WO2004043245A1 - Procede d'imagerie rapide d'objets au moyen de la tomographie par coherence optique spectrale - Google Patents

Procede d'imagerie rapide d'objets au moyen de la tomographie par coherence optique spectrale Download PDF

Info

Publication number
WO2004043245A1
WO2004043245A1 PCT/PL2003/000118 PL0300118W WO2004043245A1 WO 2004043245 A1 WO2004043245 A1 WO 2004043245A1 PL 0300118 W PL0300118 W PL 0300118W WO 2004043245 A1 WO2004043245 A1 WO 2004043245A1
Authority
WO
WIPO (PCT)
Prior art keywords
detectors
matrix
scanner
memory
probing
Prior art date
Application number
PCT/PL2003/000118
Other languages
English (en)
Inventor
Pawel Woszczyk
Maciej Wojtkowski
Andrzej Kowalczyk
Piotr Targowski
Rainer Leitgeb
Tomasz Bajraszewski
Original Assignee
Pawel Woszczyk
Maciej Wojtkowski
Andrzej Kowalczyk
Piotr Targowski
Rainer Leitgeb
Tomasz Bajraszewski
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PL357000A external-priority patent/PL205340B1/pl
Priority claimed from PL362154A external-priority patent/PL206508B1/pl
Application filed by Pawel Woszczyk, Maciej Wojtkowski, Andrzej Kowalczyk, Piotr Targowski, Rainer Leitgeb, Tomasz Bajraszewski filed Critical Pawel Woszczyk
Priority claimed from PL363410A external-priority patent/PL206507B1/pl
Publication of WO2004043245A1 publication Critical patent/WO2004043245A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • A61B3/1225Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes using coherent radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium

Definitions

  • the subject of the invention is a method of fast imaging of objects by means of spectral optical coherence tomography using partially coherent light and a matrix of photo-detectors with memory, specially suitable for medical imaging.
  • One previously known method of imaging of cross-sections of transparent and semi-transparent objects by means of optical coherence tomography using partially coherent light consists in recovering information on the structure of the object along the line of propagation of the penetrating probe beam from the interference signal, and information on consecutive strips in a cross-section of the object by shifting the probe beam perpendicularly to its direction of propagation.
  • This method is implemented using a Michelson interferometer with a light source of high spatial coherence but low temporal coherence, and by placing the sample to be examined in one arm of the interferometer and the translatable reference mirror in the other arm.
  • the interference signal originating in the interferometer during translation of the reference mirror is registered by a photodiode whose output is filtered with an analog band filter.
  • the signal is then digitized and transferred to a computer. This complete sequence is repeated sequentially for consecutive strips in the cross-section of the image.
  • the other known method of spectral optical coherence tomography using partially coherent light consists in recording spectral fringes with the spectrograph without translation of the reference mirror. In this method many photo-detectors simultaneously registering the whole spectrum are employed. Information on the axial structure of the object is recovered from the spectral signal by means of numerical Fourier transform.
  • the inconvenience of the first of these methods is the requirement for longitudinal mechanical translation of the reference mirror in order to obtain information on the axial structure of the object. This delimits its fast imaging ability and is a source of errors connected with possible non-linearities in mechanical translation.
  • a substantial limitation of the second, spectral, method of optical tomography is the speed of data transfer between the linear spectrum detector and the processor performing the numerical Fourier transform. Because the number of detector pixels required for adequate resolution is not less then 1024, parallel connection of every pixel to the processor is currently not practical, necessitating the serial transfer of light intensity data one pixel at a time.
  • the purpose of the invention is to provide a method for rapid registration of the whole tomographic image.
  • the new method of fast imaging of objects by means of spectral optical coherence tomography using partially coherent light implemented with the light source, an interferometer equipped with a beam splitter and reference mirror, a scanner, a spectrograph, a matrix of sensors, and a data processor, synchronizing the recording of interference spectra with scanning of the probe beam perpendicularly to its direction of propagation, uses one row of the matrix of sensors to record the signals originating from interference spectra for each consecutive point of the object. Simultaneously with movement of the scanner to record the next point in the cross-section of the object, all previously registered spectra are transferred to the memory of the detector matrix. The thus rapidly obtained complete cross-sectional data set in the detector matrix can then be transferred at leisure to the processor and the cross-section image reconstructed by numerical Fourier transform.
  • a matrix of detectors as a matrix of detectors is employed a matrix of photo-detectors such that only the terminal row of the photo-detector matrix is used for the registration of the interference spectrum, the other rows being used as memory.
  • a matrix of photo-detectors is employed, and the interference spectrum is directed towards a new row of detectors in synchronic way to the probing scanner movement by means of a first scanner which is placed between spectrometer grating and the matrix of detectors, and the other rows of detectors are being used as memory.
  • a matrix of photo-detectors is employed as a matrix of detectors, and the interference spectrum is directed towards a new row of detectors in synchronic way to the probing scanner movement by means of an acousto-optical modulator which is placed between spectrometer grating and the matrix of detectors, and the other rows of detectors are being used as memory.
  • a matrix of photo-detectors is employed as a matrix of detectors, and the interference spectrum is directed towards a new row of detectors in synchronic way to the probing scanner movement by means of the first actuator changing the orientation of the spectrometer grating, and the other rows of detectors are being used as memory.
  • a matrix of photo-detectors comprising internal analogue memory is employed, and the interference spectrum is transferred to this memory in synchronic way to the probing scanner movement.
  • a matrix of photo-detectors comprising internal digital memory is employed, and the interference spectrum is transferred to this memory in synchronic way to the probing scanner movement.
  • a matrix of photo-detectors is employed as a matrix of detectors, and the interference spectrum is directed towards a new row of detectors in synchronic way to the probing scanner movement by means of the second actuator which is changing the position of the matrix of detectors, and the other rows of detectors are being used as memory.
  • a matrix of photo-detectors is employed as a matrix of detectors, and the interference spectrum is directed towards a new row of detectors in synchronic way to the probing scanner movement by means of the second scanner which is placed between interferometer beam- splitter and spectrometer grating, and the other rows of detectors are being used as memory.
  • the light beam is irradiating the analyzed object exclusively during registration of the interference spectrum in synchronic way to the probing scanner movements.
  • the light beam is controlled by mean of moving disk chopper or tuning fork chopper or by modulation of the light source.
  • the essential advantage of the method of present invention is a separation of the process of acquisition and process of processing, enabled by use of memory within the matrix of detectors. Because of this, the whole of the cross-sectional information of the object examined is acquired in a very short time and the object has no time substantially to move. The resultant images are very sharp. Limiting the object irradiation exclusively to the registration time of the interference spectrum, the total energy injected into examined object is favorably reduced, and as a result, a better protection of a patient's eye at the time of retina exposure is obtained.
  • the method is presented in detail in implementation examples and illustrated with a diagram, where on Fig. 1, Fig. 2, Fig. 3, Fig. A, Fig. 5 and Fig. 6, embodiments of a set-up that has been used for human retinal examination are provided.
  • the set-up consists of a collimator . equipped with a light source 1 comprising super luminescent diode (SLD 381 produced by Superlum, RU) generating a continuous wave beam of light with high spatial coherence but low temporal coherence.
  • the beam is rendered quasi-parallel in the collimator • ⁇ and directed to the Michelson interferometer equipped with a beam splitter 2 and reference mirror 3, and to a probing scanner 4 (type 6200, Cambridge Technology, US) equipped with a lens 5.
  • Part of the light from the beam splitter 2 is directed through the lens 5 to the object 6 and back to the Michelson interferometer.
  • the controller 10 changes the position of the probing beam, and if the camera 9 is set to Bluetooth kinetics" mode, the whole of the information stored in the CCD matrix 8 is advanced by one row. After filling the whole of the CCD matrix 8 with consecutive registered spectra, the whole set of this data is read out into processing computer (not shown in the diagram).
  • the optical coherence tomography cross-sectional image of the retina is recovered by Fourier transform analysis of the data by the computer either in real time or after storage in a file.
  • Imaging of a cross-section of the retina as object 6 is performed with the patient in front of lens 5 of probing scanner 4 directing the light onto the retinal area to be examined.
  • the registration of the interference spectra for the consecutive points of the object is performed under computer control.
  • Each of the spectra is registered in the terminal row of the detector matrix 8 and, simultaneously with advancement of the probing scanner 4 to the position of the next point to be investigated, the recorded spectra are advanced by one row until the whole matrix is full.
  • the cross-sectional image of the retinal object 6 is recovered from the spectral signals by numerical Fourier transform.
  • Imaging of the object 6 is performed as in the Example I, wherein as a matrix of detectors 8 a matrix of photo- detectors is employed, and the interference spectrum is directed towards a new row of detectors in synchronic way to the movement of probing scanner 4 by means of the first scanner 12 which is placed between spectrometer grating 7 and the matrix of detectors 8, and the other rows of detectors are being used as memory.
  • a matrix of detectors 8 a matrix of photo- detectors is employed, and the interference spectrum is directed towards a new row of detectors in synchronic way to the movement of probing scanner 4 by means of the first scanner 12 which is placed between spectrometer grating 7 and the matrix of detectors 8, and the other rows of detectors are being used as memory.
  • the movements of the first scanner 12 are under control of the controller 10 which operation is synchronized by synchronizator 11.
  • Imaging of the object 6 is performed as in the Example I, wherein as a matrix of detectors 8 a matrix of photo- detectors is employed, and the interference spectrum is directed towards a new row of detectors in synchronic way to the movement of probing scanner 4 by means of the acousto-optical modulator 13 which is placed between spectrometer grating 7 and the matrix of detectors 8, and the other rows of detectors are being used as memory.
  • a matrix of detectors 8 a matrix of photo- detectors is employed, and the interference spectrum is directed towards a new row of detectors in synchronic way to the movement of probing scanner 4 by means of the acousto-optical modulator 13 which is placed between spectrometer grating 7 and the matrix of detectors 8, and the other rows of detectors are being used as memory.
  • the acousto-optical modulator 13 operates under control of the controller 10 which is synchronized by synchronizator ⁇ .
  • Example IN
  • Imaging of the object 6 is performed as in the Example I, wherein as a matrix of detectors 8 a matrix of photo- detectors is employed, and the interference spectrum is directed towards a new row of detectors in synchronic way to the movement of probing scanner 4 by means of the first actuator 14 changing the orientation of the spectrometer grating 7 , and the other rows of detectors are being used as memory.
  • a matrix of detectors 8 a matrix of photo- detectors is employed, and the interference spectrum is directed towards a new row of detectors in synchronic way to the movement of probing scanner 4 by means of the first actuator 14 changing the orientation of the spectrometer grating 7 , and the other rows of detectors are being used as memory.
  • the first actuator 14 operates under control of the controller 10 which is synchronized by synchronizator H .
  • Imaging of the object 6 is performed as in the Example I, wherein as a matrix of detectors 8 a matrix of photo- detectors is employed, and the interference spectrum is directed towards a new row of detectors in synchronic way to the movement of probing scanner 4 by means of the second actuator 15 changing the position of the matrix of detectors 8 , and the other rows of detectors are being used as memory.
  • a matrix of detectors 8 a matrix of photo- detectors is employed, and the interference spectrum is directed towards a new row of detectors in synchronic way to the movement of probing scanner 4 by means of the second actuator 15 changing the position of the matrix of detectors 8 , and the other rows of detectors are being used as memory.
  • the second actuator 15 operates under control of the controller 10 which is synchronized by synchronizator H .
  • Imaging of the object 6 is performed as in the Example I, wherein as a matrix of detectors 8 a matrix of photo- detectors is employed, and the interference spectrum is directed towards a new row of detectors in synchronic way to the movement of probing scanner 4 by means of the second scanner 16 which is placed between beam-splitter 2 and spectrometer grating 7, and the other rows of detectors are being used as memory.
  • a matrix of detectors 8 a matrix of photo- detectors is employed, and the interference spectrum is directed towards a new row of detectors in synchronic way to the movement of probing scanner 4 by means of the second scanner 16 which is placed between beam-splitter 2 and spectrometer grating 7, and the other rows of detectors are being used as memory.
  • the movements of the second scanner 16 are under control of the controller 10 which operation is synchronized by synchronizator H.
  • the light beam is directed towards the analyzed object 6 exclusively during registration of the interference spectrum by use of rotating disk chopper 17 placed between light source 1 and beam-splitter 2, and synchronized to the movements of probing scanner 4 by the synchronizator H .

Abstract

L'invention concerne un procédé d'imagerie rapide d'objets au moyen de la tomographie par cohérence optique spectrale mettant en oeuvre de la lumière partiellement cohérente et comprenant une matrice de détecteurs à mémoire, ce procédé étant particulièrement conçu pour l'imagerie médicale. Ce procédé est mis en oeuvre au moyen d'une source de lumière partiellement cohérente (1), d'un interféromètre équipé d'un séparateur de faisceau (2) et d'un miroir de référence (3), d'un scanner de sondage (4), d'une matrice de capteurs comprenant une mémoire (8), d'un spectrographe (7) et d'un processeur de données. Ce procédé est différent des autres procédés de synchronisation des mouvements du scanner de sondage (4) avec l'enregistrement d'un spectre d'interférences, en ce qu'il consiste à enregistrer les signaux provenant du spectre d'interférences de points consécutifs de l'objet (6) dans la matrice des photo-détecteurs (8). Simultanément avec le mouvement du scanner de sondage (4) vers le point suivant dans la section transversale de l'objet (6), tous les spectres enregistrés précédemment sont transférés dans la mémoire comprise dans la matrice de détecteurs (8). Les informations sont ensuite transférées dans un processeur de données approprié et l'image transversale est reconstruite au moyen d'une transformée numérique de Fourier.
PCT/PL2003/000118 2002-11-07 2003-11-12 Procede d'imagerie rapide d'objets au moyen de la tomographie par coherence optique spectrale WO2004043245A1 (fr)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
PL357000A PL205340B1 (pl) 2002-11-07 2002-11-07 Sposób obrazowania obiektu anatomicznego metodą spektralnej tomografii optycznej, zwłaszcza siatkówki oka ludzkiego
PLP-357000 2002-11-12
PLP-362154 2003-08-12
PL362154A PL206508B1 (pl) 2003-09-12 2003-09-12 Układ sterowania natężeniem wiązki światła w urządzeniu do spektralnej tomografii optycznej
PLP-363410 2003-11-12
PL363410A PL206507B1 (pl) 2003-11-12 2003-11-12 Sposób szybkiego obrazowania obiektów metodą spektralnej tomografii optycznej w świetle częściowo spójnym

Publications (1)

Publication Number Publication Date
WO2004043245A1 true WO2004043245A1 (fr) 2004-05-27

Family

ID=32314808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/PL2003/000118 WO2004043245A1 (fr) 2002-11-07 2003-11-12 Procede d'imagerie rapide d'objets au moyen de la tomographie par coherence optique spectrale

Country Status (1)

Country Link
WO (1) WO2004043245A1 (fr)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1602320A1 (fr) * 2004-06-03 2005-12-07 Nidek Co., Ltd. Appareil ophthalmologique
WO2006020605A2 (fr) * 2004-08-10 2006-02-23 The Regents Of The University Of California Dispositif et procede pour repartir et/ou eliminer des composes dans des tissus
DE102004037479A1 (de) * 2004-08-03 2006-03-16 Carl Zeiss Meditec Ag Fourier-Domain OCT Ray-Tracing am Auge
WO2006058735A1 (fr) * 2004-12-02 2006-06-08 Carl Zeiss Meditec Ag Tomographie a coherence optique amelioree pour cartographie anatomique
EP1870028A1 (fr) 2006-06-23 2007-12-26 OPTOPOL Technology Spolka z o.o. Appareil et procédé pour la tomographie en cohérence optique dans le domaine de fréquence
EP1870030A1 (fr) 2006-06-23 2007-12-26 OPTOPOL Technology Spolka z o.o. Appareil et procédé pour la tomographie en cohérence optique dans le domaine de fréquence
WO2007148310A2 (fr) 2006-06-23 2007-12-27 Optopol Technology Spolka Akcyjna Appareil de tomographie dans le domaine des frÉquences optiques muni d'un systÈme de rÉglage, systÈme de rÉglage pour appareil de tomographie dans le domaine des frÉquences optiques, procÉdÉ de rÉglage d'un appareil de tomographie dans le domaine des frÉquences optique
US7342659B2 (en) 2005-01-21 2008-03-11 Carl Zeiss Meditec, Inc. Cross-dispersed spectrometer in a spectral domain optical coherence tomography system
WO2008039660A3 (fr) * 2006-09-26 2008-06-05 Univ Oregon Health & Science Imagerie structurale et d'écoulements in vivo
US7391520B2 (en) 2005-07-01 2008-06-24 Carl Zeiss Meditec, Inc. Fourier domain optical coherence tomography employing a swept multi-wavelength laser and a multi-channel receiver
US7434932B2 (en) 2005-07-01 2008-10-14 Nidek Co., Ltd. Ophthalmic apparatus
US7456957B2 (en) 2005-08-03 2008-11-25 Carl Zeiss Meditec, Inc. Littrow spectrometer and a spectral domain optical coherence tomography system with a Littrow spectrometer
EP2000081A1 (fr) 2007-06-07 2008-12-10 OPTOPOL Technology Spolka Akcyjna Appareil pour la tomographie en cohérence optique dans le domaine de fréquence avec système d'ajustement
DE102007046504A1 (de) 2007-09-28 2009-04-02 Carl Zeiss Meditec Ag Spektrometer
US7982881B2 (en) 2005-12-06 2011-07-19 Carl Zeiss Meditec Ag Apparatus and method for interferometric measurement of a sample
US8049899B2 (en) 2005-11-10 2011-11-01 Haag-Streit Ag Method and apparatus for determination of geometric values on a transparent or diffusive object
RU2459197C1 (ru) * 2008-07-07 2012-08-20 Кэнон Кабусики Кайся Устройство формирования изображения и способ формирования изображения с использованием оптической когерентной томографии
US8750586B2 (en) 2009-05-04 2014-06-10 Oregon Health & Science University Method and apparatus for quantitative imaging of blood perfusion in living tissue
US8764189B2 (en) 2006-03-16 2014-07-01 Carl Zeiss Meditec, Inc. Methods for mapping tissue with optical coherence tomography data
US8913793B2 (en) 2005-09-09 2014-12-16 Carl Zeiss Meditec, Inc. Method of bioimage data processing for revealing more meaningful anatomic features of diseased tissues
US9013555B2 (en) 2009-05-04 2015-04-21 Oregon Health & Science University Method and apparatus for ultrahigh sensitive optical microangiography
US9791684B2 (en) 2010-01-06 2017-10-17 Ecole polytechnique fédérale de Lausanne (EPFL) Optical coherence microscopy system having a filter for suppressing a specular light contribution

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4309056A1 (de) * 1993-03-20 1994-09-22 Haeusler Gerd Verfahren zur Ermittlung der Entfernung und Streuintensität von streuenden Punkten
US5565986A (en) * 1994-03-30 1996-10-15 Kn+E,Uml U+Ee Ttel; Alexander Stationary optical spectroscopic imaging in turbid objects by special light focusing and signal detection of light with various optical wavelengths
US6377349B1 (en) * 1998-03-30 2002-04-23 Carl Zeiss Jena Gmbh Arrangement for spectral interferometric optical tomography and surface profile measurement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4309056A1 (de) * 1993-03-20 1994-09-22 Haeusler Gerd Verfahren zur Ermittlung der Entfernung und Streuintensität von streuenden Punkten
US5565986A (en) * 1994-03-30 1996-10-15 Kn+E,Uml U+Ee Ttel; Alexander Stationary optical spectroscopic imaging in turbid objects by special light focusing and signal detection of light with various optical wavelengths
US6377349B1 (en) * 1998-03-30 2002-04-23 Carl Zeiss Jena Gmbh Arrangement for spectral interferometric optical tomography and surface profile measurement

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LEITGEB R ET AL: "SPECTRAL MEASUREMENT OF ABSORPTION BY SPECTROSCOPIC FREQUENCY-DOMAIN OPTICAL COHERENCE TOMOGRAPHY", OPTICS LETTERS, OPTICAL SOCIETY OF AMERICA, WASHINGTON, US, vol. 25, no. 11, 20 June 2000 (2000-06-20), pages 820 - 822, XP000951878, ISSN: 0146-9592 *
WOJTKOWSKI MACIEJ ET AL: "In vivo human retinal imaging by Fourier domain optical coherence tomography.", JOURNAL OF BIOMEDICAL OPTICS. UNITED STATES JUL 2002, vol. 7, no. 3, July 2002 (2002-07-01), pages 457 - 463, XP002272406, ISSN: 1083-3668 *
WOJTKOWSKI MACIEJ ET AL: "Real-time in vivo imaging by high-speed spectral optical coherence tomography.", OPTICS LETTERS. UNITED STATES 1 OCT 2003, vol. 28, no. 19, 1 October 2003 (2003-10-01), pages 1745 - 1747, XP002272407, ISSN: 0146-9592 *

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1602320A1 (fr) * 2004-06-03 2005-12-07 Nidek Co., Ltd. Appareil ophthalmologique
JP4734326B2 (ja) * 2004-08-03 2011-07-27 カール ツァイス メディテック アクチエンゲゼルシャフト 眼のフーリエ領域octレイ・トレーシング法
DE102004037479A1 (de) * 2004-08-03 2006-03-16 Carl Zeiss Meditec Ag Fourier-Domain OCT Ray-Tracing am Auge
US7695140B2 (en) 2004-08-03 2010-04-13 Carl Zeiss Meditec Ag Fourier-domain OCT ray-tracing on the eye
JP2008508068A (ja) * 2004-08-03 2008-03-21 カール ツァイス メディテック アクチエンゲゼルシャフト 眼のフーリエ領域octレイ・トレーシング法
WO2006020605A2 (fr) * 2004-08-10 2006-02-23 The Regents Of The University Of California Dispositif et procede pour repartir et/ou eliminer des composes dans des tissus
WO2006020605A3 (fr) * 2004-08-10 2006-05-04 Univ California Dispositif et procede pour repartir et/ou eliminer des composes dans des tissus
EP2612589A3 (fr) * 2004-12-02 2013-07-31 University Of Miami Tomographie a coherence optique amelioree pour cartographie anatomique
US8319974B2 (en) 2004-12-02 2012-11-27 Carl Zeiss Meditec, Inc. Enhanced optical coherence tomography for anatomical mapping
US7924429B2 (en) 2004-12-02 2011-04-12 University Of Miami Enhanced optical coherence tomography for anatomical mapping
US7505142B2 (en) 2004-12-02 2009-03-17 University Of Miami Enhanced optical coherence tomography for anatomical mapping
US7301644B2 (en) 2004-12-02 2007-11-27 University Of Miami Enhanced optical coherence tomography for anatomical mapping
WO2006058735A1 (fr) * 2004-12-02 2006-06-08 Carl Zeiss Meditec Ag Tomographie a coherence optique amelioree pour cartographie anatomique
US7659990B2 (en) 2004-12-02 2010-02-09 University Of Miami Enhanced optical coherence tomography for anatomical mapping
US7342659B2 (en) 2005-01-21 2008-03-11 Carl Zeiss Meditec, Inc. Cross-dispersed spectrometer in a spectral domain optical coherence tomography system
US7391520B2 (en) 2005-07-01 2008-06-24 Carl Zeiss Meditec, Inc. Fourier domain optical coherence tomography employing a swept multi-wavelength laser and a multi-channel receiver
US7434932B2 (en) 2005-07-01 2008-10-14 Nidek Co., Ltd. Ophthalmic apparatus
US7456957B2 (en) 2005-08-03 2008-11-25 Carl Zeiss Meditec, Inc. Littrow spectrometer and a spectral domain optical coherence tomography system with a Littrow spectrometer
US8913793B2 (en) 2005-09-09 2014-12-16 Carl Zeiss Meditec, Inc. Method of bioimage data processing for revealing more meaningful anatomic features of diseased tissues
US8049899B2 (en) 2005-11-10 2011-11-01 Haag-Streit Ag Method and apparatus for determination of geometric values on a transparent or diffusive object
US7982881B2 (en) 2005-12-06 2011-07-19 Carl Zeiss Meditec Ag Apparatus and method for interferometric measurement of a sample
US8437008B2 (en) 2005-12-06 2013-05-07 Carl Zeiss Meditec Ag Interferometric sample measurement
US8764189B2 (en) 2006-03-16 2014-07-01 Carl Zeiss Meditec, Inc. Methods for mapping tissue with optical coherence tomography data
EP1870030A1 (fr) 2006-06-23 2007-12-26 OPTOPOL Technology Spolka z o.o. Appareil et procédé pour la tomographie en cohérence optique dans le domaine de fréquence
JP2009541770A (ja) * 2006-06-23 2009-11-26 オプトポール テクノロジー スポルカ アクシジナ 調整システムを有する光周波数領域トモグラフィ用装置、光周波数領域トモグラフィ用装置の調整システム、および光周波数領域トモグラフィ用装置を調整する方法、および物体の画像化方法
US8570525B2 (en) 2006-06-23 2013-10-29 Optopol Technology S.A. Apparatus for optical frequency domain tomography with adjusting system
WO2007148310A2 (fr) 2006-06-23 2007-12-27 Optopol Technology Spolka Akcyjna Appareil de tomographie dans le domaine des frÉquences optiques muni d'un systÈme de rÉglage, systÈme de rÉglage pour appareil de tomographie dans le domaine des frÉquences optiques, procÉdÉ de rÉglage d'un appareil de tomographie dans le domaine des frÉquences optique
EP1870028A1 (fr) 2006-06-23 2007-12-26 OPTOPOL Technology Spolka z o.o. Appareil et procédé pour la tomographie en cohérence optique dans le domaine de fréquence
WO2007148310A3 (fr) * 2006-06-23 2008-03-06 Optopol Technology Spolka Akcy Appareil de tomographie dans le domaine des frÉquences optiques muni d'un systÈme de rÉglage, systÈme de rÉglage pour appareil de tomographie dans le domaine des frÉquences optiques, procÉdÉ de rÉglage d'un appareil de tomographie dans le domaine des frÉquences optique
JP2010505127A (ja) * 2006-09-26 2010-02-18 オレゴン ヘルス アンド サイエンス ユニヴァーシティ 生体環境中での構造および流れの撮像
US8180134B2 (en) 2006-09-26 2012-05-15 Oregon Health & Science University In vivo structural and flow imaging
WO2008039660A3 (fr) * 2006-09-26 2008-06-05 Univ Oregon Health & Science Imagerie structurale et d'écoulements in vivo
EP2000081A1 (fr) 2007-06-07 2008-12-10 OPTOPOL Technology Spolka Akcyjna Appareil pour la tomographie en cohérence optique dans le domaine de fréquence avec système d'ajustement
US8408703B2 (en) 2007-09-28 2013-04-02 Carl Zeiss Meditec Ag Spectrometer
DE102007046504A1 (de) 2007-09-28 2009-04-02 Carl Zeiss Meditec Ag Spektrometer
WO2009043517A1 (fr) 2007-09-28 2009-04-09 Carl Zeiss Meditec Ag Spectromètre
RU2459197C1 (ru) * 2008-07-07 2012-08-20 Кэнон Кабусики Кайся Устройство формирования изображения и способ формирования изображения с использованием оптической когерентной томографии
RU2503949C1 (ru) * 2008-07-07 2014-01-10 Кэнон Кабусики Кайся Устройство формирования изображения и способ формирования изображения с использованием оптической когерентной томографии
US8750586B2 (en) 2009-05-04 2014-06-10 Oregon Health & Science University Method and apparatus for quantitative imaging of blood perfusion in living tissue
US9013555B2 (en) 2009-05-04 2015-04-21 Oregon Health & Science University Method and apparatus for ultrahigh sensitive optical microangiography
US9791684B2 (en) 2010-01-06 2017-10-17 Ecole polytechnique fédérale de Lausanne (EPFL) Optical coherence microscopy system having a filter for suppressing a specular light contribution

Similar Documents

Publication Publication Date Title
WO2004043245A1 (fr) Procede d'imagerie rapide d'objets au moyen de la tomographie par coherence optique spectrale
JP6928623B2 (ja) 分散型構造化照明を使用する共焦点顕微鏡法のための装置及び方法
US5465147A (en) Method and apparatus for acquiring images using a ccd detector array and no transverse scanner
US8928888B2 (en) Swept source optical coherence tomography (OCT) method and system
CN105942968B (zh) 光学相干断层摄像装置及其控制方法
US20240065552A1 (en) Intraoral oct with color texture
CN105431077B (zh) 图像处理设备和图像处理方法
JP3332802B2 (ja) 光周波数掃引式断層画像測定装置
WO2014089504A1 (fr) Système et procédé de tomographie par cohérence optique d'imagerie parallèle
WO2014036405A2 (fr) Procédé et appareil pour tomographie à cohérence optique (oct) photothermique multi-longueur d'onde ultra-rapide
CN102970919A (zh) 光学相干断层图像摄像设备及其方法
JP2011087813A (ja) 光断層画像生成装置及び光断層画像生成方法
JP2009264787A (ja) 光画像計測装置
JP2007127425A (ja) 光断層画像化法における補正方法
EP1870030A1 (fr) Appareil et procédé pour la tomographie en cohérence optique dans le domaine de fréquence
CN107567305A (zh) 摄像设备
JP6292860B2 (ja) 光干渉断層計
US9551565B2 (en) Method and system for optical coherence tomography including obtaining at least two two-dimensional images of an object in three-dimensional space
JP6557229B2 (ja) 断層像撮影装置
CN108403079A (zh) 一种基于oct的共焦成像系统
EP3694392B1 (fr) Système pour tomographie par cohérence optique de domaine spectral de bras de référence multiples
WO2020186041A1 (fr) Système de tomographie par cohérence optique dentaire à grande vitesse
JP7058901B1 (ja) 3次元撮像装置
JP2012200283A (ja) 光干渉断層像形成装置
CN202211675U (zh) 双通道全眼光学相干层析成像系统

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC (EPO FORM 1205A DATED 15/09/2005)

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)