WO2004042370A1 - Procede pour determiner des parametres physiques ou chimiques d'une couche de matiere de faible epaisseur - Google Patents

Procede pour determiner des parametres physiques ou chimiques d'une couche de matiere de faible epaisseur Download PDF

Info

Publication number
WO2004042370A1
WO2004042370A1 PCT/AT2003/000334 AT0300334W WO2004042370A1 WO 2004042370 A1 WO2004042370 A1 WO 2004042370A1 AT 0300334 W AT0300334 W AT 0300334W WO 2004042370 A1 WO2004042370 A1 WO 2004042370A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
resonance frequency
current
damping
power loss
Prior art date
Application number
PCT/AT2003/000334
Other languages
German (de)
English (en)
Inventor
Peter Krempl
Ferdinand Krispel
Original Assignee
Avl List Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avl List Gmbh filed Critical Avl List Gmbh
Priority to AU2003277939A priority Critical patent/AU2003277939A1/en
Publication of WO2004042370A1 publication Critical patent/WO2004042370A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/022Fluid sensors based on microsensors, e.g. quartz crystal-microbalance [QCM], surface acoustic wave [SAW] devices, tuning forks, cantilevers, flexural plate wave [FPW] devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/032Analysing fluids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/16Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by measuring damping effect upon oscillatory body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0256Adsorption, desorption, surface mass change, e.g. on biosensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/002Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity using variation of the resonant frequency of an element vibrating in contact with the material submitted to analysis

Definitions

  • the invention relates to a method for determining physical or chemical parameters of a thin material layer on a piezoelectric resonator, the resonance frequency and / or the damping of the resonator being measured, at least one variable proportional to the resonator excitation (drive level), preferably the resonator current or the power loss of the resonator is set to a predeterminable value.
  • So-called crystal microbalances are used to carry out such measurement methods, in which a piezoelectric resonator is loaded with a thin layer.
  • substances with thicknesses of a few molecular layers can be examined for their physical and chemical properties.
  • the frequency is mainly used as the measurement variable.
  • Extended systems also use the damping of the resonator to characterize the layer.
  • Crystal microbalances have been developed for the determination of very small masses in the range of nanograms and mostly work on a quartz crystal basis.
  • the principle of a crystal microbalance is shown in Fig. 1.
  • the first microbalances were used to measure the thickness of layers.
  • a thin material layer MS such as a metal layer, is applied to a piezoelectric resonator RE, preferably quartz, (for example, vapor-deposited or sputtered).
  • RE piezoelectric resonator
  • equation (1) only applies under very specific conditions (thin, rigid layers) and numerous modifications have been proposed.
  • the damping of the resonator was added as an additional variable (apart from the resonance frequency or its change).
  • Attenuation and resonance frequency are obtained from a decaying vibration, for example.
  • the resonance frequency and / or the damping, for example, during the Loading of the resonator is recorded as a function of the resonator excitation or the power loss of the resonator and used to determine physical or chemical parameters of the material layer on the piezoelectric resonator.
  • An additional measurement parameter namely the functional relationship between a variable resonator excitation and the resonance frequency or damping, is thus introduced in addition to the previously used measurement variables resonance frequency, damping and their temporal course.
  • the sizes reson The frequency and / or damping can then be recorded as a family of curves depending on different values of the power loss of the resonator or the resonator current.
  • a particularly advantageous application of the method according to the invention results when the resonator is used in contact with a liquid.
  • the resonator is preferably operated with an amplitude-controlled oscillator, with either the power loss of the resonator or the resonator current being kept constant and the resonance frequency and / or the damping of the resonator being recorded.
  • the method according to the invention preferably uses amplitude-controlled circuits. With this control, the current through the resonator is usually set to a certain value.
  • the power loss at the resonator can also be regulated.
  • One of these settings is then kept constant during a measurement process, even if the frequency and damping change.
  • the piezoelectric resonator is operated with different values for the resonator current or the power loss during a measurement process, preferably in rapid chronological order.
  • the resonator current can be increased or decreased in stages and the resonance frequency and / or damping can be measured as a function of the respectively set resonator current (see FIG. 5).
  • resonators can be used simultaneously, which are operated under otherwise largely identical measuring conditions with different values for the resonator current or the power loss.
  • Each resonator supplies its own measurement curve, which in total gives the family of curves described with reference to FIG. 4.
  • the output frequency of an oscillator is equal to the resonance frequency of the resonator.
  • the resonance frequency changes according to equation (1) and therefore also to change the operating frequency of the oscillator.
  • the non-ideal amplifier in the oscillator circuit also changes the phase relationship between its input and output. Since the phase sweep in an oscillator loop must be an integral multiple of 360 °, the resonator reacts with the smallest phase change with a compensating phase change, so that the phase offset in the resonator also shifts the frequency with which the oscillator works. The new output frequency is therefore no longer the resonance frequency of the resonator but differs depending on the electronics and resonator quality used.
  • the damping is falsified, since due to the phase change at the resonator, the frequency is no longer determined at the point of the minimum impedance of the resonator. Since the quality of the resonator is also changed due to the damping during loading, the error in the determination of the resonance frequency with heavy loads (large resonance frequency shift and high damping) can become quite large.
  • phase change caused by the material layer is measured at the resonator and that the measured value is used to regulate the oscillator frequency to the resonance frequency of the resonator.
  • the phase information is fed to a phase adjusting element in order to exactly compensate for the phase change at the resonator.
  • This phase locked loop ensures that the oscillator frequency corresponds directly to the resonance frequency of the resonator even when the crystal microbalance is heavily loaded.
  • the resonator is always operated in the vicinity of its impedance minimum, so that the damping correlates with the absolute value of the minimum impedance of the resonator.
  • Fig. 1 shows the principle of a crystal microbalance as well
  • FIG. 4 shows a diagram of a measurement example, which shows the time course of the resonance frequency R and the damping D as a function of different values for the resonator current
  • 5 shows, in a further diagram, the resonance frequency R and the damping D as a function of the resonator current I at the time ti of the measurement example according to FIG. 4.
  • the voltage UR is fed to the resonator RE and the current-voltage converter T.
  • the voltage IR which is proportional to the resonator current, is compared with the output target voltage OS after passing through the multiplier M and the phase actuator ⁇ .
  • the error signal OSD is fed to the multiplier M, so that the output voltage out always corresponds to the target output voltage OS.
  • the resonator voltage UR and the voltage IR proportional to the resonator current are kept in phase via the phase comparator P and the phase actuator ⁇ , so that the oscillator always works on the exact series resonance of the resonator RE.
  • the voltage IR proportional to the resonator current is compared with the setpoint IRS.
  • the voltage UR is set via the feedback loop so that the voltage IR proportional to the resonator current is kept at the setpoint value IRS. If the setpoint IRS is changed, e.g. another resonator current can be selected with the help of a potentiometer. This is kept constant again during the measurement process.
  • FIG. 3 shows an embodiment variant of the circuit diagram according to FIG. 2, in which the power loss of the resonator is used as a controlled variable.
  • the circuit is supplemented by a multiplier Ml in order to detect the power loss PR (product current times voltage) of the resonator RE, the resonator RE being kept at the desired value of the power PRS.
  • the time t is plotted on the abscissa and the resonance frequency R (solid lines) and the damping D (dashed lines) on the ordinate.
  • the frequency and attenuation values are plotted for different values for the resonator current (0.5 mA, 2 mA, 12 mA and 30 mA) that are kept constant during the measurement.
  • the measurement curves R and D coincide in the first measurement range, with the resonator current still unloaded, for the different resonator current values and split after the first loading Bx and after the second loading B 2 in different ways for the mentioned values of the resonator current and form a family of curves ,
  • the type of curve shape or the size and type of splitting of the curves with different resonator currents can be used to determine the physical or chemical parameters of the thin material to be determined.
  • layer can be closed. After cleaning C, the initial values for the resonance frequency R and the damping D are set again.
  • the measuring method according to the invention is particularly effective in the case of the strongly damped liquid microbalances. Another advantage over passive measurement methods, such as those are carried out with a network analyzer, the selectable load of the resonator, which is constant during the measurement process, whereas in conventional microbalances generally only the voltage at the resonator is kept constant and the current is set depending on the respective impedance.
  • FIG. 5 shows the resonance frequency R and the damping D as a function of the resonator current I at time ti in the diagram in FIG. 4.
  • the resonance frequency R decreases or the damping D increases with increasing resonator current I.
  • the measurement curves can be used to determine physical or chemical parameters of a thin material layer on the piezoelectric resonator.
  • GaPO 4 as the resonator material is particularly advantageous with crystal scales, since the damping is lower, but the frequency changes when loaded are higher than with comparable quartz resonators.
  • the resonance frequency and / or the damping is determined as a function of the electrically measurable resonator excitation (drive level) of a piezoelectric resonator.
  • the resonance frequency and / or the damping is determined depending on the current through the resonator.
  • the resonance frequency and / or the damping is determined depending on the power loss in the resonator.
  • phase change due to the resonator loading which causes a shift in the measured resonance frequency, is compensated with a phase locked loop.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

L'invention concerne un procédé permettant de déterminer des paramètres physiques ou chimiques d'une couche de matière de faible épaisseur sur un résonateur piézoélectrique. Ce procédé consiste à mesurer la fréquence de résonance et/ou l'atténuation du résonateur, au moins une grandeur proportionnelle à l'excitation du résonateur (niveau d'excitation), de préférence le courant du résonateur ou sa puissance dissipée, étant réglée sur une valeur prédéterminable. Selon l'invention, la fréquence de résonance et/ou l'atténuation sont enregistrées en fonction de cette grandeur proportionnelle à l'excitation du résonateur. Le matériau utilisé pour le résonateur est de préférence du GaPO4.
PCT/AT2003/000334 2002-11-07 2003-11-06 Procede pour determiner des parametres physiques ou chimiques d'une couche de matiere de faible epaisseur WO2004042370A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003277939A AU2003277939A1 (en) 2002-11-07 2003-11-06 Method for determining physical or chemical parameters of a thin material layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA1674/2002 2002-11-07
AT16742002A AT414274B (de) 2002-11-07 2002-11-07 Verfahren zur bestimmung physikalischer oder chemischer parameter einer dünnen materialschicht

Publications (1)

Publication Number Publication Date
WO2004042370A1 true WO2004042370A1 (fr) 2004-05-21

Family

ID=32303950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2003/000334 WO2004042370A1 (fr) 2002-11-07 2003-11-06 Procede pour determiner des parametres physiques ou chimiques d'une couche de matiere de faible epaisseur

Country Status (3)

Country Link
AT (1) AT414274B (fr)
AU (1) AU2003277939A1 (fr)
WO (1) WO2004042370A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6924588B2 (en) * 2003-02-04 2005-08-02 Nihon Dempa Kogyo Co., Ltd. Piezoelectric crystal material and piezoelectric resonator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022124080B4 (de) 2022-09-20 2024-09-26 Koenig & Bauer Ag Verfahren und Vorrichtung zur Bestimmung der Dichte einer auf einer Mantelfläche einer Walze geförderten Materialschicht sowie Vorrichtung zum Beschichten eines Trägersubstrates mit einer Materialschicht

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783987A (en) * 1987-02-10 1988-11-15 The Board Of Regents Of The University Of Washington System for sustaining and monitoring the oscillation of piezoelectric elements exposed to energy-absorptive media
US4788466A (en) * 1987-11-09 1988-11-29 University Of Arkansas Piezoelectric sensor Q-loss compensation
WO1998041820A1 (fr) * 1997-03-17 1998-09-24 Q-Sense Ab Procede et appareil de mesure des proprietes et des processus des cellules au niveau de surfaces
US6006589A (en) * 1995-05-04 1999-12-28 O-Sense Ab Piezoelectric crystal microbalance device
WO2000025118A1 (fr) * 1998-10-26 2000-05-04 Smithkline Beecham P.L.C. Microbalance a quartz avec boucle de retroaction pour commande automatique de gain
EP1058109A1 (fr) * 1998-11-02 2000-12-06 Kabushiki Kaisha Meidensha Capteur qcm

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9900996D0 (sv) * 1999-03-17 1999-03-17 Sense Ab Q Metod for studying chemical-physical properties of a polymer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783987A (en) * 1987-02-10 1988-11-15 The Board Of Regents Of The University Of Washington System for sustaining and monitoring the oscillation of piezoelectric elements exposed to energy-absorptive media
US4788466A (en) * 1987-11-09 1988-11-29 University Of Arkansas Piezoelectric sensor Q-loss compensation
US6006589A (en) * 1995-05-04 1999-12-28 O-Sense Ab Piezoelectric crystal microbalance device
WO1998041820A1 (fr) * 1997-03-17 1998-09-24 Q-Sense Ab Procede et appareil de mesure des proprietes et des processus des cellules au niveau de surfaces
WO2000025118A1 (fr) * 1998-10-26 2000-05-04 Smithkline Beecham P.L.C. Microbalance a quartz avec boucle de retroaction pour commande automatique de gain
EP1058109A1 (fr) * 1998-11-02 2000-12-06 Kabushiki Kaisha Meidensha Capteur qcm

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BENES E ET AL: "Sensors based on piezoelectric resonators", SENSORS AND ACTUATORS A, ELSEVIER SEQUOIA S.A., LAUSANNE, CH, vol. 48, no. 1, 1 May 1995 (1995-05-01), pages 1 - 21, XP004303567, ISSN: 0924-4247 *
CHAGNARD C ET AL: "AN ELECTRONIC OSCILLATOR WITH AUTOMATIC GAIN CONTROL: EQCM APPLICATIONS", SENSORS AND ACTUATORS B, ELSEVIER SEQUOIA S.A., LAUSANNE, CH, vol. B32, no. 2, 1 May 1996 (1996-05-01), pages 129 - 136, XP000636389, ISSN: 0925-4005 *
NOSEK J: "A precise measurement of some nonlinear effects and its application to the evaluation of nonlinear elastic constants of quartz and GaPO/sub 4/", IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS AND FREQUENCY CONTROL, APRIL 2003, IEEE, USA, vol. 50, no. 4, pages 386 - 391, XP002274401, ISSN: 0885-3010 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6924588B2 (en) * 2003-02-04 2005-08-02 Nihon Dempa Kogyo Co., Ltd. Piezoelectric crystal material and piezoelectric resonator

Also Published As

Publication number Publication date
ATA16742002A (de) 2006-01-15
AT414274B (de) 2006-10-15
AU2003277939A1 (en) 2004-06-07

Similar Documents

Publication Publication Date Title
DE4035240C2 (de) Messen und Steuern des Beschichtens auf einem piezoelektrischen Meßkristall
DE69222052T2 (de) Sensor für verschiedene gaseigenschaften
EP3532808B1 (fr) Procédé permettant de surveiller l'état d'un résonateur électromécanique
EP3234518B1 (fr) Capteur vibronique
EP3472578B1 (fr) Capteur vibronique et procédé de fonctionnement d'un capteur vibronique
DE2723571A1 (de) Signalgenerator mit quarz-resonator
EP3329246B1 (fr) Déphaseur pour capteur vibronique
EP3580532A1 (fr) Surveillance de l'état d'un capteur vibronique
EP1470408B1 (fr) Dispositif de mesure de viscosite et/ou de densite
DE3700366C2 (fr)
DE69130843T2 (de) Piezo-elektrischer Temperaturfühler
DE4100683A1 (de) Schaltungsanordnung fuer quarzkristallmonitoren
EP2212659B1 (fr) Microbalance à quartz à balayage de l'impédance
EP3513152B1 (fr) Compensation d'un changement de phase d'au moins un composant électronique d'un capteur vibronique
DE112005002225T5 (de) Verfahren zur Mikrowellenmessung, Messgerät und Oszillator
AT414274B (de) Verfahren zur bestimmung physikalischer oder chemischer parameter einer dünnen materialschicht
DE2424709A1 (de) Geraet fuer frequenzmessung und frequenzabgleich von kristallresonatoren
DE102017130530A1 (de) Verfahren zur Zustandsüberwachung eines vibronischen Sensors
DE60014090T2 (de) Frequenzvariation zur verbesserung des signalrauschabstandes eines sensors
WO2001042762A1 (fr) Procede et dispositif pour evaluer un dispositif capteur
EP0473901B1 (fr) Détecteur pour mettre en évidence un composant dans un liquide
DE102021134179A1 (de) Messanordnung mit einem mikromechanischen Oszillator
DE2942971A1 (de) Vorrichtung zur feuchtemessung mit hilfe von mikrowellen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 92882003

Country of ref document: AT

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP