WO2004046554A1 - Innenzahnradpumpe - Google Patents

Innenzahnradpumpe Download PDF

Info

Publication number
WO2004046554A1
WO2004046554A1 PCT/EP2003/012725 EP0312725W WO2004046554A1 WO 2004046554 A1 WO2004046554 A1 WO 2004046554A1 EP 0312725 W EP0312725 W EP 0312725W WO 2004046554 A1 WO2004046554 A1 WO 2004046554A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
outer rotor
pressure connection
pump
volume flow
Prior art date
Application number
PCT/EP2003/012725
Other languages
English (en)
French (fr)
Inventor
Willi Schneider
Original Assignee
Joma-Hydromechanic Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joma-Hydromechanic Gmbh filed Critical Joma-Hydromechanic Gmbh
Publication of WO2004046554A1 publication Critical patent/WO2004046554A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/10Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C14/14Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using rotating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/088Elements in the toothed wheels or the carter for relieving the pressure of fluid imprisoned in the zones of engagement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/102Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes

Definitions

  • the invention relates to a variable-volume rotor pump with a pump housing having a suction connection and a pressure connection, an internally toothed outer rotor which is rotatably mounted inside the housing, and an externally toothed inner rotor which is eccentrically mounted therein and which is drivable by a drive shaft mounted axially parallel to the outer rotor in the pump housing Change in the volume flow in the pump housing a coaxial to the drive shaft rotatable collar is provided, in which the outer rotor is mounted eccentrically and rotatably.
  • Rotor pumps in which the theoretical delivery volume can be changed by shifting the center of the outer rotor along a circle, in that the outer rotor is mounted eccentrically and rotatably in a collar rotatably mounted in the pump housing on the drive shaft, and thereby the relative position of both rotors to the Suction and pressure connections can be changed accordingly are known from DE 102 07 348 AI.
  • the torque to be applied for the rotor pump is calculated from the equation
  • the invention has for its object to provide a rotor pump of the type mentioned, in which the drive torque is reduced when the volume flow is reduced.
  • the main advantage of this design is that the drive torque required is proportional to the volume flow delivered. This can be explained as follows. If in a rotor pump according to the prior art (DE 102 07 348 AI) the adjusting ring is rotated in the direction of a reduced volume flow, then the outer rotor is adjusted in its eccentric bearing in such a way that the delivery chamber, which is between two teeth of the inner ring and the inner surface of the Outer ring is formed, opens over a very narrow flow cross section in the pressure connection. Due to this narrow cross-section, the fluid in the delivery chamber cannot flow out as quickly as it is conveyed via the rotor pump or the inner rotor.
  • the pressure rise in the delivery chamber caused by the narrowed overflow cross section from the delivery chamber into the pressure connection is reduced in that the fluid can bypass the narrowed overflow cross section via the bypass groove and flow into the pressure connection. Rather, due to the bypass groove in the delivery chamber, an increase in pressure is avoided from the outset.
  • bypass groove is fluidly connected to the pressure connection when the corresponding tooth of the inner rotor lifts off the inner surface of the outer rotor and opens the delivery space towards the pressure connection. This ensures that the desired pressure, which must be present at the pressure connection, is built up in the delivery chamber.
  • bypass groove communicates with the pressure connection only when the outer rotor is in a position for reduced volume flow.
  • a discontinuous change in the pressure in the delivery chamber and in the pressure connection and thus the drive torque is avoided by the opening cross section of the bypass groove increases in the direction of the pressure connection with decreasing volume flow.
  • Figure 1 shows a cross section of a variable volume rotor pump in a position at maximum volume flow
  • FIG. 2 shows a cross section of a variable-volume rotor pump in a position with a minimum volume flow, the inner rotor being rotated counterclockwise from a to g;
  • Figure 3 shows a longitudinal section III-III according to Figure 2a.
  • Figure 4 shows a section IV-IV through the bypass groove according to Figure 2d.
  • the rotor pump designated overall by 10, has a pump housing 20 in which an adjusting ring 22 is rotatably and fixably mounted on a drive point 26.
  • An outer rotor 30 meshing with an inner rotor 28 is rotatably and eccentrically mounted in the adjusting ring 22.
  • the adjusting ring 22 carries on the outer circumference two diametrically assigned and radially projecting flat pistons 66 and 68, each of which is adjustable along a circular segment-shaped piston guide 70 or 72 formed on the pump housing 20.
  • a delivery space 42 is formed, in which the fluid sucked in via a suction connection 44 is demanded and pressurized.
  • a connection between the delivery chamber 42 and a pressure connection 46 is established at 46, the fluid located in the delivery chamber 42 is displaced into the pressure connection 46.
  • FIG. 1 The position of the adjusting ring 22 is shown in FIG. 1, in which the greatest demand (V theory) of the rotor pump 10 is given.
  • Figures 2a to 2g shows the position of the collar 22, at V eormin •
  • the overflow cross section at 48 is very narrow. As soon as the delivery space 42 is connected to the pressure connection 46 via the overcurrent cross section 48, the delivery space 42 and the pressure connection 46 also communicate via a bypass groove 50, which is provided in the outer rotor 30. Fluid can flow into the pressure connection 46 via this bypass groove 50, as a result of which an undesirable pressure increase in the delivery space 42 is avoided.
  • the bypass groove 50 is arranged in the outer rotor 30 such that it is connected to the pressure connection 46 when the delivery space 42 is just being connected to the pressure connection 46 via the overcurrent cross section 48.
  • FIGS. 2a to 2g the inner rotor 28 is shown in different rotational positions, in which the fluid located in the delivery space 42 is gradually displaced into the pressure connection 46.
  • the overcurrent cross section 48 increases only slightly, but the overlap 52 of the bypass groove 50 with the pressure connection 46 increases in size.
  • a bypass groove 50 is advantageously located on both end faces of the outer rotor 30, so that a balanced distribution of forces prevails. This can be seen from FIG. 4, which can also be seen that the opening cross section of the bypass groove 50 decreases in the direction of the pressure connection 46.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

Volumenstromvariable Rotorpumpe, mit einem einen Sauganschluss (44) und einen Druckanschluss (46) aufweisenden Pumpengehäuse (20), einem im Gehäuseinnern drehbar gelagerten, innenverzahnten Aussenrotor (30) und einem in diesem exzentrisch gelagerten, aussenverzahnten Innenrotor (28), der von einer im Pumpengehäuse achsparallel zum Aussenrotor (30) gelagerten Antriebswelle (26) antreibbar ist, wobei zur Änderung des Volumenstromes im Pumpengehäuse ein koaxial zur Antriebswelle (26) gelagerter, verdrehbarer Stellring (22) vorgesehen ist, in dem der Aussenrotor (30) exzentrisch und verdrehbar gelagert ist, wobei der Aussenrotor (30) mit Bypassnuten (50) versehen ist, die den zwischen den Zähnen des Innenrotors (28) und des Aussenrotors (30) gebildeten Förderraum mit dem Druckanschluss (46) verbindet.

Description

INNENZAHN ADPUMPE
Besehreibung
Die Erfindung betrifft eine volumenstromvariable Rotorpumpe, mit einem einen Sauganschluss und einem Druckanschluss aufweisenden Pumpengehäuse, einem im Gehäuseinneren drehbar gelagerten, innenverzahnten Außenrotor und einem in diesem exzentrisch gelagerten, außenverzahnten Innenrotor, der von einer im Pumpengehäuse achsparallel zum Außenrotor gelagerten Antriebswelle antreibbar ist, wobei zur Änderung des Volumenstromes im Pumpengehäuse ein koaxial zur Antriebswelle gelagerter, verdrehbarer Stellring vorgesehen ist, in dem der Außenrotor exzentrisch und verdrehbar gelagert ist.
Rotorpumpen, bei denen das theoretische Fördervolumen dadurch veränderbar ist, dass das Zentrum des Außenrotors entlang eines Kreises verlagert wird, indem der Außenrotor in einem im Pumpengehäuse auf der Antriebswelle verdrehbar gelagerten Stellring exzentrisch und verdrehbar gelagert ist, und dadurch die relative Lage beider Rotoren zu den Saug- und Druckanschlüssen entsprechend veränderbar ist, sind aus der DE 102 07 348 AI bekannt.
Das für die Rotorpumpe aufzubringende Drehmoment errechnet sich aus der Gleichung
Md = ( Vtheor ' Δp ) / ( k ηhm) -
wobei :
Md = Drehmoment theor = theoretischer Volumenstrom
Δp = Druckdifferenz zwischen Sauganschluss und Druckanschluss k = Konstante ηhm = hydraulisch-mechanischer Wirkungsgrad Es hat sich gezeigt, dass sich bei einer Verringerung des Volumenstroms, was durch eine Verdrehung des Stellringes erfolgt, sich das erforderliche Antriebsdrehmoment für die Rotorpumpe nicht oder kaum verändert.
Der Erfindung liegt die Aufgabe zugrunde, eine Rotorpumpe der eingangs genannten Art bereit zu stellen, bei der sich das Antriebsdrehmoment verringert, wenn der Volumenstrom verringert wird.
Diese Aufgabe wird bei einer Rotorpumpe der eingangs genannten Art erfindungsgemäß dadurch gelöst, dass der Außenrotor mit Bypassnuten versehen ist, die den zwischen den Zähnen des Innenrotors und des Außenrotors gebildeten Förderraum mit dem Druckanschluss verbindet.
Diese Konstruktion hat den wesentlichen Vorteil, dass das erforderliche Antriebsdrehmoment proportional zum geförderten Volumenstrom ist. Das kann wie folgt erklärt werden. Wird bei einer Rotorpumpe gemäß dem Stand der Technik (DE 102 07 348 AI) der Stellring in Richtung eines verminderten Volumenstromes gedreht, dann wird der Außenrotor derart in seiner exzentrischen Lagerung verstellt, dass die Förderkammer, die zwischen zwei Zähnen des Innenringes und der Innenoberfläche des Außenringes gebildet wird, über einen sehr engen Strömungsquerschnitt in den Druckanschluss öffnet. Über diesen engen Querschnitt kann das im Förderraum sich befindende Fluid nicht so schnell abströmen, wie es über die Rotorpumpe oder den Innenrotor gefördert wird. Zwar wird ein geringeres Volumen gefördert, jedoch erhöht sich der Druck im Förderraum aufgrund der sehr engen Strömungsquerschnittes beträchtlich, wozu das entsprechende Drehmoment benötigt wird. Dieser erhöhte Druck im Förderraum erhöht zwar geringfügig den Druck im Druckanschluss, d.h. am Ausgang der Rotorpumpe, ist aber weder erforderlich noch gewünscht. Zudem erweitert sich dadurch der Außendurchmesser des Außenrotors, so dass dieser stärker in seinen Lagersitz gepresst wird, wodurch der hydraulisch-mechanische Wirkungsgrad verringert wird.
Bei der erfindungsgemäßen Rotorpumpe wird der durch den verengten Überströmquerschnitt vom Förderraum in den Druckanschluss hervorgerufene Druckanstieg im Förderraum dadurch abgebaut, dass das Fluid den verengten Überströmquerschnitt über die Bypassnut umgehen und in den Druckanschluss abfließen kann. Vielmehr wird aufgrund der Bypassnut im Förderraum eine Druckanstieg von vornherein vermieden.
Dadurch wird der Druck im Druckanschluss und somit das Δp nicht erhöht. Da im Förderraum kein Druckanstieg stattfindet, wird auch der Durchmesser des Außenrotors nicht vergrößert, weshalb sich der hydraulisch-mechanischer Wirkungsgrad auch nicht verschlechtert. Hieraus folgt, dass das Antriebsdrehmoment zum geförderten Volumenstrom proportional ist.
Bei einer Weiterbildung ist vorgesehen, dass die Bypassnut dann mit dem Druckanschluss fluidverbunden ist, wenn der entsprechende Zahn des Innenrotors von der Innenoberfläche des Außenrotors abhebt und den Förderraum zum Druckanschluss hin öffnet. Hierdurch wird gewährleistet, dass im Förderraum der gewünschte Druck, der am Druckanschluss anliegen muss, aufgebaut wird.
Um das maximal mögliche Fördervolumen und den maximal möglichen Druck bereit stellen zu können ist vorgesehen, dass die Bypassnut nur bei einer Stellung des Außenrotors für verminderten Volumenstrom mit dem Druckanschluss kommuniziert .
Eine diskontinuierliche Änderung des Druckes im Förderraum und im Druckanschluss und somit des Antriebsdrehmoments wird dadurch vermieden, dass der Öffnungsquerschnitt der Bypassnut in Richtung des Druckanschlusses mit sich verringerndem Volumenstrom zunimmt.
Weitere Vorteile und Einzelheiten der Erfindung ergeben sich aus den Unteransprüchen sowie der nach olgenden Beschreibung, in der unter Bezugnahme auf die Zeichnung besonders bevorzugte Ausführungsbeispiele im Einzelnen beschrieben sind.
In der Zeichnung zeigen:
Figur 1 einen Querschnitt einer volumenstromvariablen Rotorpumpe in einer Stellung bei maximalem Volumenstrom;
Figur 2 einen Querschnitt einer volumenstromvariablen Rotorpumpe in einer Stellung bei minimalem Volumenstrom, wobei der Innenrotor von a nach g entgegen dem Uhrzeigersinn gedreht wird;
Figur 3 einen Längsschnitt III-III gemäß Figur 2a; und
Figur 4 einen Schnitt IV-IV durch die Bypassnut gemäß Figur 2d.
Die insgesamt mit 10 bezeichnete Rotorpumpe weist ein Pumpengehäuse 20 auf, in dem ein Stellring 22 auf einer Antriebstelle 26 verdrehbar und feststellbar gelagert ist. Im Stellring 22 ist ein mit einem Innenrotor 28 kämmender Außenrotor 30 verdrehbar und exzentrisch gelagert. Der Stellring 22 trägt am Außenumfang zwei einander diametral zugeordnete und von diesem radial abragende Flachkolben 66 und 68, die jeweils längs einer an das Pumpengehäuse 20 angeformten, kreissegmentförmigen Kolbenführung 70 bzw. 72 verstellbar sind. Zwischen zwei Zähnen 32 und 34 des Innenrotors 28 und der Innenumfangsfläche 36 zwischen zwei Zahnen 38 und 40 des Außenrotors 30 wird ein Forderraum 42 gebildet, in welchem das über einen Sauganschluss 44 angesaugte Fluid gefordert und mit Druck beaufschlagt wird. Sobald bei 46 eine Verbindung zwischen dem Förderraum 42 und einem Druckanschluss 46 hergestellt ist, wird das im Forderraum 42 sich befindende Fluid in den Druckanschluss 46 verdrangt.
Aus Figur 1 ist die Stellung des Stellringes 22 gezeigt, in der die größte Forderleistung (Vtheorma ) der Rotorpumpe 10 gegeben ist. Die Figuren 2a bis 2g zeigt die Stellung des Stellringes 22, bei V eormin •
Befindet sich die Rotorpumpe 10 in einer Stellung für einen verminderten Volumenstrom, dann ist der Uberstromquerschnitt bei 48 sehr eng. Sobald der Forderraum 42 mit dem Druckanschluss 46 über den Uberstromquerschnitt 48 miteinander verbunden sind, kommunizieren Forderraum 42 und der Druckanschluss 46 auch über eine Bypassnut 50, die im Außenrotor 30 vorgesehen ist. Über diese Bypassnut 50 kann Fluid in den Druckanschluss 46 abströmen, wodurch ein unerwünschter Druckanstieg im Forderraum 42 vermieden wird. Die Bypassnut 50 ist so im Außenrotor 30 angeordnet, dass sie dann mit dem Druckanschluss 46 in Verbindung steht, wenn der Forderraum 42 über den Uberstromquerschnitt 48 gerade mit dem Druckanschluss 46 verbunden wird.
In den Figuren 2a bis 2g wird der Innenrotor 28 in verschiedenen Drehstellungen gezeigt, in denen das im Forderraum 42 sich befindende Fluid allmählich in den Druckanschluss 46 verdrangt wird. Dabei ist erkennbar, dass sich der Uberstromquerschnitt 48 nur geringfügig vergrößert, die Uberdeckung 52 der Bypassnut 50 mit dem Druckanschluss 46 jedoch starker vergoßert. Vorteilhaft befindet sich auf beiden Stirnseiten des Außenrotors 30 jeweils eine Bypassnut 50, so dass eine ausgeglichene Kräfteverteilung vorherrscht. Dies ist aus Figur 4 ersichtlich, der außerdem entnommen werden kann, dass der Öffnungsquerschnitt der Bypassnut 50 in Richtung des Druckanschlusses 46 abnimmt.

Claims

Patentansprüche
1. Volumenstromvariable Rotorpumpe (10), mit einem einen Sauganschluss (44) und einen Druckanschluss (46) aufweisenden Pumpengehäuse (20) , einem im Gehäuseinnern drehbar gelagerten, innenverzahnten Außenrotor (30) und einem in diesem exzentrisch gelagerten, außenverzahnten Innenrotor (28) , der von einer im Pumpengehäuse (20) achsparallel zum Außenrotor (30) gelagerten Antriebswelle (26) antreibbar ist, wobei zur Änderung des Volumenstromes im Pumpengehäuse (20) ein koaxial zur Antriebswelle (26) gelagerter, verdrehbarer Stellring
(22) vorgesehen ist, in dem der Außenrotor (30) exzentrisch und verdrehbar gelagert ist, dadurch gekennzeichnet, dass der Außenrotor (30) mit Bypassnuten (50) versehen ist, die den zwischen den Zähnen (32, 34, 38, 40) des Innenrotors (28) und des Außenrotors (30) gebildeten Förderraum (42) mit dem Druckanschluss (46) verbinden.
2. Rotorpumpe nach Anspruch 1, dadurch gekennzeichnet, dass die Bypassnut (50) dann mit dem Druckanschluss (46) fluidverbunden ist, wenn der entsprechende Zahn (34) des Innenrotors (28) von der Innenoberfläche (36) des Außenrotors (30) abhebt und den Förderraum (42) zum Druckanschluss (46) hin öffnet.
3. Rotorpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Bypassnut (50) nur bei einer Stellung des Außenrotors (30) für verminderten Volumenstrom mit dem Druckanschluss (46) kommuniziert.
4. Rotorpumpe nach Anspruch 3, dadurch gekennzeichnet, dass der Öffnungsquerschnitt der Bypassnut (50) in Richtung des Druckanschlusses (46) mit sich verringerndem Volumenstrom zunimmt.
PCT/EP2003/012725 2002-11-21 2003-11-14 Innenzahnradpumpe WO2004046554A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10255271.1 2002-11-21
DE2002155271 DE10255271C1 (de) 2002-11-21 2002-11-21 Rotorpumpe

Publications (1)

Publication Number Publication Date
WO2004046554A1 true WO2004046554A1 (de) 2004-06-03

Family

ID=29414355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/012725 WO2004046554A1 (de) 2002-11-21 2003-11-14 Innenzahnradpumpe

Country Status (2)

Country Link
DE (1) DE10255271C1 (de)
WO (1) WO2004046554A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013152706A1 (zh) * 2012-04-12 2013-10-17 艾默生环境优化技术(苏州)有限公司 转子泵以及包括转子泵的旋转机械
US9879672B2 (en) 2015-11-02 2018-01-30 Ford Global Technologies, Llc Gerotor pump for a vehicle
US9909583B2 (en) 2015-11-02 2018-03-06 Ford Global Technologies, Llc Gerotor pump for a vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4537837B2 (ja) * 2004-02-06 2010-09-08 住友電工焼結合金株式会社 内接歯車式ポンプ
DE102015004984A1 (de) * 2015-04-18 2016-10-20 Man Truck & Bus Ag Innenzahnradpumpe und Fahrzeug mit einer Innenzahnradpumpe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0466351A1 (de) * 1990-06-30 1992-01-15 Concentric Pumps Limited Verbesserungen in Bezug auf Gerotorpumpen
DE4322614A1 (de) * 1993-07-07 1995-01-19 Iav Motor Gmbh Innenachsige Zahnradpumpe mit umlaufenden Förderräumen, vorzugsweise mit Trochoidenverzahnung
US5413470A (en) * 1993-03-05 1995-05-09 Eisenmann; Siegfried A. Internal gear pump for wide speed range
DE10207348A1 (de) * 2001-02-23 2002-09-12 Joma Hydromechanic Gmbh Volumenstromvariable Rotorpumpe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0466351A1 (de) * 1990-06-30 1992-01-15 Concentric Pumps Limited Verbesserungen in Bezug auf Gerotorpumpen
US5413470A (en) * 1993-03-05 1995-05-09 Eisenmann; Siegfried A. Internal gear pump for wide speed range
DE4322614A1 (de) * 1993-07-07 1995-01-19 Iav Motor Gmbh Innenachsige Zahnradpumpe mit umlaufenden Förderräumen, vorzugsweise mit Trochoidenverzahnung
DE10207348A1 (de) * 2001-02-23 2002-09-12 Joma Hydromechanic Gmbh Volumenstromvariable Rotorpumpe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013152706A1 (zh) * 2012-04-12 2013-10-17 艾默生环境优化技术(苏州)有限公司 转子泵以及包括转子泵的旋转机械
US9562530B2 (en) 2012-04-12 2017-02-07 Emerson Climate Technologies (Suzhou) Co., Ltd. Rotor pump and rotary machinery comprising the same, the rotor pump including a pump body forming an accommodation cavity, a pump wheel rotating in the accommodation cavity and a sealing plate having an eccentric hole that is eccentric relative to a rotation axis of the pump wheel, where a shaft portion of the pump wheel is rotatably fitted in the eccentric hole
US9879672B2 (en) 2015-11-02 2018-01-30 Ford Global Technologies, Llc Gerotor pump for a vehicle
US9909583B2 (en) 2015-11-02 2018-03-06 Ford Global Technologies, Llc Gerotor pump for a vehicle

Also Published As

Publication number Publication date
DE10255271C1 (de) 2003-12-04

Similar Documents

Publication Publication Date Title
EP1828611B1 (de) Flügelzellenpumpe
EP0620898A1 (de) Regelbare flügelzellenpumpe in kompakter bauweise.
EP2235374B1 (de) Volumenveränderbare innenzahnradpumpe
EP1828609B1 (de) Flügelzellenpumpe
DE3933978C2 (de)
WO2000039465A1 (de) Pumpenanordnung mit zwei hydropumpen
DE1553057B2 (de) Rotationskolbenmaschine
WO2004046554A1 (de) Innenzahnradpumpe
DE10207350C5 (de) Volumenstromvariable Rotorpumpe
EP1920158B1 (de) Rotationspumpe
DE102011084828B4 (de) Förderaggregat
DE10040711C2 (de) Flügelzellenpumpe
EP0846861A1 (de) Stufenlos verstellbare Zahnringpumpe
WO2005019650A1 (de) Volumenstromvariable rotorpumpe
DE102016226117A1 (de) Flügelzellenpumpe, Fluidsystem und Brennkraftmaschine
DE4110392A1 (de) Rotationspumpe vom fluegel-typ
WO2011128218A2 (de) Zahnradpumpe
EP3827170A1 (de) Fluidfördereinrichtung
EP2119869A2 (de) Hydromaschine
DE4338677C2 (de) Pumpe zum Fördern von Fluid, insbesondere als Kraftstoff-Förderaggregat für Kraftfahrzeuge
WO2016180570A1 (de) Verdrängerpumpe, verfahren zum betreiben einer verdrängerpumpe, lenksystem und getriebe
WO2009019101A1 (de) Verdrängerpumpe
DE102012216221B4 (de) Umschaltpumpe mit beidseitiger Befüllung und/oder Entleerung
DE102014220766B4 (de) Pendelschiebermaschine
DE102022111278A1 (de) Drehschieberpumpe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase