WO2004040320A1 - Procede et dispositif pour determiner l'angle de rotation et le regime d'un moteur - Google Patents

Procede et dispositif pour determiner l'angle de rotation et le regime d'un moteur Download PDF

Info

Publication number
WO2004040320A1
WO2004040320A1 PCT/DE2003/002063 DE0302063W WO2004040320A1 WO 2004040320 A1 WO2004040320 A1 WO 2004040320A1 DE 0302063 W DE0302063 W DE 0302063W WO 2004040320 A1 WO2004040320 A1 WO 2004040320A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
motor
rotation
angle
ring magnet
Prior art date
Application number
PCT/DE2003/002063
Other languages
German (de)
English (en)
Inventor
Hubert Lamm
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2004040320A1 publication Critical patent/WO2004040320A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • G01P21/02Testing or calibrating of apparatus or devices covered by the preceding groups of speedometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2454Encoders incorporating incremental and absolute signals
    • G01D5/2455Encoders incorporating incremental and absolute signals with incremental and absolute tracks on the same encoder
    • G01D5/2457Incremental encoders having reference marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/489Digital circuits therefor

Definitions

  • the invention relates to a method for determining the angle of rotation and the speed of a motor, in particular a drive motor with closing force limitation for sunroofs or window regulators, and a device for carrying out the method.
  • Today's sunroofs and window regulators which are actuated by an electric motor, are basically provided with a closing force limitation in order to provide protection against trapping.
  • a closing force limitation When an open sliding roof is closed, an object is pinched or damage to the drive or closing mechanism in the event of a mechanical fault is prevented by the drive motor being stopped and / or reversed.
  • the torque applied to the drive motor is determined either directly or indirectly via the detection of the motor speed or its change. The speed can be detected, for example, by optoelectronic sensors or Hall sensors. Another option is also the measurement of the motor current in order to limit the closing force.
  • the motor speed or the motor current When the sunroof or window is closed, the motor speed or the motor current usually fluctuates slightly around a nominal speed or nominal current. These changes are based on on the fluctuations in the coefficient of friction in the locking mechanism. If the speed or the motor current deviate too much from the nominal value, a mechanical blockage is recognized and the drive motor is stopped by the closing force limitation or a reversing movement is carried out by reversing the direction of rotation of the motor.
  • a ring magnet is usually arranged on the armature of the motor.
  • the speed and the direction of rotation of the motor are evaluated with one or more Hall sensors.
  • very high demands are placed on the angular accuracy. Deviations in the angular accuracy are usually compensated for by measuring the tolerances during operation and then correcting them accordingly.
  • the disadvantage here is that a reference value is always required to determine the correction factors.
  • This reference value can be a constant engine speed, for example. In practical implementation, however, this means that the correction values can only be determined when the motor has reached its nominal speed, which can be maintained relatively constant. However, this means that no correction values are available when the motor starts. This is disadvantageous because modern clamping force limits also during the Starting phase of the motor should be active in order to be able to safely avoid damage or injuries.
  • the inventive method for determining the angle of rotation and the speed of a motor, in particular a drive motor with closing force limitation for sunroofs or window lifters, with the features of claim 1 has the advantage that the correction values are available immediately, but at the latest after one motor revolution, and the measured ones Sensor signals can also be corrected accordingly during the start-up phase of the drive motor. This is achieved by measuring at least one sensor signal for determining the angle of rotation and / or the speed of the motor and an additional trigger signal, from which a corrected sensor signal for the closing force limitation is determined. This means that the closing force limitation can be activated from the start of the closing of the sunroof or window. Furthermore, almost any tolerances of the complete sensor system can be corrected with the aid of the additional trigger signal using the specified method.
  • a sensor pulse of the sensor signal is preferably assigned to the trigger signal.
  • the assigned pulse is precisely recognized by the fixed assignment of the trigger signal to the sensor pulse. All other individual sensor pulses can also be determined in this way. For example, the individual sensor pulses can be correctly determined by simple counting. This ensures that correct and appropriate correction values are always used to adapt the measured sensor signal. Furthermore is also a possible “counting" of the determined sensor impulses uncritically, since the trigger signal again results in an exact assignment of the correction values to the respective sensor signals at the latest after one revolution of the motor.
  • the correction values are typically determined by averaging during a special measuring run at constant speed and then stored. This has the great advantage that the measuring run can take place in a protected environment that is free from environmental influences such as temperature fluctuations or contamination.
  • the measuring runs can also take place during the production of the sunroof motor. It is thus possible to carry out the measuring run at a constant speed which shows only very small fluctuations. By averaging over several revolutions of the motor, any fluctuations in the speed of the motor can be compensated for during the measurement run. To compensate for speed deviations, it is still possible to take several measurement runs into account. The accuracy of the correction values can thus be increased again.
  • the final saving of the correction values ensures that the correction values can be accessed at any time during operation.
  • the correction values are read out from a memory.
  • the correction values are thus immediately available during the method and the correction values only have to be read out from the memory.
  • a constant calculation of the correction values is not necessary, which means that the method can work very quickly and precisely.
  • each sensor signal is corrected, since the correction values are uniquely assigned to the respective measured sensor signal.
  • An individual correction factor is applied to each sensor pulse. The optimal assignment of the correction values to the individual sensor pulses ensures the greatest possible accuracy of the correction.
  • a device is used to carry out the method according to the invention, with a motor having an armature, at least one ring magnet on the armature of the motor and at least one sensor for measuring the angle of rotation.
  • the device comprises a second ring magnet, which is in particular designed with two poles, a trigger sensor arranged on the second ring magnet and an evaluation unit which reads out and processes the sensor signal and the trigger signal synchronously.
  • the evaluation unit can in particular be a timer capture device of a processor.
  • the second ring magnet is preferably formed with two differently sized magnetic pole segments in the circumferential direction.
  • the second ring magnet is particularly preferably arranged around the first ring magnet.
  • the evaluation unit preferably also includes a memory for storing the correction values, so that in addition to the determined sensor signals and the trigger signal, the correction values can also be processed directly in the evaluation unit and the corrected sensor signals can be determined. It is particularly advantageous if the memory of the evaluation unit is a non-volatile memory. This ensures that the correction values are still available and are not deleted even if the power supply is interrupted.
  • the use of a second sensor has the advantage that the direction of rotation of the motor can be easily deduced from the comparison of the two measured sensor signals. In this way, reversing or incorrect reversing of the motor can be detected.
  • Both the measurement sensors and the additional trigger sensor can be designed as Hall sensors. his.
  • the Hall sensors are particularly well suited for use in the automotive sector, as they are insensitive to dirt and robust. In addition, they are inexpensive and available in large quantities.
  • Figure 1 is a schematic sketch of the device according to the invention in a plan
  • Figure 2 shows the time course of the measured sensor signals.
  • Figure 1 shows a schematic diagram with a motor 1 and a centrally arranged armature shaft 2.
  • a multi-pole first Ring magnet 3 is arranged around the armature shaft 2.
  • the first ring magnet 3 is divided into eight magnet segments 4, which are alternately polarized in the direction of the magnetic north or south pole.
  • a second ring magnet 5 is arranged concentrically around the first ring magnet 3.
  • the ring magnet 5 is divided into two magnet segments 6a and 6b, which are of different sizes and are oppositely polarized.
  • the two ring magnets 3 and 5 are fixedly connected to one another and can be rotated together concentrically around the armature shaft 2.
  • the respective magnet segments 4 or 6a and 6b thus also execute a circular movement.
  • Two sensors which are designed as Hall sensors 7 and 8, are arranged on the inner ring magnet 3.
  • the Hall sensors 7 and 8 are positioned such that, depending on the rotational position of the motor 1, they are arranged either over the same magnet segment 4 or over two differently polarized, directly adjacent magnet segments 4.
  • a trigger sensor 9 is arranged on the second ring magnet 5. While the motor is rotating, the trigger sensor 9 measures a trigger signal 10, the pulse duty factor T of which differs from 0.5 owing to the differently sized magnet segments 6a and 6b. With this additional trigger signal 10, which is determined by the trigger sensor 9, it is possible to unambiguously deduce the magnet segments 4 of the first ring magnet 3 when measuring them with the Hall sensors 1 and 8.
  • FIG. 2 shows the temporal course of the trigger signal 10 measured with the trigger sensor 9 and two sensor signals 11 and 12, which are measured with the Hall sensors 7 and 8 be determined.
  • the rising edge of the trigger signal 10 coincides in time with the rising edge of a first sensor pulse 13 of the sensor signal 11.
  • a fixed assignment of the trigger signal 10 to the sensor pulse 13 of the Hall sensor 7 is predetermined. Due to the fixed assignment, the first sensor pulse 13 is always reliably recognized. By simply counting the subsequent sensor pulses 14 to 16, it is easy to deduce each individual sensor pulse 14 to 16.
  • the time interval between the trigger signal 10 and one of the sensor pulses 13 to 16 of the sensor signal 11 can be towards Magnet segment 4 associated with the respective sensor pulse can be closed. This makes it possible to determine the angle of rotation of the motor 1.
  • correction values stored in a memory can be assigned to the individual sensor pulses 13 to 16. Each sensor pulse 13 to 16 can thus be corrected with its own correction value.
  • the engine speed can be calculated from the chronological sequence of the individual sensor pulses 13 to 16 of the sensor signal 11 or from the trigger signal 11 itself.

Abstract

L'invention concerne un procédé permettant de déterminer l'angle de rotation et le régime d'un moteur (1), notamment un moteur d'entraînement à limitation de la force de fermeture de toits ouvrants ou de lève-vitres, ainsi qu'un dispositif permettant de mettre ledit procédé en oeuvre. Le procédé comprend la mesure d'un signal de détection (11) représentant l'angle de rotation et/ou le régime du moteur (1), ainsi que la mesure d'un signal de déclenchement (1) qui représente une position de référence. Un facteur de correction qui compense les écarts de grandeurs de segment est associé à chaque segment défini d'un aimant torique. Ces facteurs de correction sont pris en compte lors de la détermination de l'angle de rotation et du régime.
PCT/DE2003/002063 2002-10-23 2003-06-20 Procede et dispositif pour determiner l'angle de rotation et le regime d'un moteur WO2004040320A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2002149345 DE10249345A1 (de) 2002-10-23 2002-10-23 Verfahren und Vorrichtung zur Ermittlung des Drehwinkels und der Drehzahl eines Motors
DE10249345.6 2002-10-23

Publications (1)

Publication Number Publication Date
WO2004040320A1 true WO2004040320A1 (fr) 2004-05-13

Family

ID=32087116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/002063 WO2004040320A1 (fr) 2002-10-23 2003-06-20 Procede et dispositif pour determiner l'angle de rotation et le regime d'un moteur

Country Status (2)

Country Link
DE (1) DE10249345A1 (fr)
WO (1) WO2004040320A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2023093A3 (fr) * 2007-07-25 2014-12-31 Dr. Johannes Heidenhain GmbH Encodeur et son procédé de fonctionnement
DE102005019515C5 (de) * 2004-05-15 2017-11-16 Schaeffler Technologies AG & Co. KG Verfahren zum Messen der Drehzahl eines EC-Motors
CN114636843B (zh) * 2022-04-01 2024-05-17 常州中量高新技术有限公司 基于传感器模块的牵引电机的转动方向判别方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012217982A1 (de) * 2012-10-02 2014-06-12 Bayerische Motoren Werke Aktiengesellschaft Schaltvorrichtung für eine Drehzahlerfassung bei elektromotorischen Antrieben

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4257040A (en) * 1978-04-28 1981-03-17 Nippondenso Co., Ltd. Engine rotational information detecting apparatus
US4707695A (en) * 1982-07-02 1987-11-17 Hitachi, Ltd. Magnetic position sensor
DE3736074A1 (de) * 1986-11-07 1988-05-19 Diesel Kiki Co Vorrichtung und verfahren zum messen eines zeitintervalls fuer einen umdrehungssensor
EP0583495A1 (fr) * 1992-08-14 1994-02-23 Siemens Aktiengesellschaft Procédé de détection et de correction d'erreurs pour des mesures de temps des arbres tournants
DE19835091C1 (de) * 1998-07-24 1999-06-10 Brose Fahrzeugteile Verfahren zur Steuerung und Regelung motorisch angetriebener Verstelleinrichtungen in Kraftfahrzeugen
WO2000008475A1 (fr) * 1998-08-05 2000-02-17 Siemens Aktiengesellschaft Mecanisme motorise pour leve-glace ou toit ouvrant, pour automobile

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4257040A (en) * 1978-04-28 1981-03-17 Nippondenso Co., Ltd. Engine rotational information detecting apparatus
US4707695A (en) * 1982-07-02 1987-11-17 Hitachi, Ltd. Magnetic position sensor
DE3736074A1 (de) * 1986-11-07 1988-05-19 Diesel Kiki Co Vorrichtung und verfahren zum messen eines zeitintervalls fuer einen umdrehungssensor
EP0583495A1 (fr) * 1992-08-14 1994-02-23 Siemens Aktiengesellschaft Procédé de détection et de correction d'erreurs pour des mesures de temps des arbres tournants
DE19835091C1 (de) * 1998-07-24 1999-06-10 Brose Fahrzeugteile Verfahren zur Steuerung und Regelung motorisch angetriebener Verstelleinrichtungen in Kraftfahrzeugen
WO2000008475A1 (fr) * 1998-08-05 2000-02-17 Siemens Aktiengesellschaft Mecanisme motorise pour leve-glace ou toit ouvrant, pour automobile

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005019515C5 (de) * 2004-05-15 2017-11-16 Schaeffler Technologies AG & Co. KG Verfahren zum Messen der Drehzahl eines EC-Motors
EP2023093A3 (fr) * 2007-07-25 2014-12-31 Dr. Johannes Heidenhain GmbH Encodeur et son procédé de fonctionnement
CN114636843B (zh) * 2022-04-01 2024-05-17 常州中量高新技术有限公司 基于传感器模块的牵引电机的转动方向判别方法和装置

Also Published As

Publication number Publication date
DE10249345A1 (de) 2004-05-06

Similar Documents

Publication Publication Date Title
EP1630363B1 (fr) Méthode pour déterminer la phase d'un arbre à cames dans un moteur à combustion interne
EP1763915B1 (fr) Dispositif de commande et procede pour commander un systeme de reglage d'une automobile
DE4326216C2 (de) Verfahren zum Betreiben einer elektrisch angetriebenen Fensterhebevorrichtung mit einer Sicherheitsvorrichtung
EP0974479B1 (fr) Procedé pour la régulation motorisée d'un dispositif de réglage pour véhicule automobile
DE102007050173B3 (de) Verfahren und Vorrichtung zur Erhöhung der Genauigkeit der Positionsbestimmung eines motorgetriebenen Schließteiles eines Fahrzeugs
DE102009034664A1 (de) Verfahren und Vorrichtung zur Ermittlung der Stellposition eines Verstellelements eines Kraftfahrzeugs
DE102015117763A1 (de) Vorrichtung und Verfahren zur Bestimmung eines Drehwinkels eines Rotors
EP0880013A1 (fr) Procédé de fonctionnement pour un capteur de position
EP2433099A1 (fr) Procédé et dispositif pour déterminer la position angulaire d'une partie rotative
WO2000008475A1 (fr) Mecanisme motorise pour leve-glace ou toit ouvrant, pour automobile
EP1802942B1 (fr) Procede et dispositif de detection sans contact d'un angle de rotation
DE10260588B4 (de) Steuereinrichtung für ein Schließelement und Verfahren zur Begrenzung von Stellungsabweichungen eines Schließelements
WO2012089405A1 (fr) Procédé et dispositif destinés à fournir une information de déplacement, notamment pour détecter le blocage d'un système de fermeture
WO2000068644A1 (fr) Procede et dispositif de determination de l'inversion effective du sens de rotation d'un dispositif d'entrainement en rotation a suivi de position
DE10231450A1 (de) Hochauflösende Drehwinkelsensorik für Gleichstrommotoren
DE102015220839B4 (de) Verfahren und Vorrichtung zur Ermittlung der Stellposition eines verstellbaren Kraftfahrzeugteils
DE19835091C1 (de) Verfahren zur Steuerung und Regelung motorisch angetriebener Verstelleinrichtungen in Kraftfahrzeugen
DE102006049123B4 (de) Verfahren zur Ermittlung der Drehstellung des Rotors eines mechanisch kommutierten Gleichstrom-Stellmotors
WO2004040320A1 (fr) Procede et dispositif pour determiner l'angle de rotation et le regime d'un moteur
EP1126102A2 (fr) Serrure pour véhicule et procédé de commande pour une telle serrure
EP0956520B1 (fr) Detection de poursuite de moteurs de commande electriques a detection de position incrementielle
DE102010042134A1 (de) Elektromotor mit einer Rotorpositionserfassung
DE102021212470A1 (de) Steer-by-wire-Lenkung für ein Kraftfahrzeug
DE4407446C1 (de) Verfahren und Vorrichtung zur schnellen Interpolation von Zwischenwerten aus periodischen phasenverschobenen Signalen sowie deren Verwendung
EP1627207A1 (fr) Capteur de mesure d'une longueur ou d'un angle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase