WO2004044630A1 - 光学多層膜フィルタおよびその製造方法 - Google Patents

光学多層膜フィルタおよびその製造方法 Download PDF

Info

Publication number
WO2004044630A1
WO2004044630A1 PCT/JP2003/013715 JP0313715W WO2004044630A1 WO 2004044630 A1 WO2004044630 A1 WO 2004044630A1 JP 0313715 W JP0313715 W JP 0313715W WO 2004044630 A1 WO2004044630 A1 WO 2004044630A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical multilayer
multilayer film
transparent substrate
filter
cut
Prior art date
Application number
PCT/JP2003/013715
Other languages
English (en)
French (fr)
Inventor
Masayuki Ohtani
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to AU2003284699A priority Critical patent/AU2003284699A1/en
Publication of WO2004044630A1 publication Critical patent/WO2004044630A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films

Definitions

  • the present invention relates to an optical multilayer film having a transparent substrate and an optical multilayer film formed on the surface of the transparent substrate, and a method for manufacturing the same.
  • optical communication using optical fibers that can handle a large amount of communication is becoming mainstream, and WDM, such as wavelength division multiplexing communication technology, is also being used.
  • WDM wavelength division multiplexing communication technology
  • a high-refractive-index material layer and a low-refractive-index layer are used to cut light of a predetermined wavelength, to select a wavelength, and to adjust gain corresponding to the wavelength.
  • An optical multilayer film formed by alternately laminating the material layers is often used.
  • the optical multilayer film includes a transparent substrate such as a glass substrate, an optical multilayer film formed on the surface of the transparent substrate, and an antireflection film formed on the back surface of the transparent substrate. Then, when light passes through the optical multilayer film filter configured as described above, a predetermined filter processing is performed. By the way, the light that reaches the rear surface of the transparent substrate from inside the transparent substrate is prevented from being reflected on the rear surface of the transparent substrate by the anti-reflection film. Even if an anti-reflection film is used, the reflection of light is completely suppressed. It is not possible.
  • the surface of the transparent substrate on which the optical multilayer film is formed and the surface of the transparent substrate on which the antireflection film is formed are not parallel to each other.
  • An inclination is provided between the filter and the back surface, so that the cross section perpendicular to the surface of the optical multilayer filter (transparent substrate) and parallel to the direction in which the filter surface tilts has a wedge shape.
  • the installation direction of the light receiving unit for example, a collimator lens
  • the optical axes are arranged so as to overlap with each other in the extension of the light traveling direction of the light that has passed through the multilayer filter.
  • the optical multilayer film when arranging the optical multilayer film, it is necessary to know the direction in which the surface of the film tilts. For example, if a 100 mm square optical multilayer film is inclined at 0.3 degrees, if the thinner one is 1 mm, the thicker one will be about 1.5 mm. With such a difference, it is possible to visually determine which one is thicker, and to visually know the direction in which the surface of the film tilts.
  • optical multilayer films having a size of 1.4 to 2.0 mm square are often used.
  • a 1.4 mm square optical multilayer film has a slope of 0.3 degrees.
  • the thinner one is 1 mm
  • the thicker one is about 1.007 mm, and this difference can hardly be distinguished visually. For this reason, there was a need for a way to easily know the direction in which the surface of Phil was inclined. -18/9
  • the optical multilayer filter according to the invention according to claim 2 is the optical multilayer filter according to claim 1, wherein the mark has at least one side surface excluding the front surface and the back surface of the transparent substrate in a stepped flat shape. It is characterized in that it is provided for .
  • a method of manufacturing an optical multilayer film comprising: forming an optical multilayer film on at least one of a front surface and a rear surface of a plate-shaped transparent base material facing each other to form a film member. And a method of manufacturing an optical multilayer film having a step of cutting and dividing a filter member, wherein the cutting and dividing of the filter member are performed using a plurality of kinds of cutting and dividing methods, and the surface of the transparent substrate and Make the cut surface configuration of at least one side other than the back side different from the cut surface configuration of the other side, and mark by the cut surface configuration of at least one side -17/9
  • the method for manufacturing an optical multilayer film according to the invention according to claim 5 is the method for manufacturing an optical multilayer film according to claim 4, wherein the member is adjacent to a predetermined cutting position when the film member is cut and divided. A groove is formed, and then the filter member is cut and divided at the predetermined cutting position, so that the marking surface is formed in a stepped flat shape.
  • the method for manufacturing an optical multilayer film according to the invention according to claim 7 is the method for manufacturing an optical multilayer film according to claim 4, wherein the cutting speed of the film member is such that the marking surface is a cut surface.
  • the cutting member is cut and divided so as to be different from the case where the other side surface is a cut surface, and a marking surface is formed on the side surface.
  • Fig. 4 (a) is a side view of the filler member
  • Fig. 4 (b) is a plan view of the filler member.
  • FIG. 1 shows an optical multilayer film filter according to the present invention.
  • the optical multilayer film filter 1 includes a transparent substrate 2 such as a glass substrate, an optical multilayer film 3 (thickness of about several tens of meters) formed on the surface of the transparent substrate 2, and a rear surface of the transparent substrate 2. And a reflection preventing film 4 (having a thickness of about 0.1 to several m).
  • the optical multilayer film 3 is formed by alternately laminating a large number of high-refractive-index material layers and low-refractive-index material layers on the surface of the transparent substrate 2 and has a predetermined spectral transmittance characteristic. . Then, when light passes through the optical multilayer film 3, a predetermined -15/9
  • the anti-reflection film 4 is formed on the other surface of the transparent substrate 2 so as to prevent light reaching the other surface from inside the transparent substrate 2 from being reflected.
  • the maximum reflectance of the antireflection film 4 is 0.5% or less in the operating wavelength range of the optical multilayer film filter 1.
  • the marking surface 5 having the stepped portion 6 can be formed only by changing the processing method for the other side surface of the optical multilayer film fill 1. Therefore, there is no need to perform marking using a separate marking device or the like, and an optical multilayer filter provided with a mark for determining the tilt direction of the filter surface can be provided at lower cost.
  • the marking surface 5 is provided on at least one side surface (the right side of the optical multilayer film 1 in FIG. 1) except the front and back surfaces of the transparent substrate 2, the optical multilayer film 1 It has no effect on the light passing through it.
  • At least one side surface (the right side of the optical multilayer film 1 in FIG. 1) except the front surface and the back surface of the transparent substrate 2 has a stepped portion 6.
  • a marking surface 5 is provided. Therefore, it is possible to easily know the direction in which the surface of the optical multilayer film filter 1 is inclined in the optical multilayer film filter 1, and to easily dispose the optical multilayer filter 1 in a predetermined direction.
  • a marking surface 5 is provided on at least one side surface (the right side surface of the optical multilayer film 1 in FIG. 1) other than the front surface and the back surface of the transparent substrate 2 as a mark for judging the tilt direction of the film surface. Therefore, the tilt direction of the surface of the optical multilayer film fill 1 can be easily known. Also, since the marking surface 5 having the stepped portion 6 can be formed only by changing the processing method for the other side surface of the optical multilayer film filter 1, marking is performed using a separate marking device or the like. There is no need to provide an optical multilayer film filter having a mark for determining the direction in which the surface of the film is inclined, at a lower cost. Next, a method for manufacturing the optical multilayer film 1 described above will be described.
  • an optical multilayer film 13 is formed on the surface of a transparent substrate material 12 formed in a rectangular plate shape by sputtering, vapor deposition, or the like so as to obtain a predetermined spectral transmittance characteristic.
  • an antireflection film 14 is formed on the back surface of the transparent substrate material 12 by sputtering, vapor deposition, or the like.
  • a filter member 11 in which the optical multilayer film 13 and the antireflection film 14 are formed on each surface of the transparent substrate material 12 is obtained.
  • An inclination is provided between one surface and the back surface of the transparent substrate material 12, and the surface of the transparent substrate material 12 on which the optical multilayer film 13 is formed and the antireflection film 14 are formed.
  • the surface on which the film is to be formed is not parallel.
  • the filter member 11 is cut and divided into squares by a dicing saw 20 so as to obtain a plurality of optical multilayer film filters 1.
  • the dicing saw 20 is a bladed saw having a dicing blade 21 which is an extremely thin circular blade.
  • the dicing saw 20 is driven by a rotating shaft 22 by a motor (not shown). It is configured to rotate 21.
  • the dicing blade 21 generally has a diameter of about 50 mm to 150 mm and a thickness of about 0.03 mm to 2 mm, and has several types of metal powder, mainly bronze.
  • metal-bonded diamond blade using a binder obtained by mixing and sintering or a so-called resin-bonded diamond blade using a resin component such as phenol resin or polyimide as a binder is used.
  • the stage (base) 23 is a circular table on which the filter member 11 to be cut is placed on its upper surface side.
  • the stage 23 is rotatable about a central axis AX extending in the vertical direction, and can be freely set. Can be moved horizontally in the direction of.
  • the filler member 11 is adhered to the glass base 24 with hot melt wax, and then the glass base 24 is staged by vacuum suction. 2 Mount on 3 Then, the rotating shaft 22 is driven to rotate the dicing blade 21 at about 3000 rpm.
  • stage 23 is moved at a feed rate of about 1 to 5 mm / sec to cut the filler member 11.
  • the cutting edge of the dicing blade 21 cuts the upper surface of the base glass 24 by about 0.1 to 0.3 mm (the cutting depth is indicated by d in FIG. 7). Then, cutting is performed by a down cut in which the feeding direction of the stage 23, that is, the base glass 24 is the same as the rotation direction of the dicing blade 21.
  • the filter member 11 When the film formed on the filter member 11 is the optical multilayer film 13, the filter member 11 is placed on the stage 23 so that the optical multilayer film 13 is on the upper surface side. I do.
  • the optical multilayer film 13 if the optical multilayer film 13 is made to be on the lower surface side (that is, the side in contact with the base glass 24), when the dicing blade 21 is cut, the optical multilayer film 13 may be peeled off. However, chipping cracks may occur, but if the filter member 11 is placed on the stage 23 so that the optical multilayer film 13 is on the upper surface side and then cut down, chipping can occur. And delamination can be reduced.
  • the anti-reflection film 14 When the anti-reflection film 14 is formed on the surface of the transparent substrate material 12 opposite to the surface on which the optical multilayer film 13 is formed, the anti-reflection film 14 is formed on the base glass. Although it comes into contact with 24, the thickness of the antireflection film is generally smaller than that of the optical multilayer film. For example, optical multilayer films used in optical communications require transmission (reflection) characteristics with respect to wavelength with higher precision, and the total number of films required to achieve such requirements exceeds 100 layers There are also things. Meanwhile, anti -10/9
  • these filler member strips 11a, 11a, ... are cut into required dimensions in a direction perpendicular to the cutting direction in the first cutting step.
  • a transparent substrate 2 formed in the shape of a rectangular plate, an optical multilayer film 3 formed on the surface of the transparent substrate 2, and an antireflection film 4 formed on the back surface of the transparent substrate 2
  • a plurality of optical multilayer films 1, 1,... Having a marking surface 5 formed in a stepped flat surface on at least one side surface of the transparent substrate 2 excluding the front and back surfaces are obtained.
  • the fill member 11 is cut and divided by the dicing blade 21 so that the groove 16 becomes a step 6 on the marking surface 5 (the step 1 in the filter member strip 11a). 6 a), and the marking surface 5 is formed in a stepped flat shape.
  • the optical multilayer filter 51 according to the present embodiment is formed on a transparent substrate 52 such as a glass substrate and the surface of the transparent substrate 52 in the same manner as the optical multilayer filter 1 according to the first embodiment. And an antireflection film 54 formed on the back surface of the transparent substrate 52.
  • the transparent substrate 52 is formed in a rectangular plate shape.
  • An optical multilayer film 53 is formed on the surface of the transparent substrate 52, and an antireflection film 54 is formed on the back surface of the transparent substrate 52. Further, similarly to the optical multilayer film 1 in the first embodiment, an inclination is provided between the front surface and the rear surface of the transparent substrate 52, and the optical multilayer film 53 on the transparent substrate 52 is formed.
  • the surface on which the antireflection film 54 is formed is not parallel to the surface on which the antireflection film 54 is formed. -8/9
  • the front surface of the optical multilayer film filter 51 in FIG. 9, that is, at least one side surface except for the front and back surfaces of the transparent substrate 52, has a marking surface 55 as a mark for determining the direction in which the film surface tilts. Is provided.
  • the marking surface 55 is formed in a flat surface with a rough surface roughness capable of recognizing a plurality of striations by processing.
  • the left, right, and rear sides of the optical multilayer film filter 51 in FIG. 9, that is, the other sides of the transparent substrate 52 except for the front and back surfaces are formed in a mirror-like (planar) shape.
  • the marking surface 55 is formed in a flat shape having a processing pattern different from the other side surface of the transparent substrate 52 so that the orientation of the optical multilayer film filter 51 can be determined. It has become. This makes it possible to easily know the inclination direction of the surface of the optical multilayer film filter 51 based on the marking surface 55 provided on the optical multilayer film filter 51.
  • the masking surface 55 is provided on at least one side surface (the front side surface of the optical multilayer film filter 51 in FIG. 1) except for the front surface and the back surface of the transparent substrate 52. Like the optical multilayer filter 1 in the embodiment, the light passing through the optical multilayer filter 51 is not affected at all.
  • a marking surface 55 having a processed pattern is provided. Therefore, the tilt direction of the surface of the optical multilayer film filter 51 can be easily known, and the optical multilayer film filter 51 can be easily arranged in a predetermined direction.
  • the light incident on the optical multilayer film filter 51 passes through the optical multilayer film 53, and the light passing through the optical multilayer film 53 passes through the transparent substrate 52 and then passes through the antireflection film 54. I do. That is, the optical signal is filtered by the optical multilayer filter 51.
  • At least one side surface (the front side of the optical multilayer film filter 51 in FIG. 9) excluding the front and back surfaces of the transparent substrate 52 is marked as a mark for determining the tilt direction of the film surface. Since the surface 55 is provided, the tilt direction of the surface of the optical multilayer film fill 51 can be easily known. Further, the marking surface 55 having a processing pattern different from that of the other side surface of the transparent substrate 52 can be formed only by changing the processing method for the other side surface. It is not necessary to perform marking using a king device or the like, and it is possible to provide an optical multilayer film filter having a mark for determining the tilt direction of the film surface at a lower cost.
  • the method of manufacturing the optical multilayer filter 51 according to the present embodiment is almost the same as the method of manufacturing the optical multilayer filter 1 according to the second embodiment, and therefore only different points will be described.
  • Both sides of the peripheral portion of the first dicing blade 71 are finely cut surfaces, and as shown in FIG. 10, both of the filter members 61 cut and divided by the first dicing blade 71 are formed.
  • the cut surface is formed in a mirror surface (flat surface).
  • One peripheral side surface of the second dicing blade 72 is a finely cut surface like the peripheral side surface of the first dicing blade-door 1, whereas the other peripheral side surface of the second dicing blade 72 is The side surface is a cut surface coarser than one side surface.
  • the cut surface of one (right side in FIG. 11) of the filler member 61 cut and divided by the second dicing blade 72 is cut by the first dicing blade 71.
  • the other cut surface left side in Fig. 11
  • FIGS. 10 and 11 show exaggerated surface roughness of the peripheral side surfaces of the first dicing blade 71 and the second dicing blade 72.
  • a transparent substrate 52 formed in a 16-shape, an optical multilayer film 53 formed on the surface of the transparent substrate 52, and an antireflection film 54 formed on the back surface of the transparent substrate 52 are provided.
  • the processing pattern of the cut surface of the filler member 61 is different between the case where the marking surface 55 is a cut surface and the case where the other side is a cut surface, and the front and back surfaces of the transparent substrate 52 are different.
  • the masking surface 55 is formed on this side surface by cutting and dividing the filler member 61 so that at least one side surface has a processed pattern different from the other side surface.
  • the masking surface 55 having a processing pattern different from that of the other side surface of the transparent substrate 52 is formed into a first dicing blade 7 1 configured as a dicing machine for cutting and dividing the filler member 61. Since it can be formed using only the second dicing blade and the second dicing blade, there is no need to perform marking using a separate marking device or the like. It is possible to manufacture an optical multi-layered film provided with a lower cost.
  • the first dicing blade 71 and the second dicing blade 72 allow at least one side surface of the transparent substrate 52 except for the front surface and the back surface to be processed with the other side surface.
  • a marking surface 55 is formed on this side surface, but the present invention is not limited to this.
  • the cut surface is made different from the case where the other side becomes the cut surface, and the filler member is cut so that at least one side surface of the transparent substrate except the front surface and the back surface has a different processing pattern from the other side surface.
  • a marking surface may be formed on this side surface.
  • the rotation speed in the first cutting step is determined by a dicing blade.
  • the filter member strips 11 1 a, 11 1 a, ... are cut into required dimensions in such a manner as to be alternately repeated at a rotation speed lower than the rotation speed of the transparent substrate 10 formed in a rectangular plate shape.
  • a plurality of optical multilayer films 101,..., Having a marking surface 105 having a processing pattern different from other side surfaces formed on at least one side surface excluding the front surface and the back surface of the method, are obtained.
  • a marking surface is provided on one side surface of the transparent substrate except for the front surface and the back surface as a mark for determining a direction in which the surface of the film is inclined.
  • a mark may be provided on a plurality of side surfaces of the transparent substrate so that the direction in which the surface of the film is inclined can be determined.
  • the transparent substrate (optical multilayer film filter) is formed in a rectangular plate shape, but is not limited to this.
  • a plurality of plate side surfaces such as a triangle and a pentagon may be used. What is necessary is just to be formed in the shape of a polygonal plate having.
  • the present invention it is possible to provide an optical multilayer filter capable of easily knowing the inclination direction of the filter surface. Further, according to the manufacturing method of the present invention, it is possible to manufacture the optical multilayered film filter at a lower cost, in which the inclination direction of the film surface can be easily known.

Abstract

本発明に係る光学多層膜フィルタ1は、多角形板状に形成された透明基板2と、透明基板2の互いに対向する表面および裏面のいずれか一方に成膜された光学多層膜3とを備えて構成された光学多層膜フィルタにおいて、透明基板3における表面および裏面を除く少なくとも一つの側面に、マーク5が設けられていることを特徴とする。

Description

曰月 糸田 β 光学多層膜フィル夕およびその製造方法 技術分野
本発明は、 透明基板と、 この透明基板の表面に成膜された光学多層膜と を備えた光学多層膜フィル夕およびその製造方法に関する。 背景技術
近年、 イン夕一ネット通信等の普及および利用が進み、 通信ラインの通 信量が急速に増大しつつある。 このため、 大量の通信量を扱える光フアイ バを用いた光通信が主流になりつつあり、 さらに、 波長分割多重通信技術 W D M等も用いられている。 このような光ファイバを用いた光通信システ ムにおいて、 所定の波長の光をカッ トしたり、 波長選択を行ったり、 波長 対応ゲイン調整を行ったりするために、 高屈折率物質層と低屈折率物質層 とを交互に積層して作られる光学多層膜フィル夕が多く用いられている。 光学多層膜フィル夕は、 ガラス基板等の透明基板と、 透明基板の表面に 成膜された光学多層膜と、 透明基板の裏面に成膜された反射防止膜とを備 えて構成される。 そして、 このように構成'された光学多層膜フィル夕を光 が通過することで所定のフィル夕処理が行われるようになつている。 ところで、 透明基板の内部から透明基板の裏面に達した光は、 反射防止 膜により透明基板の裏面で反射するのを防止されているが、 反射防止膜を 用いても完全に光の反射を抑えることはできない。 そのため、 透明基板の 表面と裏面とが平行であると、 透明基板の内部における反射防止膜で反射 した僅かな光が光学多層膜を通過する光と干渉を起こし、 光学多層膜の分 -19/9
2 光透過率特性が劣化してしまう。 そこで、 このような光の干渉を抑えるた めに、 透明基板における光学多層膜が成膜される面と、 反射防止膜が成膜 される面とが平行にならないように、 透明基板の表面と裏面との間に傾き が設けられ、 光学多層膜フィル夕 (透明基板) の表面に垂直でフィルタ表 面の傾く方向と平行な断面が楔形となるようになつている。
(例えば、 国際公開第 W O 0 2 / 3 1 5 4 5 A 1号参照)
このような断面が楔形の光学多層膜フィル夕を通過する光は屈折するた め、 光学多層膜フィル夕を通過した光の出射進行方向は、 光学多層膜フィ ル夕に入射する光の入射進行方向と同じではなく、 光の入射進行方向に対 し若干傾いている。 そこで、 上述のような光通信システムにおいて、 光学 多層膜フィル夕を通過した光を受光する受光部 (例えば、 コリメ一夕レン ズ) の設置方向は、 光の透過率を損なわないように、 光学多層膜フィル夕 を通過した光の出射進行方向の延長上で、 光軸が重なるように配置されて いる。
そのため、 光学多層膜フィル夕を配設する際には、 フィル夕表面の傾く 方向を知る必要がある。例えば、 1 0 0 mm角の光学多層膜フィル夕に 0 . 3度の傾きをつけた場合、 その厚さの薄い方を 1 mmとすると、 厚い方は 約 1 . 5 mmになる。 これく らいの差であれば、 目視でどちらが厚いか判 別でき、 フィル夕表面の傾く方向を目視で知ることができる。
しかしながら、 光学多層膜フィル夕は、 大きさが 1 . 4〜2 . 0 mm角 のものが多く用いられており、 例えば、 1 . 4 mm角の光学多層膜フィル 夕に 0 . 3度の傾きをつけた場合では、 その厚さの薄い方を 1 mmとする と、 厚い方は約 1 . 0 0 7 mmであり、 この差は目視ではほとんど判別で きない。 そのため、 フィル夕表面の傾く方向を容易に知るための方策が求 められていた。 -18/9
3 発明の開示
本発明は、 このような問題に鑑みてなされたものであり、 フィル夕表面 の傾く方向を容易に知ることができる光学多層膜フィル夕を提供すること を目的とする。 本発明はまた、 フィル夕表面の傾く方向を容易に知ること ができる光学多層膜フィル夕の製造方法を提供することを目的とする。 このような目的達成のため、 請求項 1に係る発明の光学多層膜フィル夕 は、 透明基板と、 透明基板の互いに対向する表面および裏面の少なくとも いずれか一方に成膜された光学多層膜とを備えて構成された光学多層膜フ ィル夕において、 透明基板における表面および裏面を除く少なく とも一つ の側面に、 マークが設けられていることを特徴とする。
請求項 2に係る発明の光学多層膜フィルタは、 請求項 1に記載の光学多 層膜フィル夕において、 マークは、 透明基板における表面および裏面を除 く少なくとも一つの側面を段付平面状に形成して設けられていることを特 徴とする。 .
請求項 3に係る発明の光学多層膜フィル夕は、 請求項 1に記載の光学多 層膜フィル夕において、 マークは、 透明基板における表面および裏面を除 く少なくとも一つの側面を他の側面と加工模様が異なるように形成するこ とにより、 側面にマ一キング面を形成して設けられていることを特徴とす o
請求項 4に係る発明の光学多層膜フィル夕の製造方法は、 板状の透明基 板材における互いに対向する表面および裏面の少なく ともいずれか一方に 光学多層膜を成膜してフィル夕部材を形成し、 フィルタ部材を切断分割す る工程を有する光学多層膜フィル夕を製造する方法であって、 複数種の切 断分割方法を用いてフィル夕部材の切断分割を行い、 透明基板における表 面および裏面を除く少なくとも一つの側面の切断面形態を他の側面の切断 面形態と異ならせ、 少なくとも一つの側面の切断面形態によりマ一キング -17/9
4 面を形成することを特徴とする。
請求項 5に係る発明の光学多層膜フィル夕の製造方法は、 請求項 4に記 載の光学多層膜フィル夕の製造方法において、 フィル夕部材の切断分割時 に所定の切断位置に隣接して溝を形成し、 次に前記所定の切断位置でフィ ル夕部材を切断分割することにより、 マ一キング面が段付平面状に形成さ れることを特徴とする。
請求項 6に係る発明の光学多層膜フィル夕の製造方法は、 請求項 4に記 載の光学多層膜フィル夕の製造方法において、 フィル夕部材の切断面の加 ェ模様が、 マ一キング面と、 他の側面とで異なるようにフィル夕部材を切 断分割し、 側面にマーキング面が形成されることを特徴とする。
請求項 7に係る発明の光学多層膜フィル夕の製造方法は、 請求項 4に記 載の光学多層膜フィル夕の製造方法において、フィル夕部材の切断速度が、 マーキング面が切断面となる場合と、 他の側面が切断面となる場合とで異 なるようにフィル夕部材を切断分割し、 側面にマーキング面が形成される ことを特徴とする。
図面の簡単な説明
図 1は、 本発明にかかる光学多層膜フィル夕の斜視図である。
図 2は、 本発明に係る光学多層膜フィル夕の右側面図である。
図 3は、 本発明に係る光学多層膜フィル夕を光が通過する状態を示す図 である。
図 4 ( a ) はフィル夕部材の側面図であり、 図 4 ( b ) はフィル夕部材 の平面図である。
図 5は、 フィル夕部材を切断分割して複数の本発明に係る光学多層膜フ ィル夕を得た状態を示す平面図である。
図 6は、 フィル夕部材を切断分割するためのダイシングソ一の側面図で ある。 図 7は、 ダイシングソ一によりダウン力ットでフィル夕部材を切断する 様子を示す側面図である。
図 8 ( a ) はダイシングブレードによりフィル夕部材に溝が形成された 状態を示す拡大図であり、 図 8 ( b ) はダイシングブレードによりフィル 夕部材が溝に隣接する切断位置で切断された状態を示す拡大図であり、 図 8 ( c ) はダイシングブレードによりフィル夕部材が切断されて複数のフ ィル夕部材細片が得られた状態を示す拡大図である。
図 9は、 もう一つの本発明に係る光多層膜フィル夕の斜視図である。 図 1 0は、 もう一つの本発明におけるフィル夕部材が第 1ダイシングブ レードにより切断された状態を示す拡大図である。
図 1 1は、 もう一つの本発明におけるフィル夕部材細片が第 2ダイシン グブレードにより切断された状態を示す拡大図である。
図 1 2は、 さらにもう一つの本発明におけるフィル夕部材がダイシング ブレードにより切断された状態を示す拡大図である。
図 1 3は、 さらにもう一つの本発明におけるフィル夕部材細片がダイシ ングプレードにより切断された状態を示す拡大図である。 発明を実施するための最良の形態
以下、 図面を参照して本発明の好ましい実施形態について説明する。 本 発明に係る光学多層膜フィル夕を図 1に示している。 この光学多層膜フィ ル夕 1は、 ガラス基板等の透明基板 2と、 透明基板 2の表面に成膜された 光学多層膜 3 (厚さ数十 m程度) と、 透明基板 2の裏面に成膜された反 射防止膜 4 (厚さ 0 . 数〜数〃 m程度) とを備えて構成される。
光学多層膜 3は、 詳細図示しないが、 透明基板 2の表面に高屈折率物質 層と低屈折率物質層とを交互に多数積層して形成され、 所定の分光透過率 特性を有している。 そして、 光学多層膜 3を光が通過することで、 所定の -15/9
6 フィル夕処理が行われるようになつている。
なお、 光学多層膜フィル夕 1が行うフィル夕処理には、 例えば、 所定の 波長の光をカットする処理や、 波長選択処理、 波長対応ゲイン調整処理等 がある。 ここで、 波長対応ゲイン調整処理は、 光信号を増幅する光アンプ (図示せず)の増幅特性が持つ波長依存性を平坦化するための処理であり、 このような処理を行うフィル夕はゲイン平坦化フィル夕 G F F ( Gain Flattening Filter) と称される。
反射防止膜 4は透明基板 2の他方の表面に形成され、 透明基板 2の内部 から他方の表面に達した光が反射するのを防止するようになっている。 な お、 反射防止膜 4の最大反射率は、 光学多層膜フィル夕 1の動作波長域で 0 . 5 %以下となっている。
透明基板 2は四角形板状に形成され、 透明基板 2の表面に光学多層膜 3 が成膜されるとともに、 透明基板 2の裏面に反射防止膜 4が成膜されてい る。 光学多層膜フィル夕 1の寸法は、 厚さが 1 . 0〜 1 . 5 mm、 大きさ が 1 . 4〜2 . 0 mm角のものが多く用いられている。
図 2にも示すように、 透明基板 2の表面と裏面との間には傾きが設けら れ、 光学多層膜フィル夕 1 (透明基板 2 ) の表面に垂直でフィル夕表面の 傾く方向と平行な断面が楔形となるようになつている。 これにより、 透明 基板 2における光学多層膜 3が成膜される面と、 反射防止膜 4が成膜され る面とが平行にならないため、 反射防止膜 4で反射した透明基板 2内部の 僅かな光が光学多層膜 3を通過する光と干渉を起こして、 光学多層膜 3の 分光透過率特性の劣化を招くことを防止することができる。 なお、 透明基 板 2の表面と裏面との間、 すなわち、 光学多層膜 3の表面と反射防止膜 4 の表面との間の相対的な傾き角ひは、 0 . 3度のものが多く用いられてい る。
上述のような断面が楔形の光学多層膜フィル夕 1を通過する光は屈折す -14/9
7 るため、 光学多層膜フィル夕 1を通過した光の出射進行方向は、 図 3に示 すように、 光学多層膜フィルタ 1に入射する光の入射進行方向と同じでは なく、 光の入射進行方向に対し若干傾いている。 そこで、 光学多層膜フィ ル夕 1を通過した光を受光する受光部 R (例えば、 コリメ一夕レンズ) の 設置方向は、 光の透過率を損なわないように、 光学多層膜フィル夕を通過 した光の出射進行方向の延長上で、光軸 0が重なるように配置されている。 そのため、 光学多層膜フィルタ 1を配設する際には、 フィル夕表面の傾 く方向を知る必要がある。 例えば、 1 0 0 mm角の光学多層膜フィル夕に 0 . 3度の傾きをつけた場合、 その厚さの薄い方を 1 mmとすると、 厚い 方は約 1 . 5 mmになる。 これく らいの差であれば、 目視でどちらが厚い か判別でき、 フィルタ表面の傾く方向を目視で知ることができる。
ところが、 1 . 4 mm角の光学多層膜フィル夕に 0 . 3度の傾きをつけ た場合、 その厚さの薄い方を 1 mmとすると、 厚い方は約 1 . 0 0 7 m m であり、 この差は目視ではほとんど判別できない。 そこで、 フィル夕表面 の傾く方向を容易に知ることができるように、 図 1における光学多層膜フ ィル夕 1の右側面、 すなわち、 透明基板 2における表面および裏面を除く 少なく とも一つの側面には、 フィル夕表面の傾く方向を判別するマークと してのマ一キング面 5が設けられている。
マーキング面 5は、 段差部 6を有する段付平面状に形成されており、 マ —キング面 5の形状を透明基板 2における他の側面とは異なる形状にする ことで、 光学多層膜フィル夕 1の向きを判別することができるようになつ ている。 これにより、 光学多層膜フィル夕 1に設けられたマ一キング面 5 を基に、 光学多層膜フィル夕 1におけるフィルタ表面の傾く方向を容易に 知ることができる。
また、 段差部 6を有するマ一キング面 5は光学多層膜フィル夕 1におけ る他の側面に対し加工方法を変更するのみで形成することが可能であるた め、 別途マーキング装置等を用いてマ一キングを行う必要がなく、 フィル 夕表面の傾く方向を判別するためのマークを備えた光学多層膜フィルタを より低コストで提供することができる。
なお、 マーキング面 5は、 透明基板 2における表面および裏面を除く少 なくとも一つの側面 (図 1における光学多層膜フィル夕 1の右側面) に設 けられているため、 光学多層膜フィル夕 1を通過する光に影響を及ぼすこ とは皆無である。
このような構成の光学多層膜フィル夕 1において、 透明基板 2における 表面および裏面を除く少なくとも一つの側面 (図 1における光学多層膜フ ィル夕 1の右側面) には、 段差部 6を有するマ一キング面 5が設けられて いる。 そのため、 光学多層膜フィル夕 1におけるフィル夕表面の傾く方向 を容易に知ることができ、 光学多層膜フィルタ 1を所定方向に容易に配設 することができる。
そして、 図 3に示すように、 光学多層膜フィルタ 1に入射した光は光学 多層膜 3を通過し、 光学多層膜 3を通過した光は、 透明基板 2を通過した のち反射防止膜 4を通過する。 すなわち、 光学多層膜フィル夕 1による光 信号のフィル夕処理が行われる。
この結果、 透明基板 2における表面および裏面を除く少なくとも一つの 側面 (図 1における光学多層膜フィル夕 1の右側面) には、 フィル夕表面 の傾く方向を判別するマークとしてのマーキング面 5が設けられているた め、 光学多層膜フィル夕 1におけるフィル夕表面の傾く方向を容易に知る ことができる。 また、 段差部 6を有するマーキング面 5は光学多層膜フィ ル夕 1における他の側面に対し加工方法を変更するのみで形成することが 可能であるため、 別途マーキング装置等を用いてマーキングを行う必要が なく、 フィル夕表面の傾く方向を判別するためのマークを備えた光学多層 膜フィル夕をより低コス トで提供することができる。 次に、上述のような光学多層膜フィル夕 1の製造方法について説明する。 まず、 四角形板状に形成された透明基板材 1 2の表面に、 光学多層膜 1 3 を所定の分光透過率特性が得られるように、 スパッタリング、 蒸着等によ り成膜する。 次に、 透明基板材 1 2の裏面に、 反射防止膜 1 4を、 スパッ 夕リング、 蒸着等により成膜する。 これにより、 図 4 ( a ) に示すように、 透明基板材 1 2の各表面に光学多層膜 1 3および反射防止膜 1 4が成膜さ れたフィル夕部材 1 1が得られる。 なお、 透明基板材 1 2の一方の表面と 裏面との間には傾きが設けられており、 透明基板材 1 2における光学多層 膜 1 3が成膜される面と、 反射防止膜 1 4が成膜される面とが平行になら ないようになっている。
続いて、 フィル夕部材 1 1を、 ダイシングソ一 2 0により升目状に切断 分割して、 複数の光学多層膜フィル夕 1が得られるように切断する。 ダイ シングソー 2 0は、 図 6に示すように、 極薄の円形刃であるダイシングブ レード 2 1を有してなるプレードソ一であり、 図示しないモー夕により回 転軸 2 2を駆動してダイシングブレード 2 1を回転させる構成となってい る。
ダイシングブレード 2 1は、 直径が 5 0 mmから 1 5 0 mm程度、 厚さ が 0 . 0 3 mmから 2 mm程度であるのが一般的であり、 ブロンズ系を主 体とした数種類の金属粉を混合焼結したものを結合材としたいわゆるメタ ルボン ドのダイヤモンドブレード、 またはフエノールレジン、 ポリミ ド等 の樹脂成分を結合材としたいわゆるレジンボンドのダイャモンドブレード が用いられる場合が多い。
ステージ (基台) 2 3は、 切断対象であるフィルタ部材 1 1をその上面 側に載置する円形の台であり、 その上下方向に延びた中心軸 A Xを中心に 回転自在であるとともに、 任意の方向に水平移動させることができるよう になっている。 ダイシングソ一 2 0によりフィル夕部材 1 1を切断するには、 まず、 フ ィル夕部材 1 1をホヅ トメルトワックスにより台ガラス 2 4に接着し、 続 いて真空吸着により台ガラス 2 4をステージ 2 3上に取り付ける。そして、 回転軸 2 2を駆動してダイシングプレード 2 1をおよそ 3 0 0 0 0 r p m で回転させ (この回転数はダイシングブレード 2 1の材質やフィル夕部材 1 1の切断面の破断状況によって変化させる)、ステージ 2 3を送り速度約 1〜 5 m m/ s e cで移動させてフィル夕部材 1 1を切断する。
なおこのとき、 図 7に示すように、 ダイシングブレード 2 1の刃先が台 ガラス 2 4の上面を約 0 . 1〜 0 . 3 m m程切り込むようにし (切り込み 深さを図 7において dで示す)、ステージ 2 3すなわち台ガラス 2 4の送り 方向をダイシングプレード 2 1の回転方向と同じにするダウンカヅ トによ り切断する。
なお、 フィル夕部材 1 1に成膜された膜が光学多層膜 1 3である場合に は、 フィル夕部材 1 1を光学多層膜 1 3が上面側になるようにステージ 2 3上に載置する。 ここで、 光学多層膜 1 3が下面側 (すなわち、 台ガラス 2 4と接触する側) になるようにすると、 ダイシングプレード 2 1を切り 込ませたときに光学多層膜 1 3が剥離したり比較的大きなチッピングゃク ラックが発生したりするが、 フィル夕部材 1 1を光学多層膜 1 3が上面側 になるようにステージ 2 3上に載置した上でダウンカツ トするようにすれ ば、 チッビングや剥離を減らすことができる。
また、 透明基板材 1 2における光学多層膜 1 3が成膜された面とは反対 側の面に反射防止膜 1 4が成膜されている場合には、 この反射防止膜 1 4 が台ガラス 2 4と接触するようになるが、 反射防止膜は一般に光学多層膜 よりも膜厚が小さい。 例えば、 光通信に用いられる光学多層膜は、 波長に 対する透過 (反射) 特性がより高精度に要求されているので、 そのような 要求を達成するために必要な総膜数が百層を超えるものもある。 一方、 反 -10/9
11 射防止膜は数層あれば充分であるので、 反射防止膜が膜剥がれを起こす可 能性は、 光学多層膜に比べて低い。 したがって、 反射防止膜 1 4が台ガラ ス 2 4と接触した状態で切断しても、 反射防止膜 1 4にチッビングや膜剥 がれ等が生じるおそれは少ない。
ダイシングソ一 2 0によりフィル夕部材 1 1を切断分割して、 複数の光 学多層膜フィル夕 1を得.るには、 まず、 図 4 ( b ) および図 8 ( a ) に示 すように、 フィルタ部材 1 1の表面に垂直でフィルタ部材表面の傾く方向 と平行な方向に、 フィル夕部材 1 1における切断位置 Pに隣接してダイシ ングブレード 2 1により所定深さの溝 1 6を形成し、 続いて図 8 ( b ) に 示すように、 この溝 1 6に隣接した切断位置 Pでフィル夕部材 1 1を切断 分割する。
そして図 8 ( c ) に示すように、 このような工程を所定間隔で交互に繰 り返すことにより、 フィルタ部材 1 1が所要寸法に切断分割されて必要量 のフィルタ部材細片 1 1 a, 1 1 a , …が得られる。 このとき、 溝 1 6が フィル夕部材 1 1の切断により段差部 1 6 aとなって、 フィルタ部材細片 1 1 aの一方の側面が段付平面状に形成される。
次に、 図 5に示すように、 前記最初の切断工程における切断方向とは垂 直な方向に、 これらのフィル夕部材細片 1 1 a , 1 1 a , …を所要寸法に 切断し、 図 1に示すような、 四角形板状に形成された透明基板 2と、 透明 基板 2の表面に成膜された光学多層膜 3と、 透明基板 2の裏面に成膜され た反射防止膜 4とを備え、 透明基板 2における表面および裏面を除く少な くとも一つの側面にマ一キング面 5が段付平面状に形成された複数の光学 多層膜 1, 1 , …を得る。
すなわち、 フィル夕部材 1 1における光学多層膜フィル夕 1のマーキン グ面 5が切断面となる切断位置に隣接して、 ダイシングブレード 2 1によ り溝 1 6を形成し、 この溝 1 6に隣接した前述のマ一キング面 5が切断面 -9/9
12 となる切断位置で、 ダイシングブレード 2 1によりフィル夕部材 1 1を切 断分割することにより、 溝 1 6がマーキング面 5における段差部 6 (フィ ル夕部材細片 1 1 aにおける段差部 1 6 a ) となって、 マーキング面 5が 段付平面状に形成される。
この結果、 段差部 6を有するマーキング面 5を、 フィル夕部材 1 1を切 断分割するためのダイシングソ一 2 0に構成されるダイシングプレード 2 1のみを用いて形成することが可能であるため、 別途マ一キング装置等を 用いてマーキングを行う必要がなく、 フィル夕表面の傾く方向を判別する マークを備えた光学多層膜フィル夕をより低コストで製造することができ る。
なお、 本実施例において、 フィル夕部材 1 1の切断分割時に、 溝 1 6を 溝深さが互いに異なるように形成し、 マーキング面 (段差部) の形状が互 いに異なる複数の光学多層膜フィル夕が形成されるようにしてもよい。 こ のようにすれば、 複数の光学多層膜フィル夕を個々に判別することができ る。
次に、 光学多層膜フィル夕の第二実施形態について図 9を参照して説明 する。 本実施形態における光学多層膜フィルタ 5 1は、 第一実施形態にお ける光学多層膜フィル夕 1と同様に、 ガラス基板等の透明基板 5 2と、 透 明基板 5 2の表面に成膜された光学多層膜 5 3と、 透明基板 5 2の裏面に 成膜された反射防止膜 5 4とを備えて構成される。
透明基板 5 2は四角形板状に形成され、 透明基板 5 2の表面に光学多層 膜 5 3が成膜されるとともに、 透明基板 5 2の裏面に反射防止膜 5 4が成 膜されている。 また、 第一実施形態における光学多層膜フィル夕 1と同様 に、 透明基板 5 2の表面と裏面との間に傾きが設けられており、 透明基板 5 2における光学多層膜 5 3が成膜される面と、 反射防止膜 5 4が成膜さ れる面とが平行にならないようになっている。 -8/9
13 そして、 フィルタ表面の傾く方向を容易に知ることができるように、 図
9における光学多層膜フィル夕 5 1の前側面、 すなわち、 透明基板 5 2に おける表面および裏面を除く少なく とも一つの側面には、 フィル夕表面の 傾く方向を判別するマークとしてのマーキング面 5 5が設けられている。 マーキング面 5 5は、 加工による複数の条線を認識可能な表面粗さの粗 い平面状に形成されている。 一方、 図 9における光学多層膜フィル夕 5 1 の左右および後側面、 すなわち、 透明基板 5 2における表面および裏面を 除く他の側面は、 鏡面 (平面) 状に形成されている。 すなわち、 マ一キン グ面 5 5は、 透明基板 5 2における他の側面とは異なる加工模様を有する 平面状に形成されており、 光学多層膜フィル夕 5 1の向きを判別すること ができるようになつている。 これにより、 光学多層膜フィル夕 5 1に設け られたマーキング面 5 5を基に、 光学多層膜フィル夕 5 1におけるフィル 夕表面の傾く方向を容易に知ることができる。
また、 透明基板 5 2における他の側面とは異なる加工模様を有するマ一 キング面 5 5は、 前記他の側面に対し加工方法を変更するのみで形成する ことが可能であるため、 別途マーキング装置等を用いてマーキングを行う 必要がなく、 フィル夕表面の傾く方向を判別するためのマークを備えた光 学多層膜フィル夕をより低コス トで提供することができる。
なお、 マ一キング面 5 5は、 透明基板 5 2における表面および裏面を除 く少なくとも一つの側面(図 1における光学多層膜フィル夕 5 1の前側面) に設けられているため、 第一実施形態における光学多層膜フィルタ 1と同 様に、 光学多層膜フィル夕 5 1を通過する光に影響を及ぼすことは皆無で ある。
このような構成の光学多層膜フィル夕 5 1において、 透明基板 5 2にお ける表面および裏面を除く少なくとも一つの側面 (図 9における光学多層 膜フィル夕 5 1の前側面) には、 透明基板 5 2における他の側面とは異な -7/9
14 る加工模様を有するマ一キング面 5 5が設けられている。 そのため、 光学 多層膜フィル夕 5 1におけるフィル夕表面の傾く方向を容易に知ることが でき、光学多層膜フィル夕 5 1を所定方向に容易に配設することができる。 そして、 光学多層膜フィル夕 5 1に入射した光は光学多層膜 5 3を通過 し、 光学多層膜 5 3を通過した光は、 透明基板 5 2を通過したのち反射防 止膜 5 4を通過する。 すなわち、 光学多層膜フィルタ 5 1による光信号の フィル夕処理が行われる。
この結果、 透明基板 5 2における表面および裏面を除く少なく とも一つ の側面 (図 9における光学多層膜フィル夕 5 1の前側面) には、 フィル夕 表面の傾く方向を判別するマークとしてのマーキング面 5 5が設けられて いるため、 光学多層膜フィル夕 5 1におけるフィル夕表面の傾く方向を容 易に知ることができる。 また、 透明基板 5 2における他の側面とは異なる 加工模様を有するマ一キング面 5 5は、 前記他の側面に対し加工方法を変 更するのみで形成することが可能であるため、 別途マ一キング装置等を用 いてマーキングを行う必要がなく、 フィル夕表面の傾く方向を判別するた めのマークを備えた光学多層膜フィル夕をより低コス 卜で提供することが できる。
次に、 上述のような光学多層膜フィル夕 5 1の製造方法について説明す る。 なお、 本実施形態における光学多層膜フィル夕 5 1の製造方法は、 第 —実施形態における光学多層膜フィル夕 1の製造方法とほぼ同じであるの で、 異なる点のみ説明する。
本実施形態の製造方法で用いられるダイシングブレードは、 光学多層膜 6 3および反射防止膜 6 4が透明基板材 6 2に成膜されたフィル夕部材 6 1の表面に垂直でフィル夕部材表面の傾く方向と平行な方向にフィル夕部 材 6 1を切断分割する第 1ダイシングブレード 7 1 と、 第 1ダイシングブ レード 7 1によるフィル夕部材 6 1の切断方向とは垂直な方向にフィル夕 -6/9
15 部材 6 1を切断分割する第 2ダイシングブレード 7 2とがある。 第 1ダイ シングブレード 7 1の周部両側面は目の細かい切削面となっており、 図 1 0に示すように、 第 1ダイシングブレード 7 1により切断分割されたフィ ル夕部材 6 1の両切断面は、 鏡面 (平面) 状に形成されるようになってい る。
第 2ダイシングブレード 7 2の一方の周部側面は、 第 1ダイシングブレ —ドア 1の周部側面と同様に目の細かい切削面であるのに対し、 第 2ダイ シングブレード 7 2の他方の周部側面は、 一方の側面と比べて目の粗い切 削面となっている。 そして、 図 1 1に示すように、 第 2ダイシングブレー ド 7 2により切断分割されたフィル夕部材 6 1の一方 (図 1 1における右 方) の切断面は、 第 1ダイシングブレード 7 1による切断面と同様に鏡面 (平面) 状に形成されるとともに、 他方 (図 1 1における左方) の切断面 は、 加工による複数の条線を認識可能な表面粗さの粗い平面状に形成され るようになっている。 なお、 比較説明のため、 図 1 0および図 1 1におい て、 第 1ダイシングブレード 7 1および第 2ダイシングブレード 7 2の周 部側面の表面粗さを誇張して記載している。
ダイシングソ一によりフィル夕部材 6 1を切断分割して、 複数の光学多 層膜フィル夕 5 1を得るには、 まず、 図 1 0に示すように、 フィル夕部材 6 1の表面に垂直でフィル夕部材表面の傾く方向と平行な方向に、 第 1ダ イシングブレード 7 1によりフィルタ部材 6 1を所要寸法に切断分割し、 必要量のフィル夕部材細片 6 1 a, 6 1 a , …を得る。 このとき、 フィル 夕部材 6 1の切断面となるフィル夕部材細片 6 1 aの両側面は、 鏡面 (平 面) 状に形成される。
次に、 図 1 1に示すように、 第 1ダイシングプレード 7 1による切断方 向とは垂直な方向に、 第 2ダイシングプレード 7 2によりフィル夕部材細 片 6 1 a, 6 1 a , …を所要寸法に切断し、 図 9に示すような、 四角形板 -5/9
16 状に形成された透明基板 5 2と、 透明基板 5 2の表面に成膜された光学多 層膜 5 3と、 透明基板 5 2の裏面に成膜された反射防止膜 5 4とを備え、 透明基板 5 2における表面および裏面を除く少なく とも一つの側面に、 他 の側面とは異なる加工模様を有するマーキング面 5 5が形成された複数の 光学多層膜フィル夕 5 1, 5 1, …を得る。
すなわち、 フィル夕部材 6 1の切断面の加工模様が、 マーキング面 5 5 が切断面となる場合と、 他の側面が切断面となる場合とで異なり、 透明基 板 5 2における表面および裏面を除く少なくとも一つの側面が他の側面と 加工模様が異なるようにフィル夕部材 6 1を切断分割することで、 この側 面にマ一キング面 5 5が形成される。
この結果、 透明基板 5 2における他の側面とは異なる加工模様を有する マ一キング面 5 5を、 フィル夕部材 6 1を切断分割するためのダイシング ソ一に構成される第 1ダイシングブレード 7 1および第 2ダイシングブレ —ド 7 2のみを用いて形成することが可能であるため、 別途マーキング装 置等を用いてマ一キングを行う必要がなく、 フィル夕表面の傾く方向を判 別するマークを備えた光学多層膜フィル夕をより低コストで製造すること ができる。
なお、 上述の第二実施形態において、 第 1ダイシングブレード 7 1およ び第 2ダイシングブレード 7 2により、 透明基板 5 2における表面および 裏面を除く少なく とも一つの側面が他の側面と加工模様が異なるようにフ ィル夕部材 6 1を切断分割することで、 この側面にマーキング面 5 5が形 成されているが、 これに限られるものではなく、 フィルタ部材の切断速度 を、 マーキング面が切断面となる場合と、 他の側面が切断面となる場合と で異ならせ、 透明基板における表面および裏面を除く少なくとも一つの側 面が他の側面と加工模様が異なるようにフィル夕部材を切断分割すること で、 この側面にマーキング面が形成されるようにしてもよい。 -4/9
17 例えば、 図 1 2に示すように、 まず、 透明基板材 1 1 2の表面および裏 面に光学多層膜 1 1 3および反射防止膜 1 1 4が成膜されたフィルタ部材 1 1 1を、 ダイシングブレード 1 2 1により所定の回転速度で所要寸法に 切断分割し、 フィル夕部材 1 1 1の切断面となる側面が鏡面 (平面) 状に 形成される複数のフィル夕部材細片 1 1 1 a , 1 1 l a, …を得る。
次に、 図 1 3に示すように、 前記最初の切断工程における切断方向とは 垂直な方向に、 ダイシングブレード .1 2 1により、 前記最初の切断工程に おける回転速度と、 前記最初の切断工程における回転速度よりも遅い回転 速度とで交互に繰り返すようにして、 フィルタ部材細片 1 1 1 a, 1 1 1 a , …を所要寸法に切断し、 四角形板状に形成された透明基板 1 0 2と、 透明基板 1 0 2の表面に成膜された光学多層膜 1 0 3と、 透明基板 1 0 2 の裏面に成膜された反射防止膜 1 0 4とを備え、 透明基板 1 0 2における 表面および裏面を除く少なくとも一つの側面に、 他の側面とは異なる加工 模様を有するマーキング面 1 0 5が形成された複数の光学多層膜 1 0 1, 1 0 1 , …を得る。
このようにすれば、 第二実施形態における光学多層膜フィル夕 5 1の製 造方法と同様に、 別途マーキング装置等を用いてマーキングを行う必要が なく、 フィル夕表面の傾く方向を判別するマークを備えた光学多層膜フィ ル夕をより低コス卜で製造することができる。なお、図 1 3に示すように、 フィル夕部材細片 1 1 1 aにおいて互いに隣接する光学多層膜フィル夕の マ一キング面の位置は、 互いに異なった位置 (反対側の位置) となる。 また、 上述の各実施形態において、 透明基板における表面および裏面を 除く一つの側面に、 フィル夕表面の傾く方向を判別するマークとしてのマ —キング面が設けられているが、 これに限られるものではなく、 透明基板 の複数の側面にフィル夕表面の傾く方向を判別可能なマーク (マーキング 面) が設けられてもよい。 -3/9
18 さらに、 上述の各実施形態において、 透明基板 (光学多層膜フィル夕) が四角形板状に形成されているが、 これに限られるものではなく、例えば、 三角形や五角形等、 複数の板側面を有する多角形板状に形成されていれば よい。
以上説明したように、 本発明によれば、 フィル夕表面の傾く方向を容易 に知ることが可能な光学多層膜フィルタを提供することができる。 また、 本発明に係る製造方法によれば、 フィル夕表面の傾く方向を容易に知るこ とが可能な光学多層膜フィル夕をより低コス トで製造することができる。

Claims

-2/9
19 言青 求 の 範 囲
1 . 透明基板と、 前記透明基板の互いに対向する表面および裏面の少なく ともいずれか一方に成膜された光学多層膜とを備えて構成された光学多 層膜フィル夕において、
前記透明基板における前記表面および前記裏面を除く少なくとも一つ の側面に、 マークが設けられていることを特徴とする光学多層膜フィル タ。 2 . 前記光学多層膜が高屈折率物質層と低屈折率物質層とを交互に多数積 層して形成され、 前記透明基板の表面に前記光学多層膜が形成されると ともに裏面に反射防止膜が形成されていることを特徴とする請求項 1に 記載の光学多層膜フィル夕。 3 . 前記透明基板は四角形板状に形成され、 前記マークが前記透明基板の いずれかの側面に設けられていることを特徴とする請求項 1に記載の光 学多層膜フィル夕。
4 . 前記マークは、 前記透明基板における前記表面および前記裏面を除く 少なくとも一つの側面を段付平面状に形成して設けられていることを特 徴とする請求項 1に記載の光学多層膜フィル夕。
5 . 前記マークは、 前記透明基板における前記表面および前記裏面を除く 少なくとも一つの側面を他の側面と加工模様が異なるように形成するこ とにより、 前記側面にマ一キング面を形成して設けられていることを特 徴とする請求項 1に記載の光学多層膜フィル夕。 -1/9
20 . 前記透明基板の表面に対して裏面が傾いており、 前記マークがこの傾 きを識別するために設けられることを特徴とする請求項 1〜 5のいずれ かに記載の光学多層膜フィルタ。 . 板状の透明基板材における互いに対向する表面および裏面の少なくと もいずれか一方に光学多層膜を成膜してフィル夕部材を形成し、 前記フ ィル夕部材を切断分割する工程を有する光学多層膜フィルタを製造する 方法であって、
複数種の切断分割方法を用いて前記フィル夕部材の切断分割を行い、 前記透明基板における前記表面および前記裏面を除く少なくとも一つの 側面の切断面形態を他の側面の切断面形態と異ならせ、
前記少なくとも一つの側面の切断面形態によりマーキング面を形成す ることを特徴とする光学多層膜フィル夕の製造方法。 . 前記フィル夕部材の切断分割時に所定の切断位置に隣接して溝を形成 し、 次に前記所定の切断位置で前記フィル夕部材を切断分割することに より、 前記マーキング面が段付平面状に形成されることを特徴とする請 求項 7に記載の光学多層膜フィル夕の製造方法。 . 前記フィル夕部材の切断面の加工模様が、 前記マーキング面と、 前記 他の側面とで異なるように前記フィル夕部材を切断分割し、 前記側面に 前記マーキング面が形成されることを特徴とする請求項 7に記載の光学 多層膜フィル夕の製造方法。 0 . 前記フィルタ部材を表面と裏面とで切削面粗さの異なるダイシング 0/9
21 ソ一により切断分割して、 切断面の加工模様を前記マーキング面と前記 他の側面とで異ならせることを特徴とする請求項 9に記載の光学多層膜 フィル夕の製造方法。 1 . 前記フィル夕部材の切断速度を前記マ一キング面が切断面となる場 合と前記他の側面が切断面となる場合とで異ならせて前記フィル夕部材 を切断分割し、 切断面の加工模様を前記マーキング面と前記他の側面と で異ならせることを特徴とする請求項 9に記載の光学多層膜フィル夕の 製造方法。
PCT/JP2003/013715 2002-11-13 2003-10-27 光学多層膜フィルタおよびその製造方法 WO2004044630A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003284699A AU2003284699A1 (en) 2002-11-13 2003-10-27 Optical multilayer film filter and method of producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-329953 2002-11-13
JP2002329953A JP2004163692A (ja) 2002-11-13 2002-11-13 光学多層膜フィルタおよびその製造方法

Publications (1)

Publication Number Publication Date
WO2004044630A1 true WO2004044630A1 (ja) 2004-05-27

Family

ID=32310585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013715 WO2004044630A1 (ja) 2002-11-13 2003-10-27 光学多層膜フィルタおよびその製造方法

Country Status (3)

Country Link
JP (1) JP2004163692A (ja)
AU (1) AU2003284699A1 (ja)
WO (1) WO2004044630A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684734A (ja) * 1992-09-04 1994-03-25 Nec Yamagata Ltd 半導体ウェーハ
JPH104057A (ja) * 1996-06-13 1998-01-06 Nikon Corp 露光方法及び露光装置
JP2000243674A (ja) * 1999-02-18 2000-09-08 Fuji Xerox Co Ltd 半導体装置およびその製造方法、液体噴射記録ヘッド
US6334924B1 (en) * 1998-07-28 2002-01-01 Fujitsu Limited Method of manufacturing optical filter
JP2002071944A (ja) * 2000-08-24 2002-03-12 Toyo Commun Equip Co Ltd 光バンドパスフィルタの製造装置及び製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684734A (ja) * 1992-09-04 1994-03-25 Nec Yamagata Ltd 半導体ウェーハ
JPH104057A (ja) * 1996-06-13 1998-01-06 Nikon Corp 露光方法及び露光装置
US6334924B1 (en) * 1998-07-28 2002-01-01 Fujitsu Limited Method of manufacturing optical filter
JP2000243674A (ja) * 1999-02-18 2000-09-08 Fuji Xerox Co Ltd 半導体装置およびその製造方法、液体噴射記録ヘッド
JP2002071944A (ja) * 2000-08-24 2002-03-12 Toyo Commun Equip Co Ltd 光バンドパスフィルタの製造装置及び製造方法

Also Published As

Publication number Publication date
AU2003284699A1 (en) 2004-06-03
JP2004163692A (ja) 2004-06-10

Similar Documents

Publication Publication Date Title
US6819871B1 (en) Multi-channel optical filter and multiplexer formed from stacks of thin-film layers
JP2012189846A (ja) 反射防止光学素子及び反射防止光学素子の製造方法
JPWO2003044573A1 (ja) 光学フィルタ、この光学フィルタの製造方法およびこの光学フィルタを用いた光学装置ならびにこの光学フィルタの収納構造
WO2004044630A1 (ja) 光学多層膜フィルタおよびその製造方法
JP2010142890A (ja) 切削部材の外周形状の修正方法、ドレッサーボード及び切削装置
TWI486620B (zh) 光學構件的製造方法及光學構件
CN209215617U (zh) 一种改善应力型滤波片结构及波分复用器
US20080107874A1 (en) Optical element including dielectric multilayer film and manufacturing method thereof
CN100514094C (zh) 光学器件的制造方法
US20070041681A1 (en) Optical filter, manufacturing method thereof, and planar lightwave circuit using the same
US7166487B2 (en) Manufacturing method of optical devices
EP0826994A2 (en) Integrated optical device having at least an optical filter and a mirror, and a method of making the same
JPS6360401A (ja) 光学膜部品の製造方法
CA2415578C (en) Filter member manufacturing method, filter member cutting method, filter chip cutting method, and filter chip manufacturing method
JP7325905B2 (ja) 複数のチップの製造方法
JP2003177238A (ja) 誘電体多層膜フィルタとその製造方法
JP2019211702A (ja) 光学素子および光学装置
US6070315A (en) Method of producing a microspectrometer reflection grating
JP3799611B2 (ja) 光導波路型光送受信モジュール及び該モジュール作成用基板
US20060193974A1 (en) Production method for chip-form film-forming component
CN109445010A (zh) 一种改善应力型滤波片结构及波分复用器
CN114702248A (zh) 透可见反近红外光的微结构镀膜玻璃基板及制作方法
JPH0743532A (ja) 分波部品の製造方法
JP2004077717A (ja) 誘電体多層膜フィルタ素子の製造方法及び誘電体多層膜フィルタ素子を有する光部品
JP2003014922A (ja) 光バンドパスフィルタ及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase