WO2004043079A1 - Three-dimensional video processing method and three-dimensional video display - Google Patents

Three-dimensional video processing method and three-dimensional video display Download PDF

Info

Publication number
WO2004043079A1
WO2004043079A1 PCT/JP2003/014166 JP0314166W WO2004043079A1 WO 2004043079 A1 WO2004043079 A1 WO 2004043079A1 JP 0314166 W JP0314166 W JP 0314166W WO 2004043079 A1 WO2004043079 A1 WO 2004043079A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
stereoscopic video
pixel
processing method
pixels
Prior art date
Application number
PCT/JP2003/014166
Other languages
French (fr)
Japanese (ja)
Inventor
Ken Mashitani
Goro Hamagishi
Original Assignee
Sanyo Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co., Ltd. filed Critical Sanyo Electric Co., Ltd.
Priority to JP2004549628A priority Critical patent/JPWO2004043079A1/en
Priority to US10/533,456 priority patent/US20060125916A1/en
Priority to EP03810638A priority patent/EP1581012A1/en
Publication of WO2004043079A1 publication Critical patent/WO2004043079A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers

Definitions

  • the present invention relates to a stereoscopic video display device and a stereoscopic video processing method capable of performing stereoscopic vision without requiring special glasses.
  • a parallax barrier method, a lenticular lens method, and the like have been known as methods for achieving stereoscopic image display without the need for special glasses, but these methods use an eye having binocular parallax.
  • the image for the left eye and the image for the left eye are alternately displayed on the screen, for example, in the form of a vertical stripe, and the displayed images are separated by a single lens such as a paralux barrier lens and guided to the right and left eyes of the observer. This is to perform stereoscopic vision.
  • FIG. 11 is an explanatory diagram exemplifying the principle of a stereoscopic image display device of a four-lens type stereoscopic vision system.
  • Image 1, image 2, image 3, and image 2 having a binocular disparity in the horizontal direction of screen 11 are arranged at a predetermined pitch, and a unit image group of “image 2 image 2 image 3 image 2” repeatedly exists.
  • the apertures 12a of the image separation means 12 are provided corresponding to each unit image group, and each of the unit image groups "image 1 image 2 image 3 image 2" is separated and given to the observer.
  • FIG. 12 shows the arrangement of pixels and display pixel data in the seven-view stereoscopic system.
  • a group of 2 "I pixels (dots) surrounded by a bold line constitutes one pixel group, which corresponds to three pinholes (openings).
  • the upper left picture element (pixel) Dots of ⁇ 1; 11; R ⁇ , ⁇ 1; 11; G ⁇ ⁇ 1; 11; B ⁇ are simultaneously observed.
  • ⁇ i; jk; C ⁇ represent ⁇ viewpoint; pixel coordinates; color ⁇ , respectively.
  • pixels having different viewpoints such as ⁇ 2; 11; G ⁇ , ⁇ 2; 11; B ⁇ , ⁇ 2; 11; Will be observed.
  • the present invention has been made in view of the above circumstances, and has as its object to provide an improved stereoscopic video processing method and stereoscopic video display device.
  • a stereoscopic video processing method of the present invention is a stereoscopic video processing method for extracting a plurality of pixels serving as picture element units for each viewpoint video from the plurality of viewpoint videos.
  • a group of data of a plurality of pixels, which is a pixel unit extracted from the image data, is defined as a pixel group, and the aspect ratio of the display pitch of the pixel group on the screen of the stereoscopic video display device is closest to 1: 1.
  • the arrangement of picture element units in the picture element group is set.
  • the arrangement of the picture element units in the picture element group is set so that the aspect ratio of the display pitch of the picture element group on the screen of the stereoscopic video display device is closest to 1: 1. Therefore, it is preferable that the pixels constituting the picture element of each viewpoint are close to each other, for example. Even if the number of viewpoints increases, the decrease in the horizontal resolution can be eased, so that an improvement in image quality can be expected.
  • the stereoscopic video processing method of the present invention is a stereoscopic video processing method for extracting a plurality of pixels that are picture element units for each viewpoint video from a plurality of viewpoint videos, and includes a picture element unit extracted from each viewpoint video.
  • a group of data of a plurality of pixels is defined as a pixel group, and the aspect ratio of the display pitch of the pixel group on the screen of the stereoscopic video display device is in a range of 1: 2 to 2: 1.
  • the arrangement of picture element units in the picture element group is set.
  • the arrangement of the picture element units in the picture element group is such that the aspect ratio of the display pitch of the picture element group on the screen of the stereoscopic video display device is in the range of 1: 2 to 2: 1. Is set, it is preferable that the pixels constituting the picture element of each viewpoint come closer to each other, and the decrease in the horizontal resolution can be reduced even when the number of viewpoints increases.
  • the data of a plurality of pixels as a picture element unit extracted from each viewpoint video may be obliquely arranged on a bit map. Further, data of a plurality of pixels, which are pixel units extracted from each viewpoint video, may be supplied so as to be obliquely arranged on the screen of the stereoscopic video display device. Further, data of a plurality of pixels, which is a picture element unit extracted from each viewpoint video, may be converted into a video signal so as to be obliquely arranged on the screen of the stereoscopic video display device and supplied.
  • the number of display picture elements is horizontal M x vertical N
  • the number of viewpoints is assumed
  • the number of pixels constituting one picture element is k
  • the number of picture elements of each viewpoint video is horizontal k M / L x vertical N / k.
  • Necessary pixel data may be extracted from each viewpoint video for each video region corresponding to the video. According to this, the coordinates of the pixels in each viewpoint video are not inherited in the stereoscopic video, but since there are no pixels discarded in each viewpoint video, wasteful video generation can be eliminated.
  • the images acquired by the image acquisition system are processed such that the number of picture elements of each viewpoint video is horizontal k M / L x vertical N / k and the image aspect ratio matches the aspect ratio of the display image, You may acquire each viewpoint video. According to this, distortion of the display image can be prevented. Also, the image aspect ratio of the image acquisition system may be made to match the aspect ratio of the display image to acquire each viewpoint video. According to this, the distortion of the display image can be prevented.
  • the number of picture elements in the display is horizontal MX vertical N
  • the number of viewpoints is assumed
  • the number of pixels constituting one picture element is k
  • the number of picture elements of each viewpoint video is obtained as horizontal k M / LX vertical NZ k
  • the viewpoint video may be enlarged to horizontal MX and vertical N, and necessary pixel data may be extracted and generated from each viewpoint video for each corresponding video area. According to this, the distortion of the display image can be prevented.
  • this processing method requires more memory for compositing, but the load on the image acquisition system is smaller than when acquiring the display image (composite image) size from the beginning.
  • Each viewpoint video may be one pixel or several pixels larger on the left and right, and data extracted from the enlarged pixels may be used in non-data portions that occur on the left and right of the screen. Alternatively, black data may be used in non-data portions that occur on the left and right sides of the screen. Alternatively, copy data of adjacent pixels having the same viewpoint may be used.
  • a stereoscopic video image having a vertical parallax may be generated.
  • the stereoscopic video display device of the present invention is a stereoscopic video display device comprising: a screen on which a video is displayed; and a separating unit for separating a position where a pixel of each viewpoint video can be observed.
  • the stereoscopic video display device of the present invention is a stereoscopic video display device including a screen on which a video is displayed and a separation unit for separating a position where a pixel of each visual point video can be observed, wherein The aspect ratio of the screen pixel pitch is set to k L to 1 to approximately k L to 1, and the pixel data of each viewpoint video is supplied in the horizontal direction, and the video is displayed.
  • the display is characterized in that the aspect ratio of the pitch of the picture element groups is 1: 1 to approximately 1: 1.
  • the number of viewpoint videos It is preferable that the same number of pixels of the same color are arranged consecutively. According to this, the arrangement of the colors of the pixels constituting the picture element matches, and the image quality of the screen edge is improved.
  • FIG. 1 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a color arrangement of pixels on a screen, a size of a pixel area, and an image displayed on a pixel.
  • FIG. 2 is an explanatory diagram showing the color arrangement of the screen in FIG.
  • FIG. 3 is an explanatory diagram showing a process of combining a display image from a plurality of original images.
  • FIG. 4 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a process of combining a display image from a plurality of original images.
  • FIG. 1 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a color arrangement of pixels on a screen, a size of a pixel area, and an image displayed on a pixel.
  • FIG. 2 is an explanatory diagram showing the color arrangement of the screen in FIG.
  • FIG. 3 is an explanatory diagram showing a process of combining a display image from a plurality
  • FIG. 5 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a color arrangement of pixels on a screen, a size of a pixel area, and an image displayed on a pixel.
  • FIG. 6 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a color arrangement of pixels on a screen, a size of a pixel area, and an image displayed on a pixel.
  • FIG. 7 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a color arrangement of pixels on a screen ⁇ , a size of a pixel area, and an image displayed on a pixel.
  • FIG. 8 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a color arrangement of pixels on a screen, a size of a pixel area, and an image displayed on the pixels.
  • FIG. 9 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a color arrangement of pixels on a screen, a size of a pixel area, and an image displayed on the pixel.
  • FIG. 10 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a color arrangement of pixels on a screen, a size of a pixel area, and an image displayed on a pixel.
  • FIG. 11 is an explanatory diagram showing a basic configuration of a multi-view stereoscopic image display device.
  • FIGS. 1 is an explanatory diagram showing a basic configuration of a multi-view stereoscopic image display device.
  • FIG. 12 (a) and 12 (b) are diagrams each showing a conventional example, and are explanatory diagrams showing a color arrangement of pixels on a screen, a size of a pixel area, and an image displayed on a pixel.
  • FIG. 13 is a diagram showing an embodiment of the present invention.
  • FIG. 4 is an explanatory diagram showing a process of combining a display image from a plurality of original images.
  • FIG. 14 is a diagram showing the embodiment of the present invention, and is an explanatory diagram showing a process of synthesizing a display image from a plurality of original images.
  • FIG. 15 is a diagram showing the embodiment of the present invention, and is an explanatory diagram showing a process of synthesizing a display image from a plurality of original images.
  • FIG. 16 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a color arrangement of pixels on a screen, a size of a pixel area, and an image displayed on the pixel.
  • FIG. 17 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a color arrangement of pixels on a screen, a size of a pixel area, and an image displayed on the pixels.
  • FIG. 18 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a color arrangement of pixels on a screen, a size of a pixel area, and an image displayed on the pixel.
  • FIG. 17 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a color arrangement of pixels on a screen, a size of a pixel area, and an image displayed on the pixel.
  • FIG. 18 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a color arrangement of pixels on a screen,
  • FIG. 19 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a color arrangement of pixels on a screen, a size of a pixel area, and an image displayed on the pixels.
  • FIG. 20 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a color arrangement of pixels on a screen, a size of a pixel area, and an image displayed on the pixel.
  • FIG. 21 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a color arrangement of pixels on a screen, a size of a pixel area, and an image displayed on a pixel.
  • FIG. 22 is an explanatory diagram showing the processing of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • a stereoscopic video processing method and a stereoscopic video display device will be described with reference to FIGS. 1 to 9 and FIGS.
  • the entire configuration of the stereoscopic video display device can adopt the configuration of FIG. 11 described in the conventional section, and description of the entire configuration is omitted to avoid redundancy due to duplication of description.
  • Figure 1 shows the color arrangement of pixels (dots) on the screen of the stereoscopic image display device (R, G, and B columns), the size of the pixel area, and the images displayed on the pixels.
  • the number of each viewpoint video is assumed to be 7 (seven-eye system), and red, green, and blue (RG B), which are the picture elements (pixels) extracted from each viewpoint video, for each image region corresponding to each viewpoint video
  • the pixel data is given to the obliquely arranged dots, and the image is separated, for example, by the aperture 1 shown by the dotted line in the figure. 21 dot groups surrounded by a bold line constitute one pixel group, and the aperture 1 corresponds to this pixel group.
  • the upper left pixel of the viewpoint 1 is constituted ⁇ 1; Dots of three colors of 11; R ⁇ , ⁇ 1; 11; G ⁇ , and ⁇ 1; 11; B ⁇ are observed at the same time.
  • ⁇ i; jk; C ⁇ represent ⁇ viewpoint; pixel coordinates; color ⁇ , respectively.
  • different viewpoints such as ⁇ 2; 11; G ⁇ , ⁇ 2; 11; B ⁇ % ⁇ 2; 11; R ⁇ ⁇ at the same pixel coordinates 11 Observe the pixels.
  • a screen (display) that optimally displays a planar image is used.
  • a liquid crystal panel having 3840 horizontal pixels ⁇ 2400 vertical pixels is used.
  • Each pixel is composed of a combination of dots of three colors, red, green and blue.
  • dots of the same color are arranged vertically, and the aspect ratio of this dot pitch Is three-to-one, and the horizontal and vertical pitches of pixels in a two-dimensional image display are equal.
  • the aspect ratio of the pixel pitch is 1: 1, which is the desired value for flat image display.
  • the number of horizontal and vertical pixel groups in the stereoscopic video processing method shown in Fig. 12 in the conventional section exists on a screen with 3840 horizontal pixels ⁇ 2400 vertical pixels as shown below. Will be.
  • the values in parentheses are example values.
  • deterioration of the number of pixels can be dispersed in the vertical direction.
  • one dot is composed by combining three dots arranged diagonally, so the vertical pitch of the pixel group is tripled and the horizontal pitch is 7/3 times.
  • the ratio of the horizontal pitch to the vertical pitch is 7/9, which is closer to 1 which is the value of the ratio of the horizontal pitch to the vertical pitch of pixels in the original flat image display.
  • the arrangement of the display pixels is set so that the aspect ratio of the pitch of the display pixel group on the screen of the stereoscopic image display device is closest to 1: 1. Therefore, the image quality can be expected to be improved because the dots constituting the image are close to each other, and the resolution in the horizontal direction can be reduced even when the number of viewpoints increases.
  • the number of pixels of the original image (camera captured image, etc.) is set to k MZL x NZk (1646 X 800), and the dots are synthesized while appropriately rearranging the dots.
  • the coordinates of the dots are not correctly inherited, but there is no waste of image generation because no dots are discarded.
  • the image aspect ratio of the image acquisition system is M: N, no image distortion occurs. This is the case where the aspect ratio of the pixel pitch is 1: 1. More generally, if the image aspect ratio of the image acquisition system matches the aspect ratio of the display image, no image distortion occurs. .
  • the image aspect ratio of the image acquisition system is, for example, the aspect ratio of the CCD of a live-action camera or the image aspect ratio at the time of rendering in computer graphics.
  • Dots with no information are generated on the left and right sides of the screen.
  • (1) Make each viewpoint video one dot or several dots larger than the required dot to the left and right, and place the data extracted from the enlarged dot in non-data locations that will occur on the left and right of the screen. For example, assuming that the pixel coordinates of the enlarged dot are “10”, the non-data portion at the upper left of the composite image includes ⁇ 7; 10; R ⁇ , ⁇ 7; 10; G ⁇ , ⁇ 6; 10; R ⁇ .
  • (2) Place black data in non-data areas that may occur on the left and right of the screen (non-lighting, light opaque).
  • (3) Place the copy data of the adjacent dots of the same viewpoint. In the example of the figure, ⁇ 7; 11; R ⁇ , ⁇ 7; 11; G ⁇ , ⁇ 6; 11; R ⁇ are arranged.
  • Figure 5 shows a stereoscopic video display device with a dot pitch aspect ratio that is not 3: 1.
  • the aspect ratio of the dot pitch is 3: 1
  • the ratio of the horizontal pitch to the vertical pitch of the display pixel group is 7/9 by the above-described stereoscopic image processing method.
  • the dot pitch The aspect ratio is 7: 3.
  • the value P h / PV of the ratio of the horizontal pitch to the vertical pitch of the display pixel group becomes equal to the desired value “1” in the flat image display.
  • F) By setting it to “1”, the aspect ratio of the pixel pitch at the time of imaging can be set to 1: 1 and existing equipment and computer programs can be used as they are.
  • FIG. 6 shows a stereoscopic video display device having a color arrangement different from the color arrangement shown in FIG.
  • the red, green, and blue columns are arranged sequentially in the horizontal direction, while the red, green, and blue lines are arranged sequentially in the vertical direction.
  • FIG. 7 shows a seven-lens stereoscopic video display device of another embodiment.
  • the aspect ratio of the dot pitch of the screen is set to 21: 1 (kL: 1).
  • one pixel group is composed of 21 dots arranged in the horizontal direction. This allows the value of the ratio of the horizontal pitch to the vertical pitch of the pixel group to be the desired value in the flat image display.
  • FIG. 8 shows a seven-eye stereoscopic image display device similar to that of FIG. 7, but the dot arrangement is different. As shown in the figure, seven dots from the left are red, the next seven dots are green, and the remaining seven dots are blue. As a result, the order of the colors of the dots constituting the pixels matches, and the image quality for displaying the edges is improved.
  • the pixel arrangement in the display pixel group shown in FIG. 9A is different from the pixel arrangement in the display pixel group shown in FIG. In each case, the diagonal dot system (oblique) Barrier method).
  • the stereoscopic image processing method shown here takes into account the pixel pitch (dot pitch) of the binocular and oblique dot type stereoscopic image display device, and determines the pitch of the display pixel group (see the thick line in the figure) on the screen.
  • the arrangement of pixels in the display pixel group can be switched to either Fig. 9 (a) or Fig. 9 (b) so that the aspect ratio is closest to 1: 1.
  • an image processing device capable of generating the images shown in FIGS. 9 (a) and 9 (b) can be used, and a three-dimensional image display device connected to the image processing device can be a liquid crystal display panel or a plasma display device.
  • the aspect ratio of the pitch of the display pixel group can be reduced to 1: 1 by generating the image shown in either Fig. 9 (a) or Fig. 9 (b). Can be approached.
  • FIG. 10 shows a configuration example in a case where parallax is also provided in the vertical direction.
  • the horizontal and vertical dot pitches are made equal so that the distance between the horizontal and vertical viewpoints is the same.
  • the dots are arranged in the same color in the vertical direction.
  • the ratio of the horizontal pitch to the vertical pitch of the pixel group becomes 1 in the case of the horizontal 6-view system and the vertical binocular system.
  • the order of the colors of the dots that make up the pixels will also match. Note that the distance between the horizontal and vertical viewpoints does not necessarily have to be the same.
  • FIG. 13 shows a modified example of the method shown in FIG. 4, which shows no image distortion.
  • the number of picture elements to be displayed is horizontal M (3840) X vertical N (240 0), the number of viewpoints is L (7), the number of pixels that constitute one picture element is k (3),
  • a method of extracting necessary pixel data from each viewpoint image for each image region corresponding to each viewpoint image by setting the number of picture elements of the image to horizontal k M / L (1 646) X vertical N / k (800), and
  • the aspect ratio of the image acquired by the image acquisition system is calculated as the aspect ratio of the displayed image (2400 (vertical): 3840 (horizontal)). They are matched and each viewpoint video is acquired.
  • FIG. 14 shows an example of the expansion / contraction processing.
  • the number of picture elements in the display is horizontal M (3840) X vertical N (2400), the number of viewpoints is L (7), and the number of pixels that constitute one picture element is k (3).
  • the number of picture elements in the video be horizontal k MZL (1 646) X vertical N / k (800).
  • the image acquired by the image acquisition system (the number of pixels 1 646 (horizontal) X 800 (vertical), the width-to-vertical ratio of the image 1 646 (horizontal) X 800 (vertical)) is converted to the horizontal and vertical Processing is performed so that the ratio matches the ratio of the width and height of the displayed image (3840 (width): 2400 (length)), and each viewpoint video is acquired.
  • the number of pixels of the camera (the image acquired by the image acquisition system) is 1 024 (horizontal) X 768 (vertical), and the number of viewpoints is 8. If each camera image is multiplied by 98 horizontally, an image of 1 152 (horizontal) X 768 (vertical) is obtained. This is multiplied by 1 to obtain an image of 1500 (horizontal) x 1000 (vertical).
  • the screen of the display device is 4 (horizontal): 3 (vertical), and the pixel pitch is 1: 1.
  • Fig. 15 is an improvement of the processing example of Fig. 3, in which the camera image is converted to the size of the display image (synthesized image) and then synthesized by thinning.
  • the number of picture elements in the display is horizontal M (3840) X vertical N (2400)
  • Figure 16 shows an example of the display image layout when the screen (color filter) is a horizontal stripe.
  • the arrangement of the display image is a vertical stripe arrangement, and R, G, and B pixels for each viewpoint are formed in the vertical direction.
  • Figure 17 shows an example of the display image layout when the screen (color filter) is a horizontal stripe.
  • the arrangement of the display image is a vertical stripe arrangement, and R, G, and B pixels for each viewpoint are formed in the vertical direction.
  • L is the number of viewpoints and k is the number of dots that make up one pixel.
  • Figure 18 shows an example of the display image arrangement when the screen (color filter) is diagonal.
  • the arrangement of the display image is a vertical stripe arrangement, and R, G, and B pixels for each viewpoint are formed in the vertical direction.
  • Figure 19 shows the display screen when the screen (color filter) is diagonal.
  • 3 shows an example of image arrangement.
  • the arrangement of the display image is a vertical stripe arrangement, and R, G, and B pixels for each viewpoint are formed in the vertical direction.
  • L is the number of viewpoints and k is the number of dots that make up one pixel.
  • FIG. 20 shows an example of the arrangement of display images when the screen (color filter) is diagonal.
  • the display image is arranged obliquely, and R, G, and B pixels for each viewpoint are formed in an oblique direction.
  • Figure 21 shows an example of the display image layout when the screen (color filter) is diagonal.
  • the display image is arranged obliquely, and R, G, and B pixels for each viewpoint are formed in an oblique direction.
  • L is the number of viewpoints
  • k is the number of dots forming one pixel.
  • the image separation element is not limited to an opening such as a pinhole, and a lens element may be used.
  • a configuration in which an image separation unit is disposed on the light source side may be adopted.
  • the image forming the picture element of each viewpoint is This is preferable because elements are close to each other, and even when the number of viewpoints is large, a decrease in the horizontal resolution can be reduced, so that various effects such as an improvement in image quality can be expected.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Processing Or Creating Images (AREA)

Abstract

A method for processing a video by extracting dots of three colors as a pixel unit for each of view point videos. The extracted three-color dots are made a pixel group. A pixel group is composed of 21 dots surrounded by the heavy line. An opening (1) corresponds to each pixel group. From a view position, three-color dots (4, 11, R), (4, 11, G), (4, 11, B) constituting a pixel at the upper left of viewpoint 4 can be seen simultaneously . When the viewpoint moves, a pixel of different viewpoint such as composed of (3, 11, R), (3, 11, G), (3, 11, B) of the same pixel coordinate 11 can be seen. The pixels of one pixel group are arranged so that the aspect ratio of the display pitch of the pixel group may be most approximate to 1:1. Thus, even if the number of viewpoints is large, the degradation of the horizontal resolution can be mitigated, and hence the quality of image can be improved.

Description

明 細 書 立体映像処理方法及び立体映像表示装置 技術分野  Description 3D image processing method and 3D image display device
この発明は、 特殊な眼鏡を必要とせずに立体視が行なえる立体映像表 示装置及び立体映像処理方法に関する。 背景技術  The present invention relates to a stereoscopic video display device and a stereoscopic video processing method capable of performing stereoscopic vision without requiring special glasses. Background art
従来より、 特殊な眼鏡を必要とせずに立体映像表示を実現する方法し とて、 パララックスバリァ方式やレンチキュラーレンズ方式等が知られ ているが、 これらの方式は両眼視差を有するお眼用映像と左眼用映像と を、 例えば縦ストライプ状に画面に交互に表示し、 この表示画像をパラ ラックスバリァゃレンチキユラ一レンズ等で分離して観察者の右眼と左 眼に各々導く ことで立体視を行わせるものである。  Conventionally, a parallax barrier method, a lenticular lens method, and the like have been known as methods for achieving stereoscopic image display without the need for special glasses, but these methods use an eye having binocular parallax. For example, the image for the left eye and the image for the left eye are alternately displayed on the screen, for example, in the form of a vertical stripe, and the displayed images are separated by a single lens such as a paralux barrier lens and guided to the right and left eyes of the observer. This is to perform stereoscopic vision.
図 1 1 は、 4眼式立体視方式の立体映像表示装置の原理を例示した説 明図である。 画面 1 1の水平方向に両眼視差を有する映像①と映像②と 映像③と映像④とが所定ピッチで並び、 この 「映像①映像②映像③映像 ④」 の単位映像グループが繰り返し存在している。 映像分離手段 1 2の 開口 1 2 aは各単位映像グループに対応して存在しており、 各単位映像 グループである 「映像①映像②映像③映像④」 を分離して観察者に与え る。  FIG. 11 is an explanatory diagram exemplifying the principle of a stereoscopic image display device of a four-lens type stereoscopic vision system. Image 1, image 2, image 3, and image 2 having a binocular disparity in the horizontal direction of screen 11 are arranged at a predetermined pitch, and a unit image group of “image 2 image 2 image 3 image 2” repeatedly exists. I have. The apertures 12a of the image separation means 12 are provided corresponding to each unit image group, and each of the unit image groups "image 1 image 2 image 3 image 2" is separated and given to the observer.
図 1 2は 7眼式立体視方式の画素の並び方及び表示画素データを示し ている。 図において太線で囲まれた 2 "I個の画素 (ドッ ト) 群が 1 つの ピクセルグループを構成しており、 これに 3つのピンホール (開口) が 対応し、 ある観察位置からは、 視点 1 の左上の絵素 (ピクセル) を構成 する { 1 ; 1 1 ; R} 、 { 1 ; 1 1 ; G} { 1 ; 1 1 ; B} の 3色の ドッ 卜が同時に観察される。 ここで、 { i ; j k ; C} は、 それぞれ {視点 ; ピクセル座標 ;色 } を表す。 そして、 観察位置の移動に従って、 同じピクセル座標 1 1 について { 2 ; 1 1 ; G} 、 { 2 ; 1 1 ; B} 、 {2 ; 1 1 ; R} ·■■ というように視点の異なるピクセルを観察する ことになる。 FIG. 12 shows the arrangement of pixels and display pixel data in the seven-view stereoscopic system. In the figure, a group of 2 "I pixels (dots) surrounded by a bold line constitutes one pixel group, which corresponds to three pinholes (openings). The upper left picture element (pixel) Dots of {1; 11; R}, {1; 11; G} {1; 11; B} are simultaneously observed. Here, {i; jk; C} represent {viewpoint; pixel coordinates; color}, respectively. Then, according to the movement of the observation position, pixels having different viewpoints such as {2; 11; G}, {2; 11; B}, {2; 11; Will be observed.
図 1 2 ( a) に示した画素の並び方及び表示画素データを採用する立 体映像処理方法では、 水平方向のピクセル数だけが 1 / 7に劣化するこ とになる。 これはピクセルの水平ピッチが 7倍になるということで、 水 平ピッチの垂直ピッチに対する比の値は 7になる。  In the stereoscopic video processing method using the pixel arrangement and display pixel data shown in Fig. 12 (a), only the number of pixels in the horizontal direction is reduced to 1/7. This means that the horizontal pitch of the pixels is increased by a factor of seven, resulting in a ratio of horizontal to vertical pitch of seven.
この考え方を斜め方向にピンホールが並ぶ映像分離手段 (図示せず) を用いる 7眼式の立体画像表示装置に応用すると、 図 1 2 ( b) に示す ようになる。 ピクセルグループは同じであるが、 グループ内の視点番号 の並びが変わる。 ここでも同じように水平方向のピクセル数が劣化する。 このように水平方向にのみ視差がある場合は、 通常水平方向のみピクセ ル数が劣化するものである。 なお、 複数のピンホールを斜めに配置する 立体映像表示装置として特許第 30966 1 3号が知られている。  If this concept is applied to a seven-lens stereoscopic image display device using video separation means (not shown) in which pinholes are arranged diagonally, the result is as shown in Fig. 12 (b). The pixel group is the same, but the arrangement of viewpoint numbers in the group changes. Here, the number of pixels in the horizontal direction is similarly degraded. If there is parallax only in the horizontal direction, the number of pixels usually deteriorates only in the horizontal direction. Japanese Patent No. 3096613 is known as a stereoscopic video display device in which a plurality of pinholes are arranged diagonally.
一般的な映像表示装置は、 隣接する赤、 緑、 青の 3色の画素 (ドッ ト) がひとつの絵素 (ピクセル) を構成する。 パララックスバリア方式 や、 特許文献 1 に開示された立体映像表示装置では、 図 1 2に示したご とく、 本来同じピクセルを構成する ドッ 卜がそれぞれ異なる視点の画像 を表示することになリ、 また、 視点数が多くなると、 各視点のピクセル を構成する ドッ 卜の組み合わせにおいて、 水平方向解像度の低下が避け られないなど、 不満が生じてくる。 また、 立体映像表示装置にとって適 した映像処理方法を提案するものはなかった。 発明の開示 In a general video display device, adjacent three-color pixels (dots) of red, green, and blue constitute one picture element (pixel). In the parallax barrier method and the stereoscopic image display device disclosed in Patent Document 1, as shown in FIG. 12, dots that originally constitute the same pixel display images from different viewpoints. Also, when the number of viewpoints increases, dissatisfaction occurs such as inevitable reduction in the horizontal resolution in the combination of dots constituting the pixels of each viewpoint. Also, there was no proposal for a video processing method suitable for a stereoscopic video display device. Disclosure of the invention
この発明は、 上記の事情に鑑み、 改善された立体映像処理方法及び立 体映像表示装置を提供することを目的とする。  The present invention has been made in view of the above circumstances, and has as its object to provide an improved stereoscopic video processing method and stereoscopic video display device.
この発明の立体映像処理方法は、 上記の課題を解決するために、 複数 の視点映像から各視点映像ごとに絵素単位となる複数画素を抽出する立 体映像処理方法であって、 各視点映像から抽出した絵素単位となる複数 画素のデータの集まりを絵素グループとし、 立体映像表示装置の画面上 での前記絵素グループの表示ピッチの縦横比が、 1対 1 に最も近くなる ように前記絵素グループにおける絵素単位の配置を設定することを特徴 とする。  In order to solve the above-mentioned problem, a stereoscopic video processing method of the present invention is a stereoscopic video processing method for extracting a plurality of pixels serving as picture element units for each viewpoint video from the plurality of viewpoint videos. A group of data of a plurality of pixels, which is a pixel unit extracted from the image data, is defined as a pixel group, and the aspect ratio of the display pitch of the pixel group on the screen of the stereoscopic video display device is closest to 1: 1. The arrangement of picture element units in the picture element group is set.
上記の構成であれば、 立体映像表示装置の画面上での前記絵素グルー プの表示ピッチの縦横比が 1 対 1 に最も近くなるように前記絵素グルー プにおける絵素単位の配置が設定されるため、 各視点の絵素を構成する 画素同士が近づくなど好適となり、 視点数が多くなった場合でも水平方 向解像度の低下を緩和し得るので、 画質向上が期待できる。  With the above configuration, the arrangement of the picture element units in the picture element group is set so that the aspect ratio of the display pitch of the picture element group on the screen of the stereoscopic video display device is closest to 1: 1. Therefore, it is preferable that the pixels constituting the picture element of each viewpoint are close to each other, for example. Even if the number of viewpoints increases, the decrease in the horizontal resolution can be eased, so that an improvement in image quality can be expected.
また、 この発明の立体映像処理方法は、 複数の視点映像から各視点映 像ごとに絵素単位となる複数画素を抽出する立体映像処理方法であって、 各視点映像から抽出した絵素単位となる複数画素のデータの集まリを絵 素グループとし、 立体映像表示装置の画面上での前記絵素グループの表 示ピッチの縦横比が、 1 対 2から 2対 1 の範囲となるように前記絵素グ ループにおける絵素単位の配置を設定することを特徴とする。  Also, the stereoscopic video processing method of the present invention is a stereoscopic video processing method for extracting a plurality of pixels that are picture element units for each viewpoint video from a plurality of viewpoint videos, and includes a picture element unit extracted from each viewpoint video. A group of data of a plurality of pixels is defined as a pixel group, and the aspect ratio of the display pitch of the pixel group on the screen of the stereoscopic video display device is in a range of 1: 2 to 2: 1. The arrangement of picture element units in the picture element group is set.
かかる構成においても、 立体映像表示装置の画面上での前記絵素グル ープの表示ピッチの縦横比が 1 対 2から 2対 1 の範囲となるように前記 絵素グループにおける絵素単位の配置が設定されるため、 各視点の絵素 を構成する画素同士が近づくなど好適となり、 また、 視点数が多くなつ た場合でも水平方向解像度の低下を緩和し得る。 各視点映像から抽出した絵素単位となる複数画素のデータをビッ 卜 マップ上に斜め配置してもよい。 また、 各視点映像から抽出した絵素単 位となる複数画素のデータを立体映像表示装置の画面上で斜めに並ぶよ うに供給してもよい。 また、 各視点映像から抽出した絵素単位となる複 数画素のデータを立体映像表示装置の画面上で斜めに並ぶように映像信 号化して供給するようにしてもよい。 In such a configuration, the arrangement of the picture element units in the picture element group is such that the aspect ratio of the display pitch of the picture element group on the screen of the stereoscopic video display device is in the range of 1: 2 to 2: 1. Is set, it is preferable that the pixels constituting the picture element of each viewpoint come closer to each other, and the decrease in the horizontal resolution can be reduced even when the number of viewpoints increases. The data of a plurality of pixels as a picture element unit extracted from each viewpoint video may be obliquely arranged on a bit map. Further, data of a plurality of pixels, which are pixel units extracted from each viewpoint video, may be supplied so as to be obliquely arranged on the screen of the stereoscopic video display device. Further, data of a plurality of pixels, which is a picture element unit extracted from each viewpoint video, may be converted into a video signal so as to be obliquely arranged on the screen of the stereoscopic video display device and supplied.
表示絵素数が水平 M x垂直 Nであり、 視点数をしとし、 1絵素を構成 する画素数を kとし、 各視点映像の絵素数を水平 k M / L x垂直 N / k として各視点映像の対応する映像領域ごとに各視点映像から必要な画素 のデータを抽出してもよい。 これによれば、 各視点映像の画素の座標が 立体用映像には承継されないが、 各視点映像で捨てられる画素がないた め、 映像生成の無駄を排除できる。 また、 各視点映像の絵素数が水平 k M / L x垂直 N / kで、 且つ、 画像縦横比が表示画像の縦横比と一致す るように、 画像取得系で取得した画像を処理し、 各視点映像を取得する ようにしてもよい。 これによれば表示画像の歪みを防止できる。 また、 画像取得系の画像縦横比を表示画像の縦横比と一致させ、 各視点映像を 取得するようにしてもよい。 これによれば、 表示画像の歪みを防止でき る。  The number of display picture elements is horizontal M x vertical N, the number of viewpoints is assumed, the number of pixels constituting one picture element is k, and the number of picture elements of each viewpoint video is horizontal k M / L x vertical N / k. Necessary pixel data may be extracted from each viewpoint video for each video region corresponding to the video. According to this, the coordinates of the pixels in each viewpoint video are not inherited in the stereoscopic video, but since there are no pixels discarded in each viewpoint video, wasteful video generation can be eliminated. In addition, the images acquired by the image acquisition system are processed such that the number of picture elements of each viewpoint video is horizontal k M / L x vertical N / k and the image aspect ratio matches the aspect ratio of the display image, You may acquire each viewpoint video. According to this, distortion of the display image can be prevented. Also, the image aspect ratio of the image acquisition system may be made to match the aspect ratio of the display image to acquire each viewpoint video. According to this, the distortion of the display image can be prevented.
表示の絵素数が水平 M X垂直 Nであり、 視点数をしとし、 1絵素を構 成する画素数を kとし、 各視点映像の絵素数を水平 k M / L X垂直 N Z kとして取得した各視点映像を、 水平 M X垂直 Nに拡大処理し、 対応す る映像領域ごとに各視点映像から必要な画素のデータを抽出生成するよ うにしてもよい。 これによれば、 表示画像の歪みを防止できる。 また、 この処理方法では、 合成時に使用するメモリは増加するが、 画像取得系 の負担は、 当初から表示画像 (合成画像) サイズで取得するのに比べて 少ない。 各視点映像を左右に 1画素乃至数画素大きなものとし、 画面左右に発 生することとなる無データ箇所に、 前記大きく した画素から抽出したデ —タを用いるようにしてもよい。 或いは、 画面左右に発生することとな る無データ箇所に、 黒データを用いるようにしてもよい。 或いは、 近接 する同じ視点の画素のコピーデータを用いるようにしてもよい。 The number of picture elements in the display is horizontal MX vertical N, the number of viewpoints is assumed, the number of pixels constituting one picture element is k, and the number of picture elements of each viewpoint video is obtained as horizontal k M / LX vertical NZ k The viewpoint video may be enlarged to horizontal MX and vertical N, and necessary pixel data may be extracted and generated from each viewpoint video for each corresponding video area. According to this, the distortion of the display image can be prevented. In addition, this processing method requires more memory for compositing, but the load on the image acquisition system is smaller than when acquiring the display image (composite image) size from the beginning. Each viewpoint video may be one pixel or several pixels larger on the left and right, and data extracted from the enlarged pixels may be used in non-data portions that occur on the left and right of the screen. Alternatively, black data may be used in non-data portions that occur on the left and right sides of the screen. Alternatively, copy data of adjacent pixels having the same viewpoint may be used.
また、 垂直方向の視差も有した立体視用映像を生成するようにしても よい。  Also, a stereoscopic video image having a vertical parallax may be generated.
また、 この発明の立体映像表示装置は、 映像が表示される画面と、 各 視点映像の画素が観察できる位置を分離する分離手段とを備えた立体映 像表示装置において、 上述したいずれかの立体映像処理方法によって得 られた映像を画面に表示すると画面上での表示絵素グループのピッチの 縦横比が 1対 1 乃至略 1 対 1 となるように画面画素ピッチの縦横比が設 定されていることを特徴とする。 視点数を Lとし、 1絵素を構成する画 素数を kとすると、 表示画素のピッチが k (横) : L (縦) に設定され、 表示絵素グループの縦横比が、 横:縦 = 1 : 1 となるように構成されて いてもよい。  Further, the stereoscopic video display device of the present invention is a stereoscopic video display device comprising: a screen on which a video is displayed; and a separating unit for separating a position where a pixel of each viewpoint video can be observed. When the image obtained by the image processing method is displayed on the screen, the aspect ratio of the screen pixel pitch is set so that the aspect ratio of the pitch of the displayed picture element group on the screen is 1: 1 to approximately 1: 1. It is characterized by having. If the number of viewpoints is L and the number of pixels constituting one picture element is k, the display pixel pitch is set to k (horizontal): L (vertical), and the aspect ratio of the display picture element group is horizontal: vertical = It may be configured to be 1: 1.
以上の構成において、 赤色用画素行、 緑色用画素行、 青用画素行が垂 直方向に順繰りに配置されていてもよく、 これによれば、 絵素を構成す る画素の色の並びが一致することになリ、 画面エツジの画質が向上する。 また、 この発明の立体映像表示装置は、 映像が表示される画面と、 各視 点映像の画素が観察できる位置を分離する分離手段とを備えた立体映像 表示装置において、 視点数をしとし、 画面画素ピッチの縦横比が k L対 1 乃至略 k L対 1 に設定され、 各視点映像の画素データが水平方向に順 繰りに設定された映像の供給を受けて映像表示を行い、 画面上での表示 絵素グループのピッチの縦横比が 1対 1 乃至略 1 対 1 となるように構成 されたことを特徴とする。 かかる構成において、 視点映像の数に対応し た数の同一色の画素が連続して配置されているのがよく、 これによれば、 絵素を構成する画素の色の並びが一致することになり、 画面エッジの画 質が向上する。 図面の簡単な説明 In the above configuration, the pixel row for red, the pixel row for green, and the pixel row for blue may be arranged sequentially in the vertical direction. According to this, the arrangement of the colors of the pixels constituting the picture element is changed. The image quality of the screen edge is improved. Also, the stereoscopic video display device of the present invention is a stereoscopic video display device including a screen on which a video is displayed and a separation unit for separating a position where a pixel of each visual point video can be observed, wherein The aspect ratio of the screen pixel pitch is set to k L to 1 to approximately k L to 1, and the pixel data of each viewpoint video is supplied in the horizontal direction, and the video is displayed. The display is characterized in that the aspect ratio of the pitch of the picture element groups is 1: 1 to approximately 1: 1. In such a configuration, the number of viewpoint videos It is preferable that the same number of pixels of the same color are arranged consecutively. According to this, the arrangement of the colors of the pixels constituting the picture element matches, and the image quality of the screen edge is improved. BRIEF DESCRIPTION OF THE FIGURES
図 1 はこの発明の実施形態を示す図であって、 画面上での画素の色並び、 画素領域の大きさ、 画素に表示される映像を示した説明図である。 図 2 は図 1 における画面の色並びを示した説明図である。 図 3は表示画像を 複数枚の原画像から合成する処理を示した説明図である。 図 4はこの発 明の実施形態を示す図であって、 表示画像を複数枚の原画像から合成す る処理を示した説明図である。 図 5はこの発明の実施形態を示す図であ つて、 画面上での画素の色並び、 画素領域の大きさ、 画素に表示される 映像を示した説明図である。 図 6はこの発明の実施形態を示す図であつ て、 画面上での画素の色並び、 画素領域の大きさ、 画素に表示される映 像を示した説明図である。 図 7はこの発明の実施形態を示す図であって、 画面 ±での画素の色並び、 画素領域の大きさ、 画素に表示される映像を 示した説明図である。 図 8はこの発明の実施形態を示す図であって、 画 面上での画素の色並び、 画素領域の大きさ、 画素に表示される映像を示 した説明図である。 図 9はこの発明の実施形態を示す図であって、 画面 上での画素の色並び、 画素領域の大きさ、 画素に表示される映像を示し た説明図である。 図 1 0はこの発明の実施形態を示す図であって、 画面 上での画素の色並び、 画素領域の大きさ、 画素に表示される映像を示し た説明図である。 図 1 1 は多眼式立体映像表示装置の基本構成を示した 説明図である。 図 1 2 ( a ) 及び ( b ) はそれぞれ従来例を示す図であ つて、 画面上での画素の色並び、 画素領域の大きさ、 画素に表示される 映像を示した説明図である。 図 1 3はこの発明の実施形態を示す図であ つて、 表示画像を複数枚の原画像から合成する処理を示した説明図であ る。 図 1 4はこの発明の実施形態を示す図であって、 表示画像を複数枚 の原画像から合成する処理を示した説明図である。 図 1 5はこの発明の 実施形態を示す図であって、 表示画像を複数枚の原画像から合成する処 理を示した説明図である。 図 1 6はこの発明の実施形態を示す図であつ て、 画面上での画素の色並び、 画素領域の大きさ、 画素に表示される映 像を示した説明図である。 図 1 7はこの発明の実施形態を示す図であつ て、 画面上での画素の色並び、 画素領域の大きさ、 画素に表示される映 像を示した説明図である。 図 1 8はこの発明の実施形態を示す図であつ て、 画面上での画素の色並び、 画素領域の大きさ、 画素に表示される映 像を示した説明図である。 図 1 9はこの発明の実施形態を示す図であつ て、 画面上での画素の色並び、 画素領域の大きさ、 画素に表示される映 像を示した説明図である。 図 2 0はこの発明の実施形態を示す図であつ て、 画面上での画素の色並び、 画素領域の大きさ、 画素に表示される映 像を示した説明図である。 図 2 1 はこの発明の実施形態を示す図であつ て、 画面上での画素の色並び、 画素領域の大きさ、 画素に表示される映 像を示した説明図である。 図 2 2は図 1 4の処理を表した説明図である。 発明を実施するための最良の形態 FIG. 1 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a color arrangement of pixels on a screen, a size of a pixel area, and an image displayed on a pixel. FIG. 2 is an explanatory diagram showing the color arrangement of the screen in FIG. FIG. 3 is an explanatory diagram showing a process of combining a display image from a plurality of original images. FIG. 4 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a process of combining a display image from a plurality of original images. FIG. 5 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a color arrangement of pixels on a screen, a size of a pixel area, and an image displayed on a pixel. FIG. 6 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a color arrangement of pixels on a screen, a size of a pixel area, and an image displayed on a pixel. FIG. 7 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a color arrangement of pixels on a screen ±, a size of a pixel area, and an image displayed on a pixel. FIG. 8 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a color arrangement of pixels on a screen, a size of a pixel area, and an image displayed on the pixels. FIG. 9 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a color arrangement of pixels on a screen, a size of a pixel area, and an image displayed on the pixel. FIG. 10 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a color arrangement of pixels on a screen, a size of a pixel area, and an image displayed on a pixel. FIG. 11 is an explanatory diagram showing a basic configuration of a multi-view stereoscopic image display device. FIGS. 12 (a) and 12 (b) are diagrams each showing a conventional example, and are explanatory diagrams showing a color arrangement of pixels on a screen, a size of a pixel area, and an image displayed on a pixel. FIG. 13 is a diagram showing an embodiment of the present invention. FIG. 4 is an explanatory diagram showing a process of combining a display image from a plurality of original images. FIG. 14 is a diagram showing the embodiment of the present invention, and is an explanatory diagram showing a process of synthesizing a display image from a plurality of original images. FIG. 15 is a diagram showing the embodiment of the present invention, and is an explanatory diagram showing a process of synthesizing a display image from a plurality of original images. FIG. 16 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a color arrangement of pixels on a screen, a size of a pixel area, and an image displayed on the pixel. FIG. 17 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a color arrangement of pixels on a screen, a size of a pixel area, and an image displayed on the pixels. FIG. 18 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a color arrangement of pixels on a screen, a size of a pixel area, and an image displayed on the pixel. FIG. 19 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a color arrangement of pixels on a screen, a size of a pixel area, and an image displayed on the pixels. FIG. 20 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a color arrangement of pixels on a screen, a size of a pixel area, and an image displayed on the pixel. FIG. 21 is a diagram showing an embodiment of the present invention, and is an explanatory diagram showing a color arrangement of pixels on a screen, a size of a pixel area, and an image displayed on a pixel. FIG. 22 is an explanatory diagram showing the processing of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明の実施形態の立体映像処理方法及び立体映像表示装置 を図 1乃至図 9、 図 1 3乃至図 2 2に基づいて説明していく。 なお、 立 体映像表示装置の全体構成は従来項で述べた図 1 1の構成を採用できる ものであり、 説明の重複による冗長をさけるため、 全体構成の説明は省 略している。  Hereinafter, a stereoscopic video processing method and a stereoscopic video display device according to an embodiment of the present invention will be described with reference to FIGS. 1 to 9 and FIGS. Note that the entire configuration of the stereoscopic video display device can adopt the configuration of FIG. 11 described in the conventional section, and description of the entire configuration is omitted to avoid redundancy due to duplication of description.
図 1 は、 立体映像表示装置の画面上での画素 (ドッ ト) の色並び (R, G , B列) 、 画素領域の大きさ、 画素に表示される映像を示しており、 ここでは、 各視点映像の数を 7とし (7眼式) 、 各視点映像の対応する 映像領域ごとに各視点映像から抽出した絵素 (ピクセル) 単位となる赤、 緑、 青 (RG B) の画素のデータを斜め配置の ドッ トに与え、 例えば図 において点線で示す開口 1 により映像分離を行なう。 太線で囲まれた 2 1個の ドッ ト群が 1 つのピクセルグループを構成しており、 これに前記 開口 1 が対応し、 ある観察位置からは、 視点 1 の左上のピクセルを構成 する { 1 ; 1 1 ; R} 、 { 1 ; 1 1 ; G} 、 { 1 ; 1 1 ; B} の 3色の ドッ 卜が同時に観察される。 ここで、 { i ; j k ; C} はそれぞれ {視 点 ; ピクセル座標; 色 } を表す。 そして、 観察位置の移動に従って、 同 じピクセル座標 1 1 で { 2 ; 1 1 ; G} 、 { 2 ; 1 1 ; B } % { 2 ; 1 1 ; R} ■■■ というように視点の異なるピクセルを観察する。 Figure 1 shows the color arrangement of pixels (dots) on the screen of the stereoscopic image display device (R, G, and B columns), the size of the pixel area, and the images displayed on the pixels. Here, the number of each viewpoint video is assumed to be 7 (seven-eye system), and red, green, and blue (RG B), which are the picture elements (pixels) extracted from each viewpoint video, for each image region corresponding to each viewpoint video The pixel data is given to the obliquely arranged dots, and the image is separated, for example, by the aperture 1 shown by the dotted line in the figure. 21 dot groups surrounded by a bold line constitute one pixel group, and the aperture 1 corresponds to this pixel group. From a certain observation position, the upper left pixel of the viewpoint 1 is constituted {1; Dots of three colors of 11; R}, {1; 11; G}, and {1; 11; B} are observed at the same time. Here, {i; jk; C} represent {viewpoint; pixel coordinates; color}, respectively. Then, according to the movement of the observation position, different viewpoints such as {2; 11; G}, {2; 11; B} % {2; 11; R} ■■■ at the same pixel coordinates 11 Observe the pixels.
画面 (ディスプレイ) には平面画像の表示を最適に行うものを用いて いる。 ここでは一例として、 ピクセル数が水平 3 840 X垂直 2 400 の液晶パネルを用いるものとする。 各ピクセルは赤、 緑、 青の 3色の ド ッ 卜の組み合わせにより成り、 図 2に示しているごとく、 縦方向には同 じ色の ドッ 卜が並んでおり、 このドッ 卜ピッチの縦横比は 3対 1 であり、 平面画像表示におけるピクセルの水平ピッチと垂直ピッチは等しいもの となる。 つまりピクセルピッチの縦横比は 1 対 1 となり、 これが平面画 像表示において望まれる値とされる。  A screen (display) that optimally displays a planar image is used. Here, as an example, it is assumed that a liquid crystal panel having 3840 horizontal pixels × 2400 vertical pixels is used. Each pixel is composed of a combination of dots of three colors, red, green and blue. As shown in Fig. 2, dots of the same color are arranged vertically, and the aspect ratio of this dot pitch Is three-to-one, and the horizontal and vertical pitches of pixels in a two-dimensional image display are equal. In other words, the aspect ratio of the pixel pitch is 1: 1, which is the desired value for flat image display.
ここで、 従来項の図 1 2で示した立体映像処理方法によるピクセルグ ループの水平個数及び垂直個数は、 ピクセル数が水平 3 8 40 X垂直 2 400である画面上で、 以下に示すごとく存在することになる。 なお、 括弧内は例値である。  Here, the number of horizontal and vertical pixel groups in the stereoscopic video processing method shown in Fig. 12 in the conventional section exists on a screen with 3840 horizontal pixels × 2400 vertical pixels as shown below. Will be. The values in parentheses are example values.
視点数 L (7) Number of viewpoints L (7)
表示領域のピクセル数 水平 MX垂直 N (3 840 x 2400) ピクセルグループの水平個数 M/L (= 548) ピクセルグループの垂直個数 N (2400) Number of pixels in display area Horizontal MX Vertical N (3 840 x 2400) Horizontal number of pixel groups M / L (= 548) Vertical number of pixel groups N (2400)
これに対し、 図 1 に示すようにピクセルグループを選択するこの実施 形態の立体映像処理方法であれば、 ピクセル数の劣化を垂直方向に分散 させることができる。 ここでは斜め方向に並ぶ 3 ドッ 卜を組み合わせて 1つのピクセルを構成しているため、 ピクセルグループの垂直ピッチが 3倍になり、 水平ピッチが 7/3倍となる。 水平ピッチの垂直ピッチに 対する比の値は 7/9となり、 本来の平面画像表示におけるピクセルの 水平ピッチの垂直ピッチに対する比の値である 1 に近づいたものとなる。  On the other hand, according to the stereoscopic video processing method of this embodiment in which a pixel group is selected as shown in FIG. 1, deterioration of the number of pixels can be dispersed in the vertical direction. Here, one dot is composed by combining three dots arranged diagonally, so the vertical pitch of the pixel group is tripled and the horizontal pitch is 7/3 times. The ratio of the horizontal pitch to the vertical pitch is 7/9, which is closer to 1 which is the value of the ratio of the horizontal pitch to the vertical pitch of pixels in the original flat image display.
これを一般的に表すと次のようになる。 力ッコ内は実施例の値である。 視点数 L (7)  This can be generally expressed as follows. The values in the brackets are the values of the embodiment. Number of viewpoints L (7)
表示領域のピクセル数 水平 MX垂直 N (3840 x 2400) 1 ピクセルを構成する ドッ ト数 k (3) Number of pixels in display area Horizontal MX Vertical N (3840 x 2400) Number of dots constituting one pixel k (3)
ピクセルグループの水平個数 Mx k/L (= 1 646 ) Horizontal number of pixel groups Mx k / L (= 1 646)
ピクセルグループの垂直個数 N/k (800) Vertical number of pixel groups N / k (800)
以上説明したように、 立体映像表示装置の画面上での前記表示ピクセ ルグループのピッチの縦横比が 1対 1 に最も近くなるように表示ピクセ ルの配置が設定されるため、 各視点のピクセルを構成する ドッ 卜同士が 近づくなど好適となり、 視点数が多くなつた場合でも水平方向解像度の 低下を緩和し得るので、 画質向上が期待できる。  As described above, the arrangement of the display pixels is set so that the aspect ratio of the pitch of the display pixel group on the screen of the stereoscopic image display device is closest to 1: 1. Therefore, the image quality can be expected to be improved because the dots constituting the image are close to each other, and the resolution in the horizontal direction can be reduced even when the number of viewpoints increases.
ここで、 上記表示画像を L枚の原画像から合成する処理を考える。 ま ず、 図 3に示すように、 表示画像のピクセル数 M X N (3840 X 24 00) に対して、 各々の原画像 (カメラ撮像画像等) のピクセル数も M X N (3840 x 2400) とし、 必要なドッ トだけを選択して合成す る方法がある。 この方法は、 ドッ トの座標が正確に継承されるが、 捨て られる ドッ トが存在するため画像の生成に無駄が生じる。 ピクセル座標 が "一" となっている ドッ トが捨てられる ドッ トである。 このような立 体映像処理方法に対して改善された立体映像処理方法を図 4に基づいて 説明する。 Here, a process of combining the display image from the L original images will be considered. First, as shown in Fig. 3, for each pixel number MXN (3840 x 2400) of the display image, the number of pixels of each original image (camera captured image, etc.) is also set to MXN (3840 x 2400). There is a method of selecting only dots and synthesizing. In this method, the coordinates of the dots are correctly inherited, but the generation of images is wasted because some dots are discarded. Dots whose pixel coordinates are "1" are discarded. Such a standing A three-dimensional image processing method improved from the body image processing method will be described with reference to FIG.
図 4に示している方法では、 原画像 (カメラ撮像画像等) のピクセル 数を k MZL x NZk ( 1 646 X 800) とし、 ドッ トを適切に並べ 替えながら合成している。 この方法ではドッ トの座標が正確に継承され ていないが、 捨てられる ドッ トがないため、 画像生成の無駄がない。 な お、 画像取得系の画像縦横比を M : Nとすると、 画像の歪みが生じない。 これは、 絵素ピッチの縦横比が 1 : 1の場合であり、 よリー般的には、 画像取得系の画像縦横比を表示画像の縦横比と一致させると、 画像の歪 みが生じない。 画像取得系の画像縦横比とは、 例えば実写カメラの CC Dの縦横比や、 コンピュータグラフィックスにおけるレンダリング時の 画像縦横比のことである。  In the method shown in Fig. 4, the number of pixels of the original image (camera captured image, etc.) is set to k MZL x NZk (1646 X 800), and the dots are synthesized while appropriately rearranging the dots. In this method, the coordinates of the dots are not correctly inherited, but there is no waste of image generation because no dots are discarded. If the image aspect ratio of the image acquisition system is M: N, no image distortion occurs. This is the case where the aspect ratio of the pixel pitch is 1: 1. More generally, if the image aspect ratio of the image acquisition system matches the aspect ratio of the display image, no image distortion occurs. . The image aspect ratio of the image acquisition system is, for example, the aspect ratio of the CCD of a live-action camera or the image aspect ratio at the time of rendering in computer graphics.
画面左右には情報のないドッ 卜が発生するが、 以下のように処理すれ ばよい。 ①各視点映像を必要ドッ 卜よりも左右に 1 ドッ 卜乃至数ドッ 卜 大きなものとし、 画面左右に発生することとなる無データ箇所に、 前記 大きく した ドッ トから抽出したデータを配置する。 例えば、 前記大きく した ドッ トのピクセル座標を 「 1 0」 とすると、 合成画像の左上の無デ —タ箇所には、 {7 ; 1 0 ; R} 、 {7 ; 1 0 ; G} 、 { 6 ; 1 0 ; R} が配置される。 ②画面左右に発生することとなる無データ箇所に、 黒データを配置する (非点灯, 光不透過) 。 ③近接する同じ視点の ドッ 卜のコピーデータを配置する。 図の例では、 {7 ; 1 1 ; R} 、 {7 ; 1 1 ; G} 、 {6 ; 1 1 ; R} が配置される。  Dots with no information are generated on the left and right sides of the screen. (1) Make each viewpoint video one dot or several dots larger than the required dot to the left and right, and place the data extracted from the enlarged dot in non-data locations that will occur on the left and right of the screen. For example, assuming that the pixel coordinates of the enlarged dot are “10”, the non-data portion at the upper left of the composite image includes {7; 10; R}, {7; 10; G}, { 6; 10; R}. (2) Place black data in non-data areas that may occur on the left and right of the screen (non-lighting, light opaque). (3) Place the copy data of the adjacent dots of the same viewpoint. In the example of the figure, {7; 11; R}, {7; 11; G}, {6; 11; R} are arranged.
図 5には、 ドッ トピッチの縦横比が 3対 1 でない立体映像表示装置を 示している。 ドッ トピッチの縦横比が 3対 1 である場合、 上述した立体 映像処理方法により、 表示ピクセルグループの水平ピッチの垂直ピッチ に対する比の値は 7/9となる。 これに対し、 図 5では、 ドッ トピッチ の縦横比が 7対 3となるようにしている。 これにより、 表示ピクセルグ ループの水平ピッチの垂直ピッチに対する比の値 P h / P Vが、 平面画 像表示において望まれる値 「 1 」 と等しくなる。 ? カ 「 1 」 と なることで、 撮像時の絵素ピッチの縦横比を 1 : 1 とすることができ、 既存の機器やコンピュータプログラムをそのまま使うことができる。 図 6には図 1 に示した色並びとは異なる色並びを有する立体映像表示 装置を示している。 図 1 の立体画像表示装置では赤色列、 緑色列、 青色 列が水平方向に順繰りに配置されるのに対し、 赤色行、 緑色行、 青色行 が垂直方向に順繰りに配置されている。 かかる構成であれば、 ピクセル を構成する ドッ トの色の並び順が一致するため、 エッジの表示に対する 画質が向上する。 Figure 5 shows a stereoscopic video display device with a dot pitch aspect ratio that is not 3: 1. When the aspect ratio of the dot pitch is 3: 1, the ratio of the horizontal pitch to the vertical pitch of the display pixel group is 7/9 by the above-described stereoscopic image processing method. In contrast, in Fig. 5, the dot pitch The aspect ratio is 7: 3. As a result, the value P h / PV of the ratio of the horizontal pitch to the vertical pitch of the display pixel group becomes equal to the desired value “1” in the flat image display. ? F) By setting it to “1”, the aspect ratio of the pixel pitch at the time of imaging can be set to 1: 1 and existing equipment and computer programs can be used as they are. FIG. 6 shows a stereoscopic video display device having a color arrangement different from the color arrangement shown in FIG. In the stereoscopic image display device shown in Fig. 1, the red, green, and blue columns are arranged sequentially in the horizontal direction, while the red, green, and blue lines are arranged sequentially in the vertical direction. With such a configuration, the arrangement order of the colors of the dots constituting the pixels is the same, so that the image quality for displaying the edges is improved.
図 7には他の実施形態の 7眼式の立体映像表示装置を示している。 こ の立体映像表示装置では、 画面のドッ トピッチの縦横比を 2 1 対 1 ( k L : 1 ) にしている。 そして、 水平方向に並ぶ 2 1 ドッ トでひとつのピ クセルグループを構成する。 これにより、 ピクセルグループの水平ピッ チの垂直ピッチに対する比の値が、 平面画像表示において望まれる値 FIG. 7 shows a seven-lens stereoscopic video display device of another embodiment. In this stereoscopic video display device, the aspect ratio of the dot pitch of the screen is set to 21: 1 (kL: 1). Then, one pixel group is composed of 21 dots arranged in the horizontal direction. This allows the value of the ratio of the horizontal pitch to the vertical pitch of the pixel group to be the desired value in the flat image display.
「 1 」 と等しくなる。 なお、 このようなドッ トピッチを採用する場合に は、 ピクセルグループの選択の仕方が変わることになる。 また、 視点数 によって ドッ トピッチの縦横比は変わる。 It is equal to "1". Note that when such a dot pitch is adopted, the method of selecting a pixel group changes. The aspect ratio of the dot pitch changes depending on the number of viewpoints.
図 8は図 7と同様の 7眼式の立体画像表示装置であるが、 ドッ トの色 並びが異なる。 図のように左から 7 ドッ 卜を赤、 次の 7 ドッ トを緑、 残 りの 7 ドッ トを青としている。 これにより、 ピクセルを構成する ドッ ト の色の並び順が一致するため、 エッジの表示に対する画質が向上する。 図 9において、 同図 ( a ) に示す表示ピクセルグループにおけるピク セル配置と、 同図 ( b ) に示す表示ピクセルグループにおけるピクセル 配置とは異なっている。 なお、 いずれも 2眼式で斜めドッ ト方式 (斜め バリア方式) と している。 ここで示す立体映像処理方法は、 2眼式で斜 めドッ ト方式の立体映像表示装置のピクセルピッチ (ドッ トピッチ) に 鑑み、 その画面上での表示ピクセルグループ (図の太線参照) のピッチ の縦横比が 1対 1 に最も近くなるように表示ピクセルグループにおける ピクセルの配置を図 9 ( a) と図 9 ( b ) のいずれかに切り替えること ができるようにしている。 例えば、 図 9 (a ) と図 9 ( b ) のいずれの 映像生成も可能である映像処理装置とされ、 この映像処理装置に接続さ れる立体映像表示装置と.して、 液晶表示パネルやプラズマディスプレイ を購入する場合でそれらのピクセルピッチが互いに異なる場合でも、 図 9 ( a) と図 9 (b) のどちらかの映像生成を行なうことで表示ピクセ ルグループのピッチの縦横比を 1対 1 に近づけることができる。 FIG. 8 shows a seven-eye stereoscopic image display device similar to that of FIG. 7, but the dot arrangement is different. As shown in the figure, seven dots from the left are red, the next seven dots are green, and the remaining seven dots are blue. As a result, the order of the colors of the dots constituting the pixels matches, and the image quality for displaying the edges is improved. In FIG. 9, the pixel arrangement in the display pixel group shown in FIG. 9A is different from the pixel arrangement in the display pixel group shown in FIG. In each case, the diagonal dot system (oblique) Barrier method). The stereoscopic image processing method shown here takes into account the pixel pitch (dot pitch) of the binocular and oblique dot type stereoscopic image display device, and determines the pitch of the display pixel group (see the thick line in the figure) on the screen. The arrangement of pixels in the display pixel group can be switched to either Fig. 9 (a) or Fig. 9 (b) so that the aspect ratio is closest to 1: 1. For example, an image processing device capable of generating the images shown in FIGS. 9 (a) and 9 (b) can be used, and a three-dimensional image display device connected to the image processing device can be a liquid crystal display panel or a plasma display device. Even if the pixel pitches are different from each other when purchasing a display, the aspect ratio of the pitch of the display pixel group can be reduced to 1: 1 by generating the image shown in either Fig. 9 (a) or Fig. 9 (b). Can be approached.
図 1 0には垂直方向にも視差を持たせる場合の構成例を示している。 水平と垂直の視点間の距離が同じになるように、 水平と垂直のドッ 卜ピ ツチを等しく している。 そして、 水平方向の眼数を多く とるために、 ド ッ トは垂直方向に同じ色を配列している。 このように構成することで、 水平 6眼式、 垂直 2眼式のときに、 ピクセルグループの水平ピッチの垂 直ピッチに対する比の値が 1 になる。 ピクセルを構成する ドッ 卜の色の 並び順も一致することになる。 なお、 必ずしも水平と垂直の視点間の距 離が同じになる必要はない。  FIG. 10 shows a configuration example in a case where parallax is also provided in the vertical direction. The horizontal and vertical dot pitches are made equal so that the distance between the horizontal and vertical viewpoints is the same. In order to increase the number of eyes in the horizontal direction, the dots are arranged in the same color in the vertical direction. With this configuration, the ratio of the horizontal pitch to the vertical pitch of the pixel group becomes 1 in the case of the horizontal 6-view system and the vertical binocular system. The order of the colors of the dots that make up the pixels will also match. Note that the distance between the horizontal and vertical viewpoints does not necessarily have to be the same.
図 1 3は図 4に示す方法の変形例であって画像歪みの無い例を示して いる。 この例は、 表示の絵素数が水平 M (3840) X垂直 N (240 0) であり、 視点数を L (7) とし、 1絵素を構成する画素数を k (3) とし、 各視点映像の絵素数を水平 k M/L ( 1 646) X垂直 N /k (800) として各視点映像の対応する映像領域ごとに各視点映像 から必要な画素のデータを抽出する方法であり、 且つ、 画像取得系の画 像の縦横比を表示画像の縦横比 ( 2400 (縦) : 3840 (横) ) と 一致させ、 各視点映像を取得している。 上記の場合、 各カメラのピクセ ルの縦横比は、 1 : 1ではなく、 横:縦 = 7 : 9となる。 FIG. 13 shows a modified example of the method shown in FIG. 4, which shows no image distortion. In this example, the number of picture elements to be displayed is horizontal M (3840) X vertical N (240 0), the number of viewpoints is L (7), the number of pixels that constitute one picture element is k (3), A method of extracting necessary pixel data from each viewpoint image for each image region corresponding to each viewpoint image by setting the number of picture elements of the image to horizontal k M / L (1 646) X vertical N / k (800), and The aspect ratio of the image acquired by the image acquisition system is calculated as the aspect ratio of the displayed image (2400 (vertical): 3840 (horizontal)). They are matched and each viewpoint video is acquired. In the above case, the aspect ratio of the pixels of each camera is not 1: 1, but horizontal: vertical = 7: 9.
上記のごとく、 画像取得系において適切な画素数及び画像縦横比が得 られればよいのであるが、 得られない場合には、 各視点映像に対して伸 縮処理を施すことで画像歪みを防止できる。 通常のカメラの画素は横 : 縦 = 1 : 1 (正方形) であるので、 伸縮処理を施すのがよい。  As described above, it is sufficient that the image acquisition system can obtain an appropriate number of pixels and the image aspect ratio, but if it cannot be obtained, image distortion can be prevented by performing expansion processing on each viewpoint video. . Since the pixels of a normal camera are horizontal: vertical = 1: 1 (square), it is better to perform expansion and contraction processing.
図 1 4は、 伸縮処理の一例を示している。 この例は、 表示の絵素数が 水平 M (3840) X垂直 N (2400) であり、 視点数を L (7 ) と し、 1絵素を構成する画素数を k (3) とし、 各視点映像の絵素数を水 平 k MZL ( 1 646) X垂直 N/ k (800) とする。 そして、 画像 取得系で取得した画像 (画素数 1 646 (横) X 800 (縦) , 画像の 横と縦の比 1 646 (横) X 800 (縦) ) を、 その画像の横と縦の比 が表示画像における横と縦の比 (3840 (横) : 2400 (縦) ) と 一致するように処理し、 各視点映像を取得する。  FIG. 14 shows an example of the expansion / contraction processing. In this example, the number of picture elements in the display is horizontal M (3840) X vertical N (2400), the number of viewpoints is L (7), and the number of pixels that constitute one picture element is k (3). Let the number of picture elements in the video be horizontal k MZL (1 646) X vertical N / k (800). Then, the image acquired by the image acquisition system (the number of pixels 1 646 (horizontal) X 800 (vertical), the width-to-vertical ratio of the image 1 646 (horizontal) X 800 (vertical)) is converted to the horizontal and vertical Processing is performed so that the ratio matches the ratio of the width and height of the displayed image (3840 (width): 2400 (length)), and each viewpoint video is acquired.
上記処理を図 22を用いて更に説明する。 なお、 この図 22において は、 カメラ (画像取得系で取得した画像) の画素数を 1 024 (横) X 768 (縦) 、 視点数を 8としている。 各カメラの画像を、 水平方向に 9 8倍すると、 1 1 52 (横) X 768 (縦) の画像が得られる。 こ れを等倍して 1 500 (横) X 1 000 (縦) の画像を得る。 この 8枚 の画像によって表示画像を生成すると、 表示画像の絵素数が水平 (M = 4000) となり ( 1 500 x 8/3 = 4000) 、 垂直 ( N = 300 0) となる ( 1 000 X 3) 。 表示装置の画面は 4 (横) : 3 (縦) で あり、 ピクセルのピッチは 1 : 1である。  The above processing will be further described with reference to FIG. In FIG. 22, the number of pixels of the camera (the image acquired by the image acquisition system) is 1 024 (horizontal) X 768 (vertical), and the number of viewpoints is 8. If each camera image is multiplied by 98 horizontally, an image of 1 152 (horizontal) X 768 (vertical) is obtained. This is multiplied by 1 to obtain an image of 1500 (horizontal) x 1000 (vertical). When a display image is generated from these eight images, the number of picture elements in the display image becomes horizontal (M = 4000) (1500 x 8/3 = 4000) and vertical (N = 3000) (1000 X 3 ). The screen of the display device is 4 (horizontal): 3 (vertical), and the pixel pitch is 1: 1.
図 1 5は、 図 3の処理例の改良であって、 カメラ画像を表示画像 (合 成画像) のサイズに変換してから間引きによる合成を行っている。 この 例は、 表示の絵素数が水平 M (3840) X垂直 N (2400) であり、 視点数を L ( 7 ) とし、 1絵素を構成する画素数を k ( 3 ) とし、 取得 した各視点映像 (水平 k M / L ( 1 6 4 6 ) X垂直 N / k ( 8 0 0 ) ) を、 水平 M ( 3 8 4 0 ) X垂直 N ( 2 4 0 0 ) に拡大処理し、 対応する 映像領域ごとに各視点映像から必要な画素のデータを抽出生成する。 こ の処理方法では、 合成時に使用するメモリは増加するが、 画像取得系 (カメラやコンピュータグラフィックス処理) の負担は、 図 3のような 当初から表示画像 (合成画像) サイズで取得するのに比べて少ない。 図 1 6は画面 (カラーフィルタ) が横ストライプである場合の表示画 像の配置例を示している。 表示画像の配置は縦ス 卜ライプ配置であり、 縦方向に各視点の R画素、 G画素、 B画素が形成される。 各画素のピッ チの縦横比は、 1 (横) : 3 (縦) であり、 ピクセルグループの縦横比 は、 横 : 縦 = 7 : 9となる。 Fig. 15 is an improvement of the processing example of Fig. 3, in which the camera image is converted to the size of the display image (synthesized image) and then synthesized by thinning. In this example, the number of picture elements in the display is horizontal M (3840) X vertical N (2400), Let the number of viewpoints be L (7), the number of pixels that constitute one picture element be k (3), and obtain each viewpoint video (horizontal k M / L (1 6 4 6) X vertical N / k (800 )) Is expanded to horizontal M (3840) X vertical N (2400), and the necessary pixel data is extracted and generated from each viewpoint video for each corresponding video area. With this processing method, the memory used for compositing is increased, but the burden on the image acquisition system (camera and computer graphics processing) is limited by acquiring the display image (composite image) size from the beginning as shown in Fig. 3. Less than compared. Figure 16 shows an example of the display image layout when the screen (color filter) is a horizontal stripe. The arrangement of the display image is a vertical stripe arrangement, and R, G, and B pixels for each viewpoint are formed in the vertical direction. The aspect ratio of the pitch of each pixel is 1 (horizontal): 3 (vertical), and the aspect ratio of the pixel group is horizontal: vertical = 7: 9.
図 1 7は画面 (カラ一フィルタ) が横ストライプである場合の表示画 像の配置例を示している。 表示画像の配置は縦ス 卜ライプ配置であり、 縦方向に各視点の R画素、 G画素、 B画素が形成される。 各画素のピッ チの縦横比は、 3 (横) : 7 (縦) であり、 ピクセルグループの縦横比 は、 横 : 縦 = 1 : 1 となる。 これを一般的に表すと、 各画素のピッチは、 k (横) : L (縦) であり、 ピクセルグループの縦横比は、 横 : 縦 = 1 : 1 となる。 なお、 Lは視点数、 kは 1 ピクセルを構成する ドッ ト 数である。  Figure 17 shows an example of the display image layout when the screen (color filter) is a horizontal stripe. The arrangement of the display image is a vertical stripe arrangement, and R, G, and B pixels for each viewpoint are formed in the vertical direction. The aspect ratio of the pitch of each pixel is 3 (horizontal): 7 (vertical), and the aspect ratio of the pixel group is horizontal: vertical = 1: 1. In general terms, the pitch of each pixel is k (horizontal): L (vertical), and the aspect ratio of the pixel group is horizontal: vertical = 1: 1. Note that L is the number of viewpoints and k is the number of dots that make up one pixel.
図 1 8は画面 (カラ一フィルタ) がダイァゴナルである場合の表示画 像の配置例を示している。 表示画像の配置は縦ス 卜ライプ配置であり、 縦方向に各視点の R画素、 G画素、 B画素が形成される。 各画素のピッ チの縦横比は、 1 (横) : 3 (縦) であり、 ピクセルグループの縦横比 は、 横:縦 = 7 : 9となる。  Figure 18 shows an example of the display image arrangement when the screen (color filter) is diagonal. The arrangement of the display image is a vertical stripe arrangement, and R, G, and B pixels for each viewpoint are formed in the vertical direction. The aspect ratio of the pitch of each pixel is 1 (horizontal): 3 (vertical), and the aspect ratio of the pixel group is horizontal: vertical = 7: 9.
図 1 9は画面 (カラーフィルタ) がダイァゴナルである場合の表示画 像の配置例を示している。 表示画像の配置は縦ス トライプ配置であり、 縦方向に各視点の R画素、 G画素、 B画素が形成される。 各画素のピッ チの縦横比は、 3 (横) : 7 (縦) であり、 ピクセルグループの縦横比 は、 横 : 縦 = 1 : 1 となる。 これを一般的に表すと、 各画素のピッチは、 k (横) : L (縦) であり、 ピクセルグループの縦横比は、 横 : 縦 = 1 : 1 となる。 なお、 Lは視点数、 kは 1 ピクセルを構成する ドッ ト 数である。 Figure 19 shows the display screen when the screen (color filter) is diagonal. 3 shows an example of image arrangement. The arrangement of the display image is a vertical stripe arrangement, and R, G, and B pixels for each viewpoint are formed in the vertical direction. The aspect ratio of the pitch of each pixel is 3 (horizontal): 7 (vertical), and the aspect ratio of the pixel group is horizontal: vertical = 1: 1. In general terms, the pitch of each pixel is k (horizontal): L (vertical), and the aspect ratio of the pixel group is horizontal: vertical = 1: 1. Note that L is the number of viewpoints and k is the number of dots that make up one pixel.
図 2 0は画面 (カラーフィルタ) がダイァゴナルである場合の表示画 像の配置例を示している。 表示画像の配置は斜め配置であり、 斜め方向 に各視点の R画素、 G画素、 B画素が形成される。 各画素のピッチの縦 横比は、 1 (横) : 3 (縦) であり、 ピクセルグループの縦横比は、 横 : 縦 = 7 : 9となる。  FIG. 20 shows an example of the arrangement of display images when the screen (color filter) is diagonal. The display image is arranged obliquely, and R, G, and B pixels for each viewpoint are formed in an oblique direction. The aspect ratio of the pitch of each pixel is 1 (horizontal): 3 (vertical), and the aspect ratio of the pixel group is horizontal: vertical = 7: 9.
図 2 1 は画面 (カラーフィルタ) がダイァゴナルである場合の表示画 像の配置例を示している。 表示画像の配置は斜め配置であり、 斜め方向 に各視点の R画素、 G画素、 B画素が形成される。 各画素のピッチの縦 横比は、 3 (横) : 7 (縦) であり、 ピクセルグループの縦横比は、 横 :縦 = 1 : 1 となる。 これを一般的に表すと、 各画素のピッチは、 k (横) : し (縦) であり、 ピクセルグループの縦横比は、 横:縦 = 1 : 1 となる。 なお、 Lは視点数、 kは 1 ピクセルを構成する ドッ ト数で ある。  Figure 21 shows an example of the display image layout when the screen (color filter) is diagonal. The display image is arranged obliquely, and R, G, and B pixels for each viewpoint are formed in an oblique direction. The aspect ratio of the pitch of each pixel is 3 (horizontal): 7 (vertical), and the aspect ratio of the pixel group is horizontal: vertical = 1: 1. In general terms, the pitch of each pixel is k (horizontal): square (vertical), and the aspect ratio of the pixel group is horizontal: vertical = 1: 1. Here, L is the number of viewpoints, and k is the number of dots forming one pixel.
なお、 映像分離の要素としては、 ピンホールなどの開口に限らず、 レ ンズ素子を用いてもよいものである。 また、 光源側に映像分離手段を配 置する構成としてもよいものである。 また、 1絵素 (ピクセル) を構成 する画素が R G B ( K = 3 ) であるとしたが、 1絵素を構成する画素が R G G Βの場合には Κ = 4として処理すればよい。  Note that the image separation element is not limited to an opening such as a pinhole, and a lens element may be used. In addition, a configuration in which an image separation unit is disposed on the light source side may be adopted. Also, it is assumed that the pixels that constitute one picture element (pixel) are RGB (K = 3). However, if the pixels that constitute one picture element are R GG 処理, the processing may be performed with Κ = 4.
以上説明したように、 この発明によれば、 各視点の絵素を構成する画 素同士が近づくなど好適となり、 また、 視点数が多くなつた場合でも水 平方向解像度の低下を緩和し得るので、 画質向上が期待できる等の諸効 果を奏する。 As described above, according to the present invention, the image forming the picture element of each viewpoint is This is preferable because elements are close to each other, and even when the number of viewpoints is large, a decrease in the horizontal resolution can be reduced, so that various effects such as an improvement in image quality can be expected.

Claims

1 . 複数の視点映像から各視点映像ごとに絵素単位となる複数画素を 抽出する立体映像処理方法であって、 各視点映像から抽出した絵素単位 となる複数画素のデータの集まりを絵素グループとし、 立体映像表示装 置の画面上での前記絵素グループの表示ピッチの縦横比が、 1 対 1 に最 青 1. A stereoscopic video processing method for extracting a plurality of pixels as a picture element unit for each viewpoint video from a plurality of viewpoint videos. As a group, the aspect ratio of the display pitch of the picture element group on the screen of the stereoscopic video display device is 1: 1 blue.
も近くなるように前記絵素グループにおける絵素単位の配置を設定する ことを特徴とする立体映像処理方法。 A three-dimensional image processing method, wherein the arrangement of the picture element units in the picture element group is set so as to be close to each other.
 of
2 . 複数の視点映像から各視点映像ごとに絵素単位となる複数画素を 抽出する立体映像処理方法であって、 各視点映像から抽出した絵素単位 囲  2. A stereoscopic video processing method for extracting a plurality of pixels, which are picture element units for each viewpoint video, from a plurality of viewpoint videos.
となる複数画素のデータの集まりを絵素グループとし、 立体映像表示装 置の画面上での前記絵素グループの表示ピッチの縦横比が、 1 対 2から 2対 1 の範囲となるように前記絵素グループにおける絵素単位の配置を 設定することを特徴とする立体映像処理方法。 A group of data of a plurality of pixels is defined as a picture element group, and the aspect ratio of the display pitch of the picture element group on the screen of the stereoscopic video display device is in the range of 1: 2 to 2: 1. A stereoscopic video processing method characterized by setting the arrangement of picture element units in picture element groups.
3 . 請求項 1 又は請求項 2に記載の立体映像処理方法において、 各視 点映像から抽出した絵素単位となる複数画素のデータをビッ トマツプ上 に斜め配置することを特徴とする立体映像処理方法。 3. The stereoscopic video processing method according to claim 1 or 2, wherein data of a plurality of pixels, which are pixel units extracted from each viewpoint video, are obliquely arranged on a bit map. Method.
4 . 請求項 1 又は請求項 2に記載の立体映像処理方法において、 各視 点映像から抽出した絵素単位となる複数画素のデータを立体映像表示装 置の画面上で斜めに並ぶように供給することを特徴とする立体映像処理 方法。  4. In the stereoscopic video processing method according to claim 1 or 2, data of a plurality of pixels, which are pixel units extracted from each viewpoint video, are supplied so as to be obliquely arranged on a screen of the stereoscopic video display device. Stereoscopic video processing method characterized by performing
5 . 請求項 1 又は請求項 2に記載の立体映像処理方法において、 各視 点映像から抽出した絵素単位となる複数画素のデータを立体映像表示装 置の画面上で斜めに並ぶように映像信号化して供給することを特徴とす る立体映像処理方法。  5. In the stereoscopic video processing method according to claim 1 or 2, the data of a plurality of pixels, which are picture element units extracted from each viewpoint video, are arranged obliquely on the screen of the stereoscopic video display device. A stereoscopic video processing method characterized by being supplied as a signal.
6 . 請求項 1 乃至請求項 5のいずれかに記載の立体映像処理方法にお いて、 表示の絵素数が水平 MX垂直 Nであり、 視点数を Lとし、 1絵素 を構成する画素数を kとし、 各視点映像の絵素数を水平 k M/L X垂直 N/kとして各視点映像の対応する映像領域ごとに各視点映像から必要 な画素のデータを抽出することを特徴とする立体映像処理方法。 6. The stereoscopic video processing method according to any one of claims 1 to 5, The number of picture elements on the display is horizontal MX and vertical N, the number of viewpoints is L, the number of pixels constituting one picture element is k, and the number of picture elements of each viewpoint video is horizontal k M / LX vertical N / k. A stereoscopic video processing method characterized by extracting necessary pixel data from each viewpoint video for each video region corresponding to the viewpoint video.
7. 請求項 6に記載の立体映像処理方法において、 各視点映像の絵素 数が水平 k M/L x垂直 N/kで、 且つ、 画像縦横比が表示画像の縦横 比と一致するように、 画像取得系で取得した画像を処理し、 各視点映像 を取得することを特徴とする立体映像処理方法。 7. The stereoscopic video processing method according to claim 6, wherein the number of picture elements in each viewpoint video is horizontal k M / L x vertical N / k, and the image aspect ratio matches the aspect ratio of the display image. A stereoscopic video processing method characterized by processing images acquired by an image acquisition system and acquiring each viewpoint video.
8. 請求項 6に記載の立体映像処理方法において、 画像取得系の画像 縦横比を表示画像の縦横比と一致させ、 各視点映像を取得することを特 徴とする立体映像処理方法。  8. The stereoscopic video processing method according to claim 6, wherein an image aspect ratio of an image acquisition system is made to coincide with an aspect ratio of a display image to acquire each viewpoint video.
9. 請求項 1乃至請求項 5のいずれかに記載の立体映像処理方法にお いて、 表示の絵素数が水平 MX垂直 Nであり、 視点数をしと し、 1絵素 を構成する画素数を kとし、 各視点映像の絵素数を水平 k M/ L X垂直 N/kとして取得した各視点映像を、 水平 MX垂直 Nに拡大処理し、 対 応する映像領域ごとに各視点映像から必要な画素のデータを抽出生成す ることを特徴とする立体映像処理方法。  9. In the stereoscopic video processing method according to any one of claims 1 to 5, the number of picture elements to be displayed is horizontal MX vertical N, the number of viewpoints is assumed, and the number of pixels constituting one picture element Is set to k, the number of picture elements of each viewpoint video is obtained as horizontal k M / LX vertical N / k, and each viewpoint video is enlarged to horizontal MX vertical N and processed as necessary from each viewpoint video for each corresponding video area. A stereoscopic video processing method characterized by extracting and generating pixel data.
1 0. 請求項 6乃至請求項 9のいずれかに記載の立体映像処理方法に おいて、 各視点映像を左おに 1画素乃至数画素大きなものとし、 画面左 右に発生することとなる無データ箇所に、 前記大きく した画素から抽出 したデータを用いることを特徴とする立体映像処理方法。  10. In the stereoscopic video processing method according to any one of claims 6 to 9, each viewpoint video is set to be larger by one pixel to several pixels on the left side, and the viewpoint image is generated on the left and right sides of the screen. A stereoscopic video processing method, wherein data extracted from the enlarged pixels is used in a data location.
1 1 . 請求項 6乃至請求項 9のいずれかに記載の立体映像処理方法に おいて、 画面左右に発生することとなる無データ箇所に、 黒データを用 いることを特徴とする立体映像処理方法。  11. The stereoscopic video processing method according to any one of claims 6 to 9, wherein black data is used in a non-data portion that occurs on the left and right of the screen. Method.
1 2. 請求項 6乃至請求項 9のいずれかに記載の立体映像処理方法に おいて、 画面左右に発生することとなる無データ箇所に、 近接する同じ 視点の画素のコピーデータを用いることを特徴とする立体映像処理方法。1 2. In the stereoscopic video processing method according to any one of claims 6 to 9, the non-data portion that is generated on the left and right of the screen is close to the non-data portion. A stereoscopic video processing method using copy data of a pixel at a viewpoint.
1 3 . 請求項 1 又は請求項 2のいずれかに記載の立体映像処理方法に おいて、 垂直方向の視差も有した立体視用映像を生成することを特徴と する立体映像処理方法。 13. A stereoscopic video processing method according to claim 1 or 2, wherein a stereoscopic video image having a vertical parallax is generated.
1 . 映像が表示される画面と、 各視点映像の画素が観察できる位置 を分離する分離手段とを備えた立体映像表示装置において、 請求項 1 乃 至請求項 1 3に記載のいずれかの立体映像処理方法によって得られた映 像を画面に表示すると画面上での表示絵素グループのピッチの縦横比が 1対 1 乃至略 1 対 1 となるように画面画素ピッチの縦横比が設定されて いることを特徴とする立体映像表示装置。 1. A stereoscopic video display device comprising: a screen on which a video is displayed; and a separating unit for separating a position at which a pixel of each viewpoint video can be observed, the stereoscopic video display device according to any one of claims 1 to 13 When the image obtained by the image processing method is displayed on the screen, the aspect ratio of the screen pixel pitch is set such that the aspect ratio of the pitch of the displayed picture element group on the screen is 1: 1 to approximately 1: 1. A stereoscopic image display device.
1 5 . 請求項 1 4に記載の立体映像表示装置において、 視点数をしと し、 1絵素を構成する画素数を kとすると、 表示画素のピッチが k (横) : L (縦) に設定され、 表示絵素グループの縦横比が、 横 :縦 = 1 : 1 となるように構成されたことを特徴とする立体映像表示装置。 1 6 . 映像が表示される画面と、 各視点映像の画素が観察できる位置 を分離する分離手段とを備えた立体映像表示装置において、 表示画素の ピッチを k、 視点数を Lとし、 画面画素ピッチの縦横比が k L対 1 乃至 略 k L対 1 に設定され、 各視点映像の画素データが水平方向に順繰りに 設定された映像の供給を受けて映像表示を行い、 画面上での表示絵素グ ループのピッチの縦横比が 1 対 1 乃至略 1対 1 となるように構成された ことを特徴とする立体映像表示装置。  15. The stereoscopic video display apparatus according to claim 14, wherein the number of viewpoints is k, and the number of pixels constituting one picture element is k. The pitch of display pixels is k (horizontal): L (vertical). Wherein the aspect ratio of the display picture element group is set such that width: length = 1: 1. 16. In a stereoscopic video display device equipped with a screen on which a video is displayed and a separating means for separating a position at which a pixel of each viewpoint video can be observed, the pitch of display pixels is k, the number of viewpoints is L, and the number of screen pixels is The aspect ratio of the pitch is set to k L to 1 to approximately k L to 1, and the image data is displayed by receiving the image data in which the pixel data of each viewpoint image is set sequentially in the horizontal direction and displayed on the screen A stereoscopic video display device characterized in that the aspect ratio of the pitch of the picture element group is 1: 1 to approximately 1: 1.
1 7 . 請求項 1乃至請求項 1 5のいずれかに記載の立体映像表示装置 において、 赤色用画素行、 録色用画素行、 青色用画素行が垂直方向に順 繰りに配置されていることを特徴とする立体映像表示装置。  17. The stereoscopic image display device according to any one of claims 1 to 15, wherein the red pixel row, the color recording pixel row, and the blue pixel row are sequentially arranged in the vertical direction. A stereoscopic video display device characterized by the following.
1 8 . 請求項 1 6に記載の立体映像表示装置において、 視点映像の数 に対応した数の同一色の画素が連続して配置されていることを特徴とす る立体映像表示装置。 18. The stereoscopic video display device according to claim 16, wherein a number of pixels of the same color corresponding to the number of viewpoint videos are continuously arranged. 3D image display device.
PCT/JP2003/014166 2002-11-07 2003-11-06 Three-dimensional video processing method and three-dimensional video display WO2004043079A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004549628A JPWO2004043079A1 (en) 2002-11-07 2003-11-06 3D image processing method and 3D image display device
US10/533,456 US20060125916A1 (en) 2002-11-07 2003-11-06 Three-dimensional video processing method and three-dimensional video display
EP03810638A EP1581012A1 (en) 2002-11-07 2003-11-06 Three-dimensional video processing method and three-dimensional video display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-324429 2002-11-07
JP2002324429 2002-11-07

Publications (1)

Publication Number Publication Date
WO2004043079A1 true WO2004043079A1 (en) 2004-05-21

Family

ID=32310447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014166 WO2004043079A1 (en) 2002-11-07 2003-11-06 Three-dimensional video processing method and three-dimensional video display

Country Status (6)

Country Link
US (1) US20060125916A1 (en)
EP (1) EP1581012A1 (en)
JP (1) JPWO2004043079A1 (en)
KR (1) KR100785982B1 (en)
CN (1) CN1708995A (en)
WO (1) WO2004043079A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2873824A1 (en) * 2004-07-30 2006-02-03 Pierre Allio METHOD FOR DISPLAYING AN AUTOSTEREOSCOPIC IMAGE AT NIGHT VIEWS
FR2876805A1 (en) * 2004-10-18 2006-04-21 Artistic Images Sarl DEVICE AND METHOD FOR AUTOSTEREOSCOPIC VISUALIZATION BASED ON LENTICULAR, AND METHOD FOR SYNTHESIZING AUTOSTEREOSCOPIC IMAGES
FR2876804A1 (en) * 2004-10-18 2006-04-21 Imagine Optic Sa DEVICE AND METHOD FOR AUTOSTEREOSCOPIC VISUALIZATION BASED ON LENTICULAR, AND METHOD FOR SYNTHESIZING AUTOSTEREOSCOPIC IMAGES
DE102004051355A1 (en) * 2004-10-19 2006-05-04 X3D Technologies Gmbh Arrangement for spatially perceptible representation
JP2006285247A (en) * 2005-04-04 2006-10-19 Samsung Electronics Co Ltd Stereoscopic video display for compatibility between 2d/3d images using polarization grating screen
JP2007228266A (en) * 2006-02-23 2007-09-06 Seiko Epson Corp Image processing system, display device, program and information storage medium
CN100399105C (en) * 2005-03-24 2008-07-02 株式会社东芝 Stereoscopic image display apparatus and stereoscopic image display method
JP2009139787A (en) * 2007-12-10 2009-06-25 Seiko Epson Corp Electrooptical device, display method, and electronic equipment
JP2009526488A (en) * 2006-02-09 2009-07-16 リアル・ディ On-the-fly hardware image summary
JP2010088087A (en) * 2008-10-03 2010-04-15 Seiko Epson Corp Electro-optical device, and electronic apparatus
CN101995667A (en) * 2009-08-20 2011-03-30 索尼公司 Stereoscopic image displaying apparatus
US8169381B2 (en) 2003-02-26 2012-05-01 Phoenix 3D, Inc. Method and apparatus for spatial display using a rasterized imaging device and an array of filter elements

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100662429B1 (en) 2005-11-01 2007-01-02 엘지전자 주식회사 Apparatus for holography display
JP4669482B2 (en) * 2006-09-29 2011-04-13 セイコーエプソン株式会社 Display device, image processing method, and electronic apparatus
TWI324477B (en) * 2006-11-03 2010-05-01 Quanta Comp Inc Stereoscopic image format transformation method applied to display system
JP2010020178A (en) * 2008-07-11 2010-01-28 Epson Imaging Devices Corp Image display apparatus device, image display apparatus method, and image display apparatus program
CN101588514B (en) * 2009-05-07 2013-07-31 华映光电股份有限公司 Method for processing three dimensional images
CN101742343B (en) * 2009-12-11 2013-01-09 中航华东光电有限公司 Synthetic method of grating stereo-display sub-pixel-level stereo image
CN102081249B (en) * 2010-11-05 2012-05-23 友达光电股份有限公司 Image display method of three-dimensional display
EP2461238B1 (en) 2010-12-02 2017-06-28 LG Electronics Inc. Image display apparatus including an input device
CN103621077B (en) * 2011-06-20 2016-07-06 松下电器(美国)知识产权公司 Image display
US9363504B2 (en) * 2011-06-23 2016-06-07 Lg Electronics Inc. Apparatus and method for displaying 3-dimensional image
JP6099892B2 (en) * 2012-07-09 2017-03-22 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Video display device
US9519144B2 (en) 2013-05-17 2016-12-13 Nvidia Corporation System, method, and computer program product to produce images for a near-eye light field display having a defect
US9582922B2 (en) 2013-05-17 2017-02-28 Nvidia Corporation System, method, and computer program product to produce images for a near-eye light field display
US9594247B2 (en) * 2013-12-19 2017-03-14 Nvidia Corporation System, method, and computer program product for a pinlight see-through near-eye display
KR102120172B1 (en) * 2013-12-24 2020-06-08 엘지디스플레이 주식회사 Display device and method of driving the same
CN104635398A (en) 2015-03-09 2015-05-20 京东方科技集团股份有限公司 Display device and grating control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248293A (en) * 1987-04-03 1988-10-14 Nippon Hoso Kyokai <Nhk> Stereoscopic television set
JPH09236777A (en) * 1996-02-23 1997-09-09 Philips Electron Nv Automatic stereoscopic display device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2259422B (en) * 1991-09-06 1995-04-05 Sony Broadcast & Communication Digital video signal processing
JPH0791847A (en) * 1993-09-27 1995-04-07 Murata Mfg Co Ltd Vertical baking furnace
US5528301A (en) * 1995-03-31 1996-06-18 Panasonic Technologies, Inc. Universal video format sample size converter
GB2336963A (en) * 1998-05-02 1999-11-03 Sharp Kk Controller for three dimensional display and method of reducing crosstalk
FR2782438B1 (en) * 1998-08-13 2002-01-04 Pierre Allio AUTOSTEREOSCOPIC DISPLAY METHOD AND AUTOSTEREOSCOPIC IMAGE
KR100389249B1 (en) * 2000-04-29 2003-06-25 한국과학기술연구원 Multi-view image display system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248293A (en) * 1987-04-03 1988-10-14 Nippon Hoso Kyokai <Nhk> Stereoscopic television set
JPH09236777A (en) * 1996-02-23 1997-09-09 Philips Electron Nv Automatic stereoscopic display device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8169381B2 (en) 2003-02-26 2012-05-01 Phoenix 3D, Inc. Method and apparatus for spatial display using a rasterized imaging device and an array of filter elements
JP2008508758A (en) * 2004-07-30 2008-03-21 アリオ ピエール Method for displaying an autostereoscopic image having N viewpoints
WO2006024764A1 (en) * 2004-07-30 2006-03-09 Pierre Allio Method for displaying an autostereoscopic image having n viewpoints
US7777757B2 (en) 2004-07-30 2010-08-17 Alioscopy Method for displaying an autostereoscopic image having N viewpoints
FR2873824A1 (en) * 2004-07-30 2006-02-03 Pierre Allio METHOD FOR DISPLAYING AN AUTOSTEREOSCOPIC IMAGE AT NIGHT VIEWS
JP2008517310A (en) * 2004-10-18 2008-05-22 アルティスティック イマージュ Lenticular autostereoscopic display device and method and related autostereoscopic image composition method
EA010474B1 (en) * 2004-10-18 2008-10-30 Артистик Имэджез Lenticular autostereoscopic display device and method and associated autostereoscopic image synthesising method
FR2876805A1 (en) * 2004-10-18 2006-04-21 Artistic Images Sarl DEVICE AND METHOD FOR AUTOSTEREOSCOPIC VISUALIZATION BASED ON LENTICULAR, AND METHOD FOR SYNTHESIZING AUTOSTEREOSCOPIC IMAGES
FR2876804A1 (en) * 2004-10-18 2006-04-21 Imagine Optic Sa DEVICE AND METHOD FOR AUTOSTEREOSCOPIC VISUALIZATION BASED ON LENTICULAR, AND METHOD FOR SYNTHESIZING AUTOSTEREOSCOPIC IMAGES
WO2006042953A1 (en) * 2004-10-18 2006-04-27 Artistic Images Lenticular autostereoscopic display and method and associated autosteroscopic image synthesising method
WO2006042952A1 (en) * 2004-10-18 2006-04-27 Artistic Images Lenticular autostereoscopic display and method and associated autostereoscopic image synthesising method
EA011202B1 (en) * 2004-10-18 2009-02-27 Артистик Имэджез Lenticular autostereoscopic display and autosteroscopic synthesising method
DE102004051355A1 (en) * 2004-10-19 2006-05-04 X3D Technologies Gmbh Arrangement for spatially perceptible representation
CN100399105C (en) * 2005-03-24 2008-07-02 株式会社东芝 Stereoscopic image display apparatus and stereoscopic image display method
JP2006285247A (en) * 2005-04-04 2006-10-19 Samsung Electronics Co Ltd Stereoscopic video display for compatibility between 2d/3d images using polarization grating screen
JP2009526488A (en) * 2006-02-09 2009-07-16 リアル・ディ On-the-fly hardware image summary
JP2007228266A (en) * 2006-02-23 2007-09-06 Seiko Epson Corp Image processing system, display device, program and information storage medium
JP2009139787A (en) * 2007-12-10 2009-06-25 Seiko Epson Corp Electrooptical device, display method, and electronic equipment
JP2010088087A (en) * 2008-10-03 2010-04-15 Seiko Epson Corp Electro-optical device, and electronic apparatus
CN101995667A (en) * 2009-08-20 2011-03-30 索尼公司 Stereoscopic image displaying apparatus

Also Published As

Publication number Publication date
KR20050084950A (en) 2005-08-29
EP1581012A1 (en) 2005-09-28
JPWO2004043079A1 (en) 2006-03-09
US20060125916A1 (en) 2006-06-15
CN1708995A (en) 2005-12-14
KR100785982B1 (en) 2007-12-14

Similar Documents

Publication Publication Date Title
WO2004043079A1 (en) Three-dimensional video processing method and three-dimensional video display
JP4538151B2 (en) Autostereoscopic image display method
JP4669482B2 (en) Display device, image processing method, and electronic apparatus
CN101176354B (en) Device, system and method for reproducing imge data in 3D displays
JP4476905B2 (en) Structure of stereoscopic display image data, recording method of stereoscopic display image data, display reproduction method, recording program, and display reproduction program
US6078307A (en) Method for increasing luminance resolution of color panel display systems
KR101107979B1 (en) Display system having improved multiple modes for displaying image data from multiple input source formats
US7839430B2 (en) Autostereoscopic reproduction system for 3-D displays
JP4714115B2 (en) 3D image display apparatus and 3D image display method
JP2008228199A (en) Three-dimensional image display device, method for displaying three-dimensional image, and structure of three-dimensional image data
JPH075420A (en) Spatial light modulator and directional display
US20080291268A1 (en) Rendering of Image Data for Multi-View Display
KR20060042259A (en) Three dimensional image display device
JP2009134068A (en) Display device, electronic apparatus, and image processing method
JP3101521B2 (en) 3D image display panel and 3D image display device
CN107079140A (en) Method for three-dimensional scenic to be presented on automatic stereo monitor
US20080291126A1 (en) Viewing direction image data generator, directional display image data generator, directional display device, directional display system, viewing direction image data generating method, and directional display image data generating method
JPH0996777A (en) Three-dimensional display
US20130038512A1 (en) Simultaneous Reproduction of a Plurality of Images by Means of a Two-Dimensional Imaging Matrix
DE102009041328A1 (en) Method and device for generating partial views and / or a spatial image template from a 2D view for stereoscopic reproduction
JPH10191400A (en) Three-dimensional image display device
JP4293945B2 (en) Image generation method
JP5836840B2 (en) Image processing apparatus, method, program, and image display apparatus
JP2009103865A (en) Display device, image processing method, and electronic equipment
JP2005321987A (en) Image formation method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038A21325

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003810638

Country of ref document: EP

Ref document number: 1020057008015

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004549628

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 1020057008015

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003810638

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006125916

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10533456

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10533456

Country of ref document: US