WO2004052401A2 - Compositions and methods of delivery of pharmacological agents - Google Patents

Compositions and methods of delivery of pharmacological agents Download PDF

Info

Publication number
WO2004052401A2
WO2004052401A2 PCT/US2003/038941 US0338941W WO2004052401A2 WO 2004052401 A2 WO2004052401 A2 WO 2004052401A2 US 0338941 W US0338941 W US 0338941W WO 2004052401 A2 WO2004052401 A2 WO 2004052401A2
Authority
WO
WIPO (PCT)
Prior art keywords
pharmaceutical composition
albumin
pharmaceutical
agents
administration
Prior art date
Application number
PCT/US2003/038941
Other languages
English (en)
French (fr)
Other versions
WO2004052401A3 (en
Inventor
Neil P. Desai
Andrew Yang
Sherry Xiaopei Ci
Tapas De
Vuong Trieu
Patrick Soon-Shiong
Bridget Beals Grim
Qiang Yao
Original Assignee
American Bioscience, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32512525&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2004052401(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to CN200380109606.9A priority Critical patent/CN1925874B/zh
Priority to KR1020147003448A priority patent/KR20140027554A/ko
Priority to JP2004559417A priority patent/JP2006524632A/ja
Priority to MXPA05006169A priority patent/MXPA05006169A/es
Priority to KR1020147033814A priority patent/KR20140148502A/ko
Priority to SI200332576T priority patent/SI1585548T1/sl
Priority to CA 2509365 priority patent/CA2509365C/en
Priority to KR1020187024645A priority patent/KR20180098702A/ko
Priority to NZ541142A priority patent/NZ541142A/en
Priority to EP03799876.2A priority patent/EP1585548B1/en
Priority to KR1020157025001A priority patent/KR20150108943A/ko
Priority to LTEP03799876.2T priority patent/LT1585548T/lt
Priority to AU2003299590A priority patent/AU2003299590B8/en
Priority to KR1020197008420A priority patent/KR20190034694A/ko
Priority to KR1020207018757A priority patent/KR20200083657A/ko
Priority to DK03799876.2T priority patent/DK1585548T3/en
Priority to ES03799876.2T priority patent/ES2685436T3/es
Priority to BR0317134-5A priority patent/BR0317134A/pt
Priority to EP18178236.8A priority patent/EP3470084A1/en
Application filed by American Bioscience, Inc. filed Critical American Bioscience, Inc.
Publication of WO2004052401A2 publication Critical patent/WO2004052401A2/en
Publication of WO2004052401A3 publication Critical patent/WO2004052401A3/en
Priority to CY181100901T priority patent/CY1120625T1/el

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/05Phenols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/164Amides, e.g. hydroxamic acids of a carboxylic acid with an aminoalcohol, e.g. ceramides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
    • A61K31/198Alpha-amino acids, e.g. alanine or edetic acid [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/34Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
    • A61K31/343Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide condensed with a carbocyclic ring, e.g. coumaran, bufuralol, befunolol, clobenfurol, amiodarone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • A61K31/355Tocopherols, e.g. vitamin E
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/427Thiazoles not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/436Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having oxygen as a ring hetero atom, e.g. rapamycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/12Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
    • A61K38/13Cyclosporins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/0078Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a nebulizer such as a jet nebulizer, ultrasonic nebulizer, e.g. in the form of aqueous drug solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/146Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/702Integrated with dissimilar structures on a common substrate having biological material component
    • Y10S977/705Protein or peptide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/778Nanostructure within specified host or matrix material, e.g. nanocomposite films
    • Y10S977/779Possessing nanosized particles, powders, flakes, or clusters other than simple atomic impurity doping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/906Drug delivery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/908Mechanical repair performed/surgical
    • Y10S977/911Cancer cell destruction

Definitions

  • This invention pertains to pharmaceutical compositions comprising pharmaceutically active agents for parenteral or other internal use, which have the effect of reducing certain undesirable side effects upon administration when compared with available formulations of similar drugs.
  • the free drug present in the formulation induces pain or irritation upon administration.
  • phlebitis was observed in 50% of patients who received peripheral vein administration of ifosfamide and vinorelbine as first-line chemotherapy for advanced non-small cell lung carcinoma, (see, e.g., Vallejo et al., Am. J. Clin. Oncol, 19(6), 584-8 (1996)).
  • vancomycin has been shown to induce side effects such as phlebitis (see, e.g., Lopes Rocha et al., Braz. J. Infect. Dis., 6(4), 196-200 (2002)).
  • Taxol paclitaxel
  • codarone amiodarone hydrochloride
  • T3 or liothyronine commercially available as Triostat
  • thiotepa thiotepa
  • bleomycin a liothyronine
  • diagnostic radiocontrast agents thiotepa
  • bleomycin a liothyronine
  • diagnostic radiocontrast agents commercially available as Triostat
  • propofol for example, methods for reducing propofol-induced pain include increasing the fat content of the solvent (e.g., long chain triglycerides (LCT)), premedication, pretreatment with non- steroidal drugs, local anaesthetics, opioids, the addition of lidocaine, the addition of cyclodextrin, and microfiltration (see, e.g., Mayer et al., Anaesthesist, 45(11), 1082-4 (1996), Davies, et al. Anaesthesia, 57, 557-61 (2002), Doenicke, et al., Anaesth.
  • solvent e.g., long chain triglycerides (LCT)
  • propofol formulations have been developed with antibacterial agents, such as an EDTA equivalent (e.g., edetate), pentetate, or sulfite-containing agents, or they have been have been formulated with a lower pH (see, e.g., U.S. Patents 5,714,520, 5,731,355, 5,731,356, 6,028,108, 6,100,302, 6,147,122, 6,177,477, 6,399,087, 6,469,069, and International Patent Application No. WO 99/39696).
  • an EDTA equivalent e.g., edetate
  • pentetate pentetate
  • sulfite-containing agents e.g., sulfite-containing agents
  • edetate and pentetate are metal ion chelators, however, they have the potential to be dangerous by scavenging the essential metal ions from the body system. Moreover, the addition of sulphites to drug formulations presents potential adverse effects to the pediatric population and for those in the general population who are allergic to sulphur.
  • compositions and methods that reduce or eliminate the side effects associated with the parenteral or in vivo administration of drugs.
  • a pharmaceutical composition that is sterile, and methods of preparing such a composition.
  • a pharmaceutical composition and method that reduce or eliminate oxidation of pharmaceutical formulations to prevent drug destabilization.
  • the invention provides various embodiments of pharmaceutical compositions. One, some, or all of the properties of the various embodiments can be found in different embodiments of the invention and still fall within the scope of the appended claims.
  • the invention provides a pharmaceutical composition comprising a pharmaceutical agent and a pharmaceutically acceptable carrier, wherein the pharmaceutically acceptable carrier comprises a protein, such as albumin, more preferably human serum albumin, in an amount effective to reduce one or more side effects of administration of the pharmaceutical composition into a human, and wherein the pharmaceutically acceptable carrier comprises deferoxamine in an amount effective to inhibit microbial growth in the pharmaceutical composition.
  • the invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising a pharmaceutical agent and a pharmaceutically acceptable carrier, wherein the pharmaceutically acceptable carrier comprises a protein, such as albumin, in an amount effective to reduce one or more side effects of administration of the pharmaceutical composition into a human, and wherein the pharmaceutically acceptable carrier comprises deferoxamine in an amount effective to inhibit oxidation in the pharmaceutical composition.
  • the pharmaceutically acceptable carrier comprises a protein, such as albumin, in an amount effective to reduce one or more side effects of administration of the pharmaceutical composition into a human
  • the pharmaceutically acceptable carrier comprises deferoxamine in an amount effective to inhibit oxidation in the pharmaceutical composition.
  • the invention provides a method for reducing one or more side effects associated with administration of a pharmaceutical composition to a human comprising (a) a ⁇ ministering to a human a pharmaceutical composition comprising a pharmaceutical agent and a pharmaceutically acceptable carrier, wherein the pharmaceutically acceptable carrier comprises albumin and deferoxamine.
  • a pharmaceutical composition comprising a pharmaceutical agent and a pharmaceutically acceptable carrier, wherein the pharmaceutically acceptable carrier comprises deferoxamine in an amount effective for inhibiting microbial growth or in an amount effective for inMbiting oxidation in the pharmaceutical composition.
  • the invention also provides a method for enhancing transport of a pharmaceutical agent to the site of an infirmity, which method comprises administering to a human a pharmaceutical composition comprising a pharmaceutical agent and a pharmaceutically acceptable carrier, wherein the pharmaceutically acceptable carrier comprises albumin, and wherein the ratio of albumin to pharmaceutical agent in the pharmaceutical composition is about 18:1 or less.
  • the invention fi-irther provides a method for enhancing binding of a pharmaceutical agent to a cell in vitro or in vivo, which method comprises administering to said cell in vitro or in vivo a pharmaceutical composition comprising a pharmaceutical agent and a pharmaceutically acceptable carrier, wherein the pharmaceutically acceptable carrier comprises albumin, and wherein the ratio of albumin to pharmaceutical agent in the pharmaceutical composition is about 18:1 or less.
  • the invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising a pharmaceutical agent and a pharmaceutically acceptable carrier, wherein the pharmaceutically acceptable carrier comprises albumin in an amount effective to increase transport of the drug to the site of infirmity in a human, and wherein the ratio of albumin to pharmaceutical agent is about 18:1 or less.
  • the invention further provides a method for increasing the transport of a pharmaceutical agent to a cell in vitro or in vivo by combining said agent with a protein, wherein said protein binds a specific cell-surface receptor on said cell, wherein said binding of the protein-pharmaceutical agent combination with the said receptor causes the transport to occur, and wherein the ratio of protein to pharmaceutical agent is about 18:1 or less.
  • the invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising a pharmaceutical agent and a pharmaceutically acceptable carrier
  • the pharmaceutically acceptable carrier comprises a protein such as albumin, preferably human serum albumin, in an amount effective to reduce one or more side effects of administration of the pharmaceutical composition to a human
  • the pharmaceutically acceptable carrier comprises deferoxamine in an amount effective to inhibit microbial growth in the pharmaceutical composition.
  • the invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising a pharmaceutical agent and a pharmaceutically acceptable carrier, wherein the pharmaceutically acceptable carrier comprises a protein such as albumin in an amount effective to reduce one or more side effects of administration of the pharmaceutical composition to a human, and wherein the pharmaceutically acceptable carrier comprises deferoxamine in an amount effective to inhibit oxidation in the pharmaceutical composition.
  • the pharmaceutically acceptable carrier comprises a protein such as albumin in an amount effective to reduce one or more side effects of administration of the pharmaceutical composition to a human
  • the pharmaceutically acceptable carrier comprises deferoxamine in an amount effective to inhibit oxidation in the pharmaceutical composition.
  • Any suitable pharmaceutical agent can be used in the inventive pharmaceutical composition.
  • Suitable pharmaceutical agents include, but are not limited to, anticancer agents or antineoplastics, - timicrotubule agents, immunosuppressive agents, anesthetics, hormones, agents for use in cardiovascular disorders, antiarrythmics, antibiotics, antifungals, antihypertensives, antiasthmatics, analgesics, anti-inflammatory agents, anti- arthritic agents, and vasoactive agents.
  • anticancer agents or antineoplastics include, but are not limited to, anticancer agents or antineoplastics, - timicrotubule agents, immunosuppressive agents, anesthetics, hormones, agents for use in cardiovascular disorders, antiarrythmics, antibiotics, antifungals, antihypertensives, antiasthmatics, analgesics, anti-inflammatory agents, anti- arthritic agents, and vasoactive agents.
  • the invention is useful with many other drug classes as well.
  • suitable pharmaceutical agents include, but are not limited to, taxanes, (e.g., Taxol ® (paclitaxel), and TaxotereTM (docetaxel)), epothilones, camptothecin, colchicine, amiodarone, thyroid hormones, vasoactive peptides (e.g., vasoactive intestinal peptide), amphotericin, corticosteroids, propofol, melatonin, cyclosporine, rapamycin (sirolimus), tacrolimus, mycophenolic acids, ifosfamide, vinorelbine, vancomycin, gemcitabine, SU5416, thiotepa, bleomycin, diagnostic radiocontrast agents, and derivatives thereof.
  • taxanes e.g., Taxol ® (paclitaxel), and TaxotereTM (docetaxel)
  • epothilones camptothecin
  • colchicine
  • the pharmaceutical agent is propofol, paclitaxel, or docetaxel. More preferably, the pharmaceutical agent is propofol or paclitaxel. Most preferably, the pharmaceutical agent is propofol.
  • Taxol ® paclitaxel
  • Bristol-Myers Squibb is active against carcinomas of the ovary, breast, lung, esophagus and head and neck.
  • Taxol has been shown to induce toxicities associated with administration, as well significant acute and cumulative toxicity, such as myelosuppression, neutropenic fever, anaphylactic reaction, and peripheral neuropathy. Because paclitaxel is poorly soluble in water, cremophor typically is used as a solvent, requiring large infusion volumes and special tubing and filters. Cremophor is associated with side effects that can be severe, including anaphylaxis and other hypersensitivity reactions that can require pretreatment with corticosteroids, antihistamines, and H 2 blockers (see, e.g., Gelderblom et al., Eur. J. of Cancer, 37, 1590-1598, (2001)).
  • TaxotereTM (docetaxel) is used in treatment of anthracycline-resistant breast cancer, but also has previously been shown to induce side effects of hypersensitivity and fluid retention that can be severe.
  • Epothilone (and derivatives thereof) also typically is administered in cremophor, and has been shown to induce severe neutropenia, hypersensitivity, and neuropathy.
  • Propofol (2,6-diisopropylphenol) is a hydrophobic, water-insoluble oil, which is widely used as an intravenous anesthetic agent to induce and maintain general anesthesia and sedation of humans and animals.
  • Propofol typically is administered directly into the bloodstream and crosses the blood-brain barrier.
  • Pharmaceutical compositions comprising propofol must have sufficient lipid solubility to cross this barrier and depress the relevant mechanisms of the brain.
  • Propofol has a maximum solubility in water of 1.0 +/-0.02 ⁇ M at 22.5 °C (see, e.g., Tonner et al., Anesthesiology, 77, 926-931 (1992)).
  • propofol is generally formulated as an emulsion containing solubilizing agents, surfactants, solvents, or as an oil-in-water emulsion (see, e.g., U.S. Patents 6,150,423, 6,326, 406, and 6,362,234).
  • the compositions of the present invention include pharmaceutical carriers, or excipients.
  • the choice of carrier is not necessarily critical, and any of the carriers known in the art can be used in the composition.
  • the choice of carrier is preferably determined, in part, by the particular site to which the pharmaceutical composition is to be administered and the particular method used to administer the pharmaceutical composition.
  • the pharmaceutically acceptable carrier comprises proteins. Any suitable protein can be used.
  • suitable proteins include, but are not limited to albumin, immunoglobulins including IgA, lipoproteins, apolipoprotein B, beta-2-macroglobulin, thyroglobulin and the like.
  • the pharmaceutically acceptable carrier comprises albumin, most preferably human serum albumin. Proteins, including albumin, suitable for the invention may be natural in origin or synthetically prepared.
  • HSA Human serum albumin
  • HSA solution Intravenous use of HSA solution has been indicated for the prevention and treatment of hypovolumic shock (see, e.g., Tullis, JAMA, 237, 355-360, 460- 463, (1977)) and Houser et al., Surgery, Gynecology and Obstetrics, 150, 811-816 (1980)) and in conjunction with exchange transfusion in the treatment of neonatal hyperbilirubinemia (see, e.g., Finlayson, Seminars in Thrombosis and Hemostasis, 6, 85- 120, (1980)).
  • HSA Human serum albumin
  • hydrophobic binding sites a total of eight for fatty acids, an endogenous ligand of HSA
  • binds a diverse set of drugs, especially neutral and negatively charged hydrophobic compounds Goodman et al., The Pharmacological Basis of Therapeutics, 9 th ed, McGraw-Hill New York (1996).
  • Two high affinity binding sites have been proposed in subdomains IIA and IIIA of HSA, which are highly elongated hydrophobic pockets with charged lysine and arginine residues near the surface which function as attachment points for polar ligand features (see, e.g., Fehske et al., Biochem.
  • the inclusion of proteins such as albumin in the inventive pharmaceutical compositions results in a reduction in side effects associated with administration of the pharmaceutical composition that is due, at least in part, to the binding of human serum albumin to any free drug that is present in the composition.
  • the amount of albumin included in the pharmaceutical composition of the present invention will vary depending on the pharmaceutical active agent, other excipients, and the route and site of intended administration. Desirably, the amount of albumin included in the composition is an amount effective to reduce one or more side effects the active pharmaceutical agent due to the of administration of the inventive pharmaceutical composition to a human.
  • the pharmaceutical composition is prepared in liquid form, and the albumin is then added in solution.
  • the pharmaceutical composition, in liquid form comprises from about 0.1% to about 25% by weight (e.g. about 0.5% by weight, about 5% by weight, about 10% by weight, about 15% by weight, or about 20% by weight) of albumin.
  • the pharmaceutical composition, in liquid form comprises about 0.5% to about 5% by weight of albumin.
  • the pharmaceutical composition can be dehydrated, for example, by lyophilization, spray-drying, fluidized-bed drying, wet granulation, and other suitable methods known in the art.
  • the albumin preferably is applied to the active pharmaceutical agent, and other excipients if present, as a solution.
  • the HSA solution preferably is from about 0.1% to about 25% by weight (about 0.5% by weight, about 5% by weight, about 10% by weight, about 15% by weight, or about 20% by weight) of albumin.
  • compositions of the present invention preferably comprise deferoxamine.
  • Deferoxamine is a natural product isolated from Streptomyces pilosus, and is capable of forming iron complexes.
  • Deferoxamine mesylate for injection USP for example, is approved by the Food and Drug Administration as an iron-chelating agent and is available for intramuscular, subcutaneous, and intravenous administration.
  • Deferoxamine mesylate USP is a white to off-white powder. It is freely soluble in water and its molecular weight is 656.79.
  • deferoxamine mesylate N-[5- [3-[(5---minopentyl)-hydroxyc- ⁇ rbamoyl]-propion-amido]pentyl]-3[[5-((N- hydroxyacetamido)pentyl] -carbamoyljpropionohydroxamic acid monomethanesulfonate (salt), and its structural formula is C 25 -.- 8 N 6 O 8 .CH 3 SO 3 H.
  • deferox-imine, or analogs, derivatives, or salts (e.g., mesylate salts) thereof inhibits microbial growth and oxidation in the pharmaceutical composition, and it is believed to bind to free drug in the composition.
  • Deferoxamine also has been shown to bind to phenolic compounds (see, e.g., Juven et al., J. Appl Bacteriol, 76(6), 626-31 (1994)).
  • Paclitaxel, docetaxel, propofol, and the like are either phenolic like or have phenolic or phenyl substituents. Therefore, it is believed that deferoxamine can bind to or reduce the amount of free drug in the inventive pharmaceutical composition, thereby also reducing or alleviating irritation or pain upon injection.
  • the amount of deferoxamine, or its preferred salt, i.e., a mesylate salt of deferoxamine, included in the composition will depend on the active pharmaceutical agent and other excipients. Desirably, the amount of deferoxamine, its salts, and analogs thereof in the composition is an amount effective to inhibit microbial growth and/or inhibit oxidation. As described above, typically the pharmaceutical composition is prepared in liquid form, and deferox-tmine, it salts, and analogs thereof, is then added in solution.
  • the pharmaceutical composition in liquid form, comprises from about 0.0001% to about 0.5% by weight (e.g., about 0.005% by weight, about 0.1%, or about 0.25% by weight) of deferoxamine, its salts, or its analogs. More preferably, the composition, in liquid form, comprises like amounts of the preferred deferoxamine salt, deferoxamine mesylate. Most preferably, the pharmaceutical composition, in liquid form, comprises about 0.1% by weight of deferoxamine mesylate.
  • deferoxamine mesylate When the composition is prepared in solid form, as described above, such as by wet granulation, fluidized-bed drying, and other methods known to those skilled in the art, deferoxamine mesylate preferably is applied to the active pharmaceutical agent, and other excipients if present, as a solution.
  • the deferoxamine mesylate solution preferably is from about 0.0001% to about 0.5% by weight (e.g., about 0.005% by weight, about 0.1%, or about 0.25% by weight) of deferoxamine.
  • the pharmaceutical composition can include other agents , excipients, or stabilizers to improve properties of the composition.
  • negatively charged components include, but are not limited to bile salts of bile acids consisting of glycocholic acid, cholic acid, chenodeoxycholic acid, taurocholic acid, glycochenodeoxycholic acid, taurochenodeoxycholic acid, litocholic acid, ursodeoxycholic acid, dehydrocholic acid and others; phospholipids including Lecithin (Egg yolk) based phospholipids which include the following phosphatidylcholines : palmitoyloleoylphosphatidylcholine, palmitoyllinoleoylphosphatidylcholine , stearoyllinoleoylphosphatidylcholine stearoyloleoylphosphatidylcholine, stearoylarachidoylphosphatidylcholine, and dipalmito
  • phospholipids including L- ⁇ - dimyristoylphosphatidylcholine (DMPC), dioleoylphosphatidylcholine (DOPC), distearyolphosphatidylcholine (DSPC), hydrogenated soy phosphatidylcholine (HSPC), D- ⁇ -phosphatidylcholine, ⁇ -acetyl- ⁇ -O-hexadecyl, L- ⁇ -phosphatidylcholine, ⁇ -acetyl- ⁇ -O- hexadecyl, DL- ⁇ -phosphatidylcholine, ⁇ -acetyl- ⁇ -O-hexadecyl, L- ⁇ -phosphatidylcholine, ⁇ -acetyl- ⁇ -O-octadecyl, L- ⁇ -phosphatidylcholine, ⁇ -arachidonoyl- ⁇ -O-hexadecyl, L- ⁇ - phosphatidylcholine,
  • Negatively charged surfactants of emulsifiers are also suitable as additives, e.g., sodium cholesteryl sulfate and the like.
  • the pharmaceutical agent e.g., propofol
  • the pharmaceutical agent may be used alone or dissolved in a water-immiscible solvent.
  • a wide range of water-immiscible solvents such as soybean, safflower, cottonseed, corn, sunflower, arachis, castor, or olive oil may be used.
  • the preferred oil is a vegetable oil, wherein soybean oil is most preferred. Soybean oil may be used in a range of 1% to 10% by weight of the composition.
  • soybean oil is present in the pharmaceutical composition in an amount of about 3% by weight.
  • the inventive pharmaceutical composition can be stabilized with a pharmaceutically acceptable surfactant.
  • surfactants refers to surface active group(s) of amphiphile molecules.
  • Surfactants can be anionic, cationic, nonionic, and zwitterionic. Any suitable surfactant can be included in the inventive pharmaceutical composition.
  • Suitable surfactants include non-ionic surfactants such as phosphatides, polyoxyethylene sorbitan esters, and tocopheryl polyethylene glycol succinate.
  • Preferable surfactants are egg lecithin, tween 80, and vitamin E-t d- ⁇ -tocopheryl polyethylene glycol-1000 succinate (TPGS).
  • egg lecithin is preferred and is no more than 1.2% by weight for a formulation containing 3% soybean oil, preferably at 1.1% by weight of the composition.
  • tween 80 or vitamin E-TPGS are the preferred surfactants.
  • 0.1 to 1.5% by weight of tween 80 or 0.5 to 4% by weight of vitamin E-TPGS is suitable.
  • 1.5% by weight of tween 80 or 1% by weight of vitamin E-TPGS is used.
  • suitable surfactants are described in, for example, Becher, Emulsions: Theory and Practice, Robert E. Krieger Publishing, Malabar, Fla. (1965).
  • Formulations suitable for oral administration can consist of (a) liquid solutions, such as an effective amount of the compound dissolved in diluents, such as water, saline, or orange juice, (b) capsules, sachets or tablets, each containing a predetermined amount of the active ingredient, as solids or granules, (c) suspensions in an appropriate liquid, and (d) suitable emulsions.
  • diluents such as water, saline, or orange juice
  • capsules, sachets or tablets each containing a predetermined amount of the active ingredient, as solids or granules
  • suspensions in an appropriate liquid and (d) suitable emulsions.
  • Tablet forms can include one or more of lactose, mannitol, corn starch, potato starch, microcrystalline cellulose, acacia, gelatin, colloidal silicon dioxide, croscarmellose sodium, talc, magnesium stearate, stearic acid, and other excipients, colorants, diluents, buffering agents, moistening agents, preservatives, flavoring agents, and pharmacologically compatible excipients.
  • Lozenge forms can comprise the active ingredient in a flavor, usually sucrose and acacia or tragacanth, as well as pastilles comprising the active ingredient in an inert base, such as gelatin and glycerin, or sucrose and acacia, emulsions, gels, and the like containing, in addition to the active ingredient, such excipients as are known in the art.
  • a flavor usually sucrose and acacia or tragacanth
  • pastilles comprising the active ingredient in an inert base, such as gelatin and glycerin, or sucrose and acacia, emulsions, gels, and the like containing, in addition to the active ingredient, such excipients as are known in the art.
  • Formulations suitable for parenteral administration include aqueous and non- aqueous, isotonic sterile injection solutions, which can contain anti-oxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives.
  • the formulations can be presented in unit-dose or multi-dose sealed containers, such as ampules and vials, and can be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid excipient, for example, water, for injections, immediately prior to use.
  • Formulations suitable for aerosol administration comprise the inventive pharmaceutical composition include aqueous and non-aqueous, isotonic sterile solutions, which can contain anti-oxidants, buffers, bacteriostats, and solutes, as well as aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, ttackening agents, stabilizers, and preservatives, alone or in combination with other suitable components, which can be made into aerosol formulations to be administered via inhalation.
  • aqueous and non-aqueous, isotonic sterile solutions which can contain anti-oxidants, buffers, bacteriostats, and solutes
  • aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, ttackening agents, stabilizers, and preservatives, alone or in combination with other suitable components, which can be made into aerosol formulations to be administered via inhalation.
  • aerosol formulations can be placed into pressurized acceptable propellants, such as dichlorodifluoromethane, propane, nitrogen, and the like. They also can be formulated as pharmaceuticals for non-pressured preparations, such as in a nebulizer or an atomizer.
  • suitable formulations are possible, for example, suppositories can be prepared by use of a variety of bases such as emulsifying bases or water-soluble bases.
  • Formulations suitable for vaginal administration can be presented as pessaries, tampons, creams, gels, pastes, foams, or spray formulas containing, in addition to the active ingredient, such carriers as are known in the art to be appropriate.
  • the pharmaceutical composition is formulated to have a pH range of 4.5 to 9.0, and more preferably a pH of 5.0 to 8.0.
  • the pharmaceutical composition can also be made to be isotonic with blood by the addition of a suitable tonicity modifier, such as glycerol.
  • the pharmaceutically acceptable carrier preferably also comprises pyrogen-free water or water for injection, USP.
  • the inventive pharmaceutical composition is prepared as a sterile aqueous formulation, a nanoparticle, an oil-in-water emulsion, or a water-in-oil emulsion. Most preferably, the pharmaceutical composition is an oil-in-water emulsion.
  • an oil-in-water emulsion is prepared by dissolving propofol in a water- immiscible solvent alone, and preparing an aqueous phase containing albumin, deferoxamine, a surfactant, and other water-soluble ingredients, and mixing the oil with the aqueous phase.
  • the crude emulsion is high pressure homogenized at pressures of 10,000 to 25,000 psi and recirculated for 5 to 20 cycles to form an ideal emulsion.
  • the preferred pressure is 15,000 to 20,000 psi., and more preferably 10,000 psi.
  • the crude emulsion may be recirculated from 7 to 15 cycles and is preferably recirculated at 15 cycles.
  • discrete passes through a homogenizer may be used.
  • the inventive pharmaceutical composition can have a particle or droplet size less than about 200 nanometers (nm).
  • nm nanometers
  • the mean size of these dispersions is less than 200 nm.
  • the invention further provides a method for reducing one or more side effects associated with administration of a pharmaceutical composition to a human.
  • the method comprises administering to a human a pharmaceutical composition comprising a pharmaceutical agent and a pharmaceutically acceptable carrier, wherein the pharmaceutically acceptable carrier comprises albumin and deferoxamine.
  • a pharmaceutical composition comprising a pharmaceutical agent and a pharmaceutically acceptable carrier, wherein the pharmaceutically acceptable carrier comprises albumin and deferoxamine.
  • the dose of the inventive pharmaceutical composition administered to a human will vary with the particular pharmaceutical composition, the method of administration, and the particular site being treated.
  • the dose should be sufficient to effect a desirable response, such as a therapeutic or prophylactic response against a particular disease, or, when the pharmaceutical agent is an anaesthesia, such as propofol, an anesthetic response, within a desirable time frame.
  • the inventive pharmaceutical composition is administered to the human via intravenous administration, intra-arterial administration, intrapulmonary administration, oral administration, inhalation, intravesicular administration, intramuscular administration, intra-tracheal administration, subcutaneous administration, intraocular administration, intrathecal administration, or transdermal administration.
  • inventive pharmaceutical composition can be administered by inhalation to treat conditions of the respiratory tract. There are minimal side-effects associated with the inhalation of the inventive pharmaceutical composition, as albumin is a natural component in the lining and secretions of the respiratory tract.
  • the inventive composition can be used to treat respiratory conditions such as pulmonary fibrosis, broncheolitis obliterans, lung cancer, bronchoalveolar carcinoma, and the like.
  • the inventive method results in the reduction of one or more side effects associated with administration of a pharmaceutical composition to a human.
  • side effects include, for example, myelosuppression, neurotoxicity, hypersensitivity, inflammation, venous irritation, phlebitis, pain, skin irritation, and combinations thereof.
  • the invention -further provides a method for inhibiting microbial growth in a pharmaceutical composition.
  • inhibiting microbial growth is meant either a complete elimination of microbes from the pharmaceutical composition, or a reduction in the amount or rate of microbial growth in the pharmaceutical composition.
  • the method comprises preparing a pharmaceutical composition comprising a pharmaceutical agent and a pharmaceutically acceptable carrier, wherein the pharmaceutically acceptable carrier comprises deferoxamine, its salts, its analogs, and combinations thereof, in an amount effective for inhibiting microbial growth in the pharmaceutical composition.
  • the invention provides a method for inhibiting oxidation of a pharmaceutical composition.
  • This method comprises preparing a pharmaceutical composition comprising a pharmaceutical agent and a pharmaceutically acceptable carrier, wherein the pharmaceutically acceptable carrier comprises deferoxamine, its salts, its analogs, and combinations thereof, in an amount effective for inhibiting oxidation of the pharmaceutical composition.
  • the pharmaceutical composition, pharmaceutical agent, and pharmaceutically acceptable carrier, and components thereof set forth above in connection with the inventive pharmaceutical composition also are applicable to those same aspects of the inventive method.
  • the amount of deferoxamine, or its preferred salt, a mesylate salt of deferoxamine, included in the composition will depend on the active pharmaceutical agent and other excipients. Desirably, the amount of deferoxamine, its salts, and analogs thereof in the composition is an amount effective to inhibit microbial growth and/or inhibit oxidation. As described above, typically, the pharmaceutical composition is prepared in liquid form, and deferoxamine, it salts, and analogs thereof, is then added in solution.
  • the pharmaceutical composition in liquid form, comprises from about 0.0001% to about 0.5% by weight (e.g., about 0.005% by weight, about 0.1%, or about 0.25% by weight) of deferoxamine, its salts, or its analogs. More preferably, the composition, in liquid form, comprises like amounts of the preferred deferoxamine salt, deferoxamine mesylate. Most preferably, the pharmaceutical composition, in liquid form, comprises about 0.5% by weight of deferoxamine mesylate.
  • deferoxamine mesylate When the composition is prepared in solid form, as described above, such as by wet granulation, fluidized-bed drying, and other methods known to those skilled in the art, deferoxamine mesylate preferably is applied to the active pharmaceutical agent, and other excipients if present, as a solution.
  • the deferoxamine mesylate solution preferably is from about 0.0001% to about 0.5% by weight (e.g., about 0.005% by weight, about 0.1%, or about 0.25% by weight) of deferoxamine.
  • the invention also provides a method for enhancing transport of a pharmaceutical agent to the site of an infirmity, which method comprises administering to a human a pharmaceutical composition comprising a pharmaceutical agent and a pharmaceutically acceptable carrier, wherein the pharmaceutically acceptable carrier comprises albumin, and wherein the ratio of albumin to pharmaceutical agent in the pharmaceutical composition is about 18:1 or less.
  • the invention further provides a method for enhancing binding of a pharmaceutical agent to a cell in vitro or in vivo, which method comprises administering to said cell in vitro or in vivo a pharmaceutical composition , comprising a pharmaceutical agent and a pharmaceutically acceptable carrier, wherein the pharmaceutically acceptable carrier comprises albumin, and wherein the ratio of albumin to pharmaceutical agent in the pharmaceutical composition is about 18:1 or less.
  • Descriptions of the pharmaceutical composition, pharmaceutical agent, pharmaceutically acceptable carrier, administration routes, and components thereof set forth above in connection with the inventive pharmaceutical composition and inventive method also are applicable to those same aspects of the transport and binding methods.
  • the pharmaceutically acceptable carrier preferably comprises albumin, most preferably human serum albumin.
  • albumin most preferably human serum albumin.
  • the ratio of protein, e.g., human serum albumin, to pharmaceutical agent in the pharmaceutical composition affects the ability of the pharmaceutical agent to bind and transport the pharmaceutical agent to a cell.
  • higher ratios of protein to pharmaceutical agent generally are associated with poor cell binding and transport of the pharmaceutical agent, which possibly is the result of competition for receptors at the cell surface.
  • the ratio of protein, e.g., albumin, to active pharmaceutical agent must be such that a sufficient amount of pharmaceutical agent binds to, or is transported by, the cell.
  • Exemplary ranges for protein-drug preparations are protein to drug ratios (w/w) of 0.01:1 to about 100:1. More preferably, the ratios are in the range of 0.02:1 to about 40:1. While the ratio of protein to pharmaceutical agent will have to be optimized for different protein and pharmaceutical agent combinations, generally the ratio of protein, e.g., albumin, to pharmaceutical agent is about 18:1 or less (e.g., about 15:1, about 10:1, about 5:1, or about 3:1). More preferably, the ratio is about 0.2:1 to about 12:1.
  • the ratio is about 1 :1 to about 9:1.
  • the formulation is essentially free of cremophor, and more preferably free of Cremophor EL ® (BASF).
  • Cremophor EL ® is a non-ionic emulsifying agent that is a polyether of castor oil and ethylene oxide.
  • cremophor typically is used as a solvent for paclitaxel, and is associated with side effects that can be severe (see, e.g., Gelderblom et al., supra).
  • the pharmaceutical agent can be any suitable pharmaceutical agent described herein (e.g., propofol, paclitaxel, or docetaxel).
  • the pharmaceutical agent can be a nucleic acid sequence, most preferably a DNA sequence.
  • the inventive pharmaceutical composition can be used to transport genes to a cell by way of a receptor mediated/caveolar/vescicular transport.
  • DNA sequences such as genes or other genetic material, including but not limited to plasmids or c-DNA
  • a cell e.g. an endothelial cell or a tumor cell
  • pharmaceutical compositions comprising albumin in combination with genetic material can be prepared. Since tumor cells and other cells in sites of inflammation have high uptake for proteins, the genetic material is preferentially taken up into these cell types and may be incorporated into the genetic material of the cell for a useful therapeutic effect.
  • proteins such as human serum albumin
  • a pharmaceutical composition comprising the nucleic acid sequence encoding ⁇ -galactosidase or green fluorescent protein (GFP) and albumin can be prepared and contacted with endothelial cells derived from human umbilical vein or human lung micro vessels to facilitate incorporation of the nucleic acid sequence into the endothelial cells. Incorporation of the nucleic acid sequence can be detected using methods known in the art, such as, for example, fluorescence or staining.
  • the infirmity can be any suitable disease or condition.
  • the infirmity is cancer, cardiovascular disease, or arthritis.
  • the pharmaceutical composition is administered to a cell in vitro or in vivo.
  • the cell is an animal cell. More preferably the cell is a mammalian cell, and most preferably the cell is a human cell.
  • the pharmaceutical composition preferably is administered to a cell in vivo.
  • the cell can be any suitable cell that is a desirable target for administration of the pharmaceutical composition.
  • the cell can be located in or derived from tissues of the digestive system including, for example, the esophagus, stomach, small intestine, colon, rectum, anus, liver, gall bladder, and pancreas.
  • the cell also can be located in or derived from tissues of the respiratory system, including, for example, the larynx, lung, and bronchus.
  • the cell can be located in or derived from, for example, the uterine cervix, the uterine corpus, the ovary vulva, the vagina, the prostate, the testis, and the penis, which make up the male and female genital systems, and the urinary bladder, kidney, renal pelvis, and ureter, which comprise the urinary system.
  • the cell can be located in or derived from tissues of the cardiovascular system, including, for example, endothelial cells and cardiac muscle cells.
  • the cell also can be located in or derived from tissues of the lymphoid system (e.g., lymph cells), the nervous system (e.g., neurons or glial cells), and the endocrine system (e.g., thyroid cells).
  • the cell is located in or derived from tissues of the cardiovascular system.
  • the cell is an endothelial cell.
  • the pharmaceutical composition desirably contacts more than one cell.
  • the inventive methods for enhancing transport and enhancing binding of a pharmaceutical agent to a cell can be used to treat tumor cells.
  • Tumor cells exhibit an enhanced uptake of proteins including, for example, albumin and transferrin, as compared to normal cells. Since tumor cells are dividing at a rapid rate, they require additional nutrient sources compared to normal cells.
  • Tumor studies of the inventive pharmaceutical compositions containing paclitaxel and human serum albumin showed high uptake of albumin-paclitaxel into tumors. This has been found to be due to the previously unrecognized phenomenon of the albumin-drug transport by glycoprotein 60 ("gp60") receptors, which are specific for albumin.
  • gp60 glycoprotein 60
  • the albumin- specific gp60 receptor and other protein transport receptors that are present on tumor cells can be used as a target to inhibit tumor growth.
  • blocking the gp60 receptor using antibodies against the gp60 receptor or other large or small molecule compounds that bind, block, or inactivate gp60 and other protein transport receptors on tumor cells or tumor endothelial cells, it is possible to block the transport of proteins to these cells and thereby reduce their growth rate and cause cell death. Blocking of this mechanism thus results in the treatment of a subject (e.g., a human) with cancer or another disease.
  • Identification of blocking/binding of the specific protein receptor is done by screening any number of compounds against the isolated gp60 or other receptors, such as gpl6 orgp30, or by using a whole cell preparation.
  • suitable animal models also can be used for this purpose, such as, for example, mice containing "knock-out" mutations of the genes encoding gp60 or caveolin-1, or other proteins that are specific for transport.
  • method of identification of compounds that block or bind gp60, gpl6, gp30, or other protein receptors are within the scope of the invention.
  • compounds that block or bind the gp60 receptor or other protein receptors can be used in the treatment of several diseases, including cancer.
  • the blocking or binding compound may be used as a single agent or in combination with other standard chemotherapy or chemotherapies.
  • Blocking compounds can be administered prior to, or in conjunction with, other chemotherapeutic or anticancer agents.
  • any compounds that can block or bind the gp60 receptor, or other protein receptors are within the scope of the present invention.
  • inventive albumin-drug compositions such as e.g., albumin-paclitaxel, albumin-docetaxel, albumin-epothilone, albumin-camptothecin, or albumin-rapamycin, and others, are useful in the treatment of diseases. It is believed that such drug compositions are effective due to increased receptor mediated transport of the protein-drug composition to the required site, for example a tumor.
  • the transport of a protein-drug composition by receptor mediated transport resulting in a therapeutic effect is believed to be the mechanism for transport of for example, albumin- paclitaxel compositions to a tumor, as well as albumin-paclitaxel and albumin-rapamycin transport across the lung. Transport is effected by the presence of gp60, gpl6, or gp30 in such tissues. Accordingly, drugs and protein-drug compositions whose transport to sites of disease, e.g., inflammation (e.g., arthritis) or tumors is associated with gp60, gpl6, or gp30 receptors and that result in a therapeutic effect are contemplated as compositions of the present invention.
  • inflammation e.g., arthritis
  • endothelial cells can be co-cultured with cells having a specific function. Incubation of endothelial cells with other cell types such as islet cells, hepatocytes, neuroendocrine cells, and others allows for required transport of components such as proteins and other beneficial components to these cells.
  • the endothelial cells provide for transport of these components to the cultured cell types in order to simulate in vivo conditions, i.e., where these cell types would normally be in close proximity to endothelial cells and would depend on the endothelial cells for transport of nutrients, growth factors, hormone signals, etc. that are required for their proper function.
  • endothelial cells have previously not been possible to adequately culture these different cell types and obtain physiological performance when endothelial cells were absent.
  • the presence of endothelial cells in culture with desired cell types allows for differentiation and proper functioning of islets, hepatocytes, or neuroendocrine tissue in vitro or ex vivo.
  • coculture of endothelial cells with islets results in islets with improved physiological properties e.g., ability to secrete insulin, when compared with those cultured in the absence of endothelial cells.
  • This tissue can then be used ex vivo or transplanted in vivo to treat diseases caused by lack of adequate cellular function (e.g., diabetes in the case of islet cells, hepatic dysfunction in the case of hepatocytes, and neuroendocrine disorders or pain relief in the case of neuroendocrine cells).
  • diseases caused by lack of adequate cellular function e.g., diabetes in the case of islet cells, hepatic dysfunction in the case of hepatocytes, and neuroendocrine disorders or pain relief in the case of neuroendocrine cells.
  • Cells originating from other tissues and organs may also be cocultured with endothelial cells to provide the same benefit.
  • the coculture may be utilized to incorporate genetic material into the target cell types. The presence of albumin in these cultures is found to be greatly beneficial.
  • EXAMPLE 1 This example demonstrates the preparation of pharmaceutical compositions comprising paclitaxel and albumin. Preparation of paclitaxel-albumin compositions is described in U.S. Patents 5,439,686 and 5,916,596, which are incorporated in their entirety by reference. Specifically, 30 mg of paclitaxel was dissolved in 3.0'ml methylene chloride. The solution was added to 27.0 ml of human serum albumin solution (2% w/v). Deferoxamine was added as necessary.
  • the mixture was homogenized for 5 minutes at low RPM (Nitris homogenizer, model Tempest I.Q.) in order to form a crude emulsion, and then transferred into a high pressure homogenizer (Avestin).
  • the emulsification was performed at 9000-40,000 psi while recycling the emulsion for at least 5 cycles.
  • the resulting system was transferred into a rotary evaporator, and methylene chloride was rapidly removed at 40°C, at reduced pressure (30 mm Hg) for 20-30 minutes.
  • the resulting dispersion was translucent, and the typical average diameter of the resulting paclitaxel particles was in the range 50-220 nm (Z-average, Malvern Zetasizer).
  • the dispersion was ftirther lyophilized for 48 hrs.
  • the resulting cake could be easily reconstituted to the original dispersion by addition of sterile water or saline.
  • the particle size after reconstitution was the same as before lyophilization.
  • the amounts, types and proportions of drug, solvents, proteins used in this example are not limiting in any way.
  • the inventive pharmaceutical composition containing albumin showed substantially lower toxicity.
  • EXAMPLE 2 This example demonstrates the preparation of a pharmaceutical composition comprising amiodarone and albumin. 30 mg of amiodarone was dissolved in 3.0 ml methylene chloride. The solution was added to 27.0 ml of human serum albumin solution (1% w/v). Deferox-imine was added as necessary. The mixture was homogenized for 5 minutes at low RPM (Vitris homogenizer, model Tempest I.Q.) in order to form a crude emulsion, and then transferred into a high pressure homogenizer (Avestin). The emulsification was performed at 9000-40,000 psi while recycling the emulsion for at least 5 cycles.
  • the resulting system was transferred into a rotary evaporator, and methylene chloride was rapidly removed at 40°C, at reduced pressure (30 mm Hg) for 20-30 minutes.
  • the resulting dispersion was translucent, and the typical average diameter of the resulting amiodarone particles was in the range 50-220 nm (Z-average, Malvern Zetasizer).
  • the dispersion was further lyophilized for 48 hrs.
  • the resulting cake was easily reconstituted to the original dispersion by addition of sterile water or saline.
  • the particle size after reconstitution was the same as before lyophilization.
  • EXAMPLE 3 This example demonstrates the preparation of pharmaceutical compositions comprising liothyronine and albumin compositions.
  • Liothyronine (or suitable salt) was dissolved in an aqueous alcoholic solution or alkaline solution at a concentration of 0.5 - 50 mg/ml.
  • the alcoholic (or alkaline) solution was added to an albumin solution (0.1 - 25% w/v) and agitated. Agitation was low shear with a stirrer or high shear using a sonicator or a homogenizer.
  • At low concentrations of liothyronine, (5 - 1000 ⁇ g/ml) clear solutions were obtained. As the concentration was increased, a milky stable suspension was obtained. These solutions or suspensions were filtered through a sterilizing filter. Organic solvents were removed by evaporation or other suitable method.
  • EXAMPLE 4 This example demonstrates the preparation of pharmaceutical compositions comprising rapamycin and albumin. 30 mg of rapamycin was dissolved in 2 ml chloroform/ethanol. The solution was then added into 27.0 ml of a human serum albumin solution (3% w/v). The mixture was homogenized for 5 minutes at low RPM (Nitris homogenizer model Tempest I.Q.) in order to form a crude emulsion, and then transferred into a high pressure homogenizer (Avestin). The emulsification was performed at 9000- 40,000 psi while recycling the emulsion for at least 5 cycles.
  • RPM Netris homogenizer model Tempest I.Q.
  • the resulting system was transferred into a Rotavap and solvent was rapidly removed at 40°C, at reduced pressure (30 mm Hg) for 20-30 minutes.
  • the resulting dispersion was translucent and the typical average diameter of the resulting particles was in the range 50-220 nm (Z-average, Malvern Zetasizer).
  • the dispersion was further lyophilized for 48 hours.
  • the resulting cake was easily reconstituted to the original dispersion by addition of sterile water or saline.
  • the particle size after reconstitution was the same as before lyophilization. It should be recognized that the amounts, types and proportions of drug, solvents, proteins used in this example are not limiting in anyway.
  • EXAMPLE 5 This example demonstrates the preparation of a pharmaceutical composition comprising epothilone B and albumin. 30 mg of epothilone B was dissolved in 2 ml chloroform/ethanol. The solution was then added into 27.0 ml of a human serum albumin solution (3% w/v). Deferoxamine was added as necessary. The mixture was homogenized for 5 minutes at low RPM (Vitris homogenizer model Tempest I.Q.) in order to form a crude emulsion, and then transferred into a high pressure homogenizer (Avestin). The emulsification was performed at 9000-40,000 psi while recycling the emulsion for at least 5 cycles.
  • the resulting system was transferred into a Rotavap and solvent was rapidly removed at 40°C, at reduced pressure (30 mm Hg) for 20-30 minutes.
  • the resulting dispersion was translucent and the typical average diameter of the resulting particles was in the range 50-220 nm (Z-average, Malvern Zetasizer).
  • the dispersion was further lyophilized for 48 hours.
  • the resulting cake was easily reconstituted to the original dispersion by addition of sterile water or saline.
  • the particle size after reconstitution was the same as before lyophilization. It should be recognized that the amounts, types and proportions of drug, solvents, proteins used in this example are not limiting. When compared to toxicity of epothilone B dissolved in cremophor formulations, the pharmaceutical composition comprising albumin showed substantially lower toxicity.
  • EXAMPLE 6 This example demonstrates the preparation of pharmaceutical compositions comprising colchicine dimer and albumin. 30 mg of colchicine-dimer was dissolved in 2 ml chloroform/ethanol. The solution was then added into 27.0 ml of human serum albumin solution (3% w/v). Deferoxamine was added as necessary. The mixture was homogenized for 5 minutes at low RPM (Vitris homogenizer model Tempest I.Q.) in order to form a crude emulsion, and then transferred into a high pressure homogenizer (Avestin). The emulsification was performed at 9000-40,000 psi while recycling the emulsion for at least 5 cycles.
  • RPM Volitris homogenizer model Tempest I.Q.
  • the resulting system was transferred into a Rotavap and solvent was rapidly removed at 40°C, at reduced pressure (30 mm Hg) for 20-30 minutes.
  • the resulting dispersion was translucent and the typical average diameter of the resulting particles was in the range 50-220 nm (Z-average, Malvern Zetasizer).
  • the dispersion was further lyophilized for 48 hours.
  • the resulting cake was easily reconstituted to the original dispersion by addition of sterile water or saline.
  • the particle size after reconstitution was the same as before lyophilization. It should be recognized that the amounts, types and proportions of drug, solvents, proteins used in this example are not limiting. When compared to toxicity of the colchicines dimer dissolved in tween, the pharmaceutical composition comprising albumin showed substantially lower toxicity.
  • EXAMPLE 7 This example demonstrates the preparation of pharmaceutical compositions comprising docetaxel and albumin. 30 mg of docetaxel was dissolved in 2 ml chloroform/ethanol. The solution was then added into 27.0 ml of human serum albumin solution (3% w/v). Deferox-imine was added as necessary. The mixture was homogenized for 5 minutes at low RPM (Vitris homogenizer model Tempest I.Q.) in order to form a crude emulsion, and then transferred into a high pressure homogenizer (Avestin). The emulsification was performed at 9000-40,000 psi while recycling the emulsion for at least 5 cycles.
  • the resulting system was transferred into a Rotavap and solvent was rapidly removed at 40°C, at reduced pressure (30 mm Hg) for 20-30 minutes.
  • the resulting dispersion was translucent and the typical average diameter of the resulting particles was in the range 50-220 nm (Z-average, Malvern Zetasizer).
  • the dispersion was further lyophilized for 48 hours.
  • the resulting cake was easily reconstituted to the original dispersion by addition of sterile water or saline.
  • the particle size after reconstitution was the same as before lyophilization. It should be recognized that the amounts, types and proportions of drug, solvents, and proteins used in this example are not limiting. When compared to toxicity of the docetaxel dissolved in tween/ethanol which is the standard solvent for this drug, the pharmaceutical composition comprising albumin showed substantially lower toxicity.
  • EXAMPLE 8 This example demonstrates the preparation of pharmaceutical compositions comprising docetaxel and albumin.
  • 150 mg of docetaxel was dissolved in 1 ml ethyl acetate/butyl acetate and 0.5 ml of an oil for example soybean oil or vitamin E oil. Other ratios of solvents and oils were used and these compositions are also contemplated as part of the invention.
  • a small quantity of a negatively charged component was also optionally added, e.g., benzoic acid (0.001%-0.5%) The solution was then added into 27.0 ml of human serum albumin solution (5% w/v). Deferoxamine was added as necessary.
  • the mixture was homogenized for 5 minutes at low RPM (Vitris homogenizer model Tempest I.Q.) in order to form a crude emulsion, and then transferred into a high pressure homogenizer (Avestin).
  • the emulsification was performed at 9000-40,000 psi while recycling the emulsion for at least 5 cycles.
  • the resulting system was transferred into a Rotavap and solvent was rapidly removed at 40°C, at reduced pressure (30 mm Hg) for 20-30 minutes.
  • the resulting dispersion was translucent and the typical average diameter of the resulting particles was in the range 50-220 nm (Z-average, Malvern Zetasizer).
  • the dispersion was further lyophilized for 48 hours.
  • the resulting cake was easily reconstituted to the original dispersion by addition of sterile water or saline.
  • the particle size after reconstitution was the same as before lyophilization. It should be recognized that the amounts, types and proportions of drug, solvents, proteins used in this example are not limiting. When compared to toxicity of the docetaxel dissolved in tween/ethanol which is the standard solvent for this drug, the pharmaceutical composition comprising albumin showed substantially lower toxicity.
  • EXAMPLE 9 This example demonstrates the preparation of pharmaceutical compositions comprising a taxane IDN5390 and albumin.
  • 150 mg of IDN5390 was dissolved in 1 ml ethyl acetate/butyl acetate and 0.5 ml of an oil for example soybean oil or vitamin E oil. Other ratios of solvents and oils were used and these compositions are also contemplated as part of the invention.
  • a small quantity of a negatively charged component was also optionally added, e.g., benzoic acid (0.001%-0.5%), The solution was then added into 27.0 ml of human serum albumin solution (5% w/v). Deferoxamine was added as necessary.
  • the mixture was homogenized for 5 minutes at low RPM (Vitris homogenizer model Tempest I.Q.) in order to form a crude emulsion, and then transferred into a high pressure homogenizer (Avestin).
  • the emulsification was performed at 9000-40,000 psi while recycling the emulsion for at least 5 cycles.
  • the resulting system was transferred into a Rotavap and solvent was rapidly removed at 40°C, at reduced pressure (30 mm Hg) for 20-30 minutes.
  • the resulting dispersion was translucent and the typical average diameter of the resulting particles was in the range 50-220 nm (Z-average, Malvern Zetasizer).
  • the dispersion was further lyophilized for 48 hours.
  • the resulting cake was easily reconstituted to the original dispersion by addition of sterile water or saline.
  • the particle size after reconstitution was the same as before lyophilization. It should be recognized that the amounts, types and proportions of drug, solvents, proteins used in this example are not limiting.
  • the pharmaceutical composition comprising albumin showed substantially lower toxicity.
  • EXAMPLE 10 This example demonstrates the preparation of pharmaceutical compositions comprising a taxane IDN5109 and albumin.
  • 150 mg of IDN5109 was dissolved in 2 ml chloroform/ethanol. Other ratios of solvents and oils were used and these compositions are also contemplated as part of the invention.
  • a small quantity of a negatively charged component was also optionally added, e.g., benzoic acid (0.001%-0.5%) The solution was then added into 27.0 ml of human serum albumin solution (5% w/v). Deferox-imine was added as necessary.
  • the -mixture is homogenized for 5 minutes at low RPM (Vitris homogenizer model Tempest I.Q.) in order to form a crude emulsion, and then transferred into a high pressure homogenizer (Avestin).
  • the emulsification was performed at 9000-40,000 psi while recycling the emulsion for at least 5 cycles.
  • the resulting system was transferred into a Rotavap and solvent was rapidly removed at 40°C, at reduced pressure (30 mm Hg) for 20-30 minutes.
  • the resulting dispersion was translucent and the typical average diameter of the resulting particles was in the range 50-220 nm (Z-average, Malvern Zetasizer).
  • the dispersion was further lyophilized for 48 hours.
  • the resulting cake was easily reconstituted to the original dispersion by addition of sterile water or saline.
  • the particle size after reconstitution was the same as before lyophilization. It should be recognized that the amounts, types and proportions of drug, solvents, and proteins used in this example are not limiting.
  • the pharmaceutical composition comprising albumin showed substantially lower toxicity.
  • EXAMPLE 11 This example demonstrates the preparation of a pharmaceutical composition comprising 10-hydroxy camptothecin (10HC) and albumin.
  • 10HC 10-hydroxy camptothecin
  • albumin 30 mg
  • 30 mg of 10-HC was dissolved in 2.0 ml DMF/methylene chloride/soybean oil.
  • the solution was then added into 27.0 ml of a human serum albumin solution (3% w/v).
  • the mixture was homogenized for 5 minutes at low RPM (Vitris homogenizer model Tempest I.Q.) in order to form a crude emulsion, and then transferred into a high pressure homogenizer (Avestin).
  • the emulsification was performed at 9000-40,000 psi while recycling the emulsion for at least 5 cycles.
  • the resulting system was transferred into a Rotavap and solvent was rapidly removed at 40°C, at reduced pressure (30 mm Hg) for 20-30 minutes.
  • the resulting dispersion was translucent and the typical average diameter of the resulting particles was in the range 50-220 nm (Z- average, Malvern Zetasizer).
  • the dispersion was further lyophilized for 48 hours.
  • the resulting cake was easily reconstituted to the original dispersion by addition of sterile water or saline.
  • the particle size after reconstitution was the same as before lyophilization. It should be recognized that the amounts, types and proportions of drug, solvents, proteins used in this example are not limiting in anyway.
  • EXAMPLE 12 This example demonstrates the preparation of a pharmaceutical composition comprising cyclosporine and albumin. 30 mg of cyclosporine was dissolved in 3.0 ml methylene chloride. The solution was then added into 27.0 ml of a human serum - ⁇ bumin solution (1% w/v). The mixture was homogenized for 5 minutes at low RPM (Vitris homogenizer model Tempest I.Q.) in order to form a crude emulsion, and then transferred into a high pressure homogenizer (Avestin). The emulsification was performed at 9000-40,000 psi while recycling the emulsion for at least 5 cycles.
  • the resulting system was transferred into a Rotavap and methylene chloride was rapidly removed at 40°C, at reduced pressure (30 mm Hg) for 20-30 minutes.
  • the resulting dispersion was translucent and the typical average diameter of the resulting particles was in the range 50-220 n (Z-average, Malvern Zetasizer).
  • the dispersion was further lyophilized for 48 hours.
  • the resulting cake was easily reconstituted to the original dispersion by addition of sterile water or saline.
  • the particle size after reconstitution was the same as before lyophilization.
  • EXAMPLE 13 This example demonstrates the preparation of a pharmaceutical composition containing oil and comprising cyclosporine and albumin.
  • 30 mg of cyclosporine was dissolved in 3.0 ml of a suitable oil (sesame oil containing 10% orange oil).
  • the solution was then added into 27.0 ml of a human serum dbumin solution (1% v/w).
  • the mixture was homogenized for 5 minutes at low RPM (Vitris homogenizer, model Tempest I.Q.) in order to form a crude emulsion, and then transferred into a high pressure homogenizer (Avestin).
  • the emulsification as performed at 9000-40,000 psi while recycling the emulsion for at least 5 cycles.
  • the resulting dispersion had a typical average diameter in range of 50-220 nm (Z-average, Malvern Zetasizer).
  • the dispersion was used directly or lyophilized for 48 hours by optionally adding a suitable cryoprotectant.
  • the resulting cake was easily reconstituted to the original dispersion by addition of sterile water or saline. It should be recognized that the amounts, types and proportions of drug, solvents, and proteins used in this example are not limiting in anyway.
  • EXAMPLE 14 This example demonstrates the preparation of a pharmaceutical composition comprising amphotericin and dbumin. 30 mg of amphotericin was dissolved in 3.0 ml methyl pyrrolidinone/methylene chloride. The solution was added to 27.0 ml of a human serum albumin solution (1% w/v). The mixture was homogenized for 5 minutes at low RPM (Vitris homogenizer, model Tempest I.Q.) in order to form a crude emulsion, and then transferred into a high pressure homogenizer (Avestin). The emulsification was performed at 9000-40,000 psi while recycling the emulsion for at least 5 cycles.
  • the resulting system was transferred into a rotary evaporator, and solvent was rapidly removed at 40°C, at reduced pressure (30 mm Hg) for 20-30 minutes.
  • the resulting dispersion was translucent, and the typical average diameter of the resulting amphotericin particles was between 50-220 nm (Z-average, Malvern Zetasizer).
  • the dispersion was further lyophilized for 48 hrs.
  • the resulting cake could be easily reconstituted to the original dispersion by addition of sterile water or saline.
  • the particle size after reconstitution was the same as before lyophilization. It should be recognized that the amounts, types and proportions of drug, solvents, and proteins used in this example are not limiting in anyway. Addition of other components such as lipids, bile salts, etc., also resulted in suitable formulations.
  • EXAMPLE 16 This example demonstrates reduced side effects and reduced toxicity associated with pharmaceutical compositions comprising paclitaxel and albumin.
  • the toxicity of pharmaceutical compositions comprising paclitaxel and albumin is substantially lower than Taxol.
  • a single dose acute toxicity study in mice showed an LD 50 dose approximately 59 times greater for pharmaceutical compositions comprising paclitaxel and albumin than for Taxol.
  • the LD 50 dose was approximately 10-fold greater for pharmaceutical compositions comprising paclitaxel and albumin than for Taxol.
  • cerebral cortical necrosis or severe neurotoxicity was observed in animals receiving Taxol at 9 mg/kg but was absent in animals receiving a pharmaceutical composition comprising paclitaxel and albumin at a dose of up to 120 mg/kg.
  • albumin in a pharmaceutical composition comprising paclitaxel results in a substantial reduction in side effects and toxicity when compared to conventional pharmaceutical compositions comprising paclitaxel.
  • EXAMPLE 17 This example demonstrates the clinical effects of a pharmaceutical composition comprising paclitaxel and albumin in humans.
  • EXAMPLE 18 This example demonstrates enhanced preclinical efficacy using a pharmaceutical composition comprising albumin and paclitaxel.
  • EXAMPLE 19 This example demonstrates enhanced clinical efficacy using a pharmaceutical composition comprising albumin and paclitaxel administered intra-arterially.
  • EXAMPLE 20 This example demonstrates the preparation of a pharmaceutical composition containing 3% oil and comprising propofol and albumin.
  • An oil-in-water emulsion containing 1% (by weight) of propofol was prepared as follows.
  • the aqueous phase was prepared by adding glycerol (2.25% by weight) and human serum albumin (0.5% by weight) into water for injection and stirred until dissolved.
  • the aqueous phase was passed through a filter (0.2um filter).
  • the oil phase was prepared by dissolving egg lecithin (0.4% by weight) and propofol (1% by weight) into soybean oil (3% by weight) at about 50°C - 60°C and was stirred until dissolved.
  • the oil phase was added to the aqueous phase and homogenized at 10,000RPM for 5 min.
  • the crude emulsion was high pressure homogenized at 20,000 psi and recirculated for 15 cycles at 5°C. Alternately, discrete passes through the homogenizer were used. The final emulsion was filtered (0.2 ⁇ m filter) and stored under nitrogen.
  • the resulting pharmaceutical composition contained the following general ranges of components (weight %): propofol 0.5-5%; human serum -dbumin 0.5-3%; soybean oil 0.5-3.0%; egg lecithin 0.12-1.2%; glycerol 2.25%; water for injection q.s. to 100; pH 5-8. Suitable chelators, e.g., deferoxamine (0.001-0.1%), were optionally added.
  • EXAMPLE 21 This example demonstrates the preparation of a pharmaceutical composition containing 5% oil and comprising propofol and albumin.
  • An oil-in-water emulsion containing 1% (by weight) of propofol was prepared as follows.
  • the aqueous phase was prepared by adding glycerol (2.25% by weight) and human serum albumin (0.5% by weight) into water for injection and was stirred until dissolved.
  • the aqueous phase was passed through a filter (0.2um filter).
  • the oil phase as prepared by dissolving egg lecithin (0.8% by weight) and propofol (1% by weight) into soybean oil (5% by weight) at about 50°C - 60°C and was stirred until dissolved.
  • the oil phase was added to the aqueous phase and homogenized at 10,000RPM for 5 min.
  • the crude emulsion was high pressure homogenized at 20,000 psi and recirculated for 15 cycles at 5°C. Alternately, discrete passes through the homogenizer were used.
  • the final emulsion was filtered (0.2 ⁇ m filter) and stored under nitrogen.
  • the resulting pharmaceutical composition contained the following general ranges of components (weight %): propofol 0.5-5%; human serum albumin 0.5-3%; soybean oil 0.5-10.0%; egg lecithin 0.12-1.2%; glycerol 2.25%; water for injection q.s. to 100; pH 5-8.
  • Suitable chelators e.g., deferoxamine (0.001-0.1%), were optionally added
  • EXAMPLE 22 [0086] This example demonstrates the preparation of a pharmaceutical composition comprising propofol and albumin that is free of oil.
  • aqueous phase was prepared by adding glycerol (2.25% by weight), human serum albumin (0.5% by weight), tween 80 (1.5% by weight) and deferoxamine mesylate (0.1% by weight) into water for injection and stirred until dissolved.
  • the aqueous phase was passed through a filter (0.2 ⁇ m filter).
  • Propofol (1% by weight) was added to the aqueous phase and homogenized at 10,000 RPM for 5 min.
  • the crude emulsion was high pressure homogenized at 20,000 psi and recirculated for 15 cycles at 5°C.
  • the resulting pharmaceutical composition contained the following general ranges of components (weight %): propofol 0.5-5; human serum albumin 0.5-3%; tween 80 0.1-1.5%; deferoxamine mesylate 0.0001-0.1%; glycerol 2.25%; water for injection q.s. to 100; pH 5- 8.
  • EXAMPLE 23 This example demonstrates the preparation of a pharmaceutical composition comprising propofol, albumin, and vitamin E-TPGS, which is free of oil. [0089] Using the procedure similar to that described in Example 19, propofol compositions containing albumin and vitamin E-TPGS were prepared. The aqueous phase was prepared by adding glycerol (2.25% by weight), human serum albumin (0.5% by weight), vitamin E-TPGS (1% by weight) and deferoxamine mesylate (0.1% by weight) into water for injection and was stirred until dissolved. The aqueous phase was passed through a filter (0.2um filter).
  • Propofol (1% by weight) was added to the aqueous phase and homogenized at 10,000 RPM for 5 min.
  • the crude emulsion was high pressure homogenized at 20,000 psi and recirculated for 15 cycles at 5°C. Alternately, discrete passes through the homogenizer were used.
  • the final emulsion was filtered (0.2 ⁇ m filter) and stored under nitrogen.
  • the resulting pharmaceutical composition contained the following general ranges of components (weight %): propofol 0.5-5; human serum albumin 0.5-3%; vitamin E-TPGS 0.5-4.0%; optionally deferoxamine mesylate 0.0001-0.1%; glycerol 2.25%; water for injection q.s. to 100; pH 5-8.
  • EXAMPLE 24 This example demonstrates the preparation of a pharmaceutical composition comprising propofol, albumin, vitamin E-TPGS, and 1% oil.
  • An emulsion containing 1% (by weight) of propofol was prepared by the following method.
  • the aqueous phase was prepared by adding glycerol (2.25% by weight) and human serum albumin (0.5% by weight) into water for injection and stirred until dissolved.
  • the aqueous phase was passed through a filter (0.2 ⁇ m filter).
  • Surfactant e.g., Nitamin E-TPGS (0.5%), was added to aqueous phase.
  • the oil phase consisted of propofol (1% by weight) and 1% soybean oil.
  • the oil phase was added to the aqueous phase and homogenized at 10,000 RPM for 5 min.
  • the crude emulsion was high pressure homogenized at 20,000 psi and recirculated for up to 15 cycles at 5°C. Alternatively, discrete passes through the homogenizer were used.
  • the final emulsion was filtered (0.2 ⁇ m filter) and stored under nitrogen.
  • the resulting pharmaceutical composition contained the following general . ranges of components (weight %): propofol 0.5-5%; human serum albumin 0.01-3%; Nitamin E- TPGS 0.1-2%; soybean or other oil (0.1%-5%); glycerol 2.25%; water for injection q.s. to 100; pH 5-8. Deferoxamine was optionally added (0.001%-0.1% by weight).
  • EXAMPLE 25 [0093] This example demonstrates the preparation of a pharmaceutical composition comprising propofol, albumin, vitamin E-TPGS, 1% oil, and a negatively charged component.
  • An emulsion containing 1% (by weight) of propofol was prepared by the following method.
  • the aqueous phase was prepared by adding glycerol (2.25% by weight) and human serum albumin (0.5% by weight) into water for injection and was stirred until dissolved.
  • the aqueous phase was passed through a filter (0.2 ⁇ m filter).
  • Surfactant e.g., Nitamin E-TPGS (0.5%), was added to aqueous phase.
  • the oil phase consisted of propofol (1% by weight) and 1% soybean oil.
  • a small quantity of negatively charged component 0.001%-1%
  • a phospholipid or bile salt was added.
  • the oil phase was added to the aqueous phase and homogenized at 10,000 RPM for 5 min.
  • the crude emulsion was high pressure homogenized at 20,000 psi and recirculated for up to 15 cycles at 5 °C. Alternatively, discrete passes through the homogenizer were used.
  • the final emulsion was filtered (0.2 ⁇ m filter) and stored under nitrogen.
  • the resulting pharmaceutical composition contained the following general ranges of components (weight %): propofol 0.5-5%; human serum albumin 0.01-3%; Nitamin E- TPGS 0.1-2%; soybean or other oil (0.1%-5%); glycerol 2.25%; water for injection q.s. to 100; pH 5-8. Deferoxamine was optionally added (0.001%-0.1% by weight).
  • EXAMPLE 26 This example demonstrates the preparation of a pharmaceutical composition comprising propofol, albumin, vitamin E-TPGS, 1% oil, and a negatively charged component (sodium deoxycholate).
  • An emulsion containing 1% (by weight) of propofol was prepared by the following method.
  • the aqueous phase was prepared by adding glycerol (2.25% by weight) and human serum albumin (0.5% by weight) into water for injection and stirred until dissolved.
  • the aqueous phase was passed through a filter (0.2 ⁇ m filter).
  • Surfactant e.g., Nitamin E-TPGS (0.5%), was added to aqueous phase.
  • the oil phase consisted of propofol (1% by weight) and 1% soybean oil.
  • a small quantity of negatively charged component 0.001%-1%
  • sodium deoxycholate was added.
  • the oil phase was added to the aqueous phase and homogenized at 10,000 RPM for 5 min.
  • the crude emulsion was high pressure homogenized at 20,000 psi and recirculated for up to 15 cycles at 5°C. Alternately, discrete passes through the homogenizer were used.
  • the final emulsion was filtered (0.2 ⁇ m filter) and stored under nitrogen.
  • the resulting pharmaceutical composition contained the following general ranges of components (weight %): propofol 0.5-5%; human serum albumin 0.01-3%; Nitamin E- TPGS 0.1-2%; soybean or other oil (0.1%-5%); glycerol 2.25%; water for injection q.s. to 100; pH 5-8. Deferoxamine was optionally added (0.001%-0.1% by weight).
  • EXAMPLE 27 This example demonstrates the preparation of a pharmaceutical composition comprising propofol, albumin, vitamin E-TPGS, 1% oil, and a negatively charged component (phospholipids, bile salts, polyaminoacids etc).
  • An emulsion cont-uning 1% (by weight) of propofol was prepared as follows.
  • the aqueous phase was prepared by adding glycerol (2.25% by weight) and human serum albumin (0.5% by weight) into water for injection and stirred until dissolved.
  • the aqueous phase was passed through a filter (0.2 ⁇ m filter).
  • Surfactant e.g., Nitamin E-TPGS (0.5%), was added to aqueous phase.
  • the oil phase consisted of propofol (1% by weight) and 1% soybean oil.
  • a small quantity of negatively charged component 0.001%-1%
  • phosphatidyl choline was added.
  • the oil phase was added to the aqueous phase and homogenized at 10,000 RPM for 5 min.
  • the crude emulsion was high pressure homogenized at 20,000 psi and recirculated for up to 15 cycles at 5 °C. Alternatively, discrete passes through the homogenizer were used.
  • the final emulsion was filtered (0.2 ⁇ m filter) and stored under nitrogen.
  • the resulting pharmaceutical composition contained the following general ranges of components (weight %): propofol 0.5-5%; human serum albumin 0.01-3%; Nitamin E- TPGS 0.1-2%; soybean or other oil (0.1%-5%); glycerol 2.25%; water for injection q.s. to 100; pH 5-8. Deferoxamine was optionally added (0.001%-0.1% by weight).
  • EXAMPLE 28 This example demonstrates the binding of propofol to albumin.
  • the binding of propofol to albumin was determined as follows. Solubility of propofol was tested in water and in solutions containing albumin. 250 ⁇ L of propofol was added to 10 mL of a water or albumin solution and stirred for 2 hours in a scintillation vial. The solution was then transferred to a 15 mL polyethylene centrifuge tube and kept at 40 °C for about 16 hours. Samples of water and albumin solutions were assayed for propofol. Solubility of propofol in water was determined to be 0.12 mg/ml.
  • filtration or ultrafiltration of pharmaceutical compositions comprising propofol results in a reduction in the amount of free propofol.
  • Diprivan and a pharmaceutical composition prepared in accordance with the present invention containing albumin, each of which contained 1% propofol (lOmg/ml) were ultrafiltered using a 30kD membrane.
  • the amount of free propofol was measured in the filtrate using HPLC.
  • the concentration of free propofol in the filtrate was about 17 ⁇ g/ml for Diprivan, while the concentration of free propofol in the filtrate was about 7 ⁇ g/ml for the inventive pharmaceutical composition.
  • the results correspond to an effective reduction of free propofol by greater than a factor of 2 for pharmaceutical composition comprising propofol and albumin.
  • EXAMPLE 30 This example demonstrates administration of a pharmaceutical composition comprising propofol and albumin to humans.
  • a randomized, double-blind clinical trial was conducted to compare adverse skin sensations of a pharmaceutical composition comprising propofol and albumin with that of a commercially available propofol formulation, Diprivan. Trials were conducted in compliance with Good Clinical Practices and informed consent was taken from the subjects. Adult human subjects of either sex were eligible for participation if they had unbroken, apparently normal skin of dorsal side of their hands.
  • EXAMPLE 31 [0100] This example demonstrates the use of deferoxamine as antioxidant in a pharmaceutical composition comprising propofol.
  • compositions comprising propofol and deferoxamine mesylate, and containing tween or TPGS were stored at 4°, 25°, or 40 °C to test the effect of deferoxamine mesylate in preventing oxidation of propofol.
  • concentration of propofol was measured for these formulations over time to determine the antioxidant activity of deferoxamine. The data is reported below in Tables 2 and 3 as % potency relative to time zero.
  • EXAMPLE 32 [0103] This example demonstrates intrapulmonary delivery of a pharmaceutical composition comprising paclitaxel and albumin (ABI-007).
  • the purpose of this study was to determine the time course of [ 3 H] ABI-007 in blood and select tissues following intratracheal instillation to Sprague Dawley rats.
  • the target volume of the intratracheal dose formulation to be administered to the animals was calculated based on a dose volume of 1.5 mL per kg body weight.
  • the dosing apparatus consisted of a Penn-Century microsprayer (Model 1A-1B; Perm-Century, Inc., Philadelphia, PA; purchased from DeLong Distributors, Long Branch, NJ) attached to a 1- mL gas-tight, luer-lock syringe.
  • the appropriate volume of dose preparation was drawn into the dosing apparatus, the filled apparatus was weighed and the weight-recorded.
  • a catheter was placed in the trachea of the anesthetized animal, the microsprayer portion of the dosing apparatus was placed into the trachea through the catheter, and the dose was administered.
  • the empty dosing apparatus was reweighed and the administered dose was calculated as the difference in the weights of the dosing apparatus before and after dosing.
  • the average dose for all animals was 4.7738 ⁇ 0.0060 (CN 1.5059) mg paclitaxel per kg body weight.
  • Blood samples of approximately 250 ⁇ L were collected from the indwelling jugular cannulas of JVC rats at the following predetermined post-dosing time points: 1, 5, 10, 15, 30, and 45 minutes (min), and 1, 4, 8, and 24 hours (h).
  • AUClast (mg-eq x hr/L) 7.051 +/- 1.535
  • Tritium derived from [ 3 H]ABI-007 is rapidly absorbed after intratracheal instillation.
  • the average absorption and elimination half-lives (kOl half-life and klO half- life, respectively) for tritium in blood after an intratracheal dose of [ 3 H] ABI-007 (mean +/- SD) were 0.0155 +/- 0.0058 hr and 4.738 +/- 0.366 hr, respectively.
  • the average apparent clearance of tritium from blood was 0.1235 +/- 0.0180 L/hr (see Table 4 above).
  • Tritium derived from [ 3 H] ABI-007 was absorbed and distributed after intratracheal administration.
  • a fair amount of radioactivity was present in the gastrointestinal tract (including contents) at 24 hr post dosing (27% for the intratracheal dose).
  • the presence of tritium in the gastrointestinal tract may be due to biliary excretion or clearance of tritium from the respiratory tract via mucociliary clearance with subsequent swallowing.
  • EXAMPLE 33 This example demonstrates an investigation of Aerotech II and Pari nebulizers for pulmonary delivery of pharmaceutical compositions comprising paclitaxel and albumin.
  • the study was carried out using the paclitaxel-albumin pharmaceutical composition ABI-007 under the following conditions: room temperature (20-23°C), relative humidity (48-54%), ambient pressure (629 mmHg), nebulizer flowrate (10 L/min for Aerotech II; 7 L/min for Pari), total flowrate (28.3 L/min), nebulizer pressure drop (23 lb/in 2 for Aerotech II; 32 lb/in 2 for Pari), run time (15 to 60 seconds), sample volume (1.5 mL), ABI-007 paclitaxel concentration (5,10, 15 and 20 mg/mL).
  • Both Aerotech II and Pari nebulizers provided acceptable overall efficiency (30%-60%) when ABI-007 was reconstituted at a concentration range of 5-15 mg/mL.
  • the Pari nebulizer efficiency had higher nebulizer efficiency than the Aerotech II nebulizer.
  • the Pari nebulizer efficiency decreased somewhat as ABI-007 concentration increased. Excellent fine particle fraction was observed (74%-96%).
  • the Aerotech II nebulizer had higher fine particle fraction than the Pari nebulizer. The fine particle fraction was independent of concentration.
  • the Pari nebulizer delivered 100 mg of paclitaxel in less than 30 minutes using a 15 mg/mL solution of ABI-007.
  • the Aerotech II nebulizer delivered 100 mg of paclitaxel in about 65 min using either a 10 mg/mL or 15 mg/mL solution of ABI-007. Performance stability was tested for both Aerotech II and Pari nebulizers. Aerosol concentration and efficiency of both nebulizers were stable until the drug was exhausted. At 15 mg/mL, the Pari nebulizer consumed the drug at twice the rate of the Aerotech II nebulizer and produced higher aerosol concentrations than that of the Aerotech II nebulizer.
  • the nanoparticle/albumin formulation of paclitaxel (ABI-007)" shows excellent bioavailability in rats when administered by the pulmonary route. There were no overt signs of early toxicity at the administered dose. Pulmonary delivery of nanoparticle paclitaxel (ABI-007) may be achieved using conventional nebulizers.
  • EXAMPLE 34 This example describes intrapulmonary delivery of a pharmaceutical composition comprising albumin and rapamycin. The purpose of this study was to determine the pulmonary absorption of rapamycin in blood following intratracheal instillation to Sprague Dawley rats as compared to intravenous installation. [0119] The target volume of the intratracheal dose formulation that was administered to the animals was calculated based on a dose volume of 1 mL per kg body.
  • the intratracheal dosing apparatus consisted of a Penn-Century microsprayer (Model 1A-1B; Penn-Century, Inc., Philadelphia, PA; purchased from DeLong Distributors, Long Branch, NJ) attached to a 1 mL gas-tight, luer-lock syringe.
  • the appropriate volume of dose preparation was drawn into the dosing apparatus, the filled apparatus was weighed and the weight-recorded.
  • a catheter was placed in the trachea of the anesthetized animal, the microsprayer portion of the dosing apparatus was placed into the trachea through the catheter, and the dose was administered. After dose administration the empty dosing apparatus was reweighed and the administered dose was calculated as the difference in the weights of the dosing apparatus before and after dosing.
  • EXAMPLE 35 This example demonstrates tissue distribution of albumin-rapamycin after intrapulmonary administration of a pharmaceutical composition comprising rapamycin and albumin prepared in accordance with the present invention. The purpose of this study was to determine the pulmonary absorption of rapamycin in tissue following intratracheal instillation to Sprague Dawley rats as compared to intravenous installation. [0123] The target volume of the intratracheal dose formulation that was administered to the animals was calculated based on a dose volume of 1 mL per kg body.
  • the dosing apparatus consisted of a Penn-Century microsprayer (Model 1A-1B; Penn-Century, Inc., Philadelphia, PA; purchased from DeLong Distributors, Long Branch, NJ) attached to a 1- mL gas-tight, luer-lock syringe.
  • the appropriate volume of dose preparation was drawn into the dosing apparatus, the filled apparatus was weighed and the weight-recorded.
  • a catheter was placed in the trachea of the anesthetized animal, the microsprayer portion of the dosing apparatus was placed into the trachea through the catheter, and the dose was administered. After dose administration the empty dosing apparatus was reweighed and the administered dose was calculated as the difference in the weights of the dosing apparatus before and after dosing.
  • pulmonary delivery of rapamycin may be suitable for the treatment of a condition (i.e., lung transplantation), wherein high local concentration of rapamycin would be beneficial.
  • EXAMPLE 36 [0125] This example demonstrates oral delivery of a pharmaceutical composition comprising paclitaxel and albumin (ABI-007).
  • Tritiated ABI-007 was utilized to determine oral bioavailability of paclitaxel following oral gavage in rats. Following overnight fasting, 5 rats were given 5.5 mg/kg paclitaxel in ABI-007 (Group A) and another 5 rats (Group B) were pretreated with cyclosporine (5.0 mg/kg) followed by 5.6 mg/kg paclitaxel in ABI-007.
  • a pharmacokinetic analysis of blood samples drawn at 0.5, 1, 2, 3, 4, 5, 6, 8, 12, and 24 hours was performed after determination of radioactivity in the blood samples by combustion. Oral bioavailability was determined by comparison with intravenous data previously obtained. The results are set forth below in Table 5.
  • AUC 0-24 IV (6.06 ⁇ g x hr./mL) and IN dose (5.1 mg/kg) were used for calculation of percent absorption (data based on IN dose of ABI-007).
  • An oral bioavailability of 44% was seen for ABI-007 alone. This is dramatically higher than is seen for other formulations of paclitaxel. The bioavailability increased to 121% when animals were treated with cyclosporine (CsA). This is expected as CsA is a known suppressor of the p-glycoprotein pump that would normally prevent absorption of compounds such as paclitaxel from the GI tract. The greater than 100% bioavailability can be explained by reabsorption following biliary excretion of paclitaxel into the GI tract. Other known suppressors or enhancers of absorption may be also utilized for this purpose.
  • EXAMPLE 37 [0129] This example demonstrates improved penetration of paclitaxel into red blood cells and tumor cells upon administration of a pharmaceutical composition comprising paclitaxel and albumin.
  • Paclitaxel-albumin exhibited rapid partitioning into red blood cells (RBCs) as shown by a rapid drop of the plasma/blood radioactivity ratio to unity after intravenous administration of the drug. Complete partitioning into RBCs occurred as early as 1 hr after administration of paclitaxel-albumin. In contrast, the partitioning of paclitaxel formulated as Taxol into RBCs was much slower and was not completed until more than 8 hrs.
  • RBCs red blood cells
  • Paclitaxel-albumin exhibited a rapid partitioning into tumor tissue with an absorption constant (K a ) that was 3.3X greater than Taxol.
  • the K a were 0.43 hr "1 and 0.13 hr "1 for paclitaxel-albumin and Taxol, respectively. Rapid uptake of paclitaxel resulted in 33% higher tumor AUC for paclitaxel-albumin than for Taxol.
  • the AUC were 3632 nCi*hr/g and 2739 nCi*hr/g for paclitaxel-albumin and Taxol, respectively.
  • EXAMPLE 38 [0133] This example demonstrates the safety of a pharmaceutical composition comprising paclitaxel and albumin administered to mice.
  • the LD50 for paclitaxel-albumin and Taxol were calculated to be 47 mg/kg/day and 30 mg/kg/day for a qld x 5 schedule, respectively. At a dose level of 13.4 mg/kg/day, both paclitaxel-albumin and Taxol were well tolerated with mortality of 1% (1 death out of 72 mice) and 4% ( 2 deaths out of 47 mice), respectively.
  • EXAMPLE 39 This example demonstrates a novel paclitaxel transport mechanism across microvessel endothelial cells (EC) for paclitaxel-albumin compositions.
  • EC microvessel endothelial cells
  • albumin-paclitaxel compositions can accumulate in tumor tissue due to EPR effect resulting from 'leaky' vessels in a tumor.
  • An albumin specific gp60 receptor (albondin) transported albumin across EC by transcytosis of the receptors within caveolae at the cell surface. This transcytosis mechanism allows for the transport of albumin-paclitaxel to the underlying interstitial space.
  • cremophor in Taxol inhibited binding of paclitaxel to albumin, greatly reducing paclitaxel transport to the tumor.
  • the gpl6 and gp30 receptors also were involved in intracellular transport of modified albumins containing bound paclitaxel, resulting in increased binding of paclitaxel to endothelial cells with a greater anti-angiogenic effect as compared to Taxol.
  • EXAMPLE 40 This example demonstrates an increase in endothelial transcytosis of pharmaceutical compositions comprising paclitaxel and albumin as compared to Taxol.
  • HLMNEC Human lung microvessel endothelial cells
  • inventive pharmaceutical composition comprising paclitaxel and albumin, or Taxol containing fluorescent paclitaxel (Flutax) at a concentration of 20 ⁇ g/mL, was added to the upper transwell chamber.
  • EXAMPLE 41 This example demonstrates improved endothelial cell (EC) binding by pharmaceutical compositions comprising paclitaxel and albumin as compared to Taxol.
  • HUNEC Human umbilical vein endothelial cells
  • paclitaxel Flutax- Oregon Green labeled paclitaxel
  • Cremophor EL/EtOH Cremophor EL/EtOH
  • a pharmaceutical composition comprising albumin and Flutax and a Taxol-Flutax composition were reacted to the HUNEC at various final concentrations.
  • HSA Human Serum Albumin
  • Paclitaxel Flutax- Oregon Green labeled paclitaxel
  • Cremophor EL/EtOH an albumin-paclitaxel-Flutax composition and a Taxol-Flutax composition were reacted to immobilized HSA at a final concentration of 20 ⁇ g paclitaxel/niL.
  • Binding of paclitaxel to albumin was inhibited by Cremophor. Inhibition was exhibited by an IC 5 o of 0.003% of Cremophor EL/EtOH.
  • Cremophor This concentration of Cremophor has been shown to persist during Taxol chemotherapy for at least 24 hours. Therefore, it is a relevant process in vivo. At a relevant pharmacologic paclitaxel concentration (20 ⁇ g/mL), a significant amount of paclitaxel from the albumin-paclitaxel composition became bound to immobilized HSA. In comparison, no binding was observed for Taxol.
  • EXAMPLE 43 This example demonstrates increased transfer of paclitaxel to albumin for pharmaceutical compositions comprising paclitaxel and albumin as compared to Taxol.
  • Taxol-Flutax and albumin-paclitaxel-Flutax compositions were mixed with either 5% HSA in Hanks buffer or serum, at 20 ⁇ g/mL, 40 ⁇ g/ml, and 80 ⁇ g/ml. The mixtures were immediately separated on a native 3-14% polyacrylamide gel and the amount of paclitaxel bound to albumin was determined by a scanning fluorometer. The transfer of paclitaxel to HSA was more rapid for the albumin-paclitaxel composition versus Taxol.
  • EXAMPLE 44 This example demonstrates that the glycoprotein receptor gp60 is responsible for binding and transcytosis of albumin-paclitaxel.
  • Fluorescent labeled paclitaxel (Flutax) albumin compositions were contacted with microvessel endothelial cells in culture. Fluorescent staining was observed under a microscope with evidence of punctuate areas that were postulated to be the gp60 receptor binding the albumin-paclitaxel. This was confirmed by using rhodamine labeled albumin which colocalized with the punctuate fluorescence of paclitaxel.
  • EXAMPLE 45 [0148] This example demonstrates that increasing amounts of albun in can compete with binding of paclitaxel.
  • Albumin was immobilized on a microtiter plate. Fluorescent paclitaxel was added into the wells and the binding of paclitaxel was measured using a scanning fluorometer. Increasing amounts of albumin were added to the wells and the level of inhibiton of paclitaxel binding to immobilized albumin was measured. The data showed that as the amount of albumin added was increased, a corresponding decrease in binding was seen. A similar effect was seen with binding to endothelial cells. This indicated that higher -dbumin concentration inhibited binding of paclitaxel. Thus invention compositions having lower amounts of albumin are preferred.
  • EXAMPLE 46 [0150] This example demonstrates that lower amounts of albumin in the inventive pharmaceutical composition results in stable compositions.
  • albumin-paclitaxel compositions with low amounts of albumin were prepared. It was found that these compositions were as stable as compositions with higher quantities of albumin when examined for several months at different temperatures (2-8 °C, 25 °C and 40 °C) for potency of paclitaxel, impurity formation, particle size, pH and other typical parameters of stability. Thus compositions with lower amounts of albumin are preferred as this can greatly reduce cost as well as allow increased binding and transport to cells.
  • EXAMPLE 47 This example demonstrates a pharmaceutical composition comprising albumin and paclitaxel having a high albumin to paclitaxel ratio.
  • paclitaxel 30 mg was dissolved in 3.0 ml methylene chloride. The solution was added to 27.0 ml of human serum albumin solution (3% w/v) (corresponding to a ratio of albumin to paclitaxel of 27). Deferoxamine was added as necessary. The mixture was homogenized for 5 minutes at low RPM (Vitris homogenizer, model Tempest I.Q.) in order to form a crude emulsion, and then transferred into a high pressure homogenizer (Avestin). The emulsification was performed at 9000-40,000 psi while recycling the emulsion for at least 5 cycles.
  • the resulting system was transferred into a rotary evaporator, and methylene chloride was rapidly removed at 40°C, at reduced pressure (30 mm Hg) for 20-30 minutes.
  • the resulting dispersion was translucent, and the typical average diameter of the resulting paclitaxel particles was in the range 50-220 nm (Z-average, Malvern Zetasizer).
  • the dispersion was further lyophilized for 48 hrs.
  • the resulting cake was easily reconstituted to the original dispersion by addition of sterile water or saline.
  • the particle size after reconstitution was the same as before lyophilization.
  • EXAMPLE 48 This example demonstrates a pharmaceutical composition comprising albumin and paclitaxel having a low albumin to paclitaxel ratio.
  • paclitaxel 300 mg was dissolved in 3.0 ml methylene chloride. The solution was added to 27 ml of human serum albumin solution (5% w/v). (corresponding to a ratio of albumin to paclitaxel of 4.5). Deferoxamine was added as necessary. The mixture was homogenized for 5 minutes at low RPM (Vitris homogenizer, model Tempest I.Q.) in order to form a crude emulsion, and then transferred into a high pressure homogenizer (Avestin). The emulsification was performed at 9000-40,000 psi while recycling the emulsion for at least 5 cycles.
  • the resulting system was transferred into a rotary evaporator, and methylene chloride was rapidly removed at 40°C, at reduced pressure (30 mm Hg) for 20-30 minutes.
  • the resulting dispersion was translucent, and the typical average diameter of the resulting paclitaxel particles was in the range 50-220 nm (Z- average, Malvern Zetasizer).
  • the dispersion was further lyophilized for 48 hrs.
  • the resulting cake was easily reconstituted to the original dispersion by addition of sterile water or saline.
  • the particle size after reconstitution was the same as before lyophilization.
  • EXAMPLE 49 This example demonstrates a pharmaceutical composition comprising albumin and paclitaxel having an intermediate albumin to paclitaxel ratio. [0159] Specifically, 135 mg of paclitaxel was dissolved in 3.0 ml methylene chloride. The solution was added to 27 ml of human serum albumin solution (5% w/v). Deferoxamine was added as necessary.
  • the mixture was homogenized for 5 minutes at low RPM (Vitris homogenizer, model Tempest I.Q.) in order to form a crude emulsion, and then transferred into a high pressure homogenizer (Avestin).
  • the emulsification was performed at 9000-40,000 psi while recycling the emulsion for at least 5 cycles.
  • the resulting system was transferred into a rotary evaporator, and methylene chloride was rapidly removed at 40°C, at reduced pressure (30 mm Hg) for 20-30 minutes.
  • the resulting dispersion was translucent, and the typical average diameter of the resulting paclitaxel particles was in the range 50-220 nm (Z-average, Malvern Zetasizer).
  • the dispersion was further lyophilized for 48 hrs.
  • the resulting cake was easily reconstituted to the original dispersion by addition of sterile water or saline.
  • the particle size after reconstitution was the same as before lyophilization.
  • the calculated ratio (w/w) of dbumin to paclitaxel in this invention composition is approximately 10.
  • EXAMPLE 50 [0161] This example demonstrates the treatment of rheumatoid arthritis in an animal model with an albumin-paclitaxel composition.
  • the collagen induced arthritis model in the Louvain rat was used to test the therapeutic effect of albumin-paclitaxel composition on arthritis.
  • the paw sizes of the experimental animals were monitored to evaluate the seriousness of arthritis.
  • the experimental animals were divided into different groups to receive either albumin-paclitaxel lmg/kg q.o.d, or albumin-paclitaxel 0.5mg/kg + prednisone 0.2mg/kg q.o.d. (combination treatment) intraperitoneally for 6 doses, then one dose per week for three weeks.
  • the paw sizes were measured at the beginning of treatment (day 0) and every time the drug was injected.
  • albumin-paclitaxel compositions demonstrated therapeutic effect on arthritis.
  • the albumin-paclitaxel combinations are likely to localize at sites of arthritic lesions by transport through receptor-mediated mechanisms like gp60.
  • EXAMPLE 51 This example demonstrates the use of albumin- paclitaxel compositions to treat cardiovascular restenosis.
  • Paclitaxel eluting stents in animals cause incomplete healing and, in some instances, a lack of sustained suppression of neointimal growth in the arteries.
  • the present study tested the efficacy of a novel systemic delivery albumin-paclitaxel invention compositions for reducing in-stent restenosis.
  • albumin-paclitaxel was tested in 38 New Zealand White rabbits receiving bilateral iliac artery stents. Doses of albumin-paclitaxel (1.0 to 5.0 mg/kg paclitaxel dose) were administered as a 10-minute intra-arterial infusion; control animals received vehicle (0.9% normal saline).
  • albumin-paclitaxel 5.0 mg/kg was given at stenting with or without an intravenous 3.5-mg/kg repeatalbumin-paclitaxel dose at 28 days; these studies were terminated at 3 months.
  • inventive composition is suitable for treatment of cardiovascular diseases such as restenosis.
  • inventive compositions comprising pharmaceutical agents other than paclitaxel, for example rapamycin, other taxanes, epothilones etc, are all suitable for treatment of restenosis in blood vessels or artificial blood vessel grafts such as those used for arterio-venous access in patients requiring hemodialysis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dermatology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biotechnology (AREA)
  • Pulmonology (AREA)
  • Otolaryngology (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
PCT/US2003/038941 2002-12-09 2003-12-09 Compositions and methods of delivery of pharmacological agents WO2004052401A2 (en)

Priority Applications (20)

Application Number Priority Date Filing Date Title
KR1020147003448A KR20140027554A (ko) 2002-12-09 2003-12-09 약리학적 물질의 조성물 및 그 전달방법
LTEP03799876.2T LT1585548T (lt) 2002-12-09 2003-12-09 Farmakologinių agentų kompozicijos ir įvedimo būdai
KR1020157025001A KR20150108943A (ko) 2002-12-09 2003-12-09 약리학적 물질의 조성물 및 그 전달방법
MXPA05006169A MXPA05006169A (es) 2002-12-09 2003-12-09 Composiciones y metodos para el suministro de agentes farmacologicos.
KR1020147033814A KR20140148502A (ko) 2002-12-09 2003-12-09 약리학적 물질의 조성물 및 그 전달방법
SI200332576T SI1585548T1 (sl) 2002-12-09 2003-12-09 Sestave in metode odmerjanja farmakoloških sredstev
CA 2509365 CA2509365C (en) 2002-12-09 2003-12-09 Compositions and methods of delivery of pharmacological agents
KR1020187024645A KR20180098702A (ko) 2002-12-09 2003-12-09 약리학적 물질의 조성물 및 그 전달방법
NZ541142A NZ541142A (en) 2002-12-09 2003-12-09 Compositions and methods of delivery of pharmacological agents
AU2003299590A AU2003299590B8 (en) 2002-12-09 2003-12-09 Compositions and methods of delivery of pharmacological agents
JP2004559417A JP2006524632A (ja) 2002-12-09 2003-12-09 組成物及び薬物送達方法
CN200380109606.9A CN1925874B (zh) 2002-12-09 2003-12-09 组合物和传递药剂的方法
EP03799876.2A EP1585548B1 (en) 2002-12-09 2003-12-09 Compositions and methods of delivery of pharmacological agents
KR1020197008420A KR20190034694A (ko) 2002-12-09 2003-12-09 약리학적 물질의 조성물 및 그 전달방법
KR1020207018757A KR20200083657A (ko) 2002-12-09 2003-12-09 약리학적 물질의 조성물 및 그 전달방법
DK03799876.2T DK1585548T3 (en) 2002-12-09 2003-12-09 COMPOSITIONS AND PROCEDURES FOR THE DELIVERY OF PHARMACOLOGICAL AGENTS
ES03799876.2T ES2685436T3 (es) 2002-12-09 2003-12-09 Composiciones y procedimientos para administración de agentes farmacológicos
BR0317134-5A BR0317134A (pt) 2002-12-09 2003-12-09 Composições e métodos de liberação de agentes farmacológicos
EP18178236.8A EP3470084A1 (en) 2002-12-09 2003-12-09 Compositions and methods of delivery of pharmacological agents
CY181100901T CY1120625T1 (el) 2002-12-09 2018-08-29 Συνθεσεις και μεθοδοι χορηγησης φαρμακολογικων παραγοντων

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US43231702P 2002-12-09 2002-12-09
US60/432,317 2002-12-09
US22551903A 2003-12-03 2003-12-03
US22554903A 2003-12-04 2003-12-04
US22558503A 2003-12-05 2003-12-05

Publications (2)

Publication Number Publication Date
WO2004052401A2 true WO2004052401A2 (en) 2004-06-24
WO2004052401A3 WO2004052401A3 (en) 2005-02-17

Family

ID=32512525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/038941 WO2004052401A2 (en) 2002-12-09 2003-12-09 Compositions and methods of delivery of pharmacological agents

Country Status (6)

Country Link
KR (8) KR20140027554A (es)
BR (1) BR0317134A (es)
MX (1) MXPA05006169A (es)
NZ (1) NZ541142A (es)
PT (1) PT1585548T (es)
WO (1) WO2004052401A2 (es)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004100935A2 (en) * 2003-05-09 2004-11-25 American Bioscience, Inc. Propofol formulation containing reduced oil and surfactants
WO2005007131A2 (en) * 2003-07-10 2005-01-27 American Bioscience, Inc. Propofol formulations with non-reactive container closures
CN100358513C (zh) * 2005-04-07 2008-01-02 常州市第四制药厂有限公司 一种丙泊酚注射液的制备工艺
WO2008023038A1 (en) * 2006-08-23 2008-02-28 Blue Medical Devices Bv Medical stent provided with a combination of melatonin and paclitaxel
JP2008530236A (ja) * 2005-02-18 2008-08-07 アブラクシス バイオサイエンス、インコーポレイテッド 虚血障害用の、2,6−ジイソプロピルフェノール及び類似体の組成物、使用及び調製方法。
JP2009507027A (ja) * 2005-08-31 2009-02-19 アブラクシス バイオサイエンス, エルエルシー 増大した安定性を有する難水溶性薬剤の組成物および調製の方法
JP2009512682A (ja) * 2005-10-21 2009-03-26 パナセア バイオテック リミテッド 少なくとも1種の抗癌性薬物および少なくとも1種のポリマーを含む医薬組成物
WO2009103727A2 (en) * 2008-02-19 2009-08-27 Novartis Ag Combination of an iron chelator and an immunosuppressant and use thereof
WO2009156137A1 (en) * 2008-06-24 2009-12-30 Csl Behring Gmbh Factor viii, von willebrand factor or complexes thereof with prolonged in vivo half-life
JP2010502603A (ja) * 2006-08-31 2010-01-28 アブラクシス バイオサイエンス, エルエルシー 血管形成を阻害し、血管形成関連疾患を処置する方法
US7759374B2 (en) 2002-08-23 2010-07-20 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto and analogues thereof
US7820788B2 (en) 2002-12-09 2010-10-26 Abraxis Bioscience, Llc Compositions and methods of delivery of pharmacological agents
US7875638B2 (en) 2002-08-23 2011-01-25 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto, analogues and uses thereof
EP2301531A2 (en) * 2005-02-18 2011-03-30 Abraxis BioScience, LLC Combinations and modes of administration of therapeutic agents and combination therapy
US8735394B2 (en) 2005-02-18 2014-05-27 Abraxis Bioscience, Llc Combinations and modes of administration of therapeutic agents and combination therapy
US8853260B2 (en) 1997-06-27 2014-10-07 Abraxis Bioscience, Llc Formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
US8911786B2 (en) 2007-03-07 2014-12-16 Abraxis Bioscience, Llc Nanoparticle comprising rapamycin and albumin as anticancer agent
US8927019B2 (en) 2007-06-01 2015-01-06 Abraxis Bioscience, Llc Methods and compositions for treating recurrent cancer
JPWO2013047639A1 (ja) * 2011-09-27 2015-03-26 公立大学法人横浜市立大学 組織及び臓器の作製方法
CN104487096A (zh) * 2012-05-10 2015-04-01 埃迪恩克斯股份有限公司 用于活性成分递送的配制物
US8999396B2 (en) 2006-12-14 2015-04-07 Abraxis Bioscience, Llc Breast cancer therapy based on hormone receptor status with nanoparticles comprising taxane
WO2015081096A3 (en) * 2013-11-26 2015-07-16 The Brigham And Women's Hospital, Inc. Receptor-targeted nanoparticles for enhanced transcytosis mediated drug delivery
US9149455B2 (en) 2012-11-09 2015-10-06 Abraxis Bioscience, Llc Methods of treating melanoma
US9308180B2 (en) 2005-08-31 2016-04-12 Abraxis Bioscience, Llc Compositions and methods for preparation of poorly water soluble drugs with increased stability
US9370494B2 (en) 2010-03-26 2016-06-21 Abraxis Bioscience, Llc Methods for treating hepatocellular carcinoma
US9393318B2 (en) 2010-03-29 2016-07-19 Abraxis Bioscience, Llc Methods of treating cancer
US9399071B2 (en) 2010-06-04 2016-07-26 Abraxis Bioscience, Llc Methods of treatment of pancreatic cancer
US9446003B2 (en) 2009-04-15 2016-09-20 Abraxis Bioscience, Llc Prion free nanoparticle compositions and methods of making thereof
US9511046B2 (en) 2013-01-11 2016-12-06 Abraxis Bioscience, Llc Methods of treating pancreatic cancer
US9585960B2 (en) 2011-12-14 2017-03-07 Abraxis Bioscience, Llc Use of polymeric excipients for lyophilization or freezing of particles
US9878017B2 (en) 2013-04-22 2018-01-30 Csl Ltd. Covalent complex of von Willebrand Factor and factor VIII, compositions, and uses relating thereto
US9962373B2 (en) 2013-03-14 2018-05-08 Abraxis Bioscience, Llc Methods of treating bladder cancer
US10041069B2 (en) 2007-05-11 2018-08-07 Adynxx, Inc. Gene expression and pain
US10287583B2 (en) 2014-08-15 2019-05-14 Adynxx, Inc. Oligonucleotide decoys for the treatment of pain
US10527604B1 (en) 2015-03-05 2020-01-07 Abraxis Bioscience, Llc Methods of assessing suitability of use of pharmaceutical compositions of albumin and paclitaxel
US10660965B2 (en) 2010-03-29 2020-05-26 Abraxis Bioscience, Llc Methods of enhancing drug delivery and effectiveness of therapeutic agents
US10705070B1 (en) 2015-03-05 2020-07-07 Abraxis Bioscience, Llc Methods of assessing suitability of use of pharmaceutical compositions of albumin and poorly water soluble drug
US10744110B2 (en) 2013-03-12 2020-08-18 Abraxis Bioscience, Llc Methods of treating lung cancer
US10973806B2 (en) 2015-06-29 2021-04-13 Abraxis Bioscience, Llc Methods of treating epithelioid cell tumors comprising administering a composition comprising nanoparticles comprising an mTOR inhibitor and an albumin
US11497737B2 (en) 2019-10-28 2022-11-15 Abraxis Bioscience, Llc Pharmaceutical compositions of albumin and rapamycin
US11944708B2 (en) 2018-03-20 2024-04-02 Abraxis Bioscience, Llc Methods of treating central nervous system disorders via administration of nanoparticles of an mTOR inhibitor and an albumin

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4425319A (en) * 1980-03-08 1984-01-10 Nihon Medi-Physics Co., Ltd. Radioactive diagnostic agent and non-radioactive carrier therefor
US4645660A (en) * 1983-04-26 1987-02-24 Nihon Medi-Physics Co., Ltd. Increasing labeling efficiency by forming diagnostic agent in the presence of ascorbic acid or the like
EP0227593A1 (en) * 1985-11-25 1987-07-01 The Hospital For Sick Children Use of chelating agents
WO1992007259A1 (en) * 1990-10-16 1992-04-30 Biomedical Frontiers, Inc. Polymer-deferoxamine-ferric iron adducts for use in magnetic resonance imaging
EP0544292A2 (de) * 1991-11-27 1993-06-02 Roche Diagnostics GmbH Verfahren zur Einschleusung von Nukleinsäuren in Zellen
US5439686A (en) * 1993-02-22 1995-08-08 Vivorx Pharmaceuticals, Inc. Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor
US5916596A (en) * 1993-02-22 1999-06-29 Vivorx Pharmaceuticals, Inc. Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof
FR2775900A1 (fr) * 1998-03-10 1999-09-17 Charles Dumontet Compositions medicamenteuses contenant de la deferoxamine pour la prevention des toxicites hematopoietique et tissulaire des anthracyclines et de leurs derives
US5990153A (en) * 1997-05-05 1999-11-23 Wood; John G. Ultrasonicated α-lipoic acid solutions for attenuating microvascular injury
WO2000023117A1 (en) * 1998-10-16 2000-04-27 The General Hospital Corporation Photosensitizer conjugates for targeting intracellular pathogens
US6204054B1 (en) * 1995-09-21 2001-03-20 Andaris Limited Transcytosis vehicles and enchancers for drug delivery
US6310039B1 (en) * 1996-09-11 2001-10-30 Felix Kratz Antineoplastic conjugates of transferrin, albumin and polyethylene glycol
WO2004007520A2 (en) * 2002-07-12 2004-01-22 Medarex, Inc. Methods and compositions for preventing oxidative degradation of proteins

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4425319A (en) * 1980-03-08 1984-01-10 Nihon Medi-Physics Co., Ltd. Radioactive diagnostic agent and non-radioactive carrier therefor
US4645660A (en) * 1983-04-26 1987-02-24 Nihon Medi-Physics Co., Ltd. Increasing labeling efficiency by forming diagnostic agent in the presence of ascorbic acid or the like
EP0227593A1 (en) * 1985-11-25 1987-07-01 The Hospital For Sick Children Use of chelating agents
WO1992007259A1 (en) * 1990-10-16 1992-04-30 Biomedical Frontiers, Inc. Polymer-deferoxamine-ferric iron adducts for use in magnetic resonance imaging
EP0544292A2 (de) * 1991-11-27 1993-06-02 Roche Diagnostics GmbH Verfahren zur Einschleusung von Nukleinsäuren in Zellen
US5916596A (en) * 1993-02-22 1999-06-29 Vivorx Pharmaceuticals, Inc. Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof
US5439686A (en) * 1993-02-22 1995-08-08 Vivorx Pharmaceuticals, Inc. Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor
US6204054B1 (en) * 1995-09-21 2001-03-20 Andaris Limited Transcytosis vehicles and enchancers for drug delivery
US6310039B1 (en) * 1996-09-11 2001-10-30 Felix Kratz Antineoplastic conjugates of transferrin, albumin and polyethylene glycol
US5990153A (en) * 1997-05-05 1999-11-23 Wood; John G. Ultrasonicated α-lipoic acid solutions for attenuating microvascular injury
FR2775900A1 (fr) * 1998-03-10 1999-09-17 Charles Dumontet Compositions medicamenteuses contenant de la deferoxamine pour la prevention des toxicites hematopoietique et tissulaire des anthracyclines et de leurs derives
WO2000023117A1 (en) * 1998-10-16 2000-04-27 The General Hospital Corporation Photosensitizer conjugates for targeting intracellular pathogens
WO2004007520A2 (en) * 2002-07-12 2004-01-22 Medarex, Inc. Methods and compositions for preventing oxidative degradation of proteins

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HALLIWELL B: "PROTECTION AGAINST TISSUE DAMAGE IN VIVO BY DESFERRIOXAMINE: WHAT IS ITS MECHANISM OF ACTION?" FREE RADICAL BIOLOGY AND MEDICINE, ELSEVIER SCIENCE, XX, vol. 7, no. 6, 1989, pages 645-651, XP001058483 ISSN: 0891-5849 *
MEIJS W E ET AL: "A Facile Method for the Labeling of Proteins with Zirconium Isotopes" NUCLEAR MEDICINE AND BIOLOGY, ELSEVIER SCIENCE PUBLISHERS, NEW YORK, NY, US, vol. 23, no. 4, 1 May 1996 (1996-05-01), pages 439-448, XP004051812 ISSN: 0969-8051 *
See also references of EP1585548A2 *
VICTOR TUAN GIAM CHUANG ET AL: "PHARMACEUTICAL STRATEGIES UTILIZING RECOMBINANT HUMAN SERUM ALBUMIN" PHARMACEUTICAL RESEARCH, NEW YORK, NY, US, vol. 19, no. 5, May 2002 (2002-05), pages 569-577, XP009007551 ISSN: 0724-8741 *

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8853260B2 (en) 1997-06-27 2014-10-07 Abraxis Bioscience, Llc Formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
US7759374B2 (en) 2002-08-23 2010-07-20 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto and analogues thereof
US8513429B2 (en) 2002-08-23 2013-08-20 Sloan-Kettering Insitute For Cancer Research Synthesis of epothilones, intermediates thereto and analogues thereof
US8110590B2 (en) 2002-08-23 2012-02-07 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto and analogues thereof
US7875638B2 (en) 2002-08-23 2011-01-25 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto, analogues and uses thereof
US8314156B2 (en) 2002-12-09 2012-11-20 Abraxis Bioscience, Llc Compositions and methods of delivery of pharmacological agents
US7820788B2 (en) 2002-12-09 2010-10-26 Abraxis Bioscience, Llc Compositions and methods of delivery of pharmacological agents
US9012518B2 (en) 2002-12-09 2015-04-21 Abraxis Bioscience, Llc Compositions and methods of delivery of pharmacological agents
US8846771B2 (en) 2002-12-09 2014-09-30 Abraxis Bioscience, Llc Compositions and methods of delivery of pharmacological agents
US9012519B2 (en) 2002-12-09 2015-04-21 Abraxis Bioscience, Llc Compositions and methods of delivery of pharmacological agents
US8138229B2 (en) 2002-12-09 2012-03-20 Abraxis Bioscience, Llc Compositions and methods of delivery of pharmacological agents
US7923536B2 (en) 2002-12-09 2011-04-12 Abraxis Bioscience, Llc Compositions and methods of delivery of pharmacological agents
WO2004100935A2 (en) * 2003-05-09 2004-11-25 American Bioscience, Inc. Propofol formulation containing reduced oil and surfactants
WO2004100935A3 (en) * 2003-05-09 2005-12-08 American Bioscience Inc Propofol formulation containing reduced oil and surfactants
US9072655B2 (en) 2003-07-10 2015-07-07 Fresenius Kabi Usa, Llc Propofol formulations with non-reactive container closures
US8476010B2 (en) 2003-07-10 2013-07-02 App Pharmaceuticals Llc Propofol formulations with non-reactive container closures
US9925117B2 (en) 2003-07-10 2018-03-27 Fresenius Kabi Usa, Llc Propofol formulations with non-reactive container closures
US9072656B2 (en) 2003-07-10 2015-07-07 Fresenius Kabi Usa, Llc Propofol formulations with non-reactive container closures
US8889346B2 (en) 2003-07-10 2014-11-18 Fresenius Kabi Usa, Llc Propofol formulations with non-reactive container closures
WO2005007131A2 (en) * 2003-07-10 2005-01-27 American Bioscience, Inc. Propofol formulations with non-reactive container closures
US10772795B2 (en) 2003-07-10 2020-09-15 Fresnius Kabi Usa, Llc Propofol formulations with non-reactive container closures
WO2005007131A3 (en) * 2003-07-10 2005-09-22 American Bioscience Inc Propofol formulations with non-reactive container closures
US8034375B2 (en) 2005-02-18 2011-10-11 Abraxis Bioscience, Llc Combinations and modes of administration of therapeutic agents and combination therapy
US8735394B2 (en) 2005-02-18 2014-05-27 Abraxis Bioscience, Llc Combinations and modes of administration of therapeutic agents and combination therapy
EP2301531A2 (en) * 2005-02-18 2011-03-30 Abraxis BioScience, LLC Combinations and modes of administration of therapeutic agents and combination therapy
US8257733B2 (en) 2005-02-18 2012-09-04 Abraxis Bioscience, Llc Methods and compositions for treating proliferative diseases
US8268348B2 (en) 2005-02-18 2012-09-18 Abraxis Bioscience, Llc Combinations and modes of administration of therapeutic agents and combination therapy
US9561288B2 (en) 2005-02-18 2017-02-07 Abraxis Bioscience, Llc Combinations and modes of administration of therapeutic agents and combination therapy
EP2301531A3 (en) * 2005-02-18 2011-07-27 Abraxis BioScience, LLC Combinations and modes of administration of therapeutic agents and combination therapy
US9101543B2 (en) 2005-02-18 2015-08-11 Abraxis Bioscience, Llc Combinations and modes of administration of therapeutic agents and combination therapy
JP2008530236A (ja) * 2005-02-18 2008-08-07 アブラクシス バイオサイエンス、インコーポレイテッド 虚血障害用の、2,6−ジイソプロピルフェノール及び類似体の組成物、使用及び調製方法。
CN100358513C (zh) * 2005-04-07 2008-01-02 常州市第四制药厂有限公司 一种丙泊酚注射液的制备工艺
US9308180B2 (en) 2005-08-31 2016-04-12 Abraxis Bioscience, Llc Compositions and methods for preparation of poorly water soluble drugs with increased stability
US8034765B2 (en) 2005-08-31 2011-10-11 Abraxis Bioscience, Llc Compositions and methods for preparation of poorly water soluble drugs with increased stability
US7981445B2 (en) 2005-08-31 2011-07-19 Abraxis Bioscience, Llc Compositions and methods for preparation of poorly water soluble drugs with increased stability
JP2009507027A (ja) * 2005-08-31 2009-02-19 アブラクシス バイオサイエンス, エルエルシー 増大した安定性を有する難水溶性薬剤の組成物および調製の方法
JP2009512682A (ja) * 2005-10-21 2009-03-26 パナセア バイオテック リミテッド 少なくとも1種の抗癌性薬物および少なくとも1種のポリマーを含む医薬組成物
WO2008023038A1 (en) * 2006-08-23 2008-02-28 Blue Medical Devices Bv Medical stent provided with a combination of melatonin and paclitaxel
JP2010502603A (ja) * 2006-08-31 2010-01-28 アブラクシス バイオサイエンス, エルエルシー 血管形成を阻害し、血管形成関連疾患を処置する方法
US10682420B2 (en) 2006-12-14 2020-06-16 Abraxis Bioscience, Llc Breast cancer therapy based on hormone receptor status with nanoparticles comprising taxane
US8999396B2 (en) 2006-12-14 2015-04-07 Abraxis Bioscience, Llc Breast cancer therapy based on hormone receptor status with nanoparticles comprising taxane
US9724323B2 (en) 2006-12-14 2017-08-08 Abraxis Bioscience, Llc Breast cancer therapy based on hormone receptor status with nanoparticles comprising taxane
US9675578B2 (en) 2006-12-14 2017-06-13 Abraxis Bioscience, Llc Breast cancer therapy based on hormone receptor status with nanoparticles comprising taxane
KR101943230B1 (ko) 2007-03-07 2019-01-28 아브락시스 바이오사이언스, 엘엘씨 항암제로서 라파마이신 및 알부민을 포함하는 나노입자
KR20190009842A (ko) * 2007-03-07 2019-01-29 아브락시스 바이오사이언스, 엘엘씨 항암제로서 라파마이신 및 알부민을 포함하는 나노입자
US8911786B2 (en) 2007-03-07 2014-12-16 Abraxis Bioscience, Llc Nanoparticle comprising rapamycin and albumin as anticancer agent
KR102047634B1 (ko) 2007-03-07 2019-11-21 아브락시스 바이오사이언스, 엘엘씨 항암제로서 라파마이신 및 알부민을 포함하는 나노입자
KR20190130680A (ko) * 2007-03-07 2019-11-22 아브락시스 바이오사이언스, 엘엘씨 항암제로서 라파마이신 및 알부민을 포함하는 나노입자
KR102154459B1 (ko) 2007-03-07 2020-09-09 아브락시스 바이오사이언스, 엘엘씨 항암제로서 라파마이신 및 알부민을 포함하는 나노입자
US10041069B2 (en) 2007-05-11 2018-08-07 Adynxx, Inc. Gene expression and pain
US8927019B2 (en) 2007-06-01 2015-01-06 Abraxis Bioscience, Llc Methods and compositions for treating recurrent cancer
WO2009103727A2 (en) * 2008-02-19 2009-08-27 Novartis Ag Combination of an iron chelator and an immunosuppressant and use thereof
WO2009103727A3 (en) * 2008-02-19 2010-07-15 Novartis Ag Combination of an iron chelator and an immunosuppressant and use thereof
US20110009340A1 (en) * 2008-02-19 2011-01-13 Novartis Ag Combination of an iron chelator and an immunosuppressant and use thereof
EP2865760A1 (en) * 2008-06-24 2015-04-29 CSL Behring GmbH Factor VIII, von Willebrand factor or complexes thereof with prolonged in vivo half-life
WO2009156137A1 (en) * 2008-06-24 2009-12-30 Csl Behring Gmbh Factor viii, von willebrand factor or complexes thereof with prolonged in vivo half-life
US8575104B2 (en) 2008-06-24 2013-11-05 Csl Behring Gmbh Factor VIII, von willebrand factor or complexes thereof with prolonged in vivo half-life
US9290561B2 (en) 2008-06-24 2016-03-22 Csl Behring Gmbh Factor VIII, von Willebrand factor or complexes thereof with prolonged in vivo half-life
US10206887B2 (en) 2009-04-15 2019-02-19 Abraxis Bioscience, Llc Prion free nanoparticle compositions and methods of making thereof
US9446003B2 (en) 2009-04-15 2016-09-20 Abraxis Bioscience, Llc Prion free nanoparticle compositions and methods of making thereof
US9370494B2 (en) 2010-03-26 2016-06-21 Abraxis Bioscience, Llc Methods for treating hepatocellular carcinoma
US10660965B2 (en) 2010-03-29 2020-05-26 Abraxis Bioscience, Llc Methods of enhancing drug delivery and effectiveness of therapeutic agents
US9393318B2 (en) 2010-03-29 2016-07-19 Abraxis Bioscience, Llc Methods of treating cancer
US9597409B2 (en) 2010-03-29 2017-03-21 Abraxis Bioscience, Llc Methods of treating cancer
US9399072B2 (en) 2010-06-04 2016-07-26 Abraxis Bioscience, Llc Methods of treatment of pancreatic cancer
US9399071B2 (en) 2010-06-04 2016-07-26 Abraxis Bioscience, Llc Methods of treatment of pancreatic cancer
US9820949B2 (en) 2010-06-04 2017-11-21 Abraxis Bioscience, Llc Methods of treatment of pancreatic cancer
JP2017127319A (ja) * 2011-09-27 2017-07-27 公立大学法人横浜市立大学 組織及び臓器の作製方法
JPWO2013047639A1 (ja) * 2011-09-27 2015-03-26 公立大学法人横浜市立大学 組織及び臓器の作製方法
JP2020171295A (ja) * 2011-09-27 2020-10-22 公立大学法人横浜市立大学 器官芽
JP2019041773A (ja) * 2011-09-27 2019-03-22 公立大学法人横浜市立大学 器官芽
US10555912B2 (en) 2011-12-14 2020-02-11 Abraxis Bioscience, Llc Use of polymeric excipients for lyophilization or freezing of particles
US10076501B2 (en) 2011-12-14 2018-09-18 Abraxis Bioscience, Llc Use of polymeric excipients for lyophilization or freezing of particles
US9585960B2 (en) 2011-12-14 2017-03-07 Abraxis Bioscience, Llc Use of polymeric excipients for lyophilization or freezing of particles
US10434178B2 (en) 2012-05-10 2019-10-08 Adynxx Sub, Inc. Formulations for the delivery of active ingredients
US9700624B2 (en) 2012-05-10 2017-07-11 Adynxx, Inc. Formulations for the delivery of active ingredients
CN104487096A (zh) * 2012-05-10 2015-04-01 埃迪恩克斯股份有限公司 用于活性成分递送的配制物
US9149455B2 (en) 2012-11-09 2015-10-06 Abraxis Bioscience, Llc Methods of treating melanoma
US9511046B2 (en) 2013-01-11 2016-12-06 Abraxis Bioscience, Llc Methods of treating pancreatic cancer
US10328031B2 (en) 2013-01-11 2019-06-25 Abraxis Bioscience, Llc Methods of treating pancreatic cancer
US9855220B2 (en) 2013-01-11 2018-01-02 Abraxis Bioscience, Llc Methods of treating pancreatic cancer
US10744110B2 (en) 2013-03-12 2020-08-18 Abraxis Bioscience, Llc Methods of treating lung cancer
US10413531B2 (en) 2013-03-14 2019-09-17 Abraxis Bioscience, Llc Methods of treating bladder cancer
US9962373B2 (en) 2013-03-14 2018-05-08 Abraxis Bioscience, Llc Methods of treating bladder cancer
US9878017B2 (en) 2013-04-22 2018-01-30 Csl Ltd. Covalent complex of von Willebrand Factor and factor VIII, compositions, and uses relating thereto
WO2015081096A3 (en) * 2013-11-26 2015-07-16 The Brigham And Women's Hospital, Inc. Receptor-targeted nanoparticles for enhanced transcytosis mediated drug delivery
US10287583B2 (en) 2014-08-15 2019-05-14 Adynxx, Inc. Oligonucleotide decoys for the treatment of pain
US10683502B2 (en) 2014-08-15 2020-06-16 Adynxx Sub, Inc. Oligonucleotide decoys for the treatment of pain
US10705070B1 (en) 2015-03-05 2020-07-07 Abraxis Bioscience, Llc Methods of assessing suitability of use of pharmaceutical compositions of albumin and poorly water soluble drug
US10527604B1 (en) 2015-03-05 2020-01-07 Abraxis Bioscience, Llc Methods of assessing suitability of use of pharmaceutical compositions of albumin and paclitaxel
US10900951B1 (en) 2015-03-05 2021-01-26 Abraxis Bioscience, Llc Methods of assessing suitability of use of pharmaceutical compositions of albumin and paclitaxel
US11320416B1 (en) 2015-03-05 2022-05-03 Abraxis Bioscience, Llc Methods of assessing suitability of use of pharmaceutical compositions of albumin and poorly water soluble drug
US10973806B2 (en) 2015-06-29 2021-04-13 Abraxis Bioscience, Llc Methods of treating epithelioid cell tumors comprising administering a composition comprising nanoparticles comprising an mTOR inhibitor and an albumin
US11944708B2 (en) 2018-03-20 2024-04-02 Abraxis Bioscience, Llc Methods of treating central nervous system disorders via administration of nanoparticles of an mTOR inhibitor and an albumin
US11497737B2 (en) 2019-10-28 2022-11-15 Abraxis Bioscience, Llc Pharmaceutical compositions of albumin and rapamycin

Also Published As

Publication number Publication date
KR20110079741A (ko) 2011-07-07
KR20140027554A (ko) 2014-03-06
KR20190034694A (ko) 2019-04-02
KR20180098702A (ko) 2018-09-04
BR0317134A (pt) 2005-11-22
KR20120068035A (ko) 2012-06-26
PT1585548T (pt) 2018-10-17
MXPA05006169A (es) 2006-03-30
KR20050095826A (ko) 2005-10-04
NZ541142A (en) 2008-07-31
KR20150108943A (ko) 2015-09-30
KR20140148502A (ko) 2014-12-31
WO2004052401A3 (en) 2005-02-17

Similar Documents

Publication Publication Date Title
US9012518B2 (en) Compositions and methods of delivery of pharmacological agents
WO2004052401A2 (en) Compositions and methods of delivery of pharmacological agents
RU2522977C2 (ru) Композиции и способы доставки фармакологических агентов

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004559417

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2509365

Country of ref document: CA

Ref document number: PA/a/2005/006169

Country of ref document: MX

Ref document number: 2005/02189

Country of ref document: TR

Ref document number: 1020057010482

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2899/DELNP/2005

Country of ref document: IN

Ref document number: 2003299590

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005/05380

Country of ref document: ZA

Ref document number: 200505380

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2003799876

Country of ref document: EP

Ref document number: 541142

Country of ref document: NZ

ENP Entry into the national phase

Ref document number: 2005121569

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 20038A96069

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057010482

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003799876

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0317134

Country of ref document: BR

CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PCT GAZETTE 26/2004 UNDER (30) DELETE "225519", "225549" AND "225585"