコートにより塗布した後, 例えば 3 7 0でで2 ノ111 i nの昇温レートにより加熱硬化し、 樹脂膜 7 4を形 成する。 その後、 レーザ光により樹脂膜 7 4の一部に銅板 7 1の表面に到達する 孔を開けておく。 続いて、 銅板 7 1の裏面を下にしてチャックテーブル部 1 0 4に載置し、 前記 孔の深さを測定して、 銅板 7 1の表面から 1 0 Λ ΠΙ程度の高さまでバイ ト 1 0を 用いて切削加工して平坦化し、 膜厚が均一であり樹脂膜 7 4に配線 7 2及びビア ポスト 7 3が埋め込まれてなる 1層目の配線層 8 1を形成する。 ここでは、 配線 層 8 1の表面からビアポスト 7 3の上面が露出する。 このときの切削条件は、 例 えば回転数が 1 0 0 0 r p m、 送り速度が S m m Z m i n、 バイ ト 1 0のすくい 角が 1 0 ° 、 切り込み量が 1 ju mである。 続いて、 スパッ夕法によりシード層 (C r Z C uの積層膜であり、 膜厚は 1 0 0 n m Z 3 0 0 n m程度) を形成した後、 図 2 2 Cに示すように、 上記と同様に 配線 7 5及びビアポスト 7 6をパターン形成する。 レジストを除去した後、 シー ド層をエッチング除去する。 続いて、 同様に上述のポリィミ ド前駆体を配線 7 5及びビアポスト 7 6を埋め 込むようにスピンコートにより塗布した後、 例えば 3 7 0 °Cで 2 V / m i nの昇 温レートにより加熱硬化し、 樹脂膜 7 7を形成する。 その後、 レーザ光により樹 脂膜 7 7の一部に銅板 7 1の表面に到達する孔を開けておく。 続いて、 銅板 7 1の裏面を下にしてチャックテ一ブル部 1 0 4に設置し、 前記 孔の深さを測定して、 銅板 7 1の表面から 1 0 m程度の高さまでバイ ト 1 0を 用いて切削加工して平坦化し、 膜厚が均一であり樹脂膜 7 7に配線 7 5及びビア ポスト 7 6が埋め込まれてなる 2層目の配線層 8 2を形成する。 ここでは、 配線 層 8 2の表面からビアポスト 7 6の上面が露出する。 そして、 図 2 3 Aに示すように、 上述の配線層の形成工程を繰り返し実行し、 所望の層数の配線層からなる多層配線薄膜を形成する。 しかる後、 ポリイミ ドか らなる厚み 1 3 程度の保護層を形成する。 任意の場所にレーザによりビア 7Nikko uses a supporting substrate, specifically a copper plate, as a substrate, and A case of forming a film-like multilayer wiring thin film used as the above is disclosed. FIG. 22A to FIG. 22C and FIG. 23A to FIG. 23C are schematic cross-sectional views showing the method of forming the multilayer wiring board according to the present embodiment in the order of steps. First, as shown in FIG. 22A, for example, a copper plate 71 having a thickness of a little over l mm and a diameter of 8 inches is attracted to, for example, the chuck table 104 of the above-mentioned cutting apparatus, and a The copper plate 71 is cut using a pad 10 until the byte 10 abuts on the entire surface of the copper plate 71 to make the thickness of the copper plate 71 uniform. The cutting chips generated at this time are collected and used for copper plate regeneration. Subsequently, as shown in FIG. 22B, a resist is applied to the surface of the copper plate 71 and processed by lithography to form a first-layer wiring pattern. The LZS of the wiring pattern at this time is, for example, 5 im / 5. Then, the wiring 72 is formed by electrolytic plating using the copper plate 71 as a seed layer. Here, a protective film (not shown) is attached to the back surface of the copper plate 71 to prevent adhesion of the plating. Thereafter, the resist is removed. Subsequently, a via pattern is formed by a resist, and a via post 73 having, for example, a height of about 12 xm and a diameter of about 10 m is formed by electric plating using the copper plate 71 as a seed layer in the same manner as described above. Also in this case, a protective film (not shown) is attached to the back surface of the copper plate 71 to prevent the adhesion of the plating. After that, the resist is removed. Then, a polyimide precursor (for example, product name PI2611 manufactured by HD Microsystems) is applied by spin coating so as to embed the wiring 72 and the via post 73, and then, for example, it is increased by 3700 to 2111 in. The resin is cured by heating at a temperature rate to form a resin film 74. Thereafter, a hole reaching the surface of the copper plate 71 is formed in a part of the resin film 74 by laser light. Subsequently, the copper plate 71 was placed on the chuck table 104 with the back side down, and The depth of the hole is measured, and it is flattened by cutting using a byte 10 from the surface of the copper plate 7 to a height of about 10 mm using a byte 10, and the film thickness is uniform, and the wiring 7 A first wiring layer 81 in which the second and via posts 73 are embedded is formed. Here, the upper surface of the via post 73 is exposed from the surface of the wiring layer 81. The cutting conditions at this time are, for example, a rotation speed of 100 rpm, a feed speed of S mm Z min, a rake angle of 10 bytes of 10 °, and a cutting depth of 1 jum. Next, after forming a seed layer (a laminated film of CrZCu with a thickness of about 100 nm and 300 nm) by a sputtering method, as shown in FIG. Similarly, the wiring 75 and the via post 76 are patterned. After removing the resist, the seed layer is etched away. Subsequently, similarly, after applying the above polyimide precursor by spin coating so as to embed the wiring 75 and the via posts 76, the polyimide precursor is cured by heating at, for example, 370 ° C. at a heating rate of 2 V / min. A resin film 77 is formed. Thereafter, a hole reaching the surface of the copper plate 71 is formed in a part of the resin film 77 by laser light. Subsequently, the copper plate 71 is placed on the chuck table 104 with the back surface facing down, the depth of the hole is measured, and a byte 10 is extended from the surface of the copper plate 71 to a height of about 10 m. Then, a second wiring layer 82 having a uniform film thickness and having the wiring 75 and the via posts 76 embedded in the resin film 77 is formed. Here, the upper surface of the via post 76 is exposed from the surface of the wiring layer 82. Then, as shown in FIG. 23A, the above-described wiring layer forming step is repeatedly executed to form a multilayer wiring thin film including a desired number of wiring layers. Thereafter, a protective layer made of polyimide and having a thickness of about 13 is formed. Via via laser anywhere 7
8を形成した後、 保護層を 1 0 程度の厚みにバイ ト 1 0を用いた切削加工に より平坦化する。 図示の例では、 4層の配線層からなり、 最上層の配線層には表 面がバイ ト 1 0を用いた上記の切削加工によりビア 7 8のみが形成されてなる多 層配線薄膜 8 0を例示する。 なお、 図示の例では、 1 0 程度の厚みに切削さ れた保護層の部分を破線により示している。 続いて、 図 2 3 Bに示すように、 保護層を下にしてチヤックテ一ブル部 1 0 4 に設置し、 銅板 7 1を例えば 0 . 5 /z m程度の厚みだけ残すようにバイ ト 1 0を 用いて切削除去する。 なお、 このときに発生する切削屑を回収し、 銅板の再生に 供する。 そして、 図 2 3 Cに示すように、 残存した銅板 7 1をエッチングにより除去し て、 フィルム状の多層配線薄膜 8 0を完成させる。 なお、 本実施形態では、 銅板 7 1を切削する前に、 予め配線層より若干深めに ダイシングしておき、 配線層をチップ化しておいてもよい。 以上説明したように、 本実施形態によれば、 最終的に支持基体を除去して多層 配線薄膜を単体で得る場合に、 多層配線薄膜 8 0を構成する各配線層の膜厚の精 緻な制御を容易に実行するとともに、 効率良く低コス卜で容易に銅板 7 1を除去 し、 例えばビア径が 5 m ~ 1 0 t m程度、 Sが 5 μ, τη / 5 ^ m - 2 0 u rn / 2 0 の微細配線構造を有する多層配線薄膜を実現することができる。 After forming 8, the protective layer is flattened to a thickness of about 10 by cutting using a byte 10. In the example shown in the figure, the wiring layer is composed of four wiring layers, and the uppermost wiring layer has a surface formed with only the vias 78 by the above-described cutting process using the byte 10. The layer wiring thin film 80 will be exemplified. In the illustrated example, a portion of the protective layer cut to a thickness of about 10 is indicated by a broken line. Subsequently, as shown in FIG. 23B, the protective layer is placed on the chuck table 104 with the protective layer facing down, and the copper plate 71 is left in a byte 10 to leave a thickness of, for example, about 0.5 / zm. Use cutting to remove. The cutting chips generated at this time are collected and recycled for the copper plate. Then, as shown in FIG. 23C, the remaining copper plate 71 is removed by etching to complete a film-like multilayer wiring thin film 80. In this embodiment, before the copper plate 71 is cut, dicing may be performed slightly deeper than the wiring layer, and the wiring layer may be chipped. As described above, according to the present embodiment, when the support base is finally removed to obtain the multilayer wiring thin film alone, the thickness of each of the wiring layers constituting the multilayer wiring thin film 80 must be precise. The control is easily performed, and the copper plate 71 is easily and efficiently removed at low cost. For example, the via diameter is about 5 m to 10 tm, S is 5 μ, τη / 5 ^ m-20 urn A multilayer wiring thin film having a fine wiring structure of / 20 can be realized.
[第 4の実施形態] [Fourth embodiment]
ここでは、 第 3の実施形態と同様に、 基板として支持基体、 具体的には銅板を 用い、 ィンターポーザ等として用いられるフィルム状の多層配線薄膜を形成する 場合について開示するが、 各配線層の形成方法が異なる。  Here, as in the third embodiment, a case is described in which a support base, specifically, a copper plate is used as a substrate to form a film-like multilayer wiring thin film used as an interposer or the like. The method is different.
図 2 4 A〜図 2 4 C及び図 2 5 A, 図 2 5 Bは、 本実施形態による多層配線基 板の形成方法を工程順に示す概略断面図である。 先ず、 図 2 4 Aに示すように、 例えば厚みが l m m強で径が 8インチの銅板 7 24A to 24C and FIGS. 25A and 25B are schematic cross-sectional views showing the method of forming the multilayer wiring board according to the present embodiment in the order of steps. First, as shown in Fig. 24A, for example, a copper plate having a thickness of just over 1 mm and a diameter of 8 inches 7
1を、 例えば上述した切削加工装置のチャックテーブル部 1 0 4に吸着させ、 ダ ィャモンド製のバイ ト 1 0を用いて銅板 7 1の表面全体にバイ ト 1 0が当接する まで切削し、 銅板 7 1の厚みを均一化する。 なお、 このときに発生する切削屑を 回収し、 銅板の再生に供する。 続いて、 図 2 4 Bに示すように、 銅板 7 1の表面に感光性エポキシ樹脂からな る膜厚 2 0 t m程度のラミネ一卜フィルム 8 3を形成し、 露光及び現像して径が 2 0; m程度のビア孔 8 4を形成する。 酸化剤によりラミネートフィルム 8 3の 表面を粗化した後、 無電解メツキによりシード層を形成する。 続いて、 膜厚 1 0 m程度のレジストにより配線パターン (L/S = 1 0 fim / 1 0 m程度) を形成し、 電気メツキにより配線層 8 5を形成するとともにビ ァ孔 8 4を充填する。 このとき、 レジスト上にメツキがオーバ一ハングしても構 わない。 ' . 続いて、 銅板 7 1の裏面を下にしてチヤックテーブル部 1 0 4に設置し、 ラミ ネートフィルム 8 3の表面から 5 m程度の高さまでバイ 卜 1 0を用いて切削加 ェして平坦化し、 膜厚が均一でありラミネートフィルム 8 3にメツキ充填された ビア孔 8 4及び配線層 8 5が埋め込まれてなる 1層目の配線層 9 1を形成する。 このときの切削条件は、 例えば回転数 1 0 0 0 r pm、 送り速度が S mmZm i n、 バイ ト 1 0のすくい角が 0 ° 、 切り込み量が 1 Atmである。 しかる後、 レジ ストを除去し、 シード層をエッチング除去する。 そして、 図 2 4 Cに示すように、 上述の配線層の形成工程を繰り返し実行し、 所望の層数の配線層からなる多層配線薄膜を形成する。 しかる後、 ポリイミ ドか らなる厚み 1 3 tm程度の保護層を形成する。 任意の場所にレーザによりビア 71 is attracted to the chuck table 104 of the above-described cutting device, The copper plate 71 is cut using a diamond-made byte 10 until the byte 10 comes into contact with the entire surface of the copper plate 71 to make the thickness of the copper plate 71 uniform. The cutting chips generated at this time are collected and used for copper plate regeneration. Subsequently, as shown in FIG. 24B, a laminating film 83 made of a photosensitive epoxy resin and having a thickness of about 20 tm was formed on the surface of the copper plate 71, and exposed and developed to have a diameter of 2 μm. 0; A via hole 84 of about m is formed. After roughening the surface of the laminate film 83 with an oxidizing agent, a seed layer is formed by electroless plating. Subsequently, a wiring pattern (L / S = about 10 fim / about 10 m) is formed with a resist having a film thickness of about 10 m, and a wiring layer 85 is formed by electric plating and the via hole 84 is filled. I do. At this time, the plating may hang over the resist. 'Then, the copper plate 71 was placed on the chuck table 104 with the back side down, and the lamination film 83 was cut up to a height of about 5 m from the surface by using a byte 10. A first wiring layer 91 is formed in which the via holes 84 and the wiring layers 85, which are flattened and have a uniform film thickness and are filled in the laminate film 83, are embedded. The cutting conditions at this time are, for example, a rotation speed of 100 rpm, a feed rate of S mmZmin, a rake angle of byte 10 of 0 °, and a cutting depth of 1 Atm. Thereafter, the resist is removed and the seed layer is etched away. Then, as shown in FIG. 24C, the above-described wiring layer forming step is repeatedly executed to form a multilayer wiring thin film including a desired number of wiring layers. Thereafter, a protective layer made of polyimide and having a thickness of about 13 tm is formed. Via via laser anywhere 7
8を形成した後、 保護層を 1 0 /zm程度の厚みにバイ ト 1 0を用いた切削加工に より平坦化する。 図示の例では、 3層の配線層からなり、 最上層の配線層には表 面がバイ ト 1 0を用いた上記の切削加工によりビア 7 8のみが形成されてなる多 層配線薄膜 9 0を例示する。 なお、 図示の例では、 1 0 /zm程度の厚みに切削さ れた保護層の部分を破線により示している。 続いて、 図 2 5 Aに示すように、 保護層を下にしてチャックテ一ブル部 1 0 4 に設置し、 銅板 7 1を厚み 5 程度だけ残すようにバイ ト 1 0を用いて切削除 去する。 なお、 このときに発生する切削屑を回収し、 銅板の再生に供する。 そして、 図 2 5 Bに示すように、 残存した銅板 7 1をパターニングして所定の 配線 8 2を形成し、 フィルム状の多層配線薄膜 9 0を完成させる。 以上説明したように、 本変形例によれば、 最終的に支持基体を除去して多層配 線薄膜を単体で得る場合に、 多層配線薄膜を構成する各配線層の膜厚の精緻な制 御を容易に実行するとともに、 効率良く低コストで容易に銅板 7 1を除去し、 例 えばピア径が 5 ; m〜 1 0 β m程度、 L / Sが 5 μ. / 5 m〜 2 0 n / 2 0 mの微細配線構造を有する多層配線薄膜を実現することができる。 なお、 本実施形態及びその変形例では、 支持基体として導電体基板 (銅板) を 例示したが、 樹脂等の絶縁基板で支持基体を構成しても良い。 この場合、 本実施 形態と同様にバイ トを用いた切削加工により支持基体の厚みを均一にした後、 配 線層を切削加工で平坦化 ·膜厚均一化しながら積層して多層配線薄膜を形成し、 支持基体を裏面からの切削加工により除去する。 この切削加工において、 支持基 体を任意の厚みに残して平坦化し、絶縁層に供するようにすることも好適である。 また、 上述したような、 切削加工する対象となる樹脂の撓みの度合い、 いわゆ る靭性が大きい場合、 バイ トのすくい角を 5 ° 以上にすることにより、 仕上げ面 の粗さを小さくすることができ、 望ましい。 産業上の利用可能性 After forming 8, the protective layer is flattened by cutting using a byte 10 to a thickness of about 10 / zm. In the illustrated example, the multilayer wiring thin film 90 has three wiring layers, and the uppermost wiring layer has only the vias 78 formed by the above-described cutting process using the bytes 10. Is exemplified. In the example shown in the figure, the cut thickness is about 10 / zm. The portion of the protective layer that is shown is indicated by a broken line. Subsequently, as shown in Fig. 25A, the protective layer is placed on the chuck table 104 with the protective layer facing down, and the copper plate 71 is cut and removed using a byte 10 so as to leave a thickness of about 5 only. I do. The cutting chips generated at this time will be collected and recycled for the copper plate. Then, as shown in FIG. 25B, the remaining copper plate 71 is patterned to form predetermined wirings 82, thereby completing a film-shaped multilayer wiring thin film 90. As described above, according to the present modification, when the support base is finally removed to obtain a multilayer wiring thin film alone, precise control of the film thickness of each wiring layer constituting the multilayer wiring thin film is performed. And easily remove the copper plate 71 efficiently and at low cost. For example, the peer diameter is 5; m to 10 βm, and L / S is 5 μ. / 5 m to 20 n. A multilayer wiring thin film having a fine wiring structure of / 20 m can be realized. In the present embodiment and its modifications, a conductor substrate (copper plate) is exemplified as the support base, but the support base may be formed of an insulating substrate such as a resin. In this case, as in the present embodiment, the thickness of the support base is made uniform by cutting using a byte, and then the wiring layers are layered while being flattened and the film thickness is made uniform by cutting to form a multilayer wiring thin film. Then, the support base is removed by cutting from the back surface. In this cutting process, it is also preferable to leave the support base at an arbitrary thickness and flatten it to provide the support base with an insulating layer. In addition, when the degree of deflection of the resin to be cut, or the so-called toughness, is high, the rake angle of the byte should be 5 ° or more to reduce the roughness of the finished surface. Can be desirable. Industrial applicability
本発明によれば、 平坦化方法として切削加工に代表される C M P以外の機械加 工法を主な対象とすることを考慮して、 基板 (特に半導体基板) の厚みばらつき を均一化し、 ディッシング等の不都合を発生させることなく容易且つ安価に配線 デザインの制約も無く高速な平坦化を実現することが可能となる。 また、 本発明によれば、 最終的に支持基体を除去して多層配線簿膜を単体で得 る場合に、 多層配線薄膜を構成する各配線層の膜厚の精緻な制御を容易に実行す るとともに、 効率良く低コストで容易に銅板を除去し、 微細配線構造を有する多 層配線薄膜を実現することができる。 According to the present invention, the thickness variation of a substrate (especially, a semiconductor substrate) is considered in consideration of a main object other than CMP represented by cutting as a planarization method. It is possible to realize high-speed flattening easily and inexpensively without inconvenience such as dishing and without any restrictions on wiring design. Further, according to the present invention, when the support base is finally removed to obtain the multilayer wiring thin film alone, fine control of the thickness of each wiring layer constituting the multilayer wiring thin film is easily performed. In addition, the copper plate can be removed efficiently and easily at low cost, and a multilayer wiring thin film having a fine wiring structure can be realized.

Claims

請 求 の 範 囲 The scope of the claims
1 . 被処理基板の一方の主面上に配線を形成する方法であって、 1. A method of forming wiring on one main surface of a substrate to be processed,
前記配線を形成すべき前記基板の一方の主面を基準として、 前記基板の他方の 主面に第 1の機械加工を施し、前記基板の他方の主面を平坦化する第 1の工程と、 前記基板の一方の主面に前記配線及び前記配線を覆う絶縁膜を形成する第 2の 工程と、  A first step of performing first machining on the other main surface of the substrate with reference to one main surface of the substrate on which the wiring is to be formed, and flattening the other main surface of the substrate; A second step of forming the wiring and an insulating film covering the wiring on one main surface of the substrate;
前記基板の他方の主面を基準として、 前記基板の一方の主面に第 2の機械加工 を施し、 前記基板の一方の主面を前記配線の表面及び前記絶縁膜の表面が連続し て平坦となるように平坦化する第 3の工程と  The second main processing is performed on one main surface of the substrate with reference to the other main surface of the substrate, and the one main surface of the substrate is flattened so that the surface of the wiring and the surface of the insulating film are continuous. A third step of flattening so that
を含むことを特徴とする配線基板の形成方法。  A method for forming a wiring board, comprising:
2 . 前記基板が半導体基板であることを特徴とする請求項 1に記載の配線基板 の形成方法。  2. The method according to claim 1, wherein the substrate is a semiconductor substrate.
3 . 前記第 1の工程の前に、 前記半導体基板の前記一方の主面に半導体素子を 形成する工程を含むことを特徴とする請求項 2に記載の配線基板の形成方法。  3. The method for forming a wiring board according to claim 2, further comprising, before the first step, a step of forming a semiconductor element on the one main surface of the semiconductor substrate.
4 . 前記第 2の工程及び前記第 3の工程からなる一連の工程を複数回繰り返す ことにより、 前記絶縁膜内で前記各配線が複数の層に積層してなる多層配線を形 成することを特徴とする請求項 1に記載の配線基板の形成方法。  4. A series of steps including the second step and the third step is repeated a plurality of times to form a multilayer wiring in which the wirings are stacked in a plurality of layers in the insulating film. 2. The method for forming a wiring board according to claim 1, wherein:
5 . 前記第 1の機械加工が研削加工であることを特徴とする請求項 1に記載の 配線基板の形成方法。  5. The method for forming a wiring board according to claim 1, wherein the first machining is grinding.
6 . 前記第 2の機械加工がバイ トを用いた切削加工であることを特徴とする請 求項 1に記載の配線基板の形成方法。  6. The method for forming a wiring board according to claim 1, wherein the second machining is cutting using a byte.
7 . 前記第 1の機械加工により、 前記半導体基板の最大厚みと最小厚みとの差 を 1 i m以下に制御することを特徴とする請求項 2に記載の配線基板の形成方法, 7. The method for forming a wiring board according to claim 2, wherein a difference between a maximum thickness and a minimum thickness of the semiconductor substrate is controlled to 1 im or less by the first machining.
8 . 複数の前記半導体基板に前記各工程を実行し、 前記各半導体基板の厚みを 同一に均一化することを特徴とする請求項 2に記載の配線基板の形成方法。 8. The method according to claim 2, wherein the steps are performed on a plurality of the semiconductor substrates, and the thickness of each of the semiconductor substrates is made uniform.
9 . 前記第 3の工程において、 前記他方の主面を基準に前記半導体基板の平行 出しを行うとともに、 前記一方の主面の位置を検出し、 検出された前記一方の主 面から削り量を算出して制御することを特徴とする請求項 2に記載の配線基板の 形成方法。 9. In the third step, the semiconductor substrate is parallelized with reference to the other main surface, the position of the one main surface is detected, and the amount of shaving from the detected one main surface is determined. Calculating and controlling the wiring board according to claim 2, Forming method.
1 0 . 前記一方の主面の位置を検出する際に、 前記一方の主面の周辺部位の複 数箇所における絶縁膜にレーザ光を照射して前記絶縁膜の絶縁物を加熱飛散させ、 前記一方の主面の一部を露出させることを特徴とする請求項 9に記載の配線基板 の形成方法。  10. When detecting the position of the one main surface, the insulating film at a plurality of locations around the one main surface is irradiated with laser light to heat and scatter the insulator of the insulating film. 10. The method for forming a wiring board according to claim 9, wherein a part of one main surface is exposed.
1 1 . 前記一方の主面の位置を検出する際に、 前記他方の主面に赤外レーザ光 を照射し、 前記一方の主面からの反射光を測定することを特徴とする請求項 9に 記載の配線基板の形成方法。  11. The method according to claim 9, wherein when detecting the position of the one main surface, the other main surface is irradiated with infrared laser light, and reflected light from the one main surface is measured. 3. The method for forming a wiring board according to claim 1.
1 2 . 前記一方の主面が前記基板の配線形成面であり、 前記他方の主面が前記 基板の裏面であることを特徴とする請求項 1に記載の配線基板の形成方法。  12. The method according to claim 1, wherein the one main surface is a wiring forming surface of the substrate, and the other main surface is a back surface of the substrate.
1 3 . 支持基体の厚みを第 1の機械加工により均一化する第 1の工程と、 厚みの均一化された前記支持基体の表面に配線及び前記配線を覆う絶縁膜を形 成する第 2の工程と、  13. A first step of making the thickness of the support base uniform by first machining, and a second step of forming wiring and an insulating film covering the wiring on the surface of the support base having a uniform thickness. Process and
第 2の機械加工により前記配線の表面及び前記絶縁膜の表面が連続して平坦と なるように平坦化処理し、 前記配線及び前記絶縁膜からなる配線層を形成する第 A second mechanical processing is performed to planarize the surface of the wiring and the surface of the insulating film so as to be continuously flat, thereby forming a wiring layer including the wiring and the insulating film.
3の工程と、 3 steps,
前記支持基体を除去することにより、 前記配線層を有してなる厚みの均一な配 線薄膜を形成する第 4の工程と  A fourth step of forming a wiring thin film having a uniform thickness having the wiring layer by removing the support base;
を含むことを特徴とする配線基板の形成方法。  A method for forming a wiring board, comprising:
1 4 . 前記第 2の工程及び前記第 3の工程からなる一連の工程を、 前記第 2の 機械加工による前記平坦化処理の際に前記支持基体及び前記各配線層の全体の厚 みを均一にしながら、 複数回繰り返すことにより、 複数の前記配線層が積層され てなる厚みの均一な前記配線薄膜を形成することを特徴とする請求項 1 3に記載 の配線基板の形成方法。  14. A series of steps including the second step and the third step is performed by making the entire thickness of the support base and each of the wiring layers uniform during the planarization processing by the second mechanical processing. 14. The method for forming a wiring board according to claim 13, wherein the wiring thin film is formed by laminating a plurality of the wiring layers to form the wiring thin film having a uniform thickness.
1 5 . 前記第 2の機械加工は、 バイ トを用いた切削加工であることを特徴とす る請求項 1 3に記載の配線基板の形成方法。  15. The method for forming a wiring board according to claim 13, wherein the second machining is cutting using a byte.
1 6 . 前記切削加工の後、 前記バイ トを用いて、 前記平坦化処理と同じバイ ト 位置で前記平坦化処理された切削面を再トレースすることを特徴とする請求項 1 5に記載の配線基板の形成方法。 16. The method according to claim 15, wherein, after the cutting, the byte is used to retrace the cut surface subjected to the flattening process at the same byte position as the flattening process. A method for forming a wiring board.
1 7 . 前記第 1の機械加工は、 バイ トを用いた切削加工であることを特徴とす る請求項 1 3に記載の配線基板の形成方法。 17. The method for forming a wiring board according to claim 13, wherein the first machining is cutting using a byte.
1 8 . 前記第 4の工程において、 前記支持基体を裏面からバイ トを用いて切削 加工し、 前記支持基体を除去することを特徴とする請求項 1 3に記載の配線基板 の形成方法。  18. The method for forming a wiring board according to claim 13, wherein, in the fourth step, the support base is cut from the back surface using a byte, and the support base is removed.
1 9 . 前記支持基体が導電材からなることを特徴とする請求項 1 8に記載の配 線基板の形成方法。  19. The method for forming a wiring board according to claim 18, wherein the support base is made of a conductive material.
2 0 . 前記第 4の工程により前記支持基体を切削した際に生じた切削屑を回収 し、 再び前記支持基体の形成に供することを特徴とする請求項 1 9に記載の配線 基板の形成方法。  20. The method for forming a wiring board according to claim 19, wherein chips generated when the support base is cut in the fourth step are collected and used again for forming the support base. .
2 1 . 前記第 4の工程において、 前記支持基体を任意の厚みに残して平坦化し た後、  21. In the fourth step, after flattening the support base while leaving it at an arbitrary thickness,
導電層として残存した前記支持基体を任意のパターンに加工することを特徴と する第 5の工程を更に含むことを特徴とする請求項 2 0に記載の配線基板の形成 方法。  21. The method of forming a wiring board according to claim 20, further comprising a fifth step of processing the support base remaining as a conductive layer into an arbitrary pattern.
2 2 . 半導体基板と、  2 2. Semiconductor substrate,
前記半導体基板の一方の主面に形成されてなる半導体素子と、  A semiconductor element formed on one main surface of the semiconductor substrate;
絶縁物内で各配線が複数の層に積層してなる多層配線と  Multi-layer wiring in which each wiring is laminated in multiple layers within an insulator
を含む半導体装置であって、  A semiconductor device comprising:
前記半導体基板は、 その他方の主面側に前記一方の主面を基準とした機械加工 が施され、 前記他方の主面の平坦化及び基板厚の均一化がなされていることを特 徴とする半導体装置。  The semiconductor substrate is characterized in that the other main surface is machined on the basis of the one main surface, and the other main surface is flattened and the substrate thickness is made uniform. Semiconductor device.
2 3 . 前記半導体基板は、 前記基板厚が、 最大厚みと最小厚みとの差が 1 m 以下に制御されてなることを特徴とする請求項 2 2に記載の半導体装置。  23. The semiconductor device according to claim 22, wherein the semiconductor substrate is controlled such that a difference between a maximum thickness and a minimum thickness is 1 m or less.
2 4 . 被処理基板上に配線を形成する際の基板処理装置であって、  24. A substrate processing apparatus for forming wiring on a substrate to be processed,
平坦な支持面を有しており、 一方の主面に前記配線の形成された前記基板をそ の他方の主面で前記支持面に吸着させ、 前記基板の他方の主面を強制的に平坦な 基準面として支持固定する基板支持台と、  It has a flat support surface, the substrate on which the wiring is formed on one main surface is attracted to the support surface on the other main surface, and the other main surface of the substrate is forcibly flattened. A substrate support for supporting and fixing as a reference surface,
前記基板支持台に支持固定された前記基板の一方の主面を切削加工するバイ 卜 と A byte for cutting one main surface of the substrate supported and fixed on the substrate support table When
を含み、  Including
前記バイ トにより前記基板の一方の主面を切削加工し、 前記配線の表面及び絶 緣膜の表面が連続して平坦となるように平坦化処理することを特徴とする基板処 理装置。  A substrate processing apparatus, comprising: cutting one main surface of the substrate with the byte; and performing a flattening process so that a surface of the wiring and a surface of the insulating film are continuously flat.
2 5 . 前記基板が半導体基板であることを特徴とする請求項 2 4に記載の基板 処理装置。  25. The substrate processing apparatus according to claim 24, wherein the substrate is a semiconductor substrate.
2 6 . 前記一方の主面に半導体素子が形成された前記半導体基板の前記裏面を 平坦化処理することを特徴とする請求項 2 5に記載の基板処理装置。  26. The substrate processing apparatus according to claim 25, wherein the back surface of the semiconductor substrate having the semiconductor element formed on the one main surface is subjected to a flattening process.
2 7 . 前記他方の主面を基準に前記半導体基板の平行出しを行うとともに、 前 記一方の主面の位置を検出し、 検出された前記一方の主面から削,り量を算出して 制御することを特徴とする請求項 2 4に記載の基板処理装置。  27. Parallelizing the semiconductor substrate with reference to the other main surface, detecting the position of the one main surface, and calculating the amount of scraping from the detected one main surface. 25. The substrate processing apparatus according to claim 24, wherein the apparatus is controlled.
2 8 . レーザ光照射手段を備え、  2 8. Equipped with laser beam irradiation means,
前記レーザ光照射手段は、 前記一方の主面の位置を検出する際に、 前記一方の 主面の周辺部位の複数箇所における絶縁膜にレーザ光を照射して前記絶縁膜の絶 縁物を加熱飛散させ、 前記一方の主面の一部を露出させることを特徴とする請求 項 2 7に記載の基板処理装置。  When detecting the position of the one main surface, the laser light irradiating means irradiates the insulating film at a plurality of locations around the one main surface with laser light to heat the insulator of the insulating film. 28. The substrate processing apparatus according to claim 27, wherein the substrate is scattered to expose a part of the one main surface.
2 9 . 赤外レーザ光照射測定手段を備え、  2 9. Equipped with infrared laser light irradiation measurement means,
前記赤外レーザ光照射測定手段は、 前記一方の主面の位置を検出する際に、 前 記他方の主面に赤外レーザ光を照射し、 前記一方の主面からの反射光を測定する ことを特徴とする請求項 2 8に記載の基板処理装置。  When detecting the position of the one main surface, the infrared laser light irradiation measuring unit irradiates the other main surface with the infrared laser light and measures reflected light from the one main surface. 29. The substrate processing apparatus according to claim 28, wherein:
3 0 . 前記基板が支持基体であることを特徴とする請求項 2 4に記載の基板処 理装置。  30. The substrate processing apparatus according to claim 24, wherein the substrate is a supporting base.
PCT/JP2003/015808 2002-12-10 2003-12-10 Semiconductor apparatus, wiring board forming method, and substrate treatment apparatus WO2004053967A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005502368A JP4489016B2 (en) 2002-12-10 2003-12-10 Wiring substrate forming method, wiring thin film forming method, and substrate processing apparatus
US11/097,937 US7485962B2 (en) 2002-12-10 2005-04-01 Semiconductor device, wiring substrate forming method, and substrate processing apparatus
US11/727,004 US7648907B2 (en) 2002-12-10 2007-03-23 Semiconductor device, wiring substrate forming method, and substrate processing apparatus
US11/727,003 US7704856B2 (en) 2002-12-10 2007-03-23 Semiconductor device, wiring substrate forming method, and substrate processing apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002358536 2002-12-10
JP2002-358536 2002-12-10
JPPCT/JP03/06382 2003-05-22
JP0306382 2003-05-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/097,937 Continuation US7485962B2 (en) 2002-12-10 2005-04-01 Semiconductor device, wiring substrate forming method, and substrate processing apparatus

Publications (1)

Publication Number Publication Date
WO2004053967A1 true WO2004053967A1 (en) 2004-06-24

Family

ID=32510480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015808 WO2004053967A1 (en) 2002-12-10 2003-12-10 Semiconductor apparatus, wiring board forming method, and substrate treatment apparatus

Country Status (2)

Country Link
JP (1) JP4489016B2 (en)
WO (1) WO2004053967A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059523A (en) * 2005-08-23 2007-03-08 Disco Abrasive Syst Ltd Method and apparatus for machining substrate
JP2009123806A (en) * 2007-11-13 2009-06-04 Denso Corp Method for manufacturing silicon carbide semiconductor apparatus
US7550387B2 (en) 2007-08-29 2009-06-23 Disco Corporation Semiconductor wafer processing method
JP2010525561A (en) * 2007-04-17 2010-07-22 アイメック Substrate thinning method
US7939374B2 (en) 2004-08-23 2011-05-10 Rokko Systems Pte Ltd. Supply mechanism for the chuck of an integrated circuit dicing device
JP2014187337A (en) * 2013-03-25 2014-10-02 Disco Abrasive Syst Ltd Wafer level package structure and manufacturing method of the same
JP2014187339A (en) * 2013-03-25 2014-10-02 Disco Abrasive Syst Ltd Wafer level package structure and manufacturing method of the same
JP2014187338A (en) * 2013-03-25 2014-10-02 Disco Abrasive Syst Ltd Wafer level package structure and manufacturing method of the same
WO2022196132A1 (en) * 2021-03-17 2022-09-22 富士電機株式会社 Method for manufacturing semiconductor device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100737A (en) * 1993-09-30 1995-04-18 Shin Etsu Handotai Co Ltd Method for polishing semiconductor wafer
JPH09248758A (en) * 1996-03-08 1997-09-22 Shin Etsu Handotai Co Ltd Method and device for flat surface of thin plate-like work
US5904557A (en) * 1996-02-06 1999-05-18 Tokyo Electron Limited Method for forming multilevel interconnection of semiconductor device
JP2000133623A (en) * 1998-10-28 2000-05-12 Toshiba Corp Planarizing method and equipment
JP2000196243A (en) * 1998-12-28 2000-07-14 Fujitsu Ltd Manufacture of flexible multilayer circuit board
US6205658B1 (en) * 1998-11-26 2001-03-27 Nec Corporation Method for formation of metal wiring
JP2001232555A (en) * 2000-02-23 2001-08-28 Matsushita Electric Ind Co Ltd Flattening method
JP2002176013A (en) * 2000-12-06 2002-06-21 Sumitomo Metal Ind Ltd Method for flattening semiconductor substrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07326614A (en) * 1994-05-31 1995-12-12 Sony Corp Forming method of electronic circuit pattern and cutting device used therefor
JP2002176016A (en) * 2001-08-31 2002-06-21 Sanyo Electric Co Ltd Method for reusing removed material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100737A (en) * 1993-09-30 1995-04-18 Shin Etsu Handotai Co Ltd Method for polishing semiconductor wafer
US5904557A (en) * 1996-02-06 1999-05-18 Tokyo Electron Limited Method for forming multilevel interconnection of semiconductor device
JPH09248758A (en) * 1996-03-08 1997-09-22 Shin Etsu Handotai Co Ltd Method and device for flat surface of thin plate-like work
JP2000133623A (en) * 1998-10-28 2000-05-12 Toshiba Corp Planarizing method and equipment
US6205658B1 (en) * 1998-11-26 2001-03-27 Nec Corporation Method for formation of metal wiring
JP2000196243A (en) * 1998-12-28 2000-07-14 Fujitsu Ltd Manufacture of flexible multilayer circuit board
JP2001232555A (en) * 2000-02-23 2001-08-28 Matsushita Electric Ind Co Ltd Flattening method
JP2002176013A (en) * 2000-12-06 2002-06-21 Sumitomo Metal Ind Ltd Method for flattening semiconductor substrate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7939374B2 (en) 2004-08-23 2011-05-10 Rokko Systems Pte Ltd. Supply mechanism for the chuck of an integrated circuit dicing device
TWI387053B (en) * 2004-08-23 2013-02-21 Rokko Systems Pte Ltd Supply mechanism for the chuck of an integrated circuit dicing device
KR101299322B1 (en) 2004-08-23 2013-08-26 록코 시스템즈 피티이 리미티드 Supply mechanism for the chuck of an integrated circuit dicing device
JP2007059523A (en) * 2005-08-23 2007-03-08 Disco Abrasive Syst Ltd Method and apparatus for machining substrate
JP2010525561A (en) * 2007-04-17 2010-07-22 アイメック Substrate thinning method
US7550387B2 (en) 2007-08-29 2009-06-23 Disco Corporation Semiconductor wafer processing method
JP2009123806A (en) * 2007-11-13 2009-06-04 Denso Corp Method for manufacturing silicon carbide semiconductor apparatus
JP4732423B2 (en) * 2007-11-13 2011-07-27 株式会社デンソー Method for manufacturing silicon carbide semiconductor device
JP2014187337A (en) * 2013-03-25 2014-10-02 Disco Abrasive Syst Ltd Wafer level package structure and manufacturing method of the same
JP2014187339A (en) * 2013-03-25 2014-10-02 Disco Abrasive Syst Ltd Wafer level package structure and manufacturing method of the same
JP2014187338A (en) * 2013-03-25 2014-10-02 Disco Abrasive Syst Ltd Wafer level package structure and manufacturing method of the same
WO2022196132A1 (en) * 2021-03-17 2022-09-22 富士電機株式会社 Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP4489016B2 (en) 2010-06-23
JPWO2004053967A1 (en) 2006-04-13

Similar Documents

Publication Publication Date Title
US11791307B2 (en) DBI to SI bonding for simplified handle wafer
US7704856B2 (en) Semiconductor device, wiring substrate forming method, and substrate processing apparatus
KR100873782B1 (en) Semiconductor device and manufacturing method thereof
KR20190133256A (en) Die processing
US7247524B2 (en) Manufacturing method of wiring substrate
JP4673195B2 (en) Wafer processing method
TW202349488A (en) Substrate processing system and substrate processing method
JP2008028325A (en) Method of manufacturing semiconductor device
KR20170053115A (en) Processing method of wafer
JP7042944B2 (en) Transport equipment and board processing system
TWI830726B (en) Innovative fan-out panel level package (foplp) warpage control
JP2017028160A (en) Machining method for wafer
JP2009054920A (en) Processing method of semiconductor wafer
JPWO2018135492A1 (en) Semiconductor substrate processing method and semiconductor substrate processing apparatus
WO2004053967A1 (en) Semiconductor apparatus, wiring board forming method, and substrate treatment apparatus
JP2005150434A (en) Manufacturing method of semiconductor wafer
US20050230035A1 (en) Thin film forming apparatus and thin film forming method
JP2008235555A (en) Manufacturing method of electronic device, substrate, and semiconductor device
TW201826897A (en) Method of manufacturing circuit board
JP5508108B2 (en) Manufacturing method of semiconductor device
JP4568504B2 (en) Wiring forming method, semiconductor device and manufacturing method thereof
JP6741264B2 (en) Method of manufacturing semiconductor package using alignment mark on wafer
CN100547741C (en) The formation method and the lining processor of semiconductor device, wiring substrate
JP2007005366A (en) Method of manufacturing semiconductor device
US20240186284A1 (en) Dbi to si bonding for simplified handle wafer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

WWE Wipo information: entry into national phase

Ref document number: 11097937

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005502368

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038A22826

Country of ref document: CN